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Abstract 

Part 1 of this paper provided an overview of smart-antenna systems, and presented a planar array as a design example. In 
addition. Part I discussed the potential of smart antennas with regard to providing increased capacity in wireless communica- 
tion networks. Part 2 represents a continuation of the previous paper, and introduces the signal-processing aspects of the 
antenna array. In particular, Part 2 describes the utility of direction-of-arrival algorithms in array-antenna systems, and gives 
an overview of the signal-processing algorithms that are used to adapt the antenna radiation pattern. The adaptive-algorithm 
descriptions are accompanied by simulation results obtained for a specific network topology. In particular, the antenna system 
is simulated assuming a mobile network topology that is continuously changing. Basic results presented are the dependence 
of the overall network throughput on the design of the adaptive-antenna system, and on the properties of the adaptive- 
beamforming algorithms and associated antenna patterns. 

Kepuords: Smart antennas; land mobile radio cellular systems; land mobile radio data communications; mobile 
communication; adaptive arrays; land mobile radio equipment; array signal processing; spatial division multiple access: 
direction of arrival estimation; antenna array mutual coupling 

1. Introduction 

art 2 o f  this paper provides descriptions o f  the signal-process- 
mg aigonthms accompanying a smart-antenna system. Fol- 

lowing the design of the planar antenna array, presented in Part 1, 
Part 2 continues by describing how signal-processing algorithms 
are used to detect and estimate the angles o f  arrival of the incom- 
ing signals, and presenting adaptive algorithms that can he used for 
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p. : 

beamforming. In  particular, this paper describes how the functional 
components of a smart-antenna system interrelate (refer to Fig- 
ure I). After the smart-antenna system of Fig 1 i s  analyzed, i ts  
performance i s  examined in the presence of other smart-antenna 
systems in a wireless communication network with changing 
topology (see Figure 2). The wireless mobile network depicted in 
Figure 2 uses planar-array antennas as examples, and it has nodes 
that assume different roles, Le., any node has the capability of 
relaying or routing information to neighboring nodes. Since there 
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is no server or base station in the network, links are created among 
nodes in an ad hoc manner. 

With regard to the antenna system used in this network con- 
figuration, the nodes can use either omnidirectional antennas, or 
antennas with narrow and adaptive beams. When an omiidirec- 
tional antenna is used, all nodes within the range of the transmit- 
ting node must remain silent, to avoid collision, until transmission 
is completed. This situation is depicted in Figure 2a, where, for 
example, the communication devices are laptop computers, and 
they represent nodes in the network. On the other hand, if smart 
antennas are used as in Figure 2b, their narrow adaptive beams 
allow more nodes to communicate with each other simultaneously, 
without interfering with others, thereby increasing the network 
capacity. 

The performance of a network is usually measured in terms 
of its overall throughput, which is the average number of i n f o m -  
tion-hearing packets that successfully reach their destination dur- 
ing the time at which a single packet can be transmitted. Since 
some beamforming algorithms depend on the directions of arrival 
of all the incoming signals in order to design a beam pattem, the. 
speed with which the direction-of-arrival estimator can accurately 
estimate the angles of arrival can also impact the throughput of this 
type of network. The ability of the beamformer to reject interfer- 
ence is affected by the size and geometry of the antenna array. 
Using a larger m a y  allows the heamformer to design a pattem 
with a narrower main beam and a larger number of nulls. However, 
using a larger antenna array places a larger computational burden 
on the heamformer, which may even make the smart antenna too 
costly, or impractical to realize. Thus, it is observed that the 
designs of the beamformer, the direction-of-arrival estimator, and 
the antenna geometry impact the overall throughput of the wireless 
and mobile network depicted in Figure 2. 

T T  
1 ... ... I 

' I  I I Nulls awards SNOl 

... I \ 

Figure 1. A functional block diagram of a ;mart-antenna sys- 
tem. 
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Figure 2s. A typical network using low-throughput nmnidirec- 
tional connectivity. 

b 
Figure Zh. A typical network using high-throughput adaptive 
directional connectivity. 

