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ABSTRACT | Spectrum sensing is the very task upon which the

entire operation of cognitive radio rests. For cognitive radio to

fulfill the potential it offers to solve the spectrum underutili-

zation problem and do so in a reliable and computationally

feasible manner, we require a spectrum sensor that detects

spectrum holes (i.e., underutilized subbands of the radio

spectrum), provides high spectral-resolution capability, esti-

mates the average power in each subband of the spectrum, and

identifies the unknown directions of interfering signals.

Cyclostationarity is another desirable property that could be

used for signal detection and classification. The multitaper

method (MTM) for nonparametric spectral estimation accom-

plishes these tasks accurately, effectively, robustly, and in a

computationally feasible manner. The objectives of this paper

are to present: 1) tutorial exposition of the MTM, which is

expandable to perform space–time processing and time–

frequency analysis; 2) cyclostationarity, viewed from the Loève

and Fourier perspectives; and 3) experimental results, using

Advanced Television Systems Committee digital television and

generic land mobile radio signals, followed by a discussion of

the effects of Rayleigh fading.
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transform (FFT) algorithm; Fourier transform; multitaper
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I . INTRODUCTION

The usable electromagnetic radio spectrumVa precious
natural resourceVis of limited physical extent. However,

wireless devices and applications are increasing daily. It is

therefore not surprising that we are facing a difficult

situation in wireless communications. Moreover, given the

reality that, currently, the licensed part of the radio spec-

trum is poorly utilized [1], this situation will only get worse

unless we find new practical means for improved utiliza-

tion of the spectrum. Cognitive radio, a new and novel way
of thinking about wireless communications, has the

potential to become the solution to the spectrum underuti-
lization problem [2], [3].

Building on spectrum sensing and other basic tasks,

the ultimate objective of a cognitive radio network is

twofold:

• provide highly reliable communication for all users

of the network, wherever and whenever needed;
• facilitate efficient utilization of the radio spectrum in

a fair-minded and cost-effective manner.

A. Spectrum Sensing
In this paper, we focus attention on the particular task

on which the very essence of cognitive radio rests:

spectrum sensing, defined as the task of finding spectrum
holes by sensing the radio spectrum in the local neighbor-
hood of the cognitive radio receiver in an unsupervised

manner. The term Bspectrum holes[ stands for those sub-

bands of the radio spectrum that are underutilized (in part
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or in full) at a particular instant of time and specific geo-
graphic location. To be specific, the task of spectrum

sensing involves the following subtasks:

1) detection of spectrum holes;

2) spectral resolution of each spectrum hole;

3) estimation of the spatial directions of incoming

interferes;

4) signal classification.

The subtask of spectrum-hole detection is, at its simplest
form, when the focus is on a white space (i.e., a subband

that is only occupied by white noise). Specifically, the

detection of a white space may be performed by using a

radiometer, which is well known for its energy-detection

capability [4], [5]. Alternatively, we may resort to the use

of cyclostationarity, which is an inherent property of digital
modulated signals that naturally occur in the transmission

of communication signals over a wireless channel [6], [7].
In both of these two approaches to spectrum sensing, the

detection of a spectrum hole boils down to a binary
hypothesis-testing problem. Specifically, hypothesis H1

refers to the presence of a primary user’s signal (i.e., the

subband under test is occupied) and hypothesis H0 refers

to the presence of ambient noise (i.e., the subband is a

white space). The cyclostationarity approach to detection

has an advantage over the energy-detection approach in
that it is also capable of signal classification and has the

ability to distinguish cochannel interference.

The use of both of these approaches is confined to

white spaces only, which limits the scope of their

spectrum-sensing capabilities. In order to further refine

the detection of white spaces and broaden the scope of

spectrum sensing so as to also include the possible em-

ployment of gray spaces (i.e., subbands of the spectrum
that contain noise as well as interfering signals), we may

have to resort to a sensing technique that includes spec-

trum estimation.

Spectrum estimation can be of a parametric kind, which

requires modeling the stochastic process of interest; a

widely used example is autoregressive (AR) modeling.

Alternatively, spectrum estimation can be of a non-
parametric kind, bypassing the need for modeling, and
therefore working directly on the stochastic process under

study. Given the notoriously unreliable nature of wireless

channels, compounded by the uncertainty of accessing

underutilized subbands of the radio spectrum by cognitive

radios that come and go, the nonparametric approach to

spectrum estimation is a preferred choice for spectrum

sensing.

Most importantly, with emphasis on reliable commu-
nications and efficient utilization of spectrum holes, we

need a nonparametric method for spectrum sensing that

is reliable, capable of high spectral resolution in both

average power and frequency, and computationally feasible
in real-time. A spectral estimator that satisfies these re-

quirements is the multitaper method or multitaper spectral
estimator [8]; hereafter, both terminologies are used

interchangeably. Another attribute of the multitaper
method (MTM) is that it lends itself naturally to space–
time processing, whereby the direction for a reliable

communication link can be established; in effect, the

cognitive radio is provided with a sense of direction. Fur-

thermore, by combining the MTM with the Loève
transform, a cognitive radio is enabled to perform time–
frequency analysis (TFA) and thereby provide the property

of cyclostationarity when a digital modulated signal is
present. Putting all these pieces together, in MTM we

have the making of an integrated multifunction signal pro-
cessor that is wholly nonparametric and therefore robust.
Most importantly, this integrated receiver accounts for all

three essential dimensions of sensing: time, frequency,

and space.

In addition to the MTM as a tool for spectrum

sensing, this paper also discusses the idea of cyclosta-
tionarity viewed in a Fourier-theoretic framework. Cyclo-

stationarity has a large body of literature that extends

over 50 years, much of which has focused on Fourier

theory [9].

Most importantly, the study of the MTM and cyclo-

stationarity as tools for spectrum sensing is supported

with experimental results, using Advanced Television

Systems Committee (ATSC) digital television and generic
land mobile radio data.

B. Organization of This Paper
Section II outlines desirable attributes of a spectrum

sensor for reliable and efficient utilization of spectrum

holes, thereby setting the stage for a tutorial exposition of

the MTM in Section III. Given a time series, the MTM

produces an estimate of the spectrum of incoming radio-
frequency (RF) stimuli as a function of frequency; hence

the ability to identify the location of spectrum holes

within the radio spectrum. In addition to time as an

essential dimension of sensing, cognitive radio also needs

to know the spatial distribution of spectrum holes; to this

end, the issue of space–time processing is discussed in

Section IV. Section V describes time–frequency analysis

by combining the MTM with the Loève transform. The
discussion of time–frequency analysis is continued in

Section VI, wherein the cyclostationarity property of

digital modulated signals is viewed in a Fourier-theoretic

framework.

With all of this background theory at hand, the stage is

set for an experimental study of spectrum sensing in

Sections VII and VIII, using data collected from two

different communication media, each of which is amena-
ble to cognitive radio in its own way:

• wide-band ASTC digital television signals;

• quadriphase-shift keying (QPSK) used in generic

mobile radio.

Section IX addresses spectral considerations in Rayleigh

channels. This paper concludes with a summary and

discussion in Section X.
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II . SPECTRUM SENSING:
BACKGROUND CONSIDERATIONS

In terms of occupancy, subbands of the radio spectrum
may be categorized as follows.

1) White spaces, which are free of RF interferers,

except for noise due to natural and/or artificial

sources.1

2) Gray spaces, which are partially occupied by inter-

ferers as well as noise.

3) Black spaces, the contents of which are completely

full due to the combined presence of communica-
tion and (possibly) interfering signals plus noise.

The transition of all terrestrial television broadcasting

from analog to digital, using the ATSC standard, is

scheduled for 2009 in North America. Moreover, in

November 2008, the Federal Communications Commis-

sion (FCC) in the United States ruled that access to the

ATSC digital television (DTV) band be permitted for wire-

less devices [11]. Thus, for the first time ever, the way has
been opened for the creation of Bwhite spaces[ for use by

low-power cognitive radios. The availability of these white

spaces will naturally vary across time and from one geo-

graphic location to another. In reality, noise is not likely to

be the sole occupant of the ATSC-DTV band when a TV

broadcasting station is switched off. Rather, as illustrated

in Section VII, interfering signals of widely varying power

levels do exist below the DTV pilot. In other words, some
of the subbands constituting the ATSC-DTV band may

indeed be Bgray[ and not Bwhite.[
Consider next the commercial cellular networks de-

ployed all over the world. In the current licensing regime,

only primary users have exclusive rights to transmit.

However, it is highly likely to find small spatial footprints

in large cells where there are no primary users. Currently,

opportunistic low-power usage of the cellular spectrum is
not allowed in these areas, even though such usage by

cognitive radios in a femto- or picocell with a small base

station is not detrimental to the primary user [12]. Thus,

spectrum holes may also be found in commercial cellular

bands; naturally, spread of the spectrum holes varies over

time and space. In any event, interference arising from

conflict relationships between transmitters (base stations)

of various radio infrastructure providers that coexist in a

region must be taken into account [13]. Consequently, the
spectrum holes found in cellular bands may also be gray

spaces.

The important point to take from this discussion is that

regardless of where the spectrum holes exist, be they in the

ATSC-DTV band or in the cellular band, we are confronted

with the practical reality that the spectrum holes may be

made up of white or gray spaces. For example, a primary

user’s signal may be too weak to be of use in the local
neighborhood, in which case the same channel may be

useful for any low-power secondary user. This possibility

may therefore complicate applicability of a simple

hypothesis-testing procedure that designates each subband

as black (blocked space) or white (exploitable) space, using

energy detection or cyclostationarity characterization.

In light of these practical realities, we may now identify

the desirable attributes of a nonparametric spectrum sen-
sor for cognitive-radio applications:

1) Detection of spectrum holes and their reliable clas-

sification into white and gray spaces; this classi-

fication may require an accurate estimation of the
power spectrum, particularly when the spectrum

hole is of a gray-space kind.

2) Accurate spectral resolution of spectrum holes,

which is needed for efficient utilization of the
radio spectrum.

3) Estimation of the direction-of-arrival (DOA) of

interferers, which provides the cognitive radio a

sense of direction.

4) Time–frequency analysis for highlighting cyclosta-

tionarity, which could be used for the reinforce-

ment of spectrum-hole detection as well as signal
classification when the subband of interest is
occupied by a primary user.

From a practical perspective, it would be desirable not only

to carry out these four spectrum-sensing tasks reliably,

accurately, effectively, and efficiently but also to have

them integrated collectively into a coherent multifunction
signal processor. The multitaper method, discussed in the

next section, provides a completely nonparametric basis for

the design of such a processor. More will be said on the
rationale for this processor as the exposition of spectrum

sensing proceeds forward.

III . THE MULTITAPER METHOD FOR
SPECTRUM SENSING

In the older spectrum-estimation literature on nonpara-

metric methods, it was emphasized that the estimation
problem is difficult because of the bias-variance dilemma,
which encompasses the interplay between two conflicting

statistical issues.

• Bias of the power-spectrum estimate of a time

series due to the sidelobe-leakage phenomenon,

the effect of which is reduced by tapering (i.e.,

windowing) the time series.

1The most common natural source of noise encountered at the front
end of communication receivers is thermal noise, which is justifiably
modeled as additive white Gaussian noise.

By far the most important artificial source of noise in mobile
communications is man-made noise, which is radiated by different kinds of
electrical equipment across a frequency band extending from about 2 to
about 500 MHz [10]. Unlike thermal noise, man-made noise is impulsive in
nature; hence the reference to it as impulsive noise. In urban areas, the
impulsive noise generated by motor vehicles is a major source of
interference to mobile communications.

With the statistics of impulsive noise being radically different from the
Gaussian characterization of thermal noise, the modeling of noise in a
white space due to the combined presence of Gaussian noise and impulsive
noise in urban areas may complicate binary hypothesis-testing procedures
for spectrum holes.
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• The cost incurred by this improvement is an
increase in variance of the estimate, which is due to

the loss of information resulting from a reduction

in the effective sample size. Furthermore, be-

cause of the apparent arbitrariness of many of the

early tapers, there was opposition to the idea of

tapering [14].

How, then, can we resolve this dilemma by mitigating the

loss of information due to tapering? The answer to this
fundamental question lies in the principled use of multiple
orthonormal tapers (windows), an idea that is embodied in

the multitaper spectral estimation procedure [8]. Specif-

ically, the procedure linearly expands the part of the time

series in a fixed bandwidth extending from f �W to f þW
(centered on some frequency f ) in a special family of

sequences known as the Slepian sequences; these sequences

are also referred to in the literature as discrete prolate
spheroidal wave functions [15]. The remarkable property of

Slepian sequences is that their Fourier transforms have the

maximal energy concentration in the bandwidth 2W
(centered on f ) under a finite sample-size constraint.

This property, in turn, permits trading spectral resolution

for improved spectral characteristics, that is, reduced

variance of the spectral estimate without compromising

the bias of the estimate. In other words, the old bias–
variance tradeoff is now replaced with a bias–resolution

tradeoff, which, once properly taken care of, also solves the

variance problem. The multitaper method can thereby

produce an accurate estimate of the desired power

spectrum.

A. Attributes of Multitaper Spectral Estimation
From a practical perspective, multitaper spectral

estimators have several desirable features [16].

1) In contrast to the conventional use of the weighted
overlapped segment averaging (WOSA) procedure

due to Welch [17] that can still suffer from leak-

age, the multitaper spectral estimator is applicable

in an Bautomatic[ fashion.

2) In multitaper spectral estimation, the bias is de-

composed into two quantifiable components:
• local bias due to frequency components re-

siding inside the user-selectable band from

f �W to f þW;

• broadband bias due to frequency components

found outside this band.

3) The resolution of multitaper spectral estimators is

naturally defined by the bandwidth of the pass-

band, namely, 2W.
4) Multitaper spectral estimators offer an easy-to-

quantify tradeoff between bias and variance.

5) Direct spectrum estimation can be performed

with more than just two degrees of freedom; ty-

pically, the degrees of freedom vary from six to

ten, depending on the time–bandwidth product

used in the estimation.

6) An internal estimate of the variance of the multi-
taper spectral estimate can be computed by using

the so-called jackknifing technique [18].

