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Abstract— The innovative new strategy of spectrum pooling
enables public access to spectral ranges of already licensed yet
rarely used frequency bands by overlaying a secondary mobile
radio system (the rental system, RS) to an existing one (the
licensed system, LS). Coexistence of both systems is realized
by filling the idle time-frequency gaps of the LS. A key issue
in spectrum pooling is the reliable and efficient detection of
those spectral ranges that are currently accessed by the LS
as those ranges have to be spared from the RS’s transmission
power. In this letter, formulas for the calculation of the detection
and false alarm probability are derived for the general case
of an arbitrary measurement covariance matrix, allowing for
a maximum exploitation of the proposed distributed detection
approach.

Index Terms— Distributed detection, OFDM overlay, spectrum
pooling.

I. INTRODUCTION

PUBLIC mobile radio spectrum is a scarce resource while
wide spectral ranges of already licensed frequency bands

are only rarely used. The innovative new strategy of spec-
trum pooling, first mentioned in [1], enables public access
to these spectral ranges by overlaying a secondary mobile
radio system (the rental system, RS) to an existing one (the
licensed system, LS) without requiring any changes to the
latter, thus economically enhancing overall spectral efficiency.
Coexistence of both systems is realized by filling the time-
frequency gaps of the LS during its idle periods while spectral
ranges that are currently accessed by licensed users (LUs) are
spared from the RS’s transmission power. The state of the
art in spectrum pooling has recently been presented in [2],
showing that an RS based on OFDM modulation is feasible
by adaptively leaving a set of subcarriers unmodulated, thus
providing a flexible spectral shape that can fill the idle gaps.
However, a key issue is the reliable detection of those spectral
ranges that are currently accessed by LUs. A high detection
probability must be achieved as the amount of interference
that the LS encounters from the RS is directly linked to the
detection probability. The detection process has to be repeated
periodically at time intervals that are short enough to guarantee
an upper bound interference duration at the beginning of an
LU’s access. At the same time, the detection duration and the
false alarm probability should remain as low as possible for
the sake of the RS’s efficiency. The detection process results in
a binary allocation vector, indicating those OFDM subcarriers
that have to be spared from the RS’s transmission power.

In [3], a distributed detection approach is proposed where
any associated rental user (RU) conducts its own detection.
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The individually decided allocation vectors are then transmit-
ted to a central access point (AP) using a highly efficient
signaling scheme called boosting protocol [4]. At the AP, the
final decision is made and the resulting allocation vector is
broadcasted back to the RUs. There, the PHY layers are then
configured with a common subset of OFDM subcarriers that
are to be used until the next detection cycle. The resulting
diversity of this distributed detection approach yields dramatic
improvements in terms of false alarm and detection probability
compared to the case of only one station conducting spectral
measurements. However, the full advantage of this approach
can only be achieved by adapting the individual detection
probability to the number of currently involved RUs. This is
necessary in order to maintain a specified overall detection
probability PRS

D at the AP after the final decision is made. As
the number of currently associated RUs is known to the AP, the
required detection probability PD for an individual detection
process of one RU can be calculated and broadcasted. Hence,
at every RU the detection threshold that realizes the required
detection probability has to be calculated. This threshold
value has yet only been calculated for the special cases of
uncorrelated measurements and fully correlated measurements
[3]. In the following, a calculation formula for the general
case of an arbitrary measurement covariance matrix is derived,
based on the optimal detection rule.

II. THE DETECTION MODEL

In this section the detection model is illustrated in brief.
Under the worst case assumption of a non line of sight
(NLOS) connection between an LU and an RU, the receive
signal at the detecting RU can be considered a zero-mean
rotationally symmetrical complex Gaussian process accord-
ing to the central limit theorem. At the receiver, the signal
from the LU is disturbed by thermal and background noise.
These noise sources are assumed to be white, zero-mean and
Gaussian. The resulting process is blockwise transformed into
the frequency domain by the immanently available FFT of the
OFDM receiver. The consecutively arriving frequency samples
corresponding to the useful signal of one LU’s subband can
be combined in a vector z, containing the real and imaginary
parts x, y of the respective FFT bins. As an FFT is a linear
operation, it can be shown that z still has a normal distribution.
Let n denote the number of FFT operations performed during
a detection process and m the width of an LU’s subband in
OFDM subcarriers. Then the probability density function (pdf)
of z can be written as

fS(z) =
1√

(2π)2nm detCSS

exp
(
−1

2
zT CSS

−1z
)

(1)

with

z = (x,y)T =
(
x1,1, . . . , xn,m︸ ︷︷ ︸

nm real parts

, y1,1, . . . , yn,m︸ ︷︷ ︸
nm imag. parts

)T
, (2)
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where CSS represents the nonsingular covariance matrix of the
time-frequency samples of the considered LU. Due to the lack
of synchronization between the two systems, the stochastic
properties of real and imaginary parts are identical. Hence,
CSS can be expressed by a symmetrical block matrix