2. Adaptive Signal-Processing Algorithms 

Intelligence, based on the definition in Webster's dictionary, 
is the ability to gaidapply knowledge and to manipulate one's 
environment. Consequently, the amount of intelligence a system 
possesses depends on the information collected, how it gains 
knowledge from the processed information, and its ability to apply 
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this knowledge. In smart-antenna systems, this knowledge is 
gained and applied via algorithms processed by a digital signal 
processor (DSP), as shown in Figure 1. The objectives of a DSP 
are to estimate: 1) the direction-of-arrival (DOA) of all impinging 
signals from the time delays of each antenna element; and 2) the 
appropriate weights to scan the maximum radiation of the antenna 
pattem toward the signal of interest (SOI), and to place nulls 
toward the signal not of interest (SNOI). Hence, the work on smart 
antennas promotes research in adaptive signal-processing algo- 
rithms, such as DOA and adaptive beamforming. The DOA esti- 
mation involves a correlation analysis of the array signals, fol- 
lowed by eigenanalysis and signallnoise sub-space formation. In 
adaptive beamforming, the goal is to adapt the beam by adjusting 
the amplitude and phase of each antenna element such that a desir- 
able pattem is formed. 

This section presents a brief overview of classical and sub- 
space-based DOA computation. Then, two types of adaptive 
beamforming methods are described: one that uses the DOA 
directly; and another that does not use the DOA information, but 
rather a temporal reference signal or training sequence. Finally, an 
adaptive beamformer that generates mutually compensated weights 
is described. 

2.1 Direction of Arrival 

As the signals are received from each antenna element, the 
DOA algorithm computes the angles of arrival of all impinging 
signals. There are many DOA algorithms found in the literature 
today, and some of them are described in [I]. The classical metb- 
ods are based on the concept of measuring the power received 
from each direction. These algorithms determine the angles of 
arrival of the incoming signals by scanning the beam of the radia- 
tion pattem, and surveying the space for signals above a certain 
power threshold. These methods are known as low-resolution algo- 
rithms. They are unlike the more recently introduced high-resolu- 
tion subspace-based algorithms, which make use of the underlying 
data model (described in detail, next) of the received data. 

Consider an M x N planar array, with inter-element spacing 
d, along the x axis, and d, along they axis, as shown in Figure 3. 

When an incoming wave, carrying a baseband signal s ( r ) ,  

impinges at an angle ( B , y , )  on the antenna array, it produces time 
delays relative to the signal received at the other antenna elements. 
These time delays depend on the antenna geometry, the number of 
elements, and the spacing between the elements. For the array of 
Figure 3, the time delay of the signal s(l) at the (m,n)th element 

-relative to the reference element (0,O) , at the origin - is 

where Ar and vo represent the differential distance and the speed 
of the light in free space, respectively. The differential distance, 
Ar , is computed using 

Ar=d,,cos(v), (2) 

where d,, is the distance between the origin and the (m,n ) th  ele- 
ment, and y~ is the angle between the radial unit vector from the 

/ . . . . .  

Figure 3. An M x N planar array, with a graphical representa- 
tion of the time delay. 

origin to the (m,n)th element and the radial unit vector in the 

direction of the incoming signal, s ( f ) .  Subsequently, d,, and 

cos(w) are determined using 

d,, = JmZd,Z+n2d:, 
(3) 

where P, and P, are the unit vectors along the direction of the 

incoming signal, s ( t ) ,  and along the distance, d, , ,  to the 

(m,n)th element, respectively. Thus, the unit vectors (Le., P, and 
P,) are expressed as 

i, = i, sine cosy, + i, sine sin p + i, cos@, 

(4) 
i,md, + P p d ,  

i, = JT 
m Z d 2 + n 2 d Z  ' 

where P,, P,, and P, are the unit vectors along the x ,  y .  and z 

axes, respectively. Finally, substituting Equations (2)-(4) into 
Equation ( I ) ,  the time delay of the ( m , n ) t h  element with respect to 

the element at the origin (Le., (0,O)) is written as 

md, sinecosy, + nd, sinesinyl 

"0 
rmn = ( 5 )  