7) Multitaper spectral estimation may be viewed as a

form of regularization; in other words, multitaper

spectral estimation provides an analytic basis for

computing the best approximation to a desired

power spectrum, which is not possible from

single-taper estimates [16].
8) Multitaper spectral estimates can be used to

distinguish line components within the band

½f �W; f þW� by including the harmonic F-test,

as demonstrated in Section VII.

With these highly desirable features built into the com-

position of a multitaper spectral estimator, it is therefore

not surprising to find that it outperforms other well-

known spectral estimators, as discussed later in the
section.

B. Multitaper Spectral Estimation Theory
Let t denote discrete time. Let the time series fxðtÞgN�1

t¼0

represent the baseband version of the received RF signal

with respect to the center frequency of the RF band under

scrutiny; the term Bbaseband[ means that the center

frequency of the signal is moved (demodulated) down to
0 Hz. Given this time series, the MTM determines the

following parameters [8]:

• an orthonormal sequence of Slepian tapers,

denoted by fvðkÞt gN�1
t¼0 ;

• a corresponding set of Fourier transforms

XkðfÞ ¼
XN�1

t¼0

xðtÞvðkÞt expð�j2�ftÞ (1)

where k ¼ 0; 1; . . . ;K � 1. The energy distributions of the

eigenspectra, defined by jXkðfÞj2 for varying k, are con-

centrated inside a resolution bandwidth 2W . The time–
bandwidth product

Co ¼ NW

bounds the number of tapers (windows) as shown by

K � b2NWc (2)

which, in turn, defines the degrees of freedom (DoF)

available for controlling the variance of the multitaper
spectral estimator. The choice of parameters Co and K
provides a tradeoff among spectral resolution, bias, and

variance. The bias of these estimates is largely controlled
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by the largest eigenvalue, denoted by �0ðN;WÞ, which is

given asymptotically by [8]

1� �0 � 4�
ffiffiffiffiffi
Co

p
expð�2�CoÞ:

This formula gives the fraction of the total sidelobe energy,

that is, the total leakage into frequencies outside the

interval ð�W;WÞ; the total sidelobe energy decreases very

rapidly with Co, as can be seen in Table 1. A natural spe-

ctral estimate, based on the first few eigenspectra that

exhibit the least sidelobe leakage, is given by [8], [16], [19]

ŜðfÞ ¼
PK�1

k¼0 �k XkðfÞj j2PK�1
k¼0 �k

(3)

where XkðfÞ is the Fourier transform defined in (1) and
�k is the eigenvalue associated with the kth eigenspec-

trum. The denominator in (3) makes the estimator ŜðfÞ
unbiased.

The multitaper spectral estimator of (3) is intuitively

appealing in the way it works. As the number of tapers K
increases, the eigenvalues decrease, causing the eigen-

spectra to be more contaminated by leakage. However, the

eigenvalues themselves counteract this effect by reducing
the weighting applied to higher leakage eigenspectra.

C. Adaptive Modification of Multitaper
Spectral Estimation

While the lower order eigenspectra have excellent bias

properties, there is some degradation as the order K in-

creases toward the limiting value defined in (2). In [8], a

set of adaptive weights, denoted by fdkðfÞg, is introduced to
downweight the higher order eigenspectra. Using a mean-

square error optimization procedure, the following

formula for the weights is derived:

dkðfÞ ¼
ffiffiffiffiffi
�k

p
SðfÞ

�kSðfÞ þ E BkðfÞ½ � ; k ¼ 0; 1; . . . ;K � 1 (4)

where SðfÞ is the true power spectrum, BkðfÞ is the

broadband bias of the kth eigenspectrum, and E is the

statistical expectation operator. Moreover, we find that

E BkðfÞ½ � � 1� �kð Þ�2; k ¼ 0; 1; . . . ;K � 1 (5)

where �2 is the process variance, defined in terms of the

time series xðtÞ by

�2 ¼ 1

N

XN�1

t¼0

xðtÞj j2: (6)

In order to compute the adaptive weights dkðfÞ using (4),
we need to know the true spectrum SðfÞ. Clearly, if we

know SðfÞ, then there would be no need to perform any

spectrum estimation in the first place. Nevertheless, (4) is

useful in setting up an iterative procedure for computing

the adaptive spectral estimator, as shown by

ŜðfÞ ¼
PK�1

k¼0 dkðfÞj j2ŜkðfÞPK�1
k¼0 dkðfÞj j2

(7)

where

ŜkðfÞ ¼ XkðfÞj j2; k ¼ 0; 1; . . . ;K � 1: (8)

Note that if we set jdkðfÞj2 ¼ �k for all k, then the
estimator of (7) reduces to that of (3).

Next, by setting SðfÞ equal to the spectrum estimate

ŜðfÞ in (4), then substituting the new equation into (7) and

collecting terms, we get (after simplifications)

XK�1

k¼0

�k ŜðfÞ � ŜkðfÞ
� �

�kŜðfÞ þ B̂kðfÞ
� �2 ¼ 0 (9)

where B̂kðfÞ is an estimate of the expectation E½BkðfÞ�.
Using the upper bound of (5), we may set

B̂kðfÞ ¼ 1� �kð Þ�2; k ¼ 0; 1; . . . ;K � 1: (10)

We now have all that we need to solve for the null

condition of (9) via the recursion

Ŝ
jþ1ðfÞ ¼

XK�1

k¼0

�kŜ
ðjÞ
k ðfÞ

�kŜ
ðjÞðfÞ þ B̂kðfÞ

� �2

2
64

3
75

�
XK�1

k¼0

�k

�kŜ
ðjÞðfÞ þ B̂kðfÞ

� �2

2
64

3
75
�1

(11)

Table 1 Leakage Properties of the Lowest Order Slepian Sequence

as a Function of the Time–Bandwidth Product Co (Column 1).

Column 2 Gives the Asymptotic Value of 1� �0ðCoÞ. and
Column 3 is the Same (Total Sidelobe Energy) Expressed in

Decibels (Relative to Total Energy in the Signal)
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where j denotes an iteration step, that is, j ¼ 0; 1; 2; . . ..
To initialize the recursion of (11), we may set Ŝ

jð0Þ equal

to the average of the two lowest order eigenspectra. Con-

vergence of the recursion is usually rapid, with successive

spectral estimates differing by less than 5% in five to

20 iterations [19], [20]. The result obtained from (11) is

substituted into (4) to obtain the desired weights dkðfÞ.
A useful by-product of the adaptive spectral estimation

procedure is a stability measure of the estimates, given by

�ðfÞ ¼ 2
XK�1

k¼0

dkðfÞj j2 (12)

which is the approximate DoF for the estimator ŜðfÞ,
expressed as a function of frequency f . If �, denoting the

average of �ðfÞ over frequency f , is significantly less than

2K, then the result is an indication that either the band-

width 2W is too small or additional prewhitening of the

time series xðtÞ should be used.

The importance of prewhitening cannot be stressed
enough for RF data. In essence, prewhitening reduces the

dynamic range of the spectrum by filtering the data prior to

processing. The resulting residual spectrum is nearly flat

or Bwhite.[ In particular, leakage from strong components

is reduced, so that the fine structure of weaker compo-

nents is more likely to be resolved [19], [20].

D. Summarizing Remarks on the MTM

i) Estimation of the power spectrum based on (3) is

said to be incoherent because the kth eigenspec-

trum jXkðfÞj2 ignores phase information for all

values of the index k.

ii) For the parameters needed to compute the multi-

taper spectral estimator (3), recommended values

(within each data section) are as follows:
• parameter Co ¼ 4, possibly extending up

to ten;

• number of Slepian tapers K ¼ 10, possibly

extending up to 16.

These values are needed, especially when the

dynamic range of the RF data is large.

iii) If, and when, the number of tapers is increased

toward the limiting value 2NW, then the adaptive
multitaper spectral estimator should be used.

E. Comparison of the MTM With Other
Spectral Estimators

Now that we understand the idea of multitaper spec-

tral estimation, we are ready to compare its performance

against other spectral-estimation algorithms. The results

described herein summarize previous experimental
work that was originally reported in [20] and repro-

duced in [19].

The test dataset used in the previous work was Marple’s
classic synthetic dataset, the analytic spectrum of which is

known exactly [21]. Specifically, the dataset is composed of

the following components:

• two complex sinusoids of fractional frequencies

0.2 and 0.21 that are included to test the resolution

capability of a spectral estimator;

• two weaker complex sinusoids of 20 dB less power

at fractional frequencies �0.15 and 0.1;
• a colored noise process, generated by passing two

independently zero-mean real white-noise process-

es through identical moving-average filters; each

filter has an identical raised-cosine frequency re-

sponse centered at �0.35 and occupying a band-

width of 0.3.

Following Marple [21], the experimental study in [20]

started with two spectral estimators.
• The periodogram with a 4096-point fast Fourier

transform (FFT).

• Tapered version of the same periodogram, using a

Hamming window. With line components featur-

ing prominently in the dataset, the experimental

study also included two eigendecomposition-based

spectral estimators: the multiple signal classifica-

tion (MUSIC) algorithm [22], and the modified
forward–backward linear prediction (MFBLP)

algorithm [23].

The two classical spectral estimators failed in resolving

the line components and also failed in correctly estimat-

ing the continuous parts of Marple’s synthetic spectrum.

On the other hand, the two eigendecomposition-based

algorithms appeared to resolve the line components

reasonably well but failed completely to correctly estimate
the continuous parts of the spectrum.

Next, the MTM formula of (3) was tested with

Marple’s synthetic data, using a time–bandwidth product

Co ¼ 4 and K ¼ 8 Slepian tapers. The resulting compos-

ite spectrum appeared to estimate the continuous parts

of the synthetic spectrum reasonably well and correctly

identify the locations of the line components at �0.15

and 0.1, but lumped the line components at 0.2 and
0.21 into a composite combination around 0.21. With

additional complexity through the inclusion of the har-
monic F-test for line components, the composite spectrum

computed by the MTM did reproduce the synthetic

spectrum fully and accurately; the F-test is discussed in

Section VII.

In light of the experimental results of [19] and [20]

summarized herein, it can be said that the basic formula of
the MTM in (3) did outperform the periodogram and its

Hamming-tapered version, which is not surprising. More-

over, it outperformed the MUSIC and MFBLP algorithms

insofar as the continuous parts of the spectrum are con-

cerned but did not perform as well in dealing with the line

components. However, when the composite MTM spec-

trum was expanded to include the F-test for line
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components, Marple’s synthetic spectrum was recon-
structed fully and accurately.

It is also noteworthy that in [19] and [20], a compara-

tive evaluation of the MTM and the traditional maximum-
likelihood parameter-estimation procedure, known for its

optimality, is presented for angle-of-arrival estimation in

the presence of multipath using real-life radar data. The

results presented therein for low-grazing angles show that

these two methods are close in performance.
In another comparative study [24], Bronez compared

the MTM with WOSA, which was originally proposed by

Welch [17]. To make this comparison, theoretical mea-

sures were derived by Bronez in terms of leakage, variance,

and resolution. The comparison was performed by evaluat-

ing each one of these three measures in turn while keeping

the other two measures unchanged. The results of the

comparison demonstrated that the MTM always per-
formed better than WOSA. For example, given the same

variance and resolution, it was found that the MTM had an

advantage of 10–20 dB over WOSA.

IV. SPACE–TIME PROCESSING

As already discussed, the MTM is theorized to provide a

reliable and accurate method of estimating the power
spectrum of RF stimuli as a function of frequency. As such,

in the MTM, we have a desirable method for identifying

spectrum holes and estimating their average-power con-

tents. In analyzing the radio scene in the local neighbor-

hood of a cognitive radio receiver, however, we also need

to have a sense of direction, so that the cognitive radio is

able to listen to incoming interfering signals from unknown

directions. What we are signifying here is the need for
space–time processing. To this end, we may employ a set

of sensors to properly Bsniff[ the RF environment along

different directions.

To elaborate on this matter, consider an array of M
antennas sensing the environment. For the kth Slepian

taper, let X
ðmÞ
k ðfÞ denote the complex-valued Fourier

transform of the input signal xðtÞ computed by the mth

sensor in accordance with (1) and m ¼ 0; 1; . . . ;M� 1.
With k ¼ 0; 1; . . . ;K � 1, we may then construct the M-by-K
spatiotemporal complex-valued matrix

AðfÞ¼

a
ð0Þ
0 X

ð0Þ
0 a

ð0Þ
1 X

ð0Þ
1 � � � a

ð0Þ
K�1X

ð0Þ
K�1

a
ð1Þ
0 X

ð1Þ
0 a

ð1Þ
1 X

ð1Þ
1 � � � a

ð1Þ
K�1X

ð1Þ
K�1

..

. ..
.

a
ðM�1Þ
0 X

ðM�1Þ
0 a

ðM�1Þ
1 X

ðM�1Þ
1 � � � a

ðM�1Þ
K�1 X

ðM�1Þ
K�1

2
66664

3
77775

(13)

where each row of the matrix is produced by RF stimuli

sensed at a different gridpoint, each column is com-

puted using a different Slepian taper, and the a
ðmÞ
k rep-

resent coefficients accounting for different areas of the
gridpoints.

To proceed further, we make two necessary

assumptions.

1) The number of Slepian tapers K is larger than the

number of sensors M; this requirement is needed

to avoid Bspatial undersampling[ of the RF

environment.

2) Except for being synchronously sampled, the M
sensors operate independently of each other; this

second requirement is needed to ensure that the

rank of the matrix AðfÞ (i.e., the number of

linearly independent rows) is equal to M.

In physical terms, each entry in the matrix AðfÞ is pro-

duced by two contributions: one due to additive ambient

noise at the front end of the sensor and the other due to the

incoming RF stimuli. However, as far as spectrum sensing
is concerned, the primary contribution of interest is that

due to RF stimuli. In this context, an effective tool for

denoising is the singular value decomposition (SVD).

The SVD is a generalization of principal-components

analysis or eigendecomposition. Whereas eigendecomposi-

tion involves a single orthonormal matrix, the SVD

involves a pair of orthonormal matrices, which we denote

by an M-by-M matrix U and a K-by-K matrix V. Thus,
applying the SVD to the spatiotemporal matrix AðfÞ, we

may express the resulting decomposition as follows [25]:

UyðfÞAðfÞVðfÞ ¼
2ðfÞ

0

2
4

3
5 (14)

where the superscript y denotes Hermitian transposition
and 2ðfÞ is an M-by-M diagonal matrix, the kth element of

which is denoted by SkðfÞ. Fig. 1 shows an insightful
depiction of this decomposition; to simplify the depiction,

dependence on the frequency f has been ignored.

