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This paper investigates linear soft combination schemes 
for cooperative spectrum sensing in cognitive radio 
networks. We propose two weight-setting strategies under 
different basic optimality criteria to improve the overall 
sensing performance in the network. The corresponding 
optimal weights are derived, which are determined by the 
noise power levels and the received primary user signal 
energies of multiple cooperative secondary users in the 
network. However, to obtain the instantaneous 
measurement of these noise power levels and primary user 
signal energies with high accuracy is extremely 
challenging. It can even be infeasible in practical 
implementations under a low signal-to-noise ratio regime. 
We therefore propose reference data matrices to scavenge 
the indispensable information of primary user signal 
energies and noise power levels for setting the proposed 
combining weights adaptively by keeping records of the 
most recent spectrum observations. Analyses and 
simulation results demonstrate that the proposed linear 
soft combination schemes outperform the conventional 
maximal ratio combination and equal gain combination 
schemes and yield significant performance improvements 
in spectrum sensing. 
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I. Introduction 

In recent years, cognitive radio (CR) has emerged as a 
promising paradigm for exploiting the spectrum opportunity, 
which is restricted by the current rigid spectrum allocation 
scheme, to solve the spectrum scarcity problem [1], [2]. Since 
CRs are inherently lower priority or secondary users (SU) who 
opportunistically access the temporarily unused licensed 
spectrum exclusively allocated to primary users (PU), the 
fundamental requirement for them is to avoid interference to 
the potential PUs in the vicinity. 

Among different spectrum sensing schemes [3] for reliably 
identifying the licensed spectrum status, the energy detector 
(ED) scheme incurs a very low implementation cost and 
therefore is widely used. It serves as the optimal method to 
detect a PU signal with unknown location, structure, and 
strength, when the detector only knows the power of the 
received signal. However, the ED scheme is vulnerable to 
destructive channel effects, such as multipath 
fading/shadowing [4] and noise-power fluctuation [5], [6], 
which result in the hidden terminal problem and ambiguity in 
threshold setting, respectively. These effects may deteriorate 
the performance of ED and hamper it from operating in a 
reliable manner. 

These drawbacks imply the need for user cooperation in CR 
networks, where SUs collaborate to perform spectrum sensing 
to compensate for the degraded sensing performance of a 
single SU [7]-[10]. Cooperation among SUs is usually 
coordinated by a fusion center through either hard decision or 
soft data fusion strategies. Apparently, soft fusion is superior to 
hard fusion since it imposes a different communication 
bandwidth requirement on the control channel for conveying 
the sensing information between the cooperative SUs and the 
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fusion center. In the soft data combination scheme, if each SU 
transmits the real value of its sensing data to the fusion center, 
theoretically infinite bits are required, and this will result in a 
wide communication bandwidth. However, this problem can 
be solved by quantization of local observations at the expense 
of additional noise and a signal-to-noise ratio (SNR) loss at the 
receiver [11], but it is beyond the scope of this paper. In [9], a 
non-linear optimization enigma is used to formulate the 
cooperative spectrum sensing problem which might be difficult 
to implement. In [10], an optimal soft combination scheme is 
proposed, based on some approximation in the target 
optimality function and the assumption that cooperative SUs in 
the network experience independently and identically 
distributed (i.i.d.) fading effects. It is thereby proved to be 
identical to a maximal ratio combination (MRC) strategy.  

In this paper, we concentrate on a cooperative spectrum 
sensing scenario, in which a linear soft combination of raw 
measurements from individual cooperative SUs is performed 
at the fusion center. We develop two easy-to-implement soft 
combination schemes. Optimal weights for fusing the collected 
observations at the fusion center are derived under two 
different criteria, namely, the Neyman-Pearson criterion and 
the Minimax criterion. These two criteria yield different 
philosophies in exploitation of the unused licensed spectrum. 
The former scheme guarantees minimal interference to the 
active PU on the basis of desired constant spectrum 
opportunities for the SUs, while the latter one emphasizes a 
more aggressive way to harness the unused licensed spectrum 
by making the probabilities of interfering PU and missing the 
spectrum opportunity equal. An additional benefit of the 
proposed soft combination schemes is that it is not necessary to 
assume the independence condition between the cooperative 
SUs. However, the derived soft combination weights require 
highly accurate information of noise power levels and PU 
signal energies, which is extremely challenging in low SNR 
regimes. To enable the fusion center to acquire the SNR 
information about cooperative users, reference matrices are 
introduced in the weighting procedure which stores the most 
recent sensing data in either a noise matrix or signal energy 
matrix according to their corresponding global decisions. This 
easily implemented strategy greatly reduces the system 
complexity in practice, and the tradeoff is trivial performance 
degradation. 

