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Abstract— Spectrum sensing is one of the most challenging
problems in cognitive radio systems. The spectrum of interest
needs to be characterized and unused frequencies should be
identified for possible exploitation. This process, however, should
be computationally simple and fast in order to catch up with the
changing transmission parameters. This paper proposes a sensing
method for identifying the unused spectrum for opportunistic
transmission by estimating the RF transmission parametersof
primary users. The primary users are identified by matching the
a priory information about their transmission characteristics to
the features extracted from the received signal. The application
of the proposed sensing method to WiMAX mobile stations for
finding the active channels during initial network entry is also
discussed as a case study.

Index Terms— Cognitive radio, spectrum sensing, partial
match filtering, bandwidth detection, WiMAX.

I. I NTRODUCTION

Cognitive radio is a new concept in wireless communication
which aims to have more adaptive and aware communication
devices which can make better use of available natural re-
sources,i.e. the spectrum [1]. The two challenging tasks in
cognitive radio are sensing the environment, and processing
and making decisions based on the spectrum knowledge.
Cognitive radios can be used as a secondary system on top
of current allocation of users which are called primary (or
licensed) users. In this case secondary (cognitive) users need
to detect the unused spectrum in order to be able to exploit it.

One method proposed in the literature for exploiting the
unused spectrum is spectrum pooling [2]. In this method, the
frequency band is measured and unused part of the spectrum
is utilized by transmitting OFDM signals whose subcarriers
are nulled at the used subcarrier positions. The subcarriers
where primary users transmit are set to zero in order to
prevent interference. For reducing the leakage (so-calledmu-
tual interference), time domain windowing and nulling the
neighboring subcarriers can be used [2], [3]. Another system
similar to the spectrum pooling method is given in [4]. After
the measurements, the empty frequencies in the spectrum
are determined. The OFDM(A) sub-carriers are grouped into
sub-bands and only the sub-bands that fall into the unused
spectrum are employed.

One important task for realizing cognitive devices is charac-
terization of the spectrum, or spectrum sensing. The cognitive
radio devices should be able to identify the unused spectrum
in a fast and efficient way. Conventional algorithms sense the

spectrum without knowing the properties of the primary users.
In this paper, thea priory information about the transmission
properties of possible primary users, such as transmission
bandwidths and center frequencies, are used to develop a
partial match-filteringmethod. In this method, the parameters
estimated from the received signal are matched to the possible
transmission parameters for achieving a more robust and
reliable sensing. This paper consists of two parts. In the first
part, we present the proposed spectrum sensing algorithm
for identifying the transmission opportunities by detecting the
presence of primary users in a given frequency band. In the
second part, we apply the algorithm developed in the first part
to downlink channel detection problem for WiMAX mobile
stations (MSs) performing initial network entry. It is shown
that the two problems are identical and the same method can
be used for solving these problems.

This paper is organized as following. The spectrum sensing
problem is discussed in Section II, and proposed sensing
algorithm is presented in Section III. We discuss the appli-
cation to WiMAX in Section IV and present numerical results
in Section V. Finally, the concluding remarks are given in
Section VI.

II. SPECTRUM SENSING FORCOGNITIVE RADIOS

Although spectrum sensing is usually understood as measur-
ing the spectral content of the environment, it is a more general
term. In order to be able to realize a fully cognitive radio, the
cognitive devices should be aware of not only spectral content
but also temporal and spatial contents of the environment that
they are operating in.