Henceforth, the system described by the spatiotem-

poral matrix AðfÞ of (13), involving K Slepian tapers,

M sensors, and decomposition of the matrix in (14), is

referred to as the MTM-SVD processor. Note that with the

spatiotemporal matrix AðfÞ being frequency-dependent,

and likewise for the unitary matrices UðfÞ and VðfÞ, the
MTM-SVD processor is actually performing tensor analysis.

Fig. 1. Diagrammatic depiction of singular value decomposition

applied to the matrix A of (13).
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A. Physical Interpretation of the Action Performed
by the MTM-SVD Processor

To understand the underlying signal operations em-

bodied in the MTM-SVD processor, we begin by reminding

ourselves of the orthonormal properties of matrices U and

V that hold for all f , as shown by

UðfÞUyðfÞ ¼ IM

and

VðfÞVyðfÞ ¼ IK

where IK and IM are K-by-K and M-by-M identity matrices,

respectively. Using this pair of relations in (14), we obtain
the following decomposition of the matrix AðfÞ (after

some straightforward manipulations):

AðfÞ ¼
XM�1

m¼0

Smumvym: (15)

The SmðfÞ is called the mth singular value of the matrix
AðfÞ, umðfÞ is called the left-singular vector, and vmðfÞ is

called the right-singular vector. In analogy with principal-

components analysis, the decomposition of (15) may be

viewed as one of the principal modulations produced by the

incoming RF stimuli [2], [3], [26]. According to this de-

composition, the singular value SmðfÞ scales the mth prin-

cipal modulation computed by the MTM-SVD processor.

The M singular values, constituting the diagonal matrix
2ðfÞ in (14), are all real numbers. The higher order singu-

lar values, namely, SMðfÞ; . . . ;SK�1ðfÞ, are all zero; they

constitute the null matrix 0 in (14).

Using (15) to form the matrix product AðfÞAyðfÞ, and

invoking the orthonormal property of the unitary matrix

VðfÞ, we have the eigendecomposition

AðfÞAyðfÞ ¼
XM�1

m¼0

S2
mðfÞumðfÞuymðfÞ

where S2
MðfÞ is the mth eigenvalue of the eigendecomposi-

tion. Similarly, forming the other matrix product AyðfÞAðfÞ
and invoking the orthonormal property of the unitary matrix

UðfÞ, we have the alternative eigendecomposition

AyðfÞAðfÞ ¼
XM�1

k¼0

S2
kðfÞvkðfÞvykðfÞ

where the eigenvalues for k ¼ M; . . . ;K � 1 are all zero.

Recalling that the index m signifies a sensor and the
index k signifies a Slepian taper, we may now make three

statements on the multiple operations being performed by

the MTM-SVD processor.

1) The mth eigenvalue S2
mðfÞ is defined by

S2
mðfÞ ¼

XK�1

k¼0

a
ðmÞ
k ðfÞ
��� ���2 X

ðmÞ
k ðfÞ

��� ���2:

Setting jaðmÞk ðfÞj
2 ¼ �ðmÞk ðfÞ and dividing S2

mðfÞ byPK�1
k¼0 �

ðmÞ
k ðfÞ, we get

Ŝ
ðmÞðfÞ ¼

PK�1
k¼0 �

ðmÞ
k ðfÞ X

ðmÞ
k ðfÞ

��� ���2PK�1
k¼0 �

ðmÞ
k ðfÞ

;

m ¼ 0; 1; . . . ;M� 1 (16)

which is a rewrite of (3), specialized for sensor m.

We may therefore make the following statement:

The eigenvalue S2
mðfÞ, except for the scaling factorPK�1

k¼0 �
ðmÞ
k ðfÞ, provides the desired multitaper spec-

tral estimate of the incoming interfering signal

picked up by the mth sensor.

2) Since the index m refers to the mth sensor, we

make the following second statement:

The left singular vector umðfÞ defines the direction

of the interfering signal picked up by the mth sensor

at frequency f .

3) The index k refers to the kth Slepian taper; more-

over, since S2
kðfÞ ¼ S2

mðfÞ for k ¼ 0; 1; . . . ;M� 1,

we may make the third and last statement:

The right singular vector vmðfÞ defines the multi-

taper coefficients for the mth interferer’s waveform.

Most importantly, with no statistical assumptions on the

additive ambient noise in each sensor or the incoming

RF interferers, we may go on to state that the nonpara-

metric MTM-SVD processor is indeed robust.
The enhanced signal-processing capability of the

MTM-SVD processor just described is achieved at the

expense of increased computational complexity. To ela-

borate, with N data points and signal bandwidth 2W , there

are N different frequencies with spectral resolution 2W to

be considered. Accordingly, the MTM-SVD processor has

to perform a total of N singular value decompositions on

matrix AðfÞ. Note, however, that the size of the wave-
number spectrum (i.e., the spatial distribution of the
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interferers) is determined by the number of sensors M,
which is considerably smaller than the number of data

points N. Most importantly, the wavenumber is computed

in parallel. With the computation being performed at each

frequency f , each of the M sensors sees the full spectral

footprint of the interferer pointing along its own direction;

the footprint is made up of N frequency points with a

spectral resolution of 2W=N.

Summing up, the MTM-SVD processor has the capa-
bility to sense the surrounding RF environment both in

frequency as well as space, the resolutions of which are

respectively determined by the number of data points and

the number of sensors deployed.

V. TIME–FREQUENCY ANALYSIS

The MTM-SVD processor rests its signal-processing capa-
bility on two dimensions of sensing:

• frequency, which is necessary for identifying the

location of spectrum holes along the frequency

axis;

• space, which provides the means for estimating

wavenumber spectra of the RF environments.

However, for a cognitive radio to be fully equipped to

sense its local neighborhood, there is a third dimension of
sensing that is just as important: time. The inclusion of

time is needed for the cognitive radio receiver to sense the

type of modulation employed by the primary user, for ex-

ample, so as to provide for a harmonious relationship with

the primary user if, and when, it is needed. This need calls

for time–frequency analysis.

The statistical analysis of nonstationary signals has had

a rather mixed history. Although the general second-order
theory was published during 1946 by Loève [27], [28], it

has not been applied nearly as extensively as the theory of

stationary processes published only slightly earlier by

Wiener and Kolmogorov. There were, at least, four distinct

reasons for this neglect, as summarized in [29].

i) Loève’s theory was probabilistic, not statistical,

and there does not appear to have been successful

attempts to find a statistical version of the theory
until some time later.

ii) At that time of publication, more than six decades

ago, the mathematical training of most engineers

and physicists in signals and stochastic processes

was minimal. Recalling that even Wiener’s de-

lightful book was referred to as Bthe yellow peril[
because of the color of its cover, it is easy to

imagine the reception that a general nonstation-
ary theory would have received.

iii) Even if the theory had been commonly under-

stood at the time and good statistical estimation

procedures had been available, the computational

burden would probably have been overwhelming.

This was the era when Blackman–Tukey estimates

of the stationary spectrum were developed, not

because they were great estimates but, primarily,
because they were simple to understand in mathe-

matical terms and, before the (re)invention of the

FFT algorithm, computationally more efficient

than other forms.

iv) Lastly, it cannot be denied that the Loève theory

of nonstationary processes was harder to grasp

than that of stationary processes.

In any event, confronted with the notoriously unreliable
nature of a wireless channel, we have to find some way to

account for the nonstationary behavior of a signal at the

channel output, and therefore time (implicitly or explic-

itly), in a description of the signal picked up by the re-

ceiver. Given the desirability of working in the frequency

domain for well-established reasons, we may include the

effect of time by adopting a time–frequency description of

the signal. During the last three decades, many papers have
been published on various estimates of time–frequency

distributions; see, for example, Cohen’s book [30] and the

references therein. In most of this work, the signal is

assumed to be deterministic. In addition, many of the pro-

posed estimators are constrained to match time and fre-

quency marginal density conditions. For a continuous-time

signal xðtÞ, the time marginal is required to satisfy the

condition

Z1

�1

Dðt; fÞdf ¼ xðtÞj j2 (17)

where Dðt; fÞ is the time–frequency distribution of the

signal. Similarly, if XðfÞ is the Fourier transform of xðtÞ,
the frequency marginal must satisfy the second condition

Z1

�1

Dðt; fÞdt ¼ XðfÞj j2: (18)

Given the large differences observed between waveforms
collected on sensors spaced short distances apart, the time

marginal requirement is a rather strange assumption.

Worse, the frequency marginal is, except for a factor of

1=N, just the periodogram of the signal. It has been

known, well before the first periodogram was computed

[31], that the periodogram is badly biased and inconsis-

tent.2 Thus, we do not consider matching marginal dis-

tributions, as commonly defined in the literature, to be
important.

2An inconsistent estimate is one where the variance of the estimate
does not decrease with sample size. Rayleigh did not use the term
Binconsistent[ because it was not introduced as a statistical term until
Fisher’s famous paper nearly 30 years later.
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A. Theoretical Background on Nonstationarity
Nonstationarity is an inherent characteristic of most, if

not all, of the stochastic processes encountered in practice.

Yet, despite its highly pervasive nature and practical

importance, not enough attention is paid in the literature

to the characterization of nonstationary processes in a

mathematically satisfactory manner.

To this end, consider a complex continuous stochastic

process, a sample function of which is denoted by xðtÞ,
where t denotes continuous time. We assume that the

process is harmonizable [27], [28], so that it permits the

Cramér representation

xðtÞ ¼
Z1=2

�1=2

expðj2��tÞdZxð�Þ (19)

where dZxð�Þ is now an increment process associated with

xðtÞ; the dummy variable � has the same dimension as

frequency. The bandwidth of xðtÞ has been normalized to

unity for convenience of presentation; consequently, as

indicated in (19), the integration extends with respect to �
over the interval [�1/2, þ1/2]. As before, it is assumed

that the processor has zero mean, that is, E½xðtÞ� ¼ 0 for

all time t; correspondingly, we have E½Zxð�Þ� ¼ 0 for all �.
[Equation (19) is also the starting point in formulating

the MTM.]

To set the stage for introducing the statistical param-

eters of interest, we define the covariance function

�Lðt1; t2Þ ¼E xðt1Þx	ðt2Þf g

¼
Z1

�1

Z1

�1

exp j2�ðt1f1 � t2f2Þð Þ

� �Lðf1; f2Þdf1df2 (20)

where, in the first line, the asterisk denotes complex con-

jugation. Hereafter, the generalized two-frequency spec-

trum �Lðf1; f2Þ in the integrand of the second line in (20) is

referred to as the Loève spectrum. With XðfÞ denoting the

Fourier transform of xðtÞ, the Loève spectrum3 is formally
defined as follows:

�Lðf1; f2Þdf1df2 ¼ E dZxðf1ÞdZ	xðf2Þ
� 	

(21)

where dZxðfÞ is now an increment associated with xðtÞ.
Equation (21) highlights the underlying feature of a

nonstationary process by describing the correlation be-

tween the spectral elements Xðf1Þ and Xðf2Þ of the process

at two different frequencies f1 and f2, respectively.

If the process is stationary, then by definition, the

covariance �Lðt1; t2Þ depends only on the time difference

t1 � t2, and the Loève spectrum becomes �ðf1 � f2ÞSðf1Þ,
where �ðfÞ is the Dirac delta function in the frequency
domain and SðfÞ is the ordinary power spectrum. Similarly,

for a white nonstationary process, the covariance function

becomes �ðt1 � t2ÞPðt1Þ, where �ðtÞ is the Dirac delta

function in the time domain and PðtÞ is the expected

(average) power of the process at time t. Thus, as both the

spectrum and covariance functions include delta-function

discontinuities in simple cases, neither should be expected

to be Bsmooth[; and continuity properties of the process
therefore depend on direction in the ðf1; f2Þ or ðt1; t2Þ
plane. The continuity problems are more easily dealt

with by rotating both the time and frequency coordinates

of the covariance function (20) and Loève spectrum (21),

respectively, by 45
. In the time domain, we may now

define the new coordinates to be a Bcenter[ t0 and a

delay � , as shown by

t1 þ t2 ¼ 2t0

t1 � t2 ¼ �: (22)

Correspondingly, we may write

t1 ¼ t0 þ �=2

t2 ¼ t0 � �=2: (23)

Thus, denoting the new covariance function in the rotated
coordinates by �ð�; �0Þ, we may go on to write

�Lðt1; t2Þ ¼ �ð�; t0Þ: (24)

Similarly, we may define new frequency coordinates f and

g by writing

f1 þ f2 ¼ 2f

f1 � f2 ¼ g: (25)

Correspondingly, we have

f1 ¼ f þ g=2

f2 ¼ f � g=2: (26)

3Care should be exercised in distinguishing the Loève spectrum
�Lðf1; f2Þ from the bispectrum Bðf1; f2Þ. Both are functions of two
frequencies, but the Loève spectrum �Lðf1; f2Þ is a second-moment
description of a possibly nonstationary process; in contrast, the bispectrum
describes the third-moments of a stationary process and has an implicit
third frequency f3 ¼ f1 þ f2.
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The rotated two-frequency spectrum is thus defined by

�ðf ; gÞ ¼ �Lðf þ g=2; f � g=2Þ: (27)

Substituting the definitions of (26) into (20) shows that

the term ðt1f1 � t2f2Þ in the exponent of the Fourier

transform becomes t0g þ � f ; hence, we have

�ð�; t0Þ ¼
Z1

�1

Z1

�1

exp j2�ð� f þ t0gÞð Þ

8<
:

9=
;�ðf ; gÞdf dg:

(28)

In view of the principle of duality that embodies the in-
verse relationship between time and frequency (an

inherent characteristic of Fourier transformation), the

frequency f is associated with the time difference � ;

accordingly, f corresponds to the ordinary frequency of

stationary processes; we may therefore refer to f as the

Bstationary[ frequency. Similarly, the frequency g is asso-

ciated with the average time t0; therefore, it describes the

behavior of the spectrum over long time spans; hence, we
refer to g as the Bnonstationary[ frequency.