The rest of this paper is organized as follows. We begin in 
section II with the system model and describe the local and 
cooperative spectrum sensing scenarios in detail. Optimal 
weight setting strategies are then presented in section III. We 
propose an implementation algorithm for weight setting in 
section IV. Simulations are carried out and analyzed in section 
V, and conclusions are drawn in section VI. 

 

Fig. 1. Block diagram of i-th energy detector. 
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We use the following key notations: superscript (·)T and  
E[·] stand for transpose and expectation operation, respectively; 
diag(·) represents the diagonal process; and∥·∥2 denotes the 
Euclidean norm. 

II. System Model 

1. Energy Detection-Based Local Spectrum Sensing 

We consider M SUs are dispersed over a certain 
geographical area by some upper-layer distributing algorithms. 
For any arbitrary i-th SU, the sensing task is usually expressed 
as a binary hypothesis test (H0, H1): 
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where s(t) is the transmitted complex PU signal, xi(t) is the 
received signal at the i-th SU, ni(t) is the complex additive 
white Gaussian noise (AWGN) with zero mean and one-sided 
noise power spectral density N0, i, and T is the sensing interval. 
Here, hi is the channel gain between PU and the i-th SU, which 
accommodates any channel effects, such as multipath fading, 
shadowing, and propagation path loss. In this paper, we 
consider quasi-static flat fading channels between PU and the 
cooperative SUs, in which the fading coefficients hi vary from 
(observation) period to period, while their probability 
distribution functions (PDFs) are determined by the fading 
characteristic of the channels. 

As shown in Fig. 1, the local test statistic Yi of the i-th SU is 
obtained as the output of the energy integrator:  
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The conditional PDFs of test statistic Yi are given as in [12] 
as  
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where m is the time-bandwidth product TW, W is the spectrum 
sensing bandwidth, Γ(·) is the Gamma function, Im-1(·) is the   
(m–1)th-order modified Bessel function of the first kind, and 
u(·) is the unit step function. Here, Ei is the captured PU signal 
energy at the i-th SU, which can be represented by the sum of 
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the squares of 2m virtual samples [13]: 
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where si,k is the sample of the PU signal at instant k, 
2

0,/( )i s i iP h N Wγ =  is the PU signal-to-noise ratio (SNR) of 
the i-th SU, and Es=PsT is the PU signal energy transmitted 
during the sensing interval T. The channel gain vector h=[h1, 
h2,···,hM]T is assumed to be constant in each sensing interval T, 
but it may still vary from burst to burst. 

The corresponding probabilities of false alarm and miss 
detection in the threshold test are given as  
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where Ki is the threshold of the i-th ED, and PD,i=(1–PMISS,i) is 
the probability of detection. For analytical tractability, we 
utilize a Gaussian approximated model when the time-
bandwidth product m is asymptotically large (>100). Based on 
the central limit theorem (CLT), the statistic Yi follows normal 
distributions with mean ,j iμ and variance 2

,j iσ under 
hypothesis ( {0,1})jH j ∈  as in [13]: 
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From (5) and (6), PFA,i and PMISS,i are again given by 
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2. Soft Combination-Based Cooperative Spectrum Sensing 

In this subsection, we describe the cooperative spectrum 
sensing scenario, where M SUs cooperate with a fusion center 
to enhance the overall spectrum sensing performance in the 
network as shown in Fig. 2.  

To enable collaboration, M SUs first sense the licensed 
spectrum independently, and then transmit the test statistics 

1 2[ , ]T
MY Y Y=Y  directly to the fusion center:  

Z=Y+V,                     (8) 

where the control channel noise V=[V1, V2, ···, VM]T consists 
of zero-mean, spatially uncorrelated Gaussian variables   
with variances 2 2 2

1 2[ , , ] .T
Mδ δ δ=δ The use of the AWGN  

 

Fig. 2. Block diagram of soft-combination-based cooperative 
spectrum sensing. 
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channel model in (8) is justified by assumptions regarding 
analog-forwarding schemes and the slow-changing nature of 
the channels between the M SUs and the fusion center. We 
assume that the channel coherence time is much longer than 
the channel estimation period, such that once the fusion center 
has estimated the channel gains from the SUs, these channels 
can be treated as constant AWGN channels [9]. 