Matched filtering is the optimum method for detection
of primary users. However, matched filtering requires the
cognitive user/radio to demodulate the received signal hence it
requires perfect knowledge of the primary users signaling fea-
tures. Moreover, since the cognitive radio will need receivers
for all signal types, it is practically difficult to implement
[5]. The sensing might also be performed by correlating the
received signal with a known copy of itself [6]. This method
is only applicable to systems with known signal patterns such
as wireless metropolitan area network (WMAN) signals [7],
and it is termed as waveform-based sensing. Another method
for detection of primary user transmission is cyclostationarity
feature detection. This algorithm is proposed in [5], [8] and it
exploits the cyclostationarity features of the received signal
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which is caused by the periodicity in the signal or in its
statistics (mean, autocorrelationetc). Instead of power spectral
density (PSD), cyclic correlation function is used for detecting
the signals present in the given spectrum. This method can
also differentiate the noise from the primary users which
is a result of the fact that noise is a wide-sense stationary
(WSS) signal with no correlation while modulated signals are
cyclostationary with spectral correlation due to the redundancy
of signal periodicities [8]. In [9], multitaper spectral estimation
is proposed. The proposed algorithm is shown to be an
approximation to maximum likelihood PSD estimator and for
wideband signals it is nearly optimal. Although the complexity
of this method is less then the maximum likelihood estimator,
it is still large.

Energy detector based approaches (also called radiometry or
periodogram) are the most common way of spectrum sensing
because of their low computational complexity. Moreover, they
are more generic as the receiver does not need any knowledge
on the primary users’ signal. The signal is detected by compar-
ing the output of the energy detector with a threshold which
depends on the noise floor. Some of the challenges include
the selection of a threshold for detecting primary users, the
inability for differentiating the interference from the primary
users and from the noise, and poor performance under low
SNR [6]. In this paper, energy detector based approach is
used as an intermediate step for obtaining features about the
transmissions in the frequencies of interest. These features,
then, will be used for determining the presence of primary
users.

A. Detection of Primary Users

One of the problems in spectrum sensing is the detection
of a primary user in the band (and time) considered. There
is a tradeoff between the false alarm rate and detection rate.
In [10], FFT is applied to the received signal and using the
output of FFT, the receiver tries to detect the existence of a
primary user in the band. More than one FFT output (averaging
in time) is used. However, averaging in time increases the
delay or temporal overhead. For detection a likelihood function
is used. In [11], the averaging size (number of FFTs) is adapted
in order to increase the efficiency in a cooperative sensing
environment.

The estimation of the traffic in a specific geographic area
can be done locally (by one cognitive radio only) or the infor-
mation from different cognitive radios can be combined [5],
[11], [12]. Cooperative sensing decreases the probabilityof
mis-detections and the probability of false alarms considerably.
Moreover, the detection time might be reduced compared to
local sensing. The signaling of detected information from
cognitive devices, however, is an issue for research [13]. In
this paper, we focus on local sensing. However, the developed
method can be combined with different cooperation schemes
among cognitive users for obtaining better results.

III. D ETAILS OF THE PROPOSEDALGORITHM

In this paper, we extend the algorithm proposed in [10] by
exploiting the correlation of the power at neighboring frequen-
cies in order to have a better detection. The proposed algorithm

is based on FFT operation which is used to transform the time-
domain signal into frequency domain. In [10], the FFT output
samples are used for deciding whether an FFT frequency
sample is occupied by a primary user or not. However, the
primary users signal is usually spread over a group of FFT
output samples as the bandwidth of primary user is expected
to be larger than the considered bandwidth divided by the
FFT size1. Using this fact, the FFT output is filtered for noise
averaging in order to obtain a better performance,

The proposed algorithm is especially suitable for cognitive
devices using OFDM as their transmission technique, such as
systems similar to [2], [4]. The availability of FFT circuitry
in these systems eases the requirements on the hardware.
Moreover, the computational requirements of the spectrum
sensing algorithm is reduced as the receiver already applies
FFT to the received signal in order to transform the received
signal into frequency domain for data detection.