Consider next the continuity of the generalized spectral
density �, reformulated as a function of f and g. On the

line g ¼ 0, the generalized spectral density � is just the

ordinary spectrum with the usual continuity (or lack

thereof) conditions normally applying to stationary

spectra. As a function of g, however, we expect to find

a �-function discontinuity at g ¼ 0 if, for no other reason,
almost all data contain some stationary additive noise.

Consequently, smoothers in the ðf ; gÞ plane or, equiva-

lently, the ðf1; f2Þ plane should not be isotropic but

require much higher resolution along the nonstationary

frequency coordinate g than along the stationary fre-

quency axis f .

A slightly less arbitrary way of handling the g
coordinate is to apply the inverse Fourier transform to
�ðf ; gÞ with respect to the nonstationary frequency g,

obtaining [32]

Dðt0; fÞ ¼
Z1

�1

expðj2�t0gÞ�ðf ; gÞdg (29)

as the dynamic spectrum of the process; the Dðt0; fÞ in (29)

is not to be confused with the time–frequency distribution

in (17) and (18). The motivation behind (29) is to

transform very rapid variations expected around g ¼ 0 into

a slowly varying function of t0 while, at the same time,
leaving the usual dependence on f intact. From Fourier

transform theory, we know that the Dirac delta function in

the frequency domain is transformed into a constant in the

time domain. It follows, therefore, that, in a stationary

process, Dðt0; fÞ does not depend on t0 and assumes the

simple form SðfÞ. Thus, we may invoke the Fourier

transform to redefine the dynamic spectrum as

Dðt0; fÞ ¼
Z1

�1

expð�j2�� fÞ

� E x t0 þ
�

2

� �
x	 t0 �

�

2

� �n o
d� (30)

where the expectation, or ensemble averaging, is per-

formed on xðtÞ for prescribed values of time t0 and

frequency f .

B. Spectral Coherences of Nonstationary Processes
Based on the Loève Transform

From an engineering perspective, we usually like to
have estimates of second-order statistics of the under-

lying physics responsible for the generation of a nonsta-

tionary process. Moreover, it would be desirable to

compute the estimates using the multitaper method.

With this twofold objective in mind, let Xkðf1Þ and Xkðf2Þ
denote the multitaper Fourier transforms of the sample

function xðtÞ; these two estimates are based on the kth

Slepian taper and are defined at two different frequencies
f1 and f2, in accordance with (1). To evaluate the spectral
correlation of the process at f1 and f2, the traditional

formulation is to consider the product Xkðf1ÞX	k ðf2Þ
where, as before, the asterisk in X	k ðf2Þ denotes complex

conjugation. Unfortunately, we often find that such a

formulation is insufficient in capturing the underlying

second-order statistics of the process, particularly so in

the case of several communication signals that are of
interest in cognitive-radio applications.4 To complete the

second-order statistical characterization of the process,

we need to consider products of the form Xkðf1ÞXkðf2Þ,
which do not involve the use of complex conjugation.

However, in the literature on stochastic processes,

statistical parameters involving products like Xkðf1ÞXkðf2Þ
are frequently not named and therefore hardly used; and

when they are used, not only are different terminologies

4For most complex-valued signals, the expectation E½xðt1Þxðt2Þ�, and
therefore E½Xðf1ÞXðf2Þ�, is zero. For communication signals, however,
this expectation is often not zero; examples of signals for which this
statement holds include the ATSC-DTV signal, binary phase-shift keying,
minimum-shift keying, offset QPSK, orthogonal frequency-division
multiplexing, and Gaussian minimum-shift keying used in GSM wireless
communications [33].
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adopted but also some of the terminologies are
misleading.5

To put matters right, in this paper we follow the

terminology first described in a 1973 paper by Moores [35]

and use the subscripts inner and outer to distinguish

between spectral correlations based on products involving

such terms as Xkðf1ÞX	k ðf2Þ and Xkðf1ÞXkðf2Þ, respectively.

Hereafter, estimates of spectral correlations so defined are

referred to as estimates of the first and second kinds,
respectively, and likewise for related matters.

With the matter of terminology settled, taking the

complex demodulates of a nonstationary process at two

different frequencies f1 and f2, and invoking the inherent

orthogonality property of Slepian sequences, we may now

formally define the estimate of the Loève spectrum of the

first kind as

�̂L;innerðf1; f2Þ ¼
1

K

XK�1

k¼0

Xkðf1ÞX	k ðf2Þ (31)

where, as before, K is the total number of Slepian tapers.

The estimate of the Loève spectrum of the second kind is

correspondingly defined as

�̂L;outerðf1; f2Þ ¼
1

K

XK�1

k¼0

Xkðf1ÞXkðf2Þ: (32)

Thus, given a stochastic process with the complex de-

modulates Xkðf1Þ and Xkðf2Þ, the Loève spectral coherences

of the first and second kinds are, respectively, defined as

Cinnerðf1; f2Þ ¼
�̂L;innerðf1; f2Þ
Ŝðf1ÞŜðf2Þ
� �1=2

(33)

and

Couterðf1; f2Þ ¼
�̂L;outerðf1; f2Þ
Ŝðf1ÞŜðf2Þ
� �1=2

: (34)

With the eigenvalue �k being real valued for all $k$ and f ,

the multitaper spectral estimate ŜðfÞ in (3) is real valued,
so it should be. In general, the Loève spectral coherences

Cinnerðf1; f2Þ and Couterðf1; f2Þ are both complex valued,

which means that each of them will have its own mag-

nitude and associated phase. The magnitudes of both

spectral coherences are invariant under coordinate rota-

tion, which is equivalent to multiplying xðtÞ by expðj	Þ,
where the constant 	 is the angle of rotation. On the other

hand, the phases of the inner and outer spectral cohe-
rences are altered by different amounts. In practice, we

find that a quantity called the two-frequency magnitude-
squared coherence (TF-MSC) is more useful than the spec-

tral coherence itself; this point will be demonstrated in

Sections VII and VIII. With the two spectral coherences of

(33) and (34) at hand, we have two TF-MSCs to consider,

namely, jCinnerðf1; f2Þj2 and jCouterðf1; f2Þj2, respectively.

C. Two Special Cases of the Dynamic Spectrum

1) Wiger–Ville Distribution: From the defining (30), we

immediately recognize that

Wðt0; fÞ¼
Z1

�1

expð�j2�� fÞx t0þ
�

2

� �
x	 t0�

�

2

� �
d� (35)

is the formula for the Wigner–Ville distribution of the

original sample function xðtÞ. In other words, we see

that the rotated Loève spectrum is the expected value of

the Wigner–Ville distribution [29], [36]. Stated in

another way, the Wigner–Ville distribution is the instan-

taneous estimate of the dynamic spectrum of the nonsta-

tionary signal xðtÞ and, therefore, simpler to compute

than Dðt0; fÞ in the classification of signals; for example,
see [29].

A cautionary note on the use of (35): the naive imple-

mentation of the Wigner–Ville distribution, as defined in

this equation using a finite sample size, may result in bias

and sampling properties that are worse than the period-

ogram. For an improved version of the Wigner–Ville

distribution, see [37].

2) Cyclic Power Spectrum: The dynamic spectrum also

embodies another special case, namely, the cyclic power
spectrum of a sample function xðtÞ that is known to be

periodic. Let T0 denote the period of xðtÞ. Then, replacing

5In a terminological context, there is confusion in how second-order
moments of complex-valued stochastic processes are defined in the
literature: � Thomson [8] and Picinbono [34] use the terms forward and
reversed to distinguish, for example, the second-order moments
E½Xkðf1ÞX	k ðf2Þ� and E½Xkðf1ÞXkðf2Þ�, respectively. In [35], Moores applies
spectral analysis to physical-oceanographic data, in the context of which
two kinds of cross-correlation functions for a pair of complex-valued time
series xjðtÞ and xkðtÞ are introduced. 1) The inner cross-correlation
function is defined by the expectation Efx	j ðtÞxkðtþ �Þg for some � ,
where the asterisk denotes complex conjugation; this second-order
moment is so called because it resembles an inner product. 2) The outer
cross-correlation function is defined by the expectation EfxjðtÞxkðtþ �Þg,
where there is no complex conjugation; this alternative second-order
moment is so called because it resembles an outer product. In the
cyclostationarity literature on communication signals, the terms spectral
correlation and conjugate spectral correlation are used to refer to the
expectation E½Xkðf1ÞX	k ðf2Þ� and E½Xkðf1ÞXkðf2Þ�, respectively. This
terminology is misleading: if E½Xkðf1ÞX	k ðf2Þ� stands for spectral correla-
tion, then the expression for conjugate spectral correlation would be
E½X	k ðf1ÞXkðf2Þ�, which is not the intention. As stated in the text, this
paper follows Moores’ terminology.
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the time t0 in (30) with T0 þ t, we may express the time-
varying power spectrum of xðtÞ as

Sxðt; fÞ ¼
Z1

�1

expð�j2�� fÞE x tþ T0 þ
�

2

� �
x	

n

� tþ T0 �
�

2

� �o
d�

¼
Z1

�1

expð�j2�� fÞRx tþ T0 þ
�

2
; tþ T0 �

�

2

� �
d�

(36)

where

Rx tþ T0 þ
�

2
; tþ T0 �

�

2

� �

¼ E x tþ T0 þ
�

2

� �
x	 tþ T0 �

�

2

� �h i
(37)

is the time-varying autocorrelation function of the signal

xðtÞ. The stochastic process, represented by xðtÞ, is said to

be cyclostationary in the second-order sense if this auto-

correlation sequence is itself periodic with period T0, as

shown by

Rx tþ T0 þ
�

2
; tþ T0 �

�

2

� �
¼ Rx tþ �

2
; t� �

2

� �
: (38)

Under this condition, (36) reduces to

Sxðt; fÞ ¼
Z1

�1

expð�j2�� fÞRx tþ �
2
; t� �

2

� �
d� (39)

which, as expected, is independent of the period T0.

Equation (39) is recognized as the cyclostationary exten-

sion of the Wiener–Khintchine relation for stochastic

processes.

To be more complete, for a stochastic process to be

cyclostationary in the second-order sense, its mean must
also be periodic with the same period T0. When the mean

of the stochastic process under study is zero for all time t,
this condition is immediately satisfied.

D. Diagrammatic Instrumentation for Computing
Loève Spectral Correlations

Before proceeding to discuss cyclostationarity charac-

terization of nonstationary processes in the next section,
we find it instructive to have a diagrammatic instrumen-

tation for computing the Loève spectral correlations using
the multitaper method. To do this, we look to the defining

(1), (31), and (32), where t in (1) denotes discrete time and

f in all three equations denotes continuous frequency. Let

xðtÞ denote a time series of length N. Then, the inspection

of (1), (31), and (32) leads to the basic instrument diag-

rammed in Fig. 2(a). In particular, in accordance with (1),

the identical functional blocks labeled Bmultitaper meth-

od[ in the upper and lower paths of the figure produce the
Fourier transforms Xkðf1Þ and Xkðf2Þ, respectively. The de-

signation Bbasic[ is intended to signify that the instrument

applies to both kinds of the Loève spectral correlation,

depending on how the cross-correlation of the Fourier

transforms XTðf1Þ and XTðf2Þ is computed over the set of K
Slepian tapers. To be specific, we say that as the overall

output:

• the instrument computes the estimate �̂L;innerðf1; f2Þ
of (31) if the cross-correlation is of the first kind;

• it computes �̂L;outerðf1; f2Þ of (32) if the cross-

correlation is of the second kind.

Fig. 2(b) applies to spectral correlations rooted in the

Fourier framework, considered in the next section.

VI. CYCLOSTATIONARITY:
FOURIER PERSPECTIVE

When the issue of interest is the characterization of digital

modulated signals in cognitive-radio applications, we find

that there is a large body of literature on the subject, the

study of which has been an active area of research for more

than 50 years. In historical terms, the prominence of

cyclostationarity for signal detection and classification6 is

attributed to the work of Gardner in the 1980s [39], [40]
and the subsequent work of Giannakis on alternative views

and applications of cyclostationarity [48]. The literature on

cyclostationarity includes the recent book by Hurd and

Miamee [49] and the bibliography due to Serpedin et al.
[9] that lists more than 1500 papers on the subject.

A. Fourier Framework of Cyclic Statistics
As defined previously in Section V, a stochastic process

represented by the sample function xðtÞ is said to be cy-

clostationary in the second-order sense if its time-varying

autocorrelation function Rxðtþ �=2; t� �=2Þ satisfies the

6Research interest in cyclostationarity for signal detection and
classification has experienced a resurgence with the emergence of
cognitive radio, resulting in a signal-detection technique in the draft form
of the IEEE802.22 standard. It has also featured in other applications that
include the following: � detection of cochannel and adjacent signals,
which is a key property that can mitigate the hidden-node problem in
cognitive radio [38]; discrimination between various types of modulation
[39]–[41]; estimation of modulation parameters [42]; allowing a signal of
interest to be distinguished without demodulating the signal [43];
identification of the transmission equipment that may have created a
transmitted signal of interest [44]; supporting information for geolocation
algorithms [45], adaptive temporal [46] and spatial interference rejection
[47], which can further help the signal detection and classification
process.
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periodicity condition of (38). Moreover, if the mean of the

process is nonzero, it would also have to be time-varying

with the same period T0. For the present discussion, the
mean is assumed to be zero for all time t, and attention is

therefore focused on second-order statistics.

A cyclostationary process may also be described in

terms of its power spectrum, which assumes a periodic

form of its own. With interest in this paper focused on

spectral coherence, we now go on to define the inner and

outer forms of spectral coherence of a cyclostationary

process using Fourier theory.
Let xðtÞ denote a sample function of a complex-valued

cyclostationary process with period T0. Using the Fourier

series, we may characterize the process by its cyclic power

spectrum of the first kind, as shown by the Fourier

expansion

Sinnerðt; fÞ ¼
X



s
innerðfÞ expðj2�
tÞ (40)

where the new parameter 
, in theory, scans an infinite set
of frequencies, namely, n=T0 ¼ nf0, where n ¼ 0; 1; 2; . . ..