Accordingly, the received statistics Z at the fusion center are 
normally distributed variables with means and variances given 
by 
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After collecting the sensing data Z from the M SUs, the 
fusion center linearly combines them into a global detection 
statistics Zc:  
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where 1 2[ , , , ]T
Mω ω ωω is the weighting vector 

satisfying 2
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1, 0.iω= ≥ω  The combining weight for the 

signal from a particular SU represents its contribution to the 
global decision. Since 1{ }M

i iZ =  are normal random variables, 
their linear combination is also normal. Consequently, the 
global decision statistic Zc has means given by 
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Mμ μ μ=μ and 

1 1,1 1,2 1,[ , , , ] .T
Mμ μ μ=μ It should be noted that 

1 0 sE= + H,μ μ where the vector of channel gain squares  
2 2 2

1 2=[ , , , ] .T
Mh h hH  

Regarding the variance of Zc, it is true that  

2 2 2
0, 0 0

1

2 2 2
1, 1 1

1

( ) , ,
Var[ ]

( ) , ,

M
T

i i j
j

c M
T

i i j
j

H
Z

H

σ δ ω

σ δ ω

=

=

⎧
+ =⎪

⎪= ⎨
⎪ + =
⎪⎩

∑ ∑

∑ ∑

ω ω

ω ω
 (12) 



266   Bin Shen et al. ETRI Journal, Volume 31, Number 3, June 2009 

where 00
=diag( )+∑ σ δ and 11

=diag( )+∑ σ δ  are diagonal  

matrices with 2 2 2
0 0,1 0,2 0,[ , , , ]T

Mσ σ σ=σ and  
2 2 2

1 1,1 1,2 1,[ , , , ] .T
Mσ σ σ=σ  It is worth noting that the statistics 

Z do not have to be conditionally independent, though we 
utilize the independent case for illustrative purposes, that is, 
with 0∑  and 1∑  diagonal. If the elements of Z are 
correlated with each other, then the covariance matrices 0∑  
and 1∑  are generally non-diagonal, and the subsequent 
analysis will continue to hold. 

Based on the statistical properties given in (11) and (12), the 
performance of the proposed cooperative spectrum sensing 
scheme can be evaluated as 
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where λ is the threshold of the fusion center. 

III. Optimal Soft Combination Schemes  

1. Weight Optimization via Neyman-Pearson Criterion 

For a cooperative spectrum sensing algorithm, the main 
metric of sensing performance is either the maximization of the 
detection probability for a target false alarm probability or 
minimization of the false alarm probability for a target 
detection probability. Setting the threshold λ at the fusion center 
for a desired probability of false alarm PFA_DES,C, we obtain the 
probability of detection within the Neyman-Pearson 
framework: 
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where Q-1(·) is the inverse function of Q(·). 
From (11) and (12), it is clear that the weight vector ω plays 

an important role in determining the PDF of the global test 
statistic ZC. To measure the effect of the PDF on the detection 
performance, we introduce a deflection coefficient (DC) [14]: 
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The deflection coefficient 2
DC ( )d ω  provides a good 

measure of the detection performance because it characterizes 
the variance-normalized distance between the centers of two 
conditional PDFs of ZC. When we regard 2

DC ( )d ω  as the 

optimization target, the optimal weight vector is the one that 
maximizes it:  

2
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By solving the equation 2
DC ( ) / 0,d∂ ∂ =ω ω we obtain 
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where βDC is a scaling factor determined by ω, but it does not 
affect either the DC in (15) or the sensing performance in (13). 
Therefore, by setting βDC to 1 and normalizing each weighting 
coefficient, we obtain the optimal weighting vector: 
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The detection performance is thus given by  
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where η is the constant Q-1(PFA_DES,C).  
For a given PFA_DES,C, PD,C is maximized in the sense that the 

distance between the two PDFs of Zc under hypotheses H0 and 
H1 is enlarged to the maximum by ωopt,DC. This optimality is 
achieved in the Neyman-Pearson framework, which maintains 
a constant false alarm rate (CFAR) in spectrum sensing. As for 
the constant detection rate (CDR), the obtained optimal 
weights are still valid, except the fusion center threshold λ is 
determined by the desired detection probability and the PU 
signal properties. 