The block diagram of the proposed algorithm is shown in
Fig. 1. The signal that arrives to cognitive usery(t) is first
filtered with a band pass filter (BPF) to extract the signal in
the frequencies of interest. This filter may be adjustable and
controlled by a control unit in order to scan a wider range.
The output of the filter is sampled at Nyquist rate andN -point
FFT is applied to obtain the frequency domain samples. Each
sample might be modeled as

Y (k) =

{

W (k) H0,

S(k) + W (k) H1,
k = 1, · · · , N (1)

where S(k) is the transmitted signal by primary users at
the output of FFT,W (k) is the white noise sample atkth
frequency sample, andN is the FFT size.H0 andH1 represent
the null hypothesis and alternate hypothesis respectively. The
white noise is modeled as a zero-mean Gaussian random
variable with varianceσ2

0 , i.e. W (k) = N (0, σ2
0). The signal

term is also modeled as a zero-mean Gaussian variable whose
variance is a function of frequency,i.e. S(k) = N (0, σ2

k),
whereσk is the local standard deviation. The variation ofσk

across frequency depends on the characteristics of primary
users signals. The signal-to-noise ratio (SNR) is defined as
the ratio of signal power to noise power during transmission,
i.e. SNR(k) = σ2

k/σ2
0 .

A. Frequency Domain Filtering

The magnitude square of FFT output|Y (k)|2 might be
compared with a threshold valueλ for detection of presence
of transmission at this frequency. In addition, the fact that
a signal transmission will affect more than one frequency
sample can be used to improve the detection performance.
We achieve this by filtering the FFT output before applying
the threshold detector. The optimum filter coefficients depend
on the statistics of primary user’s signal as well as the noise
power. In [14], minimum mean-square error (MMSE) filtering
is applied for estimating the noise plus interference ratiofor
orthogonal frequency division multiplexing (OFDM) systems.

1By using an analogy to OFDM systems, the primary users usually cover
more than just one subcarrier.
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Fig. 1. Block diagram of the proposed algorithm.

The MMSE filter coefficients are derived as a function of
the statistics of interference. As an approximation to MMSE
filtering, a sliding rectangular window can also be applied for
smoothing the spectrum estimatesY (k). In this paper, we use
rectangular filter for its simplicity and lower computational
complexity. In this case, the estimates at different frequencies
can be written as

Ỹ (k) =
1

D

k+D/2+1
∑

w=k−D/2

|Y (w)|2 (2)

whereD is the width of the filter in frequency direction.

B. Threshold Detector

The output of the rectangular filter̃Y (k) is fed to a
threshold device to identify the frequencies occupied by the
primary users. This is equivalent to distinguishing between the
following two hypotheses:

H0 : Y (k) = W (k), (3)

H1 : Y (k) = S(k) + W (k). (4)

The performance of the detection algorithm can be sum-
marized with two probabilities: probability of detectionPD

and probability of false alarmPF . PD is the probability of
detecting a signal on the considered frequency when it is
truly present, thus large detection probability is desired. PF

is the probability that the test incorrectly decides that the
considered frequency is occupied, when actually it is not, thus
PF should be kept as small as possible. In general, increasing
PD increasesPF and decreasing false alarms decreasesPD.
Hence the threshold should be selected carefully for finding
an optimum balance betweenPD andPF which depends on
the application. The threshold valueλ can be determined by
pre-specified probability of false alarmPF or probability of
detectionPD. Moreover, the value of the threshold depends
on the noise and received signal energies.

C. Feature Extraction

In this stage, features like bandwidth and center frequencies
of primary users are extracted by using the threshold detector
output. In order to achieve this, we define two parameters
Bmin andGmax. Bmin is the minimum assumed bandwidth
for the primary users andGmax is the maximum gap allowed
between two frequency samples. The feature extraction algo-
rithm searches for continuous frequencies which are marked
by threshold detector as having signal, notGmax samples

away and with more adjacent frequency samples thenBmin.
Hence, using these two parameters, the occupied frequency
band can be identified. It is then straightforward to estimate
the bandwidth and the center frequency of transmission. One
drawback of this method, however, is that the cognitive radio
may not differentiate between two (or more) superimposed
primary user transmissions and threat them as a single trans-
mission with a larger bandwidth. However, this might be
tolerated as our goal is to identify the unused bands.