The power spectrum of (40) is cyclic in that it satisfies the

condition of periodicity

Sinnerðtþ T0; fÞ ¼ Sinnerðt; fÞ:

The Fourier coefficients in (40), namely, s
innerðfÞ for

varying 
, are defined by

s
innerðfÞ ¼ lim
T!1

lim
�t!0

1

�t

�
Z�t=2

��t=2

1

T
XTðt; f þ 
=2ÞX	Tðt; f � 
=2Þdt: (41)

The infinitesimally small �t is included in (41) to

realize the continuous-time nature of the cyclostationary

signal xðtÞ in the limit as �t approaches zero. The

Fig. 2. One-to-one correspondences between the Loève and Fourier theories for cyclostationarity. Basic instrument for estimating

(a) the Loève spectral correlations of a time series xðtÞ and (b) the Fourier spectral correlations of cyclostationary signal xðtÞ.
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time-varying Fourier transform of xðtÞ, denoted by XTðt; fÞ,
is defined by

XTðt; fÞ ¼
ZtþT=2

t�T=2

xð�Þ expð�j2�f�Þd�: (42)

Most importantly, s
innerðfÞ is the time-average of the inner

product XTðf þ 
=2ÞX	Tðf � 
=2Þ; it follows, therefore,

that s
innerðfÞ is the inner spectral correlation of the cyclo-

stationary signal xðtÞ for the two frequencies f1 ¼ f þ 
=2

and f2 ¼ f � 
=2.
In light of the rationale presented in Section VI, we say

that (40) and (41) provide a partial description of the

second-order statistics of a complex-valued cyclostationary

process. To complete the statistical description, we need to

introduce the cyclic power spectrum of the second kind, as

shown by

Souterðt; fÞ ¼
X



s
outerðfÞ expðj2�
tÞ (43)

where s
outerðfÞ is the time average of the outer product

XTðt; f þ 
=2ÞXTðt; f � 
=2Þ, which does not involve the

use of complex conjugation.
With (41) and (43) at hand, we may now define the two

Fourier spectral coherences of a cyclostationary process as

follows:

1) Fourier inner spectral coherence

C
innerðfÞ ¼
s
innerðfÞ

s0ðf þ 
=2Þs0ðf � 
=2Þð Þ1=2
: (44)

2) Fourier outer spectral coherence

C
outerðfÞ ¼
s
outerðfÞ

s0ðf þ 
=2Þs0ðf � 
=2Þð Þ1=2
: (45)

Both spectral coherences have the same denominator,

where the Fourier coefficient s0ðfÞ corresponds to 
 ¼ 0;
putting 
 ¼ 0 in the expressions for s
innerðfÞ and s
outerðfÞ
yields the common formula

s0ðfÞ ¼ lim
T!1

lim
�t!0

1

�t

Z�t=2

��t=2

1

T
XTðt; fÞj j2dt: (46)

As with the Loève spectral coherences, the Fourier spec-
tral coherences are both complex-valued in general, with

each of them having a magnitude and associated phase of

its own.

The use of the Fourier spectral coherence of the

first and second kinds in (44) and (45) can require

excessive memory and can be computationally demand-

ing in practice. To simplify matters, the cycle frequency-
domain profile (CFDP) versions of spectral coherence is
often used

CFDPinnerð
Þ ¼ max
f

C
innerðfÞ
�� �� (47)

and similarly for the outer spectral coherence C
outerðfÞ.

B. Diagrammatic Instrumentation for Computing
the Fourier Spectral Correlations

The block diagram of Fig. 2(b) depicts the instrument

[50] for computing the inner and outer kinds of the
Fourier spectral correlations at frequencies f1 ¼ f þ 
=2

and f2 ¼ f � 
=2 in accordance with (41) for s
innerðfÞ and

its counterpart for s
outerðfÞ. A cyclostationary signal xðtÞ is

applied in parallel to two paths, both of which use identical

narrow-band filters. Both filters have the midband fre-

quency f and bandwidth �f , where the �f is small com-

pared with f but large enough compared with the

reciprocal of the time T that spans the total duration of
the input signal xðtÞ. In any event, the Fourier transform of

the input xðtÞ is shifted due to the multiplying factors

expð�j�
tÞ, producing the following filter outputs:

XTðf þ 
=2Þ in the upper path and XTðf � 
=2Þ in the

lower path. Depending on how these two filter outputs are

processed by the spectral correlator, the overall output is

s
innerðfÞ or s
outerðfÞ.

C. Relationship Between the Fourier and Loève
Spectral Coherences

Much of the communications literature on cyclostatio-

narity and related topics such as spectral coherence differ

from that on multitaper spectral analysis. Nevertheless,

these two approaches to cyclostationarity characterization

of an input signal are related. In particular, examining

parts Fig. 2(a) and (b), we see that the two basic instru-
ments depicted therein are similar in signal-processing

terms in that they exhibit the following one-to-one

correspondences.

1) The multiplying factors expð�j2�f1tÞ and

expð�j2�f2tÞ in Fig. 2(a) play similar frequency-

shifting roles as the factors expðj�
tÞ and

expð�j�
tÞ in Fig. 2(b).

2) The MTM in Fig. 2(a) for a prescribed Slepian
taper and the narrow-band filter in Fig. 2(b) for

prescribed midband frequency f and parameter 

perform similar filtering operations.

Haykin et al. : Spectrum Sensing for Cognitive Radio

Vol. 97, No. 5, May 2009 | Proceedings of the IEEE 863

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on May 28,2010 at 21:26:27 UTC from IEEE Xplore.  Restrictions apply. 



3) Finally, the cross-correlator operates on the MTM
outputs Xkðf1Þ and Xkðf2Þ in Fig. 2(a) to produce

estimates of the Loève spectral correlations, while

the cross-correlator in Fig. 2(b) operates on the

filter outputs XTðt; f þ 
=2Þ and XTðt; f � 
=2Þ to

produce the Fourier spectral correlations with

f1 ¼ f þ 
=2 and f2 ¼ f � 
=2.

Naturally, the instruments depicted in Fig. 2(a) and 2(b)

differ from each other by the ways in which their indiv-
idual components are implemented.

D. Contrasting the Two Theories on
Cyclostationarity

The theory of cyclostationarity presented in this

section follows the framework originally formulated in

Gardner [50]. This framework is rooted in the traditional

Fourier transform theory of stationary processes with an
important modification: introduction of the parameter 

(having the same dimension as frequency) in the statis-

tical characterization of cyclostationary processes. Ac-

cordingly, the cyclic spectral features computed from

this formula depend on how well the parameter 
 matches

the underlying statistical periodicity of the original

signal xðtÞ.
The other theory on cyclostationarity, discussed pre-

viously in Section VI, follows the framework originally

formulated in [32]. This latter framework combines the

following two approaches:

• the Loève transform for dealing with nonstationary

processes;

• the multitaper method for resolving the bias-

variance dilemma through the use of Slepian

sequences.
This two-pronged mathematically rigorous strategy for the

time–frequency analysis of nonstationary processes has a

built-in capability to adapt to the underlying statistical

periodicity of the signal under study. In other words, it is

nonparametric and therefore robust.

The Fourier-based approach to cyclostationarity may

also acquire an adaptive capability of its own. In many

spectrum-sensing applications based on this approach, the
Fourier inner and outer spectral coherences, defined in

(44) and (45), are computed over the entire spectral

domain of interest, and the actual cycle frequencies (i.e.,

statistical periodicity of the signal) may thus be accurately

estimated. According to Spooner [33], applicability of the

Fourier-based cyclostationarity approach to spectrum

sensing is thereby extended to a wide range of situations,

ranging from completely blind (no prior knowledge of
periodicity) to highly targeted (known periodicities with

possible errors).

Summing up the basic similarities and differences be-

tween the Loève and Fourier theories of stochastic pro-

cesses, we say the following.

• Both theories perform similar signal-processing

operations on their inputs.

• The Fourier theory assumes that the stochastic
process is cyclostationary, whereas the Loève

theory applies to any nonstationary process

regardless of whether it is cyclostationary.

E. Practical Considerations
In the use of cyclostationarity as a tool for signal

detection and classification, there are several practical

issues that may present challenges.
1) Communication systems have timing variations

due to the imprecision of their clocks. In practice,

this means that the signal is not truly cyclosta-

tionary, but it may be over some finite blocks of

time. Long-duration averaging, however, tends to

attenuate the spectral correlation feature when

the time-varying clock randomizes the phase [51].

2) Channel effects such as Doppler shift and/or
fading diminish the periodic nature of the signal

phase-transitions (e.g., modulation), and thus

can also reduce the practical extent of data

collection [52].

3) Not all signals can be classified with second-order

cyclostationarity. For example, there is an ambi-

guity between various forms of pulse-amplitude

modulation in the cyclic spectrum [53]. This
ambiguity can be overcome to some extent by

exploiting higher order cyclostationarity, such as

cyclic cumulants, but estimation of higher order

moments is known to require substantially more

data as well as complexity [54]. Note also that

higher order moments are very sensitive to

outliers such as impulsive noise.

4) For a given modulated signal xðtÞ, computing a
three-dimensional surface defined by jCð
Þx ðfÞj for

varying 
 and f is computationally intensive.

However, in practice, it may not be necessary to

compute the entire surface if assumptions about

the operating band can be made, thereby reducing

the region of computation. Furthermore, some

computationally reduced algorithms have been

developed to deal with this difficulty [55].
5) If there are several signals in the environment,

then some pattern-recognition techniques are

necessary to identify and sort out the myriad of

features to determine the combination of signals

that created those features.

6) The final issue pertains to highly filtered signals.

As the pulse-shaping becomes more aggressive to

reduce bandwidth, cyclic features for many types
of modulation tend to diminish, requiring even

more data to be collected so as to reduce the

variance of the cyclostationarity estimator to

reveal weak features.

The issues described herein have been discussed in the

literature in the context of the classical Fourier theory of

cyclostationarity.
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VII. FIRST EXAMPLE: WIDE-BAND ATSC
DIGITAL TELEVISION SIGNAL

In cognitive-radio applications, the requirement is to make
estimates of the average power of incoming RF stimuli

quickly; hence, estimating the spectrum on short data

blocks (each consisting of N samples) is a priority. Commu-

nication signals are designed not to waste power on

unnecessary redundant components. Consequently, much

of the cyclostationarity of the transmitted signal occurs

because of framing, data blocks, etc., which may be sepa-

rated by more than the fundamental period T0, and so do
not show up in short-data blocks. Simply put, reliable

spectrum sensing for cognitive-radio applications is com-
plicated not only by the many characteristics of wireless

communication signals but also by interfering signals,

fading, and noise, all of which make the task of spectrum

sensing highly demanding.

A. Spectral Characteristics of the ATSC-DTV Signal
For our first experimental study, we consider the

digital representation of wideband ATSC signals. The

ATSC-DTV is an eight-level vestigial sideband (VSB) modu-

lated signal used for terrestrial broadcasting that can

deliver a Moving Picture Expert Group-2 Transport Stream

(MPEG-2-TS) of up to 19.39 Mbits per second (Mbps) in a

6 MHz channel with 10.72 Msymbols per second (over-

the-air medium); for more details, see Bretl et al. [56]. A
pilot is inserted into the signal at 2.69 MHz below the

center of the signal (i.e., one-quarter of the symbol rate

from the signal center). Typically, there are also several

other narrow-band signals found in the analysis bandwidth,

thereby complicating the spectrum-sensing problem.

Using the MTM, we may generate a reasonable esti-

mate of the available spectrum with about 100 �s of data.

Spectra of such data are slightly less variable than a spec-
trum estimated from Gaussian data. If we compute

Bartlett’s M-test7 as a function of frequency, we find that

it is superstationary, in the sense that there is less variation

from section to section than that expected in a stationary

Gaussian process.

Fig. 3 shows the minimum, average, and maximum of

20 multitaper estimates of the ATSC-DTV power spec-

trum. Here, the block length used was N ¼ 2200 samples,
or 110 �s in duration. The blocks were offset 100% from

each other. The pilot carrier is clear at the lower band-edge

of the MTM spectrum. Clearly, there are considerable

white spaces in the spectrum to fit in additional signals;

hence the interest in the use of white spaces in the TV

band for cognitive-radio applications.8

The ATSC-DTV signal is clearly seen to be 40 dB or

more above the noise and the sharp narrow-band
interfering components. (As a matter of practical interest,

if the signal-to-noise ratio were lower, as in a wide-band

signal, for example, then the classification would be more

difficult and more subtle characteristics such as cyclosta-

tionarity would be necessary to distinguish between signals

and noise.) Both below and above the main ATSC-DTV

signal, the slowly varying shape of the baseline spectrum

estimates is reminiscent of filter skirts, which makes it

7If we have J spectrum estimates, Sðf ; jÞ, j ¼ 1; . . . ; J, with an average
DoF of �ðfÞ from (12), Bartlett’s M-test for homogeneity-of-variances is
defined as follows [57], [58]:

ðVARIABLEERROR � unrecognisedsyntaxÞ

where AfSðf ; jÞg and GfSðf ; jÞg denote the arithmetic and geometric
means of the J estimates at frequency f . This test is a likelihood-ratio test
and approximately distributed as chi-squared 2

J�1. The M in Bartlett’s
M-test must not be confused with the symbol used to denote the number
of sensors in Section IV.

Fig. 3. Multitaper estimates of the spectrum of the ATSC-DTV signal.

Each estimate was made using Co ¼ 6:5 with K ¼ 11 tapers. In this

example, N ¼ 2200, or 110 �s. The lower (green) and upper (blue)

curves represent the minimum and maximum estimates over

20 sections. Note: When the figure is expanded sufficiently, we see

two closely overlapping curves: the arithmetic (upper black) and

geometric (lower blue) means.

8In its 2008 Report and Order on TV white space [11], the FCC
established rules to allow new wireless devices to operate in the white
space (unoccupied spectrum) of the broadcast television spectrum on a
secondary basis. It is expected that this will lead to new innovative
products, especially broadband applications. To avoid causing interfer-
ence, the new devices will incorporate geolocation capability and the
ability to access over the Internet a database of primary spectrum users,
such as locations for TV stations and cable systems headends. The database
itself is insufficient to offer interference guarantees, given the inability to
accurately predict propagation characteristics while efficiently using the
spectrum. The portability of low-power primary users, such as wireless
microphones, makes the database approach infeasible, motivating the
need for sensitive and accurate spectrum-sensing technology to include
these devices.

