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A beamformer is a processor used in conjunction with an 
array of sensors to provide a versatile form of spatial filtering. 
The sensor array collects spatial samples of propagating wave 
fields, which are processed by the beamformer. The objective 
is to estimate the signal arriving from a desired direction in 
the presence of noise and interfering signals. A beamformer 
performs spatial filtering to separate signals that have over- 
lapping frequency content but originate from different spatial 
locations. This paper provides an overview of beamforming 
from a signal processing perspective, with an emphasis on re- 
cent research. Data independent, statistically optimum, adap- 
tive, and partially adaptive beamforming are discussed. 

1. INTRODUCTION 

The term beamforming derives from the fact that early 
spatial filters were designed to form pencil beams (see 
polar plot in Fig. 1 .I) in order to receive a signal radiating 
from a specific location and attenuate signals from other 
locations. ”Forming beams” seems to indicate radiation of 
energy; however, beamforming i s  applicable to either 
radiation or reception of energy. In this paper we discuss 
formation of beams for reception. 

Systems designed to receive spatially propagating sig- 
nals often encounter the presence of interference signals. 
If the desired signal and interferers occupy the same tem- 
poral frequency band, then temporal filtering cannot be 
used to separate signal from interference. However, the 
desired and interfering signals usually originate from dif- 
ferent spatial locations. This spatial separation can be ex- 
ploited to separate signal from interference using a spatial 
filter at the receiver. Implementing a temporal filter requires 
processing of data collected over a temporal aperture. 
Similarly, implementing a spatial filter requires processing 
of data collected over a spatial aperture. 

Several applications that employ spatial filtering of data 
are listed in Table 1 .1. Fig. 1 .I illustrates a microwave com- 
munications antenna that employs a continuous spatial 
aperture to accomplish spatial filtering with a single an- 
tenna. Fig. 1.2 depicts a low frequency-towed sonar array 
in which the spatial aperture is  obtained through a dis- 
crete spatial sampling by an array of sensors. When the 
spatial sampling is  discrete, the processor that performs 
the spatial filtering is  termed a beamformer. Typically a 
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’igure 1 . I  A continuous spatial aperture provides one 
nechanism for spatial filtering. Illustrated is a parabolic 
nicrowave antenna system. The antenna dish provides 
;he spatial aperture over which energy is collected. This 
3nergy is reflected to  the antenna feed. The dish and feed 
iperate as a spatial integrator. The energy from a far field 
source located directly in front of the antenna arrives at 
;he feed temporarily aligned [i.e., all source-to-feed path 
engths are equal1 and is coherently summed. In general, 
?nergy from other sources will arrive at the feed via 
iariable length paths, and add incoherently. A polar plot 
if a typical antenna beampattern (i.e., power gain vs . ,  in 
;his case, azimuth angle1 is shown for a selected fre- 
iuency and for the elevation angle at which the antenna is 
minted. 
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TABLE 1.1 
ARRAYS AN0 BEAMFORMERS PROVIDE AN EFFECTIVE AND VERSATILE MEANS OF SPATIAL 
FILTERING. THIS TABLE LISTS A NUMBER OF APPLICATIONS OF SPATIAL FILTERING, GIVES 

EXAMPLES OF ARRAYS AN0 BEAMFORMERS, AND PROVIDES A FEW KEY REFERENCES. 

Application Description References 

RADAR phased-array RADAR; air traffic Brookner [19851; Haykin 119851; 

SONAR source localization and classification Knight et al. [19811; Owsley 

Communications directional transmission and Mayhan 119761; Compton 
119781; Adams et al. 119801 

control; synthetic aperture RADAR Munson et al. (19831 

[I9851 

reception; sector broadcast in 
satellite communications 

Imaging ultrasonic; optical; tomographic Macovski [19831; Pratt I19781; 

Geophysical earth crust mapping; oil exploration Justice [I9851 
Exploration 

Astrophysical high resolution imaging of the Readhead [19821; Yen [I985 
Exploration universe 

Biomedical fetal heart monitoring; tissue 

Kak [I9851 

Widrow et al. 119751; Gee et al. 
[19841; Peterson et al. [I9871 hyperthermia; hearing aids 

beamformer linearly combines the spatially sampled time 
series from each sensor to obtain a scalar output time 
series in the same manner that an FIR filter linearly 
combines temporally sampled data. Two principal advan- 
tages of spatial sampling with an array of sensors are dis- 
cussed below. 