D. Partial Match-filtering

In the final step, the primary users are further identified
by using thea priory information about their transmission
parameters. The set of possible systems and their transmission
parameters might be broadcasted by a central unit for cognitive
devices for assisted identification. These parameters include
the center frequencies, bandwidths, signal types, duplexing
and multiple accessing methods of the potential users. For
example, IEEE 802.11a signal has a bandwidth of 20MHz and
operates at ISM or U-NII bands in the US. The knowledge
about the center frequencies and bandwidth of this type of
a signal can be used in order to identify the presence of an
802.11a transmission and in order to improve the spectrum
sensing. We match the parameters estimated by the feature
detection block to thea priory sets of known parameters. By
finding the transmissions by primary users, possible estimation
errors due to the sensing algorithm and noise is removed.
We refer to this process aspartial match-filteringas we are
matching to the parameters of the primary user’s signal instead
of the signal itself. Once the primary users (or the occupied
frequencies) are detected, the unused portion of the spectrum
can be identified for opportunistic exploitation.

Two transmission parameters are used in [15] as features
for identification of among bluetooth and wireless local area
network (WLAN) signals: maximum duration of a signal
and instantaneous power of each frequency bin. Some other
parameters that can be used for partial matching include
the center frequencies, transmission bandwidths, signal types,
duplexing, multiple accessing methods and prior probabilities
of the potential users in the band considered. These parameters
can be collected by the cognitive device (blind) or they can
be provided by a central unit (assisted).

The partial match-filtering algorithm can be realized in three
main steps:

1) Extraction of a predefined set of parameters/features
from the received signal,
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2) Using the extracted features for making decisions on the
presence of an anticipated transmission,

3) Exploring the gained knowledge about the active pri-
mary users for multi-dimensional spectrum characteri-
zation.

In the following, we explain these steps in more detail.
1) Feature Extraction: Primary users can be identified

by using thea priori information about their transmission
parameters. These parameters need to be extracted from the
received data using signal processing techniques. The set of
possible primary user classes and their transmission param-
eters can be collected by cognitive devices using previous
decisions/measurements (blind) or they can be broadcastedby
a central unit (assisted). Alternatively, these parameters can be
preconfigured to the cognitive radio during hardware design2.
In this paper, we use energy detector based feature detection.
The features used are bandwidths and center frequencies of
the candidate transmissions.

Let us represent the feature set as a vectorX . Then this
vector can be used for classifying the detected transmission
into one ofK candidate transmissions using a classification
algorithm that will be discussed in the next section.

2) Decision Making (Classification):In this step, the mea-
sured signal is associated with a primary radio class. This
process can be regarded as a classification problem. For this
purpose, various classification methods can be used such as
pattern recognition, neural networks or statistical classifica-
tion [15]. Bayesian classifier is the optimum method from the
statistical viewpoint and it will be considered as an example
in this paper. By using the Bayesian decision rule, we classify
the feature set obtained using measurements in the previous
section (step 1) to the systems or devices that has the highest
a posteriori probability. The classifier can be represented in
terms of a set of discriminant functionsgi(X), i = 1, . . . , K
whereK is the total number of systems3. The classifier is said
to assign a feature vectorX to a systemwi if gi(X) > gj(X)
for all j 6= i.

The discriminant function can be defined as

gi(X) ≡ log P (X |wi) + log P (wi) . (5)

In this work, the distribution of the feature vectorX within the
ith class is assumed to be a multivariate normal distribution
with mean vectorµi and covariance matrixΣi. Under such an
assumption, the discriminant functions can be obtained as

gi(X) = −
1

2
(X−µi)

T Σ−1

i (X−µi)−
1

2
log |Σi|+log P (wi) .