MðfÞ ¼ J�ðfÞ ln A Sðf; jÞf g
G Sðf; jÞf g


 �
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improbable that the true thermal noise level is reached
anywhere in this band.

Note also that, as anticipated, there are several narrow-
band interfering signals visible in the MTM spectrum of

Fig. 3:

• four strong signals (one nearly hidden by the

vertical-axis) and three others on the low side;

• two weak signals: one at 1.6 MHz (maximum level

of about �65 dB, about halfway between the peaks
at 1.245 and 1.982 MHz), and one halfway down

the upper skirt at 8.7 MHz.

If we were to use a conventional periodogram or its

tapered (windowed) version to estimate the ATSC-DTV

spectrum, then the presence of interfering narrow-band

signals such as those in Fig. 3 would be obscured. Ac-

cordingly, in using the white spaces of the TV band, careful

attention has to be given to the identification of interfering
narrow-band signals.9

The ATSC-DTV signal is a useful example of how the

naive use of Loève spectra can be misleading. Using (33)

and (34) for the TF-MSC, Fig. 4 shows an estimate of the

two-frequency coherence jCðf1; f2Þj2 that is made on the raw

eigencoefficients. Here, the striking feature is the block of

points in the range 0 G f1, f2 G 3:1 MHz and points near

8.7 MHz on both axes, where the minimum coherence
measured on 20 disjoint segments is between 20% and

75%. Note also the visibility of the interfering signals is

clearer in Fig. 3, where they are responsible for the high

coherence points on the misleading estimate.

Under the null hypothesis, the significance of mini-

mum coherence is much higher for a given level than it is

for the TF-coherences on single sections. For a single

multitaper coherence estimate, the probability density
function of a single MSC estimate, denoted by q, when the

true coherence is zero is [18]

pðqÞ ¼ ðK � 1Þð1� qÞK�2 (48)

where K is the number of Slepian tapers. Correspondingly,

the cumulative distribution function of the estimate q is

PðqÞ ¼ 1� ð1� qÞK�1: (49)

If we take the minimum of J such independent estimates,

standard results for order statistics show that the

distribution is of the same form as (49) but with an

equivalent K, defined Ke ¼ JðK � 1Þ þ 1; for example, see

[59, Ch. 14]. Specifically

P minðq1; . . . ; qJÞ � qf g ¼ ð1� qÞJðK�1Þ: (50)

Taking K ¼ 8, the median TF-MSC is approximately

0.09438, and the 90% level is at 0.2803. The probability

that the minimum of five such estimates exceeds the

threshold 0.2803 is about 10�5. If the dataset is stationary,

taking the minimum of J estimates is less efficient than
estimating the coherences from all J � K eigencoefficients.

There are good reasons for why the minimum coherence

may be preferred to the full estimate.

i) The minimum TF-MSC is preferred over the

standard estimate when speed of computation is

an issue of practical concern. The advantage of

using the minimum TF-MSC is particularly

marked when a running estimate over the last J
blocks is kept.

ii) When the power is varying, the minimum cohe-

rence may be more reliable than the standard

estimate. For two series, say, fxg and fyg, and K
eigencoefficients on J different time-blocks, de-

note the respective eigencoefficients as xkðj; fÞ and

ykðj; fÞ. An estimate of the coherence averaged

over both windows and blocks is optimum when

9The IEEE 802.22 Web site https:mentor.ieee.org/802.2/file/07/22-
07-0341-00-001-improved-fec-features.doc avoids a spectrum-sensing
scheme using pilot detection. Indeed, the location of the pilot in the TV
band is well defined; hence detection of the pilot itself can be done
reliably. However, recognizing the practical inevitability of finding
interfering narrow-band signals below the pilot, as demonstrated in the
MTM spectrum of Fig. 3, undermines the practicality of the pilot-
detection approach.

Fig. 4. A misleading estimate of the two-frequency

magnitude-squared coherence jCðf1; f2Þj2 for the ATSC-DTV signal.

The plot is split, showing inner coherences in the upper left-half

and outer coherences in the lower-right half. The plotted coherences

represent the minimum coherence over 20 disjoint segments. The

estimates were made usingCo ¼ 6:5,K ¼ 11, andN ¼ 2200. The pattern

of high values in the lower left could be easily mistaken for

cyclostationarity, but it is almost completely an artifact of the

strong carriers below the ATSC-DTV band-edge.
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the data sequence is stationary. However, when

the average power is varying, as in cognitive-radio

applications, the estimated coherence will be do-
minated by the eigencoefficients with the highest

power. Depending on changes in power, the ef-

fective degrees of freedom may only represent a

single block. For a stationary process, the changes

in block-to-block power are usually small. We are,

however, not dealing with stochastic systems in-

volving a stationary process but with wireless

communications systems, and such systems com-
monly use dynamic power control where changes

of 5 and 10 dB are common, as are transitions from

Bon[ to Boff.[
Returning to the discussion of the peaks in Fig. 4, we note

that many of these peaks are not evidence for cyclostatio-

narity but simply artifacts of the narrow-band components

evident in Fig. 3. The problem, simply put, is that one

sinusoid looks much like another; and, if we have clean
sinusoidal components, then they will appear coherent

with each other.

Fig. 5 shows a harmonic F-test for one of the data seg-

ments in the ASTC-DTV example (the others are similar).

In this figure, five lines are identified as significant above

the 99.9% level. Details on harmonic F-tests are given in

[8] and [19]; the performance of these tests approaches the

Cramér–Rao bound for frequency estimation. Denoting
the frequencies estimated by the point where the F-test is

maximized and above some specified threshold by f̂ j and

the corresponding line amplitudes by �̂j, we may reshape

the eigencoefficients by subtracting the effect of the lines;

that is, the kth Slepian function (i.e., the Fourier transform
of the sequence denoted by �kðtÞ) is

ŷk ¼ xkðfÞ � �̂j�kðf � f̂ jÞ (51)

over a bandwidth jf � f̂ jj | 3W around each line.

Recomputing the Loève spectrum and spectral coherences

with ŷk, we obtain the result plotted in Fig. 6. The two

Bstrong[ peaks remaining in the figure are in the outer

coherence part of the pilot and on the steep skirts of the

VSB modulated signal. Conditions on the steep slopes

represent a partial violation of the assumptions behind
multitaper estimates: the spectrum is not Blocally white.[
In such cases, the bias is still bounded in the usual way, but

quadratic bias terms become more important. The biggest

effect, however, is that the steep slope induces correlation

between the different eigencoefficients, so the effective

DoFs of the estimate are reduced. This is usually more of

a problem when assessing significances of coherences and

F-tests than it is for spectrum estimates, because signi-
ficance levels of spectra are usually assessed at peaks than

they are on slopes. The quadratic-inverse theory [60] was

developed to extend multitaper estimates to situations

where the assumption of Blocally white[ is unreasonable,

Fig. 5. Harmonic-F test for periodic components in the ATSC-DTV

signal. The test has two and 20 degrees of freedom, and the threshold

level was set at the 99.9% significance level. Note the symmetric pair

of sidebands on the signal at 2.518 MHz that appears visually

broadened in the spectrum shown in Fig. 4; similarly for the line at

8.754 MHz that appears as a small ‘‘bump’’ on the upper skirt of the

main signal.

Fig. 6. A better estimate of the two-frequency coherence for the

ATSC-DTV signal. The dataset is the same as in Fig. 4 but here periodic

terms where the harmonic F-test exceeds the 99.9% significance level

were subtracted from the eigencoefficients before computing

jCðf 1; f2Þj2. In contrast to the ‘‘raw’’ estimate of Fig. 4, there are no

inner coherences above about 0.15, a value that could be just

sampling fluctuations. The scales are different in Figs. 4 and 6.

Note also that there are three strong peaks in the outer coherence

near ðf1; f2Þ  ð3; 1:2Þ, ð3:2; 2:9Þ, and ð8:7;8:3ÞMHz. The pixels

corresponding to significant coherences have been enlarged.

The differences between the frequencies in each pair correspond

to the frequency offset ðf2 � f2Þ ¼ 
.
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that is, to estimate spectra within the inner bandwidth of
the signal. Without going into detail, it was shown in [32]

that the effective DoFs of a multitaper estimate are re-

duced by a steep slope in the spectrum by a term depend-

ing on the squared partial derivative ðð@=@fÞ ln SðfÞÞ2, as

shown by

�̂ ¼ 2K

1þ D1
@
@f ln SðfÞ
� �2 (52)

where ln denotes the natural logarithm and

D1 �
4

15

ffiffiffi
6
p

�
� 2NW

K
�W2: (53)

The slope on the skirts of the ATSC-DTV signal is specified

to be steep, so that the DoFs are reduced, which is the

likely cause of the apparent coherences on the band edges

in Fig. 6.

Looking at the IEEE P1631 specification for the ATSC-

DTV, the transmitted power spectrum should drop by at
least 11.5 dB/MHz near the channel edges and much

more rapidly in the skirt region. With K ¼ 8 tapers, using

11.5 dB/MHz for the derivative in (53) only costs about

0.2 DoF. In the skirt region, however, the spectrum is

close to being discontinuous, with the result that the

partial derivative ð@=@fÞ ln SðfÞ is unbounded. Nume-

rically differentiating the logarithm of the average

spectrum and using it in (54) predicts �̂ to be approxi-

mately 1.05, implying that on these steep slopes, the
spectrum obtained using N ¼ 1000 is too steep to esti-

mate reliably.

With the DoF’s being variable, evaluating (12) for the

ATSC-DTV example with Co ¼ 4:5 and K ¼ 8 tapers gives

the statistics summarized in Fig. 7. With this choice of

parameters, approximately one-half of the degrees of

freedom are lost near the band-edges. If we repeat the

experiment with Co ¼ 8 and K ¼ 8 on the same data, the
minimum degrees of freedom are approximately 15.97;

so, in this example, there is no need for adaptive

weighting.

Fig. 8, involving the application of Bartlett’s M-test,

shows that stationarity is a reasonable assumption for the

ATSC-DTV example with some exceptions. The figure

shows less variability than expected on carriers; it is

clearly nonstationary on band-edges and around what ap-
pears to be a frequency modulated carrier near 2.5 MHz.

Also, the test is on the low side across most of the

ATSC-DTV signal, showing that it is less variable than

stationary Gaussian noise.

Fig. 7. Average and minimum estimated degrees of freedom for

50 estimates of the ATSC-DTV signal with N ¼ 1000, NW ¼ 4:5,

and K ¼ 8 windows. The reduced DoF on the lower parts of the

spectrum (exactly the regions of interest for cognitive radio)

is a main reason for recommending NW ¼ 8.

Fig. 8. Bartlett’s M-test for stationarity applied to the 50 MTM

estimates for the N ¼ 1000, NW ¼ 4:5, and K ¼ 8 estimates used in

Fig. 7. This calculation is the usual one for M, except that the average

DOF shown in Fig. 7 is used instead of the nominal value. It may be seen

that the estimate is close to its expected value in the noise parts of the

spectrum, slightly low in the main TV band, high near the band edges

and both edges of the 2.518 MHz frequency-modulated carrier, and

‘‘superstationary’’ (excessive low) on the other carriers.

Haykin et al. : Spectrum Sensing for Cognitive Radio

868 Proceedings of the IEEE | Vol. 97, No. 5, May 2009

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on May 28,2010 at 21:26:27 UTC from IEEE Xplore.  Restrictions apply. 



The overall message to take from the experimental re-
sults plotted in Figs. 3–8 on the ATSC-DTV signal is sum-

marized as follows.

1) Interfering signals do exist in the ATSC-DTV, re-

gardless of whether the TV station is switched on

or off, as clearly illustrated in Fig. 3 for the Bon[
condition.

2) Although it is well recognized that the ATSC-DTV

band is open for cognitive-radio applications when
the pertinent TV station is switched off, the re-

sults presented in Fig. 3 are intended to demon-

strate the high spectral resolution that is afforded

by using the MTM for spectrum sensing. Obvi-

ously, an immediate benefit of such high spectral

resolution is improved radio-spectrum underuti-

lization, which, after all, is the driving force be-

hind the use of cognitive radio.
3) The current FCC ruling on the use of white spaces

in the ATSC-DTV band for cognitive-radio appli-

cations permits such use by low-power cognitive

radios only when the TV station is actually

switched off. Nevertheless, the results displayed

in Fig. 3 clearly show the feasibility of using low-

power cognitive radios in white spaces that exist

below the pilot, and doing so without interference
to the TV station when it is actually on, thereby

resulting in additional improvement in radio-

spectrum utilization.

4) In using the two-frequency magnitude-squared

coherence jCðf1; f2Þj2 for the identification of

cyclostationarity in the ATSC-DTV signal for

example, care has to be taken.

B. Choice of Estimate and Computational Issues
Cognitive-radio applications require reliable spectrum

estimates. The term Breliable[ can be interpreted in many

ways, but, in this paper, we mean that the estimate should

have a low and quantifiable bias plus low variance. Simul-

taneously, it should make efficient use of the available data;

there is little point in attempting to estimate a spectrum to

check what bands are available if it requires such a large
sample size that the spectrum changes significantly while

the data are being acquired. A related requirement is that

the computations be done rapidly. Lastly, Breliable[ can

also be interpreted as Brobust,[ in the sense that the esti-

mate should not depend on whether the data have a

Gaussian, Laplacian, or any other possible distribution; it

should not matter if the data are Brandom[ or contain

deterministic components; and the estimate is relatively
tolerant of outliers.