Spatial discrimination capability depends on the size of 
the spatial aperture; as the aperture increases, discrimi- 
nation improves. The absolute aperture size i s  not impor- 
tant, rather its size in wavelengths is  the critical parameter. 
A single physical antenna (continuous spatial aperture) 
capable of providing the requisite discrimination i s  often 
practical for high frequency signals since the wavelength 
is  short. However, when low frequency signals are of in- 
terest, an array of sensors can often synthesize a much 
larger spatial aperture than that practical with a single 
physical antenna. 

A second very significant advantage of using an array of 
sensors, relevant at any wavelength, i s  the spatial filtering 
versatility offered by discrete sampling. In many applica- 
tion areas it i s  necessary to change the spatial filtering 
function in real time to maintain effective suppression of 
interfering signals. This change is  easily implemented in a 
discretely sampled system by changing the way in which 
the beamformer linearly combines the sensor data. 
Changing the spatial filtering function of a continuous ap- 
erture antenna i s  impractical. 

The purpose of this paper is  to describe beamforming 
from a signal processing perspective, provide an overview 
of beamformer design, and briefly discuss perform- 
ance and implementation issues with an emphasis on re- 
cent research. The paper begins with a section devoted to 

defining basic terminology, notation, and concepts. Suc- 
ceeding sections cover data-independent, statistically op- 
timum, adaptive, and partially adaptive beamforming. We 
then provide a brief discussion of implementation issues 
and conclude with a summary. 

Throughout the paper we use familiar methods and 
techniques from FIR filtering to provide insight into vari- 
ous aspects of spatial filtering with a beamformer. How- 
ever, in some ways beamforming differs significantly from 
FIR filtering. For example, in beamforming a source of 
energy has several parameters that can be of interest: 
range, azimuth and elevation angles, polarization, and 
temporal frequency content. Different signals are often 
mutually correlated as a result of multipath propagation. 
The spatial sampling i s  often nonuniform and multi- 
dimensional. Uncertainty must often be included in char- 
acterization of individual sensor response and location, 
motivating development of robust beamforming tech- 
niques. These differences indicate that beamforming rep- 
resents a more general problem than FIR filtering and as a 
result, more general design procedures and processing 
structures are common. 

Rather than making a futile attempt at attributing devel- 
opments due to many different researchers in beam- 
forming, we refer the reader to the following references: 
books-J. W. R. Griffiths et al., ed. [19731, Hudson [19811, 
Monzingo and Miller [19801, Haykin, ed. [19851, Compton 
[19881; special issues - / € € E  Transactions on Antennas and 
Propagation [19761, [19861, journal of Ocean Engineering 
[19871; tutorial - Gabriel [1976]; and bibliography- Marr 
[19861. Papers devoted to beamforming are often found in 
the IEEE Transactions on: Antennas and Propagation, 
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Acoustics, Speech, and Signal Processing, Aerospace and 
Electronic Systems, and in the lournal of the Acoustical 
Society of America. There is  a vast body of literature on 
various aspects of beamforming and we can only refer- 
ence a subset in support of our discussions. We often 
refer to the FIR filtering literature in our discussions of 
beamforming, since their histories are both parallel and 
overlapping . 

I I .  BASIC TERMINOLOGY AND CONCEPTS 

In this section we introduce terminology and concepts 
employed throughout the paper. We begin with a subsec- 
tion that defines the beamforming operation and discusses 
spatial filtering. The next subsection, entitled “Second 
Order Statistics,” develops representations for the covari- 
ance of the data received at the array and discusses dis- 
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tinctions between narrowband and broadband beam- 
forming. The final subsection defines various types of 
beamformers. 

A. Beam forming and Spatial Filtering 

Fig. 2.1 depicts two beamformers. The first, which 
samples the propagating wave field in space, is  typically 
used for processing narrowband signals. The output at 
time k, y(k), is given by a linear combination of the data at 
the J sensors at time k: 

I 
y(k) = C w?xi(k) (2.1) 

L=l 

where * represents complex conjugate. It i s  conventional 
to multiply the data by conjugates of the weights to sim- 
plify notation. We assume throughout that the data and 
weights are complex since in many applications a quadra- 
ture receiver i s  used at each sensor to generate in phase 
and quadrature (I and Q)  data. Each sensor i s  assumed to 
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have any necessary receiver electronics and an N D  con- 
verter if beamforming is  performed digitally. 

The second beamformer in Fig. 2.1 samples the propa- 
gating wave field in both space and time and is  often used 
when signals of significant frequency extent (broadband) 
are of interest. The output in this case can be expressed as 

(2.2) 

where K - 1 is  the number of delays in each of the J sensor 
channels. If the signal at each sensor is  viewed as an input, 
then a beamformer represents a multi-input single out- 
put system. 