Once the time delays are determined for each antenna ele- 
ment, they are part of the sampled signals received at the array. For 
example, the sampled signal received by the (m,n)th element at 
discrete time k contains the time delay rmn , and it is expressed as 

xk [m,n] = s(kT - rma) (6)  

108 IEEE Antenna's and Propagation Magazine, Vol. 44, No. 4, August 2002 

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 2, 2009 at 01:42 from IEEE Xplore.  Restrictions apply.



for m = 0,1, ..., M - 1 and n = 0,1, .._, N - 1, where Tis the sampling The columns of the matrix A represent the sreering vecrors of 
period. TO keep the notation simple, the coordinates ( m , n )  are the impinging signals, and form a linearly independent Set 

(assuming that each signal has a different angle of arrival). The set mapped into a sequence of integers from 0 to MN - 1,  using the 
of all possible steering vectors is known as the array manifold, 

mapping from ( m , n )  + (i.e., i =  for =O,l,...,M-l which includes the steering vectors corresponding to the incoming 
and n = O,l,.,,,N -1). Thus, Equation (6) can be rewritten as signals. For some array configurations, the array manifold is com- 

xk [ i ]  = s(kT - ~ j ) ,  

puted analytically, such as for uniform planar arrays (as an exam- 
ple), but for others, the manifold must be measured experimen- 
tally. 

(71 

where the time delay, rmn, has been mapped to r, . For a digitally 
modulated baseband signal with symbol period T, the sampled 
baseband signal at time kT at the ith [i.e., ( m , n )  + i ]  element is 
approximated by [I] 

wheref, n i ( O , q ) ,  and g k [ i ]  represent the carrier frequency, an 

element of the steering vector of the signal s (kT) , and a sample of 
uncorrelated noise at the ith element, respectively. Now, if p base- 
hand signals &e., so(t),sI(r),...,sp-l(r)) impinge on the antenna 

array with different angles, (Q4,pq), q=O,l, ..., p - 1 ,  the above 
equation is extended to 

In order to use the steering vectors to compute the direction 
of arrival, it is necessary to examine the spatial-correlation matrix 
R,(k). This is defined as R,(k)=€[x,xa], where E [ . ]  is 

the expectation operator. The elements of R,(k) describe how 
the signals received by the antenna elements are correlated. In 
general, R, (k) is not known a priori, and it needs to be estimated 

using an exponentially weighted estimate. The estimate of R, (k) 
is written as 

R, (k) = aR, (k-I )+  (1 -a )x ,x f ,  (11) 

where a is referred to as the forgetting factor, with 0 < a  < I .  Ifp 
signals impinge upon the array, then R,(k) contains p large 
eigenvalues compared to the rest of the MN - p eigenvalues. The 
p eigenvectors corresponding to those p eigenvalues span what is 
called the signal subspace, and the space spanned by the eigen- 
vectors corresponding to the remaining MN - p eigenvalues is 
called the noise subspace. Moreover, these two subspaces are 
orthogonal to each other. Since the steering vectors corresponding 
to the p signals span the same subspace as the eigenvectors corre- 
sponding to the largest p eigenvalues, they are also orthogonal to 
the noise subspace [Z]. Thus, the directions of arrival are deter- 
mined by searching through the array manifold corresponding to 
all angles, and finding the p elements that are most orthogonal to 
the estimated noise subspace. The algorithm that uses this strategy 
is referred to as the Multiple SIgnal Clqsifirafion (MUSIC) algo- 
rithm [3]. The advantage of this algorithm is that it exhibits high 

Table.]. The signals used to test the smart-antenna system of 
+ I 1. (9) this paper. 

gk L M N  - I ]  

In matrix notation, Equation (9) can be rewritten as 

xk=Ask+gk .  (10) SO1 Signal of interest; SNOI: Signal not of interest 

Table 2. ESPRIT simulation results for the two cases of Table 1, based on 500 samples. 
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resolution. However, it can be computationally intensive, since it 
requires a search through the entire array manifold for the steering 
vectors that are orthogonal to the noise subspace. 