Continuing the discussion on computational issues,

multitaper estimators require relatively low computational

resources. Assuming that the Slepian tapers (windows) are

precomputed for a prescribed size K, each eigencoefficient in

the MTM can be computed with a FFT of the data times the

sequence. With routines such as FFTW, which, according to

[61], stands for BFastest Fourier transform in the West,[ the
computation is fast to begin with and we can do Btricks[ to

speed up the process even further. If we have real-valued data,

then we can obviously do two eigencoefficients with each

FFT. Similarly, we can split the data into even and odd parts of

length N=2, the tapers are alternatively even and odd, and we

can split the Fourier transform into odd and even parts, then

ignore all the calculations that result in zero; the resulting

code is messy but fast. Finally, if we take NW ¼ 8, the
bandwidth of the estimates involves eight Rayleigh resolu-

tions N=ð2WÞ, so we need only compute every eighth FFT bin

to get a reasonable approximation of the spectrum. Using the

speeds given for FFTW310 for a single precision 3 GHz Intel

Xeon Core Duo, a single precision 1024-point complex

transform requires about 3.8�s. Assuming the use of real data

and computing two sets of eigencoefficients with each FFT,

the K ¼ 8 spectrum estimate would require about 15 �s.
The message to take from the remarks presented herein

is thus summarized as follows:

By precomputing the Slepian tapers and using the

state-of-the-art FFT algorithm, computation of the

MTM for spectrum sensing can be accomplished in a

matter of 5 to 20 �s, which is relatively fast for

cognitive-radio applications.

C. Loève Coherences
Estimation of the Loève magnitude-squared coherence,

using the TF-MSC formulas of (33) and (34), is relatively

slow. This estimation uses the same eigencoefficients but

does the coherence estimates (in the ATSC-DTV example)

on one-half of a 512 � 512 grid; it could therefore take
about 600 �s.

If we have L frequencies, then the eigencoefficients

may be thought of as an L-by-K matrix, denoted by Y.

Thus, the Loève spectrum is proportional to the outer

product YYy, where, as noted previously, y denotes

Hermitian transposition, and the coherences are the same,

with each row of the matrix Y standardized to have unit

length. These product matrices are, at most, rank K, and
this information is contained in the SVD of Y. For typical

values of L and K, dealing with an L-by-K SVD is clearly

much faster than its M-by-M outer product; the exact

improvement in computing the estimate of TF-MSC is

application-dependent.

D. Fourier Coherences
Fig. 4 illustrates one way of viewing cyclostationarity

characterization of the ATSC-DTV signal using the inner

spectral coherence of (33) and outer spectral coherence of

(34), rooted in the MTM-Loève theory. Fig. 9 completes

the experimental study of the ATSC-DTV signal, viewed

from the Fourier-theory perspective.

10See www.fftw.org.
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Fig. 9, consisting of three parts, was obtained using
160 �s of ATSC-DTV data. From the power spectrum of

the ATSC-DTV signal plotted in Fig. 3, we know the loca-

tion of the pilot to be at 2.69 MHz below the center

frequency of the ATSC-DTV signal. This point is borne out

by the windowed periodogram plotted in Fig. 9(a).

Fig. 9(b) and (c) plot the maximum over frequency

versus the cycle frequency 
, which is defined as the dif-

ference frequency between (f þ 
=2) and (f � 
=2) for a
fixed carrier f . Except for the trivial result pertaining to

frequency parameter 
 ¼ 0, Fig. 9(b) based on the

spectral coherence formula of (44) exhibits no significant

inner cyclostationarity of the ATSC-DTV signal. In direct

contrast, Fig. 9(c) based on the outer spectral coherence

given of (45) exhibits two strong features at �5.39 MHz.

For analytic justification of these two features, let fpilot and

fsymbol denote the pilot frequency 2.69 MHz and the

symbol rate 10.76 Msymbols/s. Analysis of the heavily
asymmetrically filtered eight-level pulse-amplitude modu-

lated (8-VSB) signal confirms the results of Fig. 9(c):

• one feature at 2� fpilot ¼ �5:38 MHz;

• a second feature at 2� fpilot þ fsymbol ¼ �5:38 þ
10:76 ¼ þ5:38 MHz.

A direct comparison of Figs. 4 and 9 is somewhat

difficult for the following reasons.

1) The major difference is in the manner in which
the data were collected. Fig. 4 is based on real-

valued ATSC-DTC data sampled at 20 MHz rate

with the origin 5 MHz below the carrier. This

gives a frequency range of �5 MHz around the

carrier. Because the main spectral coherence

features in the ATSC-DTV are expected to be

�5.38 MHz from the carrier, this is a serious

limitation. It is possible that the series of peaks

Fig. 9. (a) Windowed periodogram of 160 �s of ATSC-DTV data. (b) Inner spectral coherence of the ATSC-DTV data, computed using (44).

(c) Outer spectral coherence of the ATSC-DTV signal, computed using (45). (Reproduced with the permission of Dr. C. Spooner.)
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just above the f2 axis in Fig. 4 are aliases. The data
in Fig. 9, in contrast, use complex-valued data

centered on the carrier with a 7 MHz sampling

rate. This is clearly adequate to show the

�5.38 MHz outer coherences. The frequency

range was truncated for aesthetic purposes. How-

ever, having f0 fixed at the carrier frequency, the

numerous other peaks visible in Fig. 4 are missed.

2) Fig. 4 is a composite of two symmetric figures
with inner coherences above the diagonal and

outer coherence below.

3) The diagonal element corresponding to the strong

line at the origin of Fig. 9(b) is suppressed in Fig. 4.

4) Frequencies are plotted relative to the sampling

origin in Fig. 4 and from the carrier frequency in

Fig. 9.

5) Fig. 4 is given as a function of f1 and f2, and
Figs. 9(b) and 9(c) as a function of the parameter


, where, as noted earlier, f1 ¼ f0 þ 
=2 and f2 ¼
f0 � 
=2, here with f0 set to the carrier frequency.

6) Fig. 4 is the minimum coherence at each ðf1; f2Þ
pair taken over 20 disjoint segments. Also, the

regions around high peaks have been broadened

artificially to make them more visible. There are

many frequency pairs in both the inner and outer
regions where the minimum is between 0.1 and

0.15. With 20 segments and eight Slepian tapers

per segment, the probability of the minimum

TF-MSC’s exceeding 0.1 in uncorrelated data is

¼ ð1� 0:1Þ14040� 10�7, implying there is con-

siderable structure in addition to the main peaks

seen in Fig. 9. This is in reasonable agreement

with the coherences seen in the lower two panels
of Fig. 9. In these, the squared coherences are

generally between 0.2 and 0.4, so a minimum of

0.1 to 0.15 in 20 segments is very reasonable.

The comparison of Figs. 4 and 9 would be incomplete

without bearing in mind the following point: Fig. 9 as-

sumes the availability of the carrier, which is obtained

from part (a) of the figure. On the other hand, no such

assumption is made in Fig. 4, and, for that matter, Figs. 6
and 12. If this assumption was made in computing the

Loève spectral coherences of (33) and (34), then computa-

tions of Figs. 4, 6, and 12 would be considerably simplified.

VIII . SECOND EXAMPLE: GENERIC
LAND-MOBILE RADIO SIGNAL

In Section II, we pointed out that spectrum holes may also
be found in commercial cellular bands. Therefore, for the

second application of the MTM, we consider a generic

land-mobile radio (LMR), using QPSK for modulating the

data. The signal used in the study was recorded as a

complex data stream at a fixed suburban location using a

96 kHz sampling rate, with the mobile unit traveling at

a speed of 65 km/h with carrier frequency of 1.9 GHz.

To begin, Fig. 10 shows a multitaper dynamic spectrum
over 50 ms. The data blocks are 500 samples (2.6 ms) long

and offset by 120 samples, or 0.62 ms. Here we used a

time–bandwidth product Co ¼ 8, with K ¼ 8 and adap-

tive weighting. Fig. 11 shows the minimum, arithmetic

mean, geometric mean, and maximum spectra over the

77 sections, making up the dynamic spectrum shown in

Fig. 10. Looking at Figs. 10 and 11, the main signal

(centered on the carrier) is clearly seen, as are a second
fading signal 50–60 dB down and approximately 45 kHz

higher in frequency, plus a nonfading carrier 80 kHz

below the main signal. We also note that the difference

between the arithmetic and geometric means is larger on

the fading signals than it is in the noise parts of the

spectrum. This is to be expected because the log-ratio of

the two means is, except for a scale factor, Bartlett’s

M-test for homogeneity or, when applied to a spectrogram
as it is here, a test for stationarity. In Section IX,

implications of the fading phenomenon are examined.

As an incidental point, Fig. 12 shows a plot of the two-

frequency inner coherence between two antennas spaced a

wavelength apart for the LMR data. Here, the existence of

cyclostationarity is clearly illustrated in the figure.

Fig. 10. A multitaper spectrogram (or dynamic spectrum) using

2.6 ms (500 samples) data blocks. The data blocks were offset

by 0.62 ms (120 samples) and the estimates computed with a

time–bandwidth Co ¼ 8 and K ¼ 8 windows with adaptive weighting.

The carrier is at1.9 GHz, and we can see both a strong fading channel

around the carrier, which is probably a second-ring fading signal

two channels above and about 60 dB down from the main signal,

and an unmodulated, steady carrier about 80 kHz below the main

signal. In this example, the mobile unit was travelling at 60 km/h.
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The choice of Co ¼ 8 may seem large, but communica-

tion systems have large dynamic ranges. We may com-

monly have to deal with spectra where the dynamic range

is over 100 dB. The choice of Co ¼ 8 with K ¼ 8 tapers

gives a dynamic range better than 90 dB without adaptive
weighting, as illustrated in Fig. 13, where the four lowest

order tapers have a range of at least 150 dB. However, in

many applications, accuracy will be limited by ordinary

floating-point arithmetic and the resolution of analog-to-

digital conversion, and not by intrinsic properties of the

windows.

The next problem to be dealt with is that of choosing

the block size N or, in physical units, N�t, where �t is the
sampling interval. For a given choice of Co, the bandwidth

on each side of a given frequency is W ¼ Co=N or B ¼ Co=
ðN�tÞ Hz, so the total bandwidth is 2B. In these appli-

cations, we recommend the use of Co greater than four,

with Co ¼ 6 or Co ¼ 8 being a reasonable value. The choice

of N, however, depends on the complexity and assigned

channel allocations in the band being used.

Fig. 14 shows spectra estimated from the first N
samples of the LMR data with N being 50, 100, 250, and

1000, all with Co ¼ 8. (The case of N ¼ 500 was shown

previously in Fig. 11.) Clearly, the N ¼ 50 spectrum does

not really resolve the two fading signals, and it spreads the

80 kHz carrier over approximately 40 kHz. The N ¼ 100

spectrum is clearly better, and either could be used if the

choice was for fast computation. We note that we could

Fig. 11. Minimum, geometric mean, arithmetic mean, and

maximum spectrum estimates obtained from 77 2.6 ms (500 samples)

data blocks. The log-ratio of the arithmetic and geometric means is,

within a scale factor, Bartlett’s M-test; see footnote 7. It can be seen

that the parts of the signal that are mostly noise, that is, with level

S  10�5, are reasonably stationary, whereas in both active channels,

there is a noticeable gap between them. At the unmodulated carrier

at �80 kHz, in contrast, all four curves overlap.

Fig. 12. Inner two-frequency MSC between two antennas for the LMR

signal, excluding the region with the carrier. Cyclostationarity in the

stronger signal is obvious, and moderately so in the weaker one.

Fig. 13. The average spectral window of a multitaper estimate

with Co ¼ 8 and K ¼ 8 tapers. The first sidelobe, just above the

red dashed vertical line that marks the bandwidth W in

Rayleigh resolution units, is more than 90 dB down and drops to over

100 dB by approximately 15 Rayleigh resolution units. If this

calculation is repeated with just the first K ¼ 4 windows, using 32-bit

floating-point, we hit roundoff noise around 150 dB down.
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alternatively use long blocks to estimate where the chan-

nels are, then use short blocks to estimate when one of

the channels becomes available. In this example, the
choice N ¼ 250 is close to the performance of the

N ¼ 1000 estimate and, without an explicit optimality

criterion, it might be a good choice. The adaptive weights

converged in a maximum of three iterations, producing

estimates with minimum degrees of freedom of approxi-

mately 15.5 and clearly showing the main features in the

spectrum. So, other things being equal, the N ¼ 250

estimate is a reasonable choice. At the 96 kHz sampling
rate, N ¼ 250 corresponds to a 2.6 ms block, and the

choice N ¼ 100 would give a reasonable performance

with approximately 1 ms blocks. There is, however, still

the problem of fading to be considered, which is done in

the next section.

IX. RAYLEIGH FADING CHANNELS

Because mobile communications are one of the probable

applications of cognitive radio, we must consider the

spectrum-estimation problem in a Rayleigh fading channel.
To proceed, consider a data-transmission system for a

Rayleigh-fading channel where XðtÞ denotes the transmit-

ted signal and CðtÞ is a complex narrow-band Gaussian
process defining the instantaneous channel characteristics.

The received signal is defined by

YðtÞ ¼ CðtÞ � XðtÞ þ NðtÞ (54)

where NðtÞ is stationary, complex, white Gaussian noise.
Here we assume a Jakes model [62] for the channel, that is,

the autocorrelation function of CðtÞ is

Rð�Þ ¼ E CðtÞC	ðtþ �Þf g ¼ J0ð2�fd�Þ (55)

where, as before, E is the statistical expectation operator,

the mean-square transfer through the channel is normal-
ized to unity, J0ð�Þ is the Bessel function of zero order, fd is

the Doppler frequency, and � is the time delay. The

Doppler frequency is fd ¼ ðv=cÞfc, where v is the mobile

velocity, fc is the carrier frequency, and c is, as usual, the

velocity of light. Denoting the wavelength by � ¼ c=fc and

distance by s ¼ v� , the argument of the Bessel function J0

is just 2�ðs=�Þ. Note that the covariance function Rð�Þ is

simply a function of the distance moved during time �
measured in wavelengths.

There are at least two problems with the Jakes model.

First, it assumes that the received signal is a result of

signals reflected from a two-dimensional array of random
scatterers; a glance at many buildings, with their rows of

uniformly-spaced windows or wall panels, suggests that a

diffraction grating might be a better model. Secondly, the

Bessel function J0ð�Þ is a bandlimited function and implies
that the fading process is deterministic. It is, in fact, just

the leading term of a series; see [63]. Nevertheless, it is

adequate to explain many of the commonly encountered

fading problems in practice. The explanation for the rip-

ples is relatively simple. Consider the model of (54) as part

of a spectrum-estimation problem and write the eigen-

coefficients as follows, ignoring the additive noise in (54):

ykðfÞ ¼
XN�1

t¼0

CðtÞxðtÞvðkÞt expð�j2�ftÞ: (56)

Now, consider the data taper to be the product CkðtÞ ¼
CðtÞvðkÞt ; so the estimated eigenspectra ŜC;kðfÞjykðfÞj2 will

be the true spectrum convolved with an equivalent spectral
window. The Fourier transform of J0ð2�fd�Þ is defined on

the infinite interval ð�1;1Þ by

~CðfÞ ¼
1
� f 2

d � f 2
� 	�1

2; for jf j G jfdj
0; otherwise.