Note that PD,C in (19) is actually a probability conditioned on 
the channel gains’ square vector H. Statistically, the average 
PD,C is  
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where pH(X) is the PDF of the multi-variable H, G1 is the 
subset of +

MR  that contains all H vectors leading to the H1 
decision, and +

MR  is the positive M-dimensional vector space. 
The proposed optimal weighting vector ωopt,DC is similar to 

an MRC weighting scheme: 

0

1
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Hω           (21) 

where 
0μ∑  and δ∑  are diagonal matrices with entries of µ0  

and δ on the diagonal, respectively. SUs with larger SNRs are 
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allocated greater weights; thus, they make greater contributions 
to the global statistic Zc. Also, ωMRC differs from ωopt,DC  
mainly in the denominators of each combining branch. In other 
words, the dimensions of these two weighting coefficient 
denominators in (17) and (21) are respectively squares and 
amplitudes of {N0,i}. In section IV, we will demonstrate that  

ωopt,DC is superior to the MRC weights ωMRC when the noise 
power levels are not identical at different SUs. Furthermore, we 
notice that if the noise power levels are all the same among the 
cooperative SUs, the proposed scheme reduces to the MRC 
scheme because the identical noise factor changes the co-
variance matrix 0∑  into an identity matrix multiplied by a 
scalar 2

0 ,mN  and H is the merely effective parameter in the 
data combination. 

2. Weight Optimization via Minimax Criterion 

In this subsection, we consider the problem of minimizing 
the Bayesian risk R in detecting the PU signal: 

1 1

,
0 0

[ ] ( ) ( ),i j i j j
i j

R E C C P H H P H
= =

= = ∑∑       (22) 

where C0,1, C1,0, and C1,1 correspond to the cost of miss 
detection, false alarm, and detection, respectively; while C0,0 is 
the cost of correctly identifying the spectrum hole; P(Hj) 
denotes the probability of PU status indicated by hypothesis Hj; 

( )i jP H H represents the probability that the fusion center 
makes a decision of Hi, when hypothesis Hj is true. Without 
loss of generality, we assume that C0,0=C1,1=0, and then, R is 
simplified as 

R=E[C]=CFAP(H0)PFA,C+CMISSP(H1)PMISS,C.      (23) 

Without any a priori knowledge of P(H0) and P(H1), the 
optimal solution for minimizing R in (23) can be obtained 
according to the minimax criterion:   
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where the optimization problem is set by the equation  
CFAPFA,C=CMISSPMISS,C. 

Due to the intractability of threshold λ in a closed-form 
according to (24), we assume PFA,C=PMISS,C for simplicity, and 
obtain the threshold λ as 
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The Bayesian risk R is thus  
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Since Q(·) is a monotonically decreasing function, the 
Bayesian risk in (26) is minimized if the metric function J(ω) is 
maximized, where 
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Consequently, the optimal weighting vector ωopt,Risk is 
expressed as 

opt,Risk arg max ( ).J=
ω

ω ω           (28) 

Setting ( ) / 0,J∂ ∂ =ω ω  we obtain the following result 
after some algebraic manipulations: 
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The scaling factor βRisk in (30) is a constant determined by ω, 
yet it does not affect the risk function R in (26). Thus, we can 
effectively set βRisk=1, which simplifies the optimal weighting 
vector. Furthermore, because coefficient αRisk depends on the 
weighting vector ω, it is actually impossible to derive the 
optimal coefficients in a closed-form. However, considering 
that the SUs are subject to low SNRs, we obtain the 
approximation in (30) as 
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where diag( )=∑δ
δ and diag( ).=∑H

H The approximation 
in (31) leads to Risk 1α ≈  in (30). Accordingly, we obtain the 
approximate optimal weighting coefficients under a low SNR 
as 
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To avoid confusion, we may call these coefficients near-
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optimal weights, yet still denote them as opt,Risk :ω  
* *

opt,Risk opt,Risk opt,Risk 2
/ .=ω ω ω           (33) 

Finally, the risk function in (26) is evaluated by 
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If CFA and CMISS are both equal to a constant error detection 
cost CERR, we obtain the error detection probability PERR,C 
according to (26) as follows: 
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where PERR,C corresponds to the error probability in a minimal 
error detection probability criterion.  