Several other subspace-based DOA estimators are available. 
One class of these algorithms is known as the Estimation ofsignal 
Parameters via Rotational Invariance Techniques (ESPRIT) [2]. 
This class of algorithms also provides the high resolution of 
MUSIC, but it does not require a costly search. The ESPRIT algo- 
rithm allows the DOAs to he computed directly, and has been used 
with different array geometries, including planar arrays [4-61. 

The unitary ESPRIT [SI algorithm has been implemented to 
illustrate its use in computing both 0 and q with the designed 
planar array of Part I of this paper. Using the signals listed in 
Table 1 as input signals to the unitary ESPRIT, it was observed to 
give accurate results in the presence of noise and mutual coupling 
(see Table 2). 

2.2 Adaptive Beamforming 

An adaptive beamformer consists of 1) multiple antennas; 2)  
complex weights, the function of which is to amplifyiattenuate and 
delay the signals from each antenna element; and 3) a summer to 
add all of the processed signals, in order to tune out the signals not 
of interest, while enhancing the signal of interest. Hence, beam- 
forming is sometimes referred to as spatialfiltering, since some 
incoming signals from certain spatial directions are filtered out, 
while others are amplified. In short, spatial filtering is analogous to 
designing a finite impulse response (FIR) filter for filtering a time- 
domain signal. 

For the planar array of Figure 3, the samples of the received 
signal vector, x k ,  in Equation(10) are multiplied by a complex 
weight, w, the magnitude of which represents the gaidattenuation, 
and the phase of which represents a delay or shiA. The weighted 
elements are then summed to form the heamformer output, yk . 
This can he expressed as the inner product of x k  and w (a vector 
of size MN x I ,  the elements of which are the complex weights). 
Thus, the response of the heamformer to a signal from direction 
( 8 , ~ ) ~  in the absence of noise, is computed as 

(12) 
yk = w H xk = w H a ( O , v ) s ( k T ) .  

The weights in Equation (12) are obtained using an adaptive- 
heamforming algorithm. Adaptive-beamforming algorithms are 
classified as either DOA-based, temporal-reference-based, or sig- 
nal-structure-based [7]. In DOA-based heamforming, the direction- 
of-arrival algorithm passes the DOA information to the heam- 
former, as illustrated in Figure 1. This is used to design a radiation 
pattern with the main beam directed toward the signal of interest, 
and with nulls in the directions of the interferers. One example of a 
DOA-based heamformer is the Minimum Variance Distortionless 
Response (MVDR) [8] beamformer. Given the DOA information 
of the signal of interest, the MVDR heamformer designs the 
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beamformer weights by minimizing the output power of the 
heamformer, subject to the constraint that the response of the 
beamformer should be unity in the direction of the signal of inter- 
est [Le., w H a ( O , p ) =  11. This minimization produces a heam- 
former with nulls in the directions of the interfering signals, and a 
maximum directed toward the desired signal. The MVDR beam- 
former computes the weights of each antenna element as 

(13) 

where ( 0 , ~ )  and R d ( n )  are the angle of arrival of the signal of 
interest provided by the DOA, and the inverse of the correlation 
matrix, R, (n)  (which is estimated as in Equation (ll)], respec- 
tively. 

On the other hand, temporal-reference beamformers use a 
known training sequence to adjust the weights, and to form a 
radiation pattern with a maximum towards the signal of interest 
and nulls towards the signals not of interest. Specifically, if d ( k )  
denotes the sequence of reference or training symbols known a 
priori at the receiver at time k, an error, & ( k ) ,  is formed as the dif- 

ference between the beamformer output, w H a ( O , p ) ,  and d ( k )  

(i.e., & ( k ) = d ( k ) - w H a ( 8 , p ) ) .  This error signal is used by the 
heamformer to adaptively adjust the complex weights, w ,  so that 
the mean-squared error (MSE) is minimized. The choice of 
weights that minimize the MSE is such that the radiation pattem 
has a beam in the direction of the source that is transmitting the 
reference signal, and that there are nulls in the radiation pattern in 
the directions of the interferers. Once the beamformer has locked 
onto the reference signal, then the complex weights are maintained 
as fixed, and transmission of the data packet begins. 