CSS =
(
CXX CXY

CXY CXX

)
∈ R(2nm)×(2nm), (3)

where the diagonal elements, namely σ2
S , are the mean receive

power of the real and imaginary parts. Because of the white-
ness assumption, the corresponding time-frequency samples of
the noise process are distributed according to

fN (z) =
1

(2πσ2
N )nm

exp
(
− zT z

2σ2
N

)
, (4)

where σ2
N is just the mean noise power of the real and

imaginary parts. As the LU signal is additively disturbed by
the noise process, the pdf of the resulting samples can be
calculated by convolution of fS(z) and fN (z), yielding the
conditional pdfs

fR|no LU(z|no LU) = fN (z) (5)

fR|LU(z|LU) =
exp

(− 1
2z

T (CSS + σ2
NI)−1z

)√
(2π)2nm det(CSS + σ2

NI)
. (6)

The optimal detection rule that classifies whether or not an LU
access has occurred in the considered subband is based on the
well known Neyman-Pearson criterion [5] that maximizes the
detection probability PD at a given false alarm probability PF

or minimizes PF at a given PD, respectively. Applying this
criterion yields

PF =
∫
G

fR|no LU(z|no LU) dz (7)

PD =
∫
G

fR|LU(z|LU) dz, (8)

where G ⊂ R(2nm)×(2nm) is the area that contains all vectors
z leading to the decision that an LU access has occurred. The
optimal decision space G is obtained from the likelihood ratio

fR|LU(z|LU)
fR|no LU(z|no LU)

LU
> γ (9)

where the choice of γ determines the detection probability
PD. Applying (5) and (6) to (9) yields the optimal decision
rule

zT
(
(σ2

NI)−1 − (CSS + σ2
NI)−1

)
z

LU
>

2 ln

(
γ

√
det(CSS + σ2

NI)
(σ2

N )2nm

)
, (10)

where the right hand side of (10) can be combined to a
new threshold value u. All vectors z fulfilling inequality (10)
are assigned to G. The calculation of PD, PF against the
threshold u requires solving the multidimensional integrals in
(8), (7) with respect to the integration region G given by (10).
Although this task seems quite demanding for general CSS,
the problem can be analytically reduced into a convenient
format by successively applying linear transformations [6].

III. CALCULATION OF THE DETECTION PROBABILITY

For the sake of clarity, the following abbreviations are
introduced

V = CSS + σ2
NI (11)

A = (σ2
NI)−1−(CSS+σ2

NI)−1=(σ2
NI)−1−(V)−1 (12)

u = 2 ln

(
γ

√
det(CSS + σ2

NI)
(σ2

N )2nm

)
(13)

with V, A being symmetrical and positive definite matrices.
Rewriting (8) yields

PD =
∫

zT Az>u

exp
(− 1

2z
T V−1z

)
(2π)

1
2 2nm det(V)

1
2

dz. (14)

V can be factorized into V = LLT with a nonsingular
lower triangular matrix L using Cholesky decomposition.
Substituting a = L−1z simplifies (14) into

PD =
∫

aT (LT AL)a>u

exp
(− 1

2a
T a

)
(2π)

1
22nm

da, (15)

as det(V) = det(L)2 and dz = det(L) da. The regular
matrix LT AL can be diagonalized with an eigen decom-
position into LT AL = TDT−1, where D is the diagonal
matrix of eigenvalues of LT AL and T the associated matrix
of eigenvectors. Since LT AL is also symmetrical, T is an
orthonormal matrix, thus T−1 = TT and det(T) = 1. This
yields TT (LT AL)T = D, which gives rise to another substi-
tution b = TT a. Since bT Db = aT TTT (LT AL)TTT a =
aT (LT AL)a, applying this second substitution to (15) results
in

PD =
∫

bT Db>u

exp
(− 1

2b
T b

)
(2π)

1
2 2nm

db

= 1 −
∫

bT Db≤u

exp
(− 1

2b
T b

)
(2π)

1
22nm

db. (16)

The matrices LT AL and VA are similar, which can be easily
seen regarding the similarity transformation L(LT AL)L−1 =
LLT A = VA with the invertible transformation matrix L.
Therefore, they have the same eigenvalues λi. Inserting (11),
(12) back into VA and simplifying the expression ends up
with the very simple result

VA =
CSS

σ2
N

. (17)

Thus, the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2nm > 0 building
up the diagonal matrix D in (16) are just the eigenvalues of
the normalized (with respect to σ2

N ) covariance matrix of the
time-frequency samples of the LU.