�
(57)

Equation (57) implies that the expected value of the

spectrum will be that from nonfading conditions Snf ðfÞ
convolved with ~CðfÞ. This convolution poses a problem

because ~CðfÞ goes to infinity at f � fd, and the power in the
sidelobes of the windows decays asymptotically as f�2,

which is a characteristic of QPSK signaling; hence, formal

convergence is problematic. In particular, the sidelobes of

the Slepian sequences are asymptotically of the form

Fig. 14. Spectra for sample sizes N ¼ 50; 100; 250; and 1000,

beginning at the start of the data whose dynamic spectrum

is shown in Fig. 10. In all cases, we have used a single data section,

a time–bandwidth Co ¼ 8, K ¼ 8 windows, and adaptive weighting.
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cksincðfTÞ, where sinc(�) denotes the sinc function. So,
when adjacent sidelobes are spaced by 2fd, that is, when

T � 1=ð2fdÞ, we should expect the presence of large ripples

in the spectrum. On shorter time intervals, the tendency

for the Fourier transform to have a maximum at the

Doppler frequency is still present. In this example, the

Doppler frequency is approximately 112 Hz. Consequently,

when the resolution of the spectral estimator becomes

finer than this value, we begin to see ripples. We empha-
size that these ripples are not sidelobes of the spectral

windows per se because, as seen in Fig. 15, these windows

can resolve the spectrum without adaptive weighting. The

procedure, however, is sensitive, and as the spacing of the

Doppler sidelobes begins to match those of the windows,

we can change the effective sidelobe level by about a factor

of three, which causes the adaptive weights to oscillate.

Heuristically, looking at Fig. 11 and recalling that at a
96 kHz sampling rate, a sequence of 2000 samples is about

20 ms, the data windows include three high-energy

portions of the signal. Consequently, we should not use

excessively long data blocks in a fading environment. A

more effective approach is to use several moderate lengths;

(for example, we may choose N ¼ 250 or N ¼ 500)

followed by robust estimation at each frequency.

X. SUMMARY AND DISCUSSION

In finding and then exploiting spectrum holes in ATSC-

DTV and commercial cellular bands, cognitive radio has

the potential to solve the radio-spectrum underutilization

problem. However, when the following compelling
practical issues are recognized, we begin to appreciate

the research and development challenges involved in

building and commercializing cognitive radio:

• the notoriously unreliable nature of wireless

channels due to complexity of the underlying

physics of radio propagation [10], [64];

• the uncertainties surrounding the availability of

spectrum holes as they come and go [65];
• the need for reliable communication whenever and

wherever it is needed [2], [3].

A. The Multitaper Method: A Tool for Integrated
Nonparametric Spectrum-Sensing of the
RF Environment

In signal-processing terms, spectrum-sensing of the

radio environment in an unsupervised manner is one of
those challenges on which the whole premise of cognitive

radio rests. The MTM is a nonparametric (i.e., model-

independent) and, therefore, robust spectral estimator that

offers the following attributes for solving the radio-

spectrum underutilization problem.

i) Resolution of the bias-variance dilemma, which is

achieved through the use of Slepian sequences

with a unique and remarkable property:

The Fourier transform of a Slepian sequence

(window) has the maximal energy concentration

inside a prescribed bandwidth under a finite sample-

size constraint.

Simply put, there is no other window that

satisfies this property.10 Consequently, the MTM
is an accurate spectral estimator, as evidenced by

the experimental results on ATSC-DTV and ge-

neric land-mobile radio signals, presented in

Sections VII and VIII, respectively.

ii) Real-time computational feasibility, which is real-

ized through prior calculation and storage of the

desired Slepian coefficients for a prescribed time–

bandwidth product and use of a state-of-the-art
FFT algorithm.

iii) Multidirectional listening capability, which is

achieved by incorporating the MTM into a

space–time processor for estimating the unknown

directions of arrival of interfering signals.

iv) Cyclostationarity, the characterization of which is

performed by expanding the MTM to embrace the

Fig. 15. An estimate of the spectrum using the same LMR data set

and parameters used in Fig. 14, but here with N ¼ 2000. Note the

prominent ‘‘ripples’’ in the lower parts of the spectrum.

10Of the various windows described in the literature, the Kaiser
window [66], gives a good approximation to the zeroth-order prolate
spheroidal wave function, that is, the Slepian taper fvð0Þt gN

t¼1. This window
is based on an analytic approximation due to Rice [67] and, unlike fixed-
parameter windows such as the Hamming and Parzen windows (that
correspond roughly to time–bandwidth products of NW ¼ 2 and NW ¼ 4,
respectively), has an adjustable parameter 
, which maps to the time-
bandwidth product Co ¼ NW defined in Section III. However, there does
not appear to be a simple equivalent of the Slepian sequence with k � 1.
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Loève transform that accounts for nonstationarity
of incoming RF stimuli in a mathematically

rigorous manner; the property of cyclostationarity

provides an effective approach for the reinforced

detection of spectrum holes and the classification

of communication signals.

The message to take from the combination of these four

attributes is summed up as follows. The multitaper method

is a method of choice for nonparametric spectrum-sensor
that is capable of detecting spectrum holes in the radio

band, estimating the average power in each subband of the

spectrum, providing a sense of direction for estimating the

wavenumber spectrum of interferers, and outputting

cyclostationarity characterization of the receiver input

for signal detection and classification; just as importantly,

computation of this overall spectrum-sensing capability is

feasible in real time.

B. Loève and Fourier Theories of Cyclostationarity
Cyclostationarity is an inherent property of digital

modulated signals that exhibit periodicity. It manifests

itself in time–frequency analysis of such signals.

The Loève theory of TFA paves the way for finding

cyclostationarity in a signal through the combined use of

two complementary spectral parameters, namely, the
inner and outer spectral coherences. The spectral coher-

ence is said to be of the inner kind when the spectral

correlation in its numerator is defined as the expectation

E½Xkðf1ÞX	k ðf2Þ�, in which the XkðfÞ is the multitaper

Fourier transform of the input signal xðtÞ at frequency f . It

is said to be of the outer kind when its numerator is

defined as the expectation E½Xkðf1ÞXkðf2Þ�, which does not

involve complex conjugation.
The Fourier theory of cyclostationarity exploits the

periodic property of the autocorrelation function of a

cyclostationary process, or its power spectrum. In its own

way, the Fourier theory also leads to the formulation of

spectral coherences of the inner and outer kinds, which are

defined in a manner similar to their Loève counterparts.

The Loève and Fourier theories of cyclostationarity are

indeed related in signal-processing terms, as discussed in
Section VI. Perhaps the way to distinguish between them is

to say that when a nonstationary processes is considered,

the Loève theory applies to any such process, whereas the
Fourier theory is restricted to a cyclostationary process.

C. The Fading Phenomenon
The notoriously unreliable nature of wireless channels

is attributed to the fading phenomenon in electromagnetic

radio propagation. This important issue was addressed in

Section IX by focusing on Rayleigh fading channels, based

on Jake’s model. Although this model is incomplete in
theoretical terms, it is adequate to explain many of the

fading problems commonly encountered in practice. An

important point to take from the discussion presented in

Section IX is that in a fading environment, the use of

excessively long data blocks should be avoided.

D. Filter-Bank Implementation of the MTM
Last, but by no means least, Farhang-Boroujeny [68]

has shown that the underlying analytic theory of the MTM,

leading to the derivation of the multitaper spectral esti-

mator, can indeed be reformulated in the framework of

filter banks. In effect, the orthogonal sequence of Slepian

sequences (windows) is viewed as an orthogonal bank of
eigenfilters; hence the new terminology Bfilter-bank spec-

tral estimator.[ Implementation of the filter bank involves

the use of a prototype low-pass filter that realizes the zeroth
band of the filter bank. The remaining bands in the filter

bank are realized through the use of polyphase modulation.

What is pleasing about the filter-bank approach of

deriving the multitaper spectral estimator is not only its

novelty but also the fact that the theory of filter banks is

well known in signal-processing literature [69]. h

Acknowledgment

The authors thank Dr. C. Spooner for his careful review

of an earlier version of this paper, as well as the many

useful suggestions that were made in the review; they also

thank him for the permission to use Fig. 9. The comments

made by Dr. L. Marple and three other reviewers are also

much appreciated. The authors wish to thank L. Brooks

(McMaster University) for many revisions of this paper
and N. Goad (Virginia Tech) for her work on many other

production aspects of this paper.

RE FERENCES

[1] FCC, BSpectrum policy task force,[ Tech. Rep.,
Nov. 2002.

[2] S. Haykin, BCognitive radio:
Brain-empowered wireless
communications,[ IEEE J. Sel. Areas
Commun., vol. 23, pp. 201–220, Feb. 2005.

[3] S. Haykin, BFundamental issues in
cognitive radio,[ in Cognitive Wireless
Communication Networks, E. Hossain and
V. K. Bhargava, Eds. New York: Springer,
2007, pp. 1–43.

[4] R. Tandra, S. M. Mishra, and A. Sahai,
BWhat is a spectrum hole and what does it
take to recognize one?[ Proc. IEEE, vol. 97,
Mar. 2009.

[5] S. Shellhammer, S. Shankar, R. Tandra, and
J. Tomcik, BPerformance of power detector
sensors of dtv signals in ieee 802.22 WRANs,[
in Proc. 1st ACM Int. Workshop Technol.
Policy Access. Spectrum (TAPAS), Aug. 2006.
[Online]. Available: http://doi.acm.org/
10.1145/123488.1234392

[6] H. Chen and W. Gao, BText on cyclostationary
feature detectorVInformation annex
on sensing techniques,[ in IEEE 802.22
Meeting Doc., Jul. 2007. [Online]. Available:
https://mentor.ieee.org/802.22/file/07/
22-07-0283-00-000-text-on-cyclostationary-
feature-detector-thomson.doc

[7] R. Tandra and A. Sahai, BSNR walls for
signal detection,[ IEEE J. Sel. Topics Signal
Process., vol. 2, pp. 4–17, Feb. 2008.

[8] D. J. Thomson, BSpectrum estimation
and harmonic analysis,[ Proc. IEEE, vol. 70,
pp. 1055–1096, Sep. 1982.

[9] E. Serpedin, F. Panduru, I. Sari, and
G. B. Giannakis, BBibliography on
cyclostationarity,[ Signal Process.,
vol. 85, no. 12, pp. 2233–2303, 2005.

[10] J. Parsons, The Mobile Radio Propagation
Channel. New York: Wiley, 2000.

[11] FCC, BReport and order on TV white space,[
Nov. 2008. [Online]. Available: http://
hraunfoss.fcc.gov/edocs_public/attachmatch/
FCC-08-260A1.pdf

[12] M. M. Buddhiko, BUnderstanding dynamic
spectrum access: Models, taxonomy and
challenges,[ in Proc. IEEE DySPAN 2007,
Apr. 2007.

Haykin et al. : Spectrum Sensing for Cognitive Radio

Vol. 97, No. 5, May 2009 | Proceedings of the IEEE 875

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on May 28,2010 at 21:26:27 UTC from IEEE Xplore.  Restrictions apply. 



[13] A. P. Subramanian, H. Gupta, S. R. Das, and
M. M. Buddhiko, BFast spectrum allocation
in coordinated dynamic spectrum access
based cellular networks,[ in Proc.IEEE
DySPAN 2007, Apr. 2007.

[14] J. P. Burg, BMaximum entropy spectral
analysis,[ Ph.D. dissertation, Stanford Univ.,
1975.

[15] D. Slepian, BProlate spheroidal wave
functions, fourier analysis, and uncertainty v:
The discrete case,[ Bell Syst. Tech. J., vol. 57,
pp. 1371–1429, Apr. 1989.

[16] D. Percival and A. Walden, Spectral Analysis
for Physical Applications. Cambridge, U.K.:
Cambridge Univ. Press, 1993.

[17] P. Welch, BThe use of fast fourier transform
for estimation of power spectra: A method
based on time averaging over short,
modified periodograms,[ IEEE Trans.
Audio Electroacoust., vol. AE-15, pp. 70–73,
Jun. 1967.

[18] D. J. Thomson and A. D. Chave, BJackknifed
error estimates for spectra, coherences, and
transfer functions,[ in Advances in Spectrum
Analysis and Array Processing, vol. 1,
S. Haykin, Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1991, pp. 58–113.

[19] A. Drosopoulos and S. Haykin,
BAngle-of-arrival estimation in the presence
of multipath,[ in Adaptive Radar Signal
Processing, S. Haykin, Ed. New York: Wiley,
2007.

[20] A. Drosopoulos and S. Haykin, BAdaptive
radar parameter estimation with Thomson
multiple-window method,[ in Adaptive
Radar Detection and Estimation, S. Haykin and
A. Steinhardt, Eds. New York: Wiley, 1992,
pp. 381–461.

[21] J. S. L. Marple, Digital Specral Analysis
With Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[22] R. Schmidt, BA signal subspace approach
to multiple emitter of location and
spectral estimation,[ Ph.D. dissertation,
Stanford Univ., Stanford, CA, 1981.

[23] R. Kumaresan and D. W. Tufts, BEstimating
the angles of arrival of multiple plane waves,[
IEEE Trans. Aerosp. Electron. Syst., vol. AES-19,
pp. 134–139, Jan. 1983.

[24] T. P. Bronez, BOn the performance advantage
of multitaper spectral analysis,[ IEEE Trans.
Signal Process., vol. 40, pp. 2941–2946, 1992.

[25] S. Haykin, Adaptive Filter Theory, 4th ed.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

[26] D. J. Thomson, L. J. Lanzerotti,
F. L. Vernon, III, M. R. Lessard, and
L. T. P. Smith, BSolar modal structure of
the engineering environment,[ Proc. IEEE,
vol. 95, pp. 1085–1132, 2007.
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