Similarly, we can obtain the averaged PERR,C as 
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where G2 is the subset of ,M
+R  which contains all H vectors 

leading to the H1 decision. 

IV. Implementation of Weighting Schemes 

1. Implementation of Weight Vectors 

The optimal and near-optimal weighting vectors in (18) and 
(33) are actually determined by PU signal energy quantities 

2
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s i i s i iE H E h= ==  and the squares of noise power levels 
0, 1{ } ,M

i imN =  both of which need to be measured or estimated. 
For each SU, the PU signal energy component EsHi in the 
sensing observation can be estimated by the fusion center from 
the corresponding integrator output. Hereafter, we suppose that 
the noise variance variables 2

0, 1{ }M
i iσ =  in (6) are distributed 

around an average network noise power level 2
0 ,σ  with a 

deviation d, which is normally distributed as 2
0(0, ),N Dσ  

where D indicates the location difference factor in the network 
area. In other words, the noise variances at different SUs are 
usually not identical because SUs dispersed over the network 
may experience different thermal noises and interferences. The 
actual noise variance at the i-th SU is 2 2

0, 0 ,i dσ σ= + where 

2
0σ  is the average noise variance in the network.  
Similarly, we assume 2

0δ  is the average noise variance on 
the control channels. Consequently, the average received SNR 
of the M cooperative SUs at the fusion center is 

0

1

avg 2 2
0 0

( )
,

T
s s

E E
E

M
γ

σ δ

−⎡ ⎤+
⎢ ⎥= =
⎢ ⎥ +
⎣ ⎦

∑ ∑1 H
μ δ      (37) 

where 1 is a column vector of all ones.   
To obtain the derived optimal weight vector, that is, ωopt,DC in 

(17), we can implement it by using 

1
est est

,−
= ∑ Eω                 (38) 

where 0 0est
diag( )= +∑ σ δ is a diagonal matrix with  

0 0+σ δ on the diagonal, and 2
0 0δ= 1δ  is assumed to be a 

known constant vector indicating the control channels’ noise 
variance. The elements of vectors E  and 0σ  are estimates 
of vectors E and 0σ , respectively: 

1 2

2 2 2 2
0 0,1 0,2 0, 0

[ , , , ] ,

[ , , , ] .

T
M s

T
M

E E E E

mσ σ σ

⎧ =⎪
⎨

=⎪⎩

E H

Nσ
      (39) 

The weights in (38) are actually the estimated ωopt,DC. It is 
worth noting that in (39) we can ignore the PU signal energy Es 
contained in , ,i kH  since they are rendered ineffective in (19) 
after the normalization operation.  

The ωopt,Risk in (33) and ωMRC in (21) can also be 
implemented in a similar way by estimating the parameters 
needed for weight setting. 

2. Recursive Estimation Algorithm for Weight Setting 

The method of setting the weights in (38) provides an 
efficient and easily implemented strategy, in terms of simple 
implementation complexity. To obtain PU signal energies 
hidden in the raw sensing data of the cooperative SUs, an 
efficient and effective method is employed.  

We utilize two sensing data matrices to keep records of PU’s 
behavior, in which the current sensing data Z is categorized 
and stored in either a Presence or Absence matrix for future 
reference according to the current global decision based on it. 
In other words, if it is decided that the current data Z contains 
the PU signal energy, it is stored in an M-by-L presence matrix 
Z(P) in a first-in-first-out manner. Otherwise, it is stored in an 
M-by-L absence matrix Z(A), and at the same time, a zero 
column vector is stacked into Z(P) because the fusion center has 
decided that no PU signal energy is contained in Z. The 
estimates of {EsHi,k} and {mN0,i,k} for the current statistic Zc,k 
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are calculated by simple arithmetic operations:  
1

( ) ( )
, , ,

1
( )

0, , ,

,

, 1, , ,

k
P A

s i k l i l i l
l k L

k
A

i k l i l
l k L

E H Z Z

mN Z i M

ξ

ξ

−

= −

−

= −

⎧
= −⎪⎪

⎨
⎪ = =
⎪⎩

∑

∑
    (40) 

where k is the time index of the current sensing data; lξ  is the 
forgetting factor, which is usually a scalar between 0.1 and 0.9 

1( 1);k
ll k L

ξ−

= −
=∑  and L is the reference matrix depth, which 

should be carefully tuned on the basis of estimation or 
prediction of the channel gain varying velocity. We conclude 
that this depth should not exceed half of the quasi-static 
duration of a channel, which implies that the reference 
truncation window is sufficiently short within the empirical 
duration of the near-static channels.  