Noting that bT Db =
∑2nm

i=1 λib
2
i , the integral in (16) can

be interpreted as the cumulative distribution function (cdf) of
a sum of weighted χ2 variables

PD = 1 − Pr

{
2nm∑
i=1

λiB
2
i ≤ u

}
, (18)

where the Bi ∼ N (0, 1) are i.i.d unit normal variables. Quite
a lot of attention has been paid to the problem of numerically
evaluating the probability of a weighted sum of χ2 variables
since the computation of the exact probability can be regarded
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Fig. 1. Information flow within the distributed detection scheme.

as very complicated. In [7], an efficient yet extremely accurate
approximation is presented. The algorithm assumes λi > 0
and

∑
λi = 1. To comply with these requirements, the

weights in (18) need to be scaled. Let di = λi/
∑

λi and
w = u/

∑
λi, then

PD = 1 − Pr

{
2nm∑
i=1

diB
2
i ≤ w

}
with

2nm∑
i=1

di = 1. (19)

The desired probability is then approximated by

PD = 1 − min
{
G(w),H(w)

}
with (20)

G(w) =
2nm∑
i=1

di

∫ w
2di

0 t
1

2di
−1

e−t dt

Γ( 1
2di

)
(21)

H(w) = Pr

{
2nm∑
i=1

B2
i ≤ w

δ

}
=

∫ w
δ

0
tnm−1e−

t
2 dt

Γ(nm)2nm
(22)

δ = 2nm

√
2nm∏
i=1

di. (23)

Since PD is the given value in the context of the distributed
detection of LUs, (20) has to be solved for w, which can
be realized using some gradient descent method. For an
acceptable efficiency however, the integrals used in (21) and
(22) may need to be tabulated.

IV. CALCULATION OF THE FALSE ALARM PROBABILITY

The evaluation of false alarm probabilities does not nec-
essarily need to be conducted since the main concern is to
achieve a specified detection probability. As the width m of an
LU’s subband is assumed constant for a given LS, the number
n of FFT operations could be some preassigned fixed value,
large enough to attain an adequate efficiency at some assumed
average conditions. However, as there exists an optimal n
that maximizes the RS’s efficiency η, it is straightforward to
consider n as a variable rather than a constant. η is given by
the proportion of the remaining idle time-frequency gaps after
the detection process:

η = n
TFFT

Tcycle
(1 − PRS

F ), (24)

where TFFT is the measurement period previous to an FFT
(usually the duration of one OFDM symbol), Tcycle the time
between consecutive detection events and PRS

F the resulting
overall false alarm probability at the AP according to the
distributed detection scheme. Let k be the number of currently
associated RUs and let j = 1, . . . , k be the index denoting
the jth RU. PRS

F implicitly depends on n over the functional

dependency

PRS
F = 1 −

k∏
j=1

[
1 − P j

F

]
= 1 −

k∏
j=1

[
1 − f(PD,Cj

SS, n)
]

= 1 −
k∏

j=1

[
1 − f(1 − k

√
1 − PRS

D ,Cj
SS, n)

]
, (25)

where f denotes the receiver operating characteristic. Since
PRS

D , k and Cj
SS are externally determined, n is the only

parameter that can be changed in order to maximize η using
some optimization strategy. For this purpose, PRS

F must be
known at the AP. Thus, every RU must calculate and transmit
its respective P j

F as depicted in Fig. 1.
The derivation of PF can be carried out according to the

derivation of PD in the last section and is omitted here for
convenience. The result is identical to (18) with the weights
being the eigenvalues of (12) instead of (17). Applying the
following rules

λ ∈ S{A} ⇒ λ−1∈S{A−1}, (αλ+c) ∈ S{αA+cI}, (26)

where S{A} denotes the set of eigenvalues of matrix A, PF

can be expressed in terms of eigenvalues of CSS

σ2
N

, yielding

PF = 1 − Pr

{
2nm∑
i=1

λi

σ2
N (λi + 1)

B2
i ≤ u

}
. (27)

Thus, eigenvalues must be calculated only once at every RU.

V. CONCLUSION

In this letter, formulas for the calculation of the detection
and false alarm probability in a spectrum pooling system
have been derived for the general case of an arbitrary LU’s
covariance matrix. Within the distributed detection approach
proposed in [3], these formulas allow for an optimized detec-
tion algorithm that adaptively maximizes the RS’s efficiency
under changing conditions of k and Cj

SS while still meeting
the constraint of a mandatory overall detection probability.
Every associated RU has to estimate the covariance matrices
of the currently accessing LUs (with respect to the broadcasted
allocation vector), calculate the corresponding eigenvalues
and set the detection thresholds u according to the detection
probability required by the AP. After the RUs have transmitted
their resulting false alarm probabilities to the AP, n can
be adapted in order to maximize the RS’s efficiency. The
interesting problem of how to estimate the covariance matrices
and how to adapt n within the resulting feedback loop in an
optimal fashion is beyond the scope of this letter and needs
to be further investigated.
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