(6)
The mean vectorµi can be obtained by using the expected
values of features. In practice, the covariance matrixΣi is
unknown and it needs to be estimated using some sort of
training data as

Σi =
1

N − 1

N
∑

j=1

(Xj − µi)(Xj − µi)
T . (7)

2Some example databases can be FCC Licensing and ITU frequency
allocation rules.

3Note that the systems operating at different bands are regarded as different
systems for the sake of classification. The transmission band of a system needs
to be known for identifying the frequencies occupied by primary users.

The covariance matrix can be assumed to be the same for all
classes using the same transmission technique. For example,
all the classes using WLAN are expected to have the same
covariance matrix as only center frequency is changed.

When the estimated features are not correlated to each other,
the correlation matrix becomes a diagonal matrix. Different
features will have different units and hence proper normaliza-
tion of this features needs to be established. Moreover, the
values of diagonal elements give the weights for each feature
and we can assign different weights on different features.

3) Multi-dimensional Spectrum Characterization:In this
step, the output of the partial matched-filtering method is
used for obtaining a complete multi-dimensional spectrum
awareness in cognitive radio. The knowledge of primary
users can help identify the transmission opportunities across
different dimensions. For example if the identified signal is
a cordless phone, the range is expected to be around 100
meters and for Bluetooth signals it is around 10 meters. This
type of knowledge can be used in a cooperative sensing
environment for gaining knowledge in the space direction.
The characterization in time, frequency, and code dimensions
is straightforward once primary users are associated with a
particular transmission technique/class.

In the next section, we investigate the application of pro-
posed partial match-filtering approach to automatic bandwidth
detection for mobile WiMAX systems.

IV. A PPLICATION TO MOBILE WIMAX

Cognitive radio based devices should support different trans-
mission bandwidths and center frequencies. Similar concept
is also true for the devices operating according to the recent
WMAN standard known as mobile WiMAX [7]. These devices
should support different profiles that the base station (BS)
might be using. Hence, they should be capable of operating
in more than one bandwidth or FFT size. The detection of
the downlink signal parameters (bandwidth, FFT size, CP
size, center frequency) is MS’s responsibility. In this section,
we apply the algorithm proposed in the previous section to
detect the downlink transmissions in WiMAX. The proposed
method identifies the center frequencies and bandwidths of
used channels. We specifically consider 802.16e MSs and
searching for channels with active transmission.

A. Overview of Mobile WiMAX

The recently approved 802.16e standard [7] (known as mo-
bile WiMAX) uses scalable OFDMA as physical layer trans-
mission technique. By changing the FFT size as a function
of the transmission bandwidth, the subcarrier spacing is kept
constant for all bandwidths aiming to reduce the inter-carrier
interference (ICI), due to mobility and frequency offsets,to
a negligible level [16]. The available FFT sizes and system
bandwidths are given in Table I. Moreover, the fixed standard
supports FFT sizes of 256 and 2048 with different bandwidths
(multiple of 250 kHz and no less than 1.25 MHz). Hence the
MSs should have support for various channel bandwidths. This
requires dynamic detection of the FFT size and the channel
bandwidth which is a similar problem to detection the primary
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TABLE I

AVAILABLE BANDWIDTHS AND FFT SIZES FOR802.16E

System bandwidth (MHz) 1.25 NA 5 10 20
Sampling frequency (MHz) 1.429 NA 5.714 11.429 22.857

FFT size 128 256 512 1024 2048

users in a given frequency band and the algorithm proposed
in the previous section might be used for this purpose. In both
cases, somea priori information about the center frequencies
and bandwidths of the expected signals is assumed to be
available.

B. Proposed Algorithm

The center frequencies and bandwidths of possible trans-
mission channels are already known by the mobile station.
These parameters are defined in the standard as profiles and
depends on which profiles the MS is supporting. The possible
transmission channels can be calculated as

Fc = Fstart + n · ∆Fc ∀n ∈ 1, . . . , Nrange (8)

whereFstart is the start frequency for the specific band,∆Fc

is the center frequency step andNrange is the range of values
for the parametern [7]. The MS should be able to estimate
transmission frequencyFc and transmission bandwidthB for
successful entry to the system.