One temporal-reference beamformer that minimizes the MSE 
is the least-mean-square (LMS). The complex LMS algorithm 
computes the complex weights wk iteratively, using [9] 

Wk+l =Wk-2PXkE(k), (14) 

where ,u denotes the step size, which is related to the rate of 
convergence: in other words, how fast the LMS algorithm reaches 
steady state. The smaller the step size, the longer it takes the LMS 
algorithm to converge. This means that a longer reference or 
training sequence is needed, which would reduce the payload and, 
hence, the bandwidth available for transmitting data. Throughput 
issues will he discussed later, in Section 3. 

The complex weights, w k ,  computed by Equation (14) are 
the ideal weights in the absence of mutual coupling. When these 
complex weights are used in the presence of mutual coupling, 
degraded far-field patterns are obtained, unless a compensation is 
made to the weights to account for coupling. In [IO], these effects 
were modeled as a multiplication process of the inverse mutual- 
coupling matrix (i.e., C-') in Equation (3) of Part I and the input 
signals, x k  . Thus, in order for the LMS to generate compensated 
weights that ideally cancel these effects, the inverse process needs 
to be applied; that is, the input signals, x k  in Equation (14), must 
he multiplied hy C [ I  I]. 
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at So = 0" , in the absence of mutual coupling. The second pattem 
(dashed line), generated using the ideal (uncompensated) excita- 
tions of the LMS in Ensemble" [IZ], shows the undesired effects 
of mutual coupling, such as a shallow and shifted null at the loca- 
tion of the signal not of interest. On the other hand, when compen- 
sation was made in these excitations for mutual coupling, Ensem- 
ble" [I21 showed an improvement of 6.3 dB at the location of the 
signal not of interest (see the solid thick line in Figure 4a). The 
second case listed in Table 1, the p = 45" radiation patterns of 
Figure 4b, show similar results. Here, a higher improvement of 
8.1 dB was observed at the location of the signal not of interest for 
the compensated pattern (the solid thick line) over the uncompen- 
sated pattem (the dashed line). Therefore, weights that take mutual 
coupling into account gave superior system performance. 

3. Smart Antenna Systems for 
Wireless and Mobile Networks 

-80' .Qo - io  4 0  -40 b l o  rd 60 80 ' 
O(degees) 

Figure 4a. The E-plane ( q  = 0") amplitude pattern for Case 1 
of Table 1 (the microstrip planar array of Figure 1 in Part 1). In wireless and mobile networks, the use of directional beams 

for communication results in reduced interference and, hence, 
improved capacity. The following section presents some simula- 
tion results that show how the capacity of a wireless network 
depends on the sire of the antenna array, the beam pattem used, 
and the speed with which the beamformeddirection-of-arrival 
estimator can compute an appropriate beam pattern. 

Ideal (No MC) 
Uncompensated 

-lo - Compensated 

-20 ' I n r  

e(degrees) 

Figure 4h. The amplitude pattern for Case 2 of Table 1 along 
the p,= 45' plane, for the microstrip planar array of Figure 1 
in Part  1. 