It is  convenient to develop notation which permits us to 
treat both beamformers in Fig. 2.1 simultaneously. Note 
that (2.1) and (2.2) can be written as 

y(k) = wHx(k) .  (2.3) 

by appropriately defining a weight vector w and data vec- 
tor x(k). We use lower and upper case boldface to denote 
vector and matrix quantities respectively, and let super- 
script H represent Hermitian (complex conjugate) trans- 
pose. Vectors are assumed to be column vectors. Assume 
that w and x(k) are N dimensional; this implies that N = KJ 
when referring to (2.2) and N = J when referring to (2.1). 
Except for Section V on adaptive algorithms, we will drop 
the time index and assume that i ts  presence is  understood 
throughout the remainder of the paper. Thus (2.3) i s  writ- 
ten as y = wHx. Many of the techniques described in this 
paper are applicable to continuous time as well as discrete 
time beamforming. 

The frequency response of an FIR filter with tap weights 
w;, 0 5 p 5 J and a tap delay of T seconds is given by 

1 K-1 

y(k) = c c WtpXl(k - P) 
I=1 p=o 

I 

p = l  
,.(@) = W p + e - ~ ~ T ( ~ - l )  (2.4a) 

Alternatively 

r(w) = wHd(w) (2.4b) 

where w H  = [w? w;. . . WT] and d ( w )  = [ I  eJwTe12wT . . .  
e ~ i l - l ) w T  H 1 . r(o) represents the response of the filter to a 
complex sinusoid of frequency w and d(w) i s  a vector de- 
scribing the phase of the complex sinusoid at each tap in 
the FIR filter relative to the tap associated with wl. 

Similarly, beamformer response is  defined as the ampli- 
tude and phase presented to a complex plane wave as a 
function of location and frequency. Location i s  in general 
a three dimensional quantity, but often we are only con- 
cerned with one or two dimensional direction of arrival 
(DOA). Throughout the remainder of the paper we do not 
consider range. Fig. 2.2 illustrates the manner in which an 
array of sensors samples a spatially propagating signal. 
Assume that the signal i s  a complex plane wave with 
DOA 8 and frequency w .  For convenience let the phase 
be zero at the first sensor. This implies xl(k) = elwk and 
xdk) = eJw[k-AI'o)l, 2 5 I 5 J. Al(8) represents the time delay 
due to propagation from the first to the Ith sensor. Substi- 
tution into (2.2) results in the beamformer output 

I 
Sensor #I - Reference 

I Y-- l  

y(k) = 2 '2' Wtpe- lWIA l (o )+P l  - - eIwkr(8,w) (2.5) 
I=1 p=o 

where A , ( @  = 0. r(0, w )  i s  the beamformer response and 
can be expressed in vector form as 

r(8, w )  = wHd(8, 0). (2.6) 

The elements of d(8,w) correspond to  the complex 
exponentials e-lw[Al(o)+P' . In general i t  can be expressed as 

d(8, w )  = [I eJWT2(o) e lWT3(8 )  . . . elwTN(@I]H (2.7) 

where the 7,(8), 2 5 i 5 N, are the time delays due to 
propagation and any tap delays from the zero phase refer- 
ence to the point at which the ith weight is  applied. We 
refer to d(0,w) as the array response vector. It is  also 
known as the steering vector or direction vector. Non- 
ideal sensor characteristics can be incorporated into 
d(8,w) by multiplying each phase shift by a function 
ado, w ) ,  which describes the associated sensor response as 
a function of frequency and direction. 
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The beampattern is  defined as the magnitude squared 
of r(0,w). Note that each weight in w affects both the 
temporal and spatial response of the beamformer. His- 
torically, use of FIR filters has been viewed as providing 
frequency dependent weights in each channel. This inter- 
pretation is accurate but somewhat incomplete since the 
coefficients in each filter also influence the spatial filtering 
characteristics of the beamformer. As a multi-input single 
output system, the spatial and temporal filtering that oc- 
curs i s  a result of mutual interaction between spatial and 
temporal sampling. 

The correspondence between FIR filtering and beam- 
forming i s  closest when the beamformer operates at a single 
temporal frequency w,) and the array geometry i s  linear 
and equi-spaced as illustrated in Fig. 2.3. Letting the sen- 
sor spacing be d, propagation velocity be c, and 0 repre- 
sent DOA relative to broadside (perpendicular to the array) 
we have T , ( @ )  = (i - 1) (d/c) sin 0. In this case we identify 
the relationship between temporal frequency w in d(w) 
(FIR filter) and direction 0 in d(O,wO) (beamformer) as 
w = wo(d/c) sin 0. Thus, temporal frequency in an FIR fil- 

m s 

m m I 
Figure 2.3 The analogy between an equi-spaced omni- 
directional narrowband line array and a single-channel FIR 
Filter is illustrated in this figure. 

ter corresponds to the sine of direction in a narrowband, 
linear equi-spaced beamformer. Complete interchange of 
beamforming and FIR filtering methods i s  possible for this 
special case provided the mapping between frequency 
and direction is  accounted for. 