One method is the excessive search method where the MS
tests the presence of transmission at each possible channel.
In other words, the MS calculates all possibleFc values
for the profiles it has support for, and tests the presence
of transmission in these channels. The specifically designed
downlink preambles can be used for testing of the existence
of a frame in a channel as well [17]. This method, however,
might be inefficient especially if MS supports a large number
of profiles. Time delay introduced by serial testing is also not
desired during handoff where the receiver switches between
different BSs operating at different profiles and/or different
frequencies.

The algorithm proposed in Section III can be updated for
detecting the DL transmission effectively and quickly. The
proposed algorithm can be summarized as following:

1) Apply Fourier transform to the received signal with the
maximum available FFT size4.

2) Smooth the FFT output by using a moving window [14].
3) Compare the output of moving window with a threshold

and mark the subcarriers with power larger than the
threshold.

4) Estimate the bandwidth and center frequencies of DL
transmission by using the marked subcarriers as de-
scribed before.

5) If there is no active channels, shift the center frequency
to next channel (with largest possible bandwidth) and
go to step 1.

The performance of the bandwidth estimation algorithm can
also be summarized with two probabilitiesPD and PF as

4The maximum FFT size that the MS is capable of depends on the profiles
supported by the MS, and the maximum available value is 2048.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

P
F

W=1
W=2
W=5
W=10
W=20

Increasing W

Fig. 2. ROC curves for different rectangular window sizes. The SNR is set
to 5dB.

primary user detection in cognitive radios. In this application,
we can select the detection threshold such that we have a high
PD as false alarms can be tolerated. For subsequent network
entries, the MS can remember the last entered network channel
widths and FFT sizes and optimize its search to quickly
reacquire the same channel.

V. NUMERICAL RESULTS

The developed algorithms are tested with computer simula-
tions. The considered frequency band is divided into subbands
of 20MHz and proposed algorithm is applied for each subband.
The FFT size is chosen as 1024.

Figs. 2 and 3 show the receiver operating characteristics
(ROCs) for a single frequency sample at the output of thresh-
old device (see Fig. 1). In Fig. 2, the ROC curves for different
smoothing window sizes are presented when no averaging in
time is performed,i.e. only one FFT output is considered.
The signal’s power is assumed to be 5dB higher than the
noise level. It is easy to see the performance improvement
obtained by using the smoothing filter compared to [10]. The
performance is enhanced as the window size increases.

Fig. 3 presents the ROC curves for different SNR values.
In this figure, the width of the rectangular window is set to 5
samples. The detection performance improves with increasing
SNR as expected.

The histogram of the estimated bandwidth using the feature
extraction method given in Section III is presented in Fig. 4
for 5dB average SNR and a window size of 5. The parameters
used areGmax = 10 and Wmin = 40. The thresholdλ is
chosen by assuming the signal and noise power levels are
known to the cognitive radio, and by using a 90% detection
probability PD for each frequency sample. The primary user
is assumed to have a bandwidth of 2MHz. The estimated
bandwidths are close to the actual bandwidth. It is also
observed that the presence of a primary user could be detected
for 99.5% of the time using these parameters.
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VI. CONCLUSIONS

Spectrum sensing algorithms for cognitive radio devices
are proposed in this paper. Frequency correlation is exploited
for obtaining better detection performance in energy detec-
tor based algorithms. A simple feature extraction method is
proposed for finding the transmission parameters using the
energy detector output. Moreover, partial match-filteringis
used to detect the active primary users by matching to the
extracted features. The application of the proposed algorithm
to WMAN devices for finding the transmission parameters
effectively during initial network entry is also presented. By
applying the partial match-filtering algorithm, the spectrum
estimation can be improved significantly.
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