To illustrate how the adaptive heamformer shapes the radia- 
tion pattem from the information supplied by the DOA algorithm, 
and how compensation for mutual coupling improves the SINR 
[signal-plus-interference-to-noise ratio], the results of the ESPRIT 
algorithm, listed in Tahle 2, were used. For the first case listed in 
Table 1, the resulting E-plane patterns are shown in Figure 4a. The 
first pattem (the solid thin line) illustrates how well the LMS algo- 
rithm rejected the interferer at So = 45", po = 0" , while placing 
the maximum of the radiation pattem toward the signal of interest 

3.1 The Protocol 

The protocol described in this section is based on the IEEE 
802.11 Medium Access Control (MAC) [13] for Time Division 
Multiple Access (TDMA) environment, the details of which can he 
found in [14]. The channel-access protocol exploits the fact that 
the interference from a node using directional antennas is low, and 
allows its neighbors to access the channel if the sensed signal 
power is helow a certain threshold. It also allows nodes to 
exchange training signals before the data or packet transfer, for 
beamforming purposes. Each node starts with an isotropic mode so 
that it c8n receive signals from evenwhere in space. Then, once a 
signal is detected, the node switches to directional mode by form- 
ing a beam toward the transmitting node. Packet transfer takes 
place in the directional mode, once the beams have been formed. It 
should be emphasized that the introduction of training packets 
incurs an overhead in the data traffic. If the heamforming algo- 
rithms are slow to adapt themselves, the required training-packet 
length will bave to be longer, leading to lower network capacity. 

3.2 Simulations 

The main objective of the simulations is to qualitatively ana- 
lyze the capacity improvement in wireless networks when smart 
antennas are used for communication. The simulations also exam- 

Tahle 3. Packet lengths and time intervals used in the protocol simulations. 

.. 

Length 1 0.014L 1 0.003L I 0.007L 1 0.007L 1 Variable 1 Variable 1 0.007L J L  I 
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ine the dependence of capacity on various antenna patterns, and on 
the length of the training packets. 

An ad hoc network of 55 nodes was chosen and simulated 
using the OPNET [15] ModeleriRadio tool. The load at each node 
was assumed to be Poisson-distributed. Table 3 shows the values 
used in the simulations for various packet lengths and time inter- 
vals specified in the protocol. All packet lengths were normalized 
to the payload or DATA packet length. The lengths of the refer- 
ence signals (TXTRN and RXTRN) were made variable, to ana- 
lyze the performance of the protocol for different lengths. 

The network capacity for various antenna patterns was evalu- 
ated, in order to guide the antenna design for high network capac- 
ity. The training-packet length was chosen to be 10% of the pay- 
load (DATA) length. The average network throughput was meas- 
ured, for planar arrays of size 8 x 8 and 4 x 4, with Tschebyscheff 
(-26 dE3 sidelobe level) and uniform excitation distributions. For 
this simulation, while the maxima of all patterns were toward the 

I / I  I I I I 

Figure 5. Curves showing the throughput as a function of load 
for different antenna patterns. 
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Figure 6. Curves showing the throughput as a function of load 
for different training periods. 
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Figure 7. Curves showing the delay as a function of load for 
different training periods. 

4- Tchebyschetl(-26dB[ - LMS-Case1 
16 V 

I I I I I 
5 10 15 20 25 

Load (#packets) 

Figure 8. A comparison between the throughput fur a fixed 
Tschebyscheff pattern with a -26 dB sidelobe level and the pat- 
tern for Case 1 of Table 1. 

signal of interest, neither of the two Tschebyscheff patterns nor the 
one with uniform excitation had been adapted to place the nulls 
toward the signals not of interest. Figure 5 shows the average net- 
work throughput (the average number of successfully transmitted 
packets in the network during a packet time) as a function of the 
average load (the average number of packets generated in the net- 
work during a packet time), for various antenna patterns. In addi- 
tion, the figure shows that the network throughput for the 8 x 8 
array size was greater, when compared to the throughput for the 
4 x 4 array size. This can be attributed to the smaller beamwidth of 
the 8 x 8 array, which leads to lower co-channel interference. 