Additionally, to be more compact for implementation, the 
proposed data matrices in (40) can be implemented as 

( ) ( )
, , 2 , 1 , 1

( )
0, , 0, , 2 , 1

1 1 ,

1 1 , 1, , ,

P A
s i k s i k i k i k

A
i k i k i k

LE H E H Z Z
L L

LmN mN Z i M
L L

− − −

− −

−⎧ = + −⎪⎪
⎨ −⎪ = + =
⎪⎩

 (41) 

where only two forgetting factors, 2kξ −  and 1,kξ −  are used 
and set as constants (L–1)/L and 1/L, respectively.  

In summary, the implementation complexity of the proposed 
recursive estimate algorithm is mainly determined by the 
number of memory units (2ML) consumed in storing the 
sensing observations collected from the cooperative SUs. 
Because the estimate algorithm is a simple arithmetic 
averaging method, the time and power consumed in computing 
the time means of the sensing observations is quite trivial. 
Furthermore, because the weight vector ωopt,Risk needs an 
additional estimate of Σ1, which is also a simple function of the 
estimated parameters given in (40), the implementation 
complexities of setting ωopt,DC and ωopt,Risk are almost the same.  

V. Simulations and Analyses 

In this section, the proposed cooperative spectrum sensing 
schemes are evaluated by simulations. The basic parameters 
are fixed and set as T = 1 ms, W = 1 MHz, M = 10, D = 40%, 
and L = 16. Each simulation consisted of 105 iterations. 

The channel gains between each SU and the target PU are 
generated according to a complex normal distribution CN(0, 1), 
which suggests that the M SUs are experiencing i.i.d Rayleigh 
fading. For simplicity, we assume that the PU signal power and 
the channel gains h have constant values for each sensing 
interval T, considering that T is set sufficiently small. This 
assumption is reasonable. It is satisfied in a realistic scenario,  

 

Fig. 3. ROC of Neyman-Pearson-criterion-based weighting scheme.
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Fig. 4. Normalized error detection probability P′ERR vs. average 
SNR. 
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where the variation of the dynamic radio environment is 
reflected in the variations of the statistical properties of h over a 
relatively large time-scale. We also assume that δ in the 
simulation is a unit vector, because of the potentialities of the 
amplify-and-forward capabilities of the SUs.  

Figure 3 shows the receiver operating characteristics (ROC) 
of the proposed cooperative sensing schemes. As seen in the 
figure, ωopt,DC outperforms both ωMRC and ωEGC. With only 10 
cooperative SUs, the ROC performance is quite satisfactory in 
practice. The performance of the estimated ωopt,DC is very close 
to that of the theoretical ωMRC. Although the estimated ωopt,DC 
degrades the ROC performance compared to the theoretical 
ωopt,DC, it can be expected that a small increase in the number of 
cooperative SUs would compensate the performance 
deterioration sufficiently. 

Figure 4 depicts the normalized error detection probability  
ERR,C ERR,C ERR/P P C′ = in the CR network when CFA and CMISS  

are equally set to CERR . We can easily observe that ωopt,Risk 
outperforms both ωMRC and ωEGC. When the average SNR 
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increases, the estimated weights all approach the corresponding 
theoretical weights.  

VI. Conclusion  

In this paper, we investigated and analyzed linear soft-
combination-based cooperative spectrum sensing schemes in 
CR networks, consisting of allocation of optimal weights to 
individual cooperative SUs. An efficient and effective method 
of practically estimating PU signal energies and noise power 
levels to implement the proposed optimal weights was also 
presented. As demonstrated by our analyses and simulations, 
the proposed soft combination schemes outperform the 
conventional MRC and equal gain combination schemes and 
yield significant improvements in spectrum sensing. 
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