The network capacity for various training-packet lengths was 
evaluated, in order to guide the design of beamforming algorithms 
for high network capacity. The nodes were assumed to be equipped 
with 8 x 8 planar arrays of microship-patch antennas, with non- 
adapted Tschebyscheff (-26 dl3 sidelobe level) excitation distribu- 
tions. In other words, the shape of the beam pattern was fixed to be 
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Tschebyscheff, and was simply reoriented in the direction deter- 
mined by the direction-of-arrival estimator. Figure 6 shows the 
average network throughput as a function of the average load for 
the cases when the training packet-length was 6%, IO%, and 20% 
of the payload. An 8 x 8 planar array with a non-adapted 
Tschebyscheff pattern (-26 dB sidelobe level) was used. Figure 7 
shows the average packet delay (the average delay experienced by 
a packet before it was received by the destination) as a function of 
the average load for the same training-packet lengths and the same 
array. As can be seen from these figures, the network throughput 
dropped and the packet delays increased rapidly with increasing 
training-packet size. Also, Figure 6 shows that the throughput of 
the network was higher when smaddirectional antennas were used 
instead of isotropic antennas. 

The network throughput was further analyzed using the 
LMS-algorithm-generated adapted pattern, shown in Figure 4a. 
This was formed to have the maximum toward the signal of inter- 
est, and to have the null toward the signals not of interest. In Fig- 
ure 8, the throughput for this case is compared to the throughput of 
a fixed Tschebyscheff non-adapted antenna pattem (-26 dB 
sidelobe level) that did not have a null toward the signals not of 
interest. From the results in this figure, it can be concluded that the 
adaptive LMS-beamforming-algorithm pattem leads to higher 
throughput. This is attributed to the fact that the LMS-generated 
adapted pattem had a null toward the signals not of interest, while 
the Tscbehyscheff pattem did not posses such an attribute, even 
though the Tschehyscheff pattern exhibited much lower minor 
lobes than the LMS-generated pattem [16].  

4. Conclusions 

Certain guidelines for designing smart-antenna systems for 
optimum capacity in wireless and mobile networks have been dis- 
cussed. Antenna parameters, such as array size’and excitation dis- 
tibution, can be chosen to meet the capacity requirements for a 
network. In fact, based on the simulation results, antennas with 
narrower pattem beamwidth (Le., larger arrays) lead to provide 
higher throughput, as would he expected. However, there is a 
trade-off: larger arrays require more training hits and, hence, the 
overall throughput is affected, as well. Also, antennas that exhibit 
adaptive pattems with maxima toward the signal of interest and 
nulls toward the signal not of interest usually lead to higher 
throughput, compared to non-adaptive pattems (that do not have 
the nulls toward the signals not of interest), even if the non- 
adaptive pattems may have lower minor lobes. 

Furthermore, network capacity was evaluated, in order to 
guide the design of beamforming algorithms for high network 
capacity. Since there is a trade-off between the network capacity 
and the training-packet length, these simulations can assist in 
choosing a suitable value for the training-packet length, without 
compromising the network capacity. The training period places an 
upper bound on the convergence speed of the beamforming and 
DOA-estimation algorithms, serving as a guideline for the algo- 
rithm design. The results showed that training periods greater than 
20% considerably reduce the throughput. Therefore, it can he 
inferred that fast beamforming algorithms are critical for high net- 
work capacity. 

Employment of smart-antenna systems in wireless and 
mobile networks creates a wide scope for enhancing the network 
capacity. Through the design of efficient channel-access protocols, 
the spatial diversity of smart antennas can be exploited to increase 
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the capacity of a wireless network. However, the design of such 
protocols requires a careful consideration of the system aspects of 
the smart-antenna technology. In this work, a channel-access pro- 
tocol was suggested for wireless and mobile nehvorks employing 
smart antennas to communicate (for details, refer to [14]). This 
protocol was built based on the Medium Access Control (MAC) 
protocol of the IEEE 802. I 1  Wireless Local Area Network (LAN) 
Standard [ 131 for Time Division Multiple Access (TDMA) envi- 
ronment. The protocol facilitates the use of smart antennas and 
decreases co-channel interference, thereby increasing the capacity 
of the network. In addition, by accounting for the effects of mutual 
coupling, it produces radiation patterns with deeper nulls at the 
locations of the signals not of interest, thus further increasing the 
network throughput. 
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