The vector notation introduced in (2.6) suggests a vector 
space interpretation of beamforming. This point of view is 
useful both in beamformer design and analysis. We use it 
here in consideration of spatial sampling and array geome- 
try. The weight vector w and the array response vectors 
d(0, w )  are vectors in an N dimensional vector space. The 
angles between w and d(0, w )  determine the response 
r(0, w).  For example, if for some (0, w )  the angle between 
wand d(0, w )  is 90" (i.e., if w is  orthogonal to d(0, w ) ) ,  then 
the response is zero. If the angle is close to o", then the 
response magnitude will be relatively large. The ability to 
discriminate between sources at different locations and/or 
frequencies, say (01, wl) and ( 0 2 ,  w 2 ) ,  i s  determined by the 
angle between their array response vectors, d(0, w , )  and 

The general effects of spatial sampling are similar to 
temporal sampling. Spatial aliasing corresponds to an am- 
biguity in source locations. The implication is  that sources 
at different locations have the same array response vector, 
e.g., for narrowband sources d(Ol ,w0)  = d(02,wo) .  This 
can occur if the sensors are spaced too far apart. If the 
sensors are too close together, spatial discrimination suf- 
fers as a result of the smaller than necessary aperture; 
array response vectors are not well dispersed in the N 
dimensional vector space. Another type of ambiguity oc- 
curs with broadband signals when a source at one location 
and frequency cannot be distinguished from a source at a 
different location and frequency, i.e., d(&, w,)  = d(02, w J .  
For example, this occurs in a linear equi-spaced array 
whenever w1 sin O1 = w 2  sin 0 2 .  (The addition of temporal 
samples at one sample prevents this particular ambiguity.) 

A primary focus of this paper is on designing response 
via weight selection; however, (2.6) indicates that response 
i s  also a function of array geometry (and sensor character- 
istics if the ideal omnidirectional sensor model is  invalid). 
In contrast with single channel filtering where AID con- 
verters provide a uniform sampling in time, there i s  no 
compelling reason to space sensors regularly. Sensor loca- 
tions provide additional degrees of freedom in designing 
a desired response and can be selected so that over the 
range of ( 0 , ~ )  of interest the array response vectors are 
unambiguous and well dispersed in the N dimensional 
vector space. Utilization of these degrees of freedom can 
become very complicated due to the multidimensional 
nature of spatial sampling and the nonlinear relationship 
between r(0, w )  and sensor locations. References discus- 
sing array geometry design for response synthesis include 
Unz [19561, Harrington [19611, lshimaru [19621, Lo [19631, 
and Skolnik et al. [19641. 

d(02, ~ 2 )  (COX [19731). 

B. Second Order Statistics 

Evaluation of beamformer performance usually involves 
power or variance, so the second order statistics of the 
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data play an important role. We assume the data received 
at the sensors is zero mean throughout the paper. The 
variance or expected power of the beamformer output is  
given by E{/yI2} = wHE{xxH)w. If the data is  wide sense sta- 
tionary, then R, = E{xxH}, the data covariance matrix, is 
independent of time. Although we often encounter non- 
stationary data, the wide sense stationary assumption i s  
used in developing statistically optimal beamformers and 
in evaluating steady state performance. 

Suppose x represents samples from a uniformly sam- 
pled time series having a power spectral density S(w) and 
no energy outside of the spectral band [ w a ,  o b ] .  R, can be 
expressed in terms of the power spectral density of the 
data using the Fourier transform relationship as 

with d(w) as defined for (2.4b). Now assume the array data 
x is due to a source located at direction 0. In like manner 
to the time series case we can obtain the covariance matrix 
of the array data as 

S(w)d(O, o)dH(t), wi d o .  (2.9) 

A source i s  said to be narrowband of frequency w g  i f  R, can 
be represented as the rank one outer product 

(2.10) 

R x = - \  1 W b  

277 " U a  

R, = g?d(O, wo)dH(tl, woi 

where (rs i s  the source variance or power. 
The conditions under which a source can be considered 

narrowband depend on both the source bandwidth and 
the time over which the source is  observed. To illustrate 
this, consider observing an amplitude modulated sinusoid 
or the output of a narrowband filter driven by white noise 
on an oscilloscope. If the signal bandwidth i s  small relative 
to the center frequency (i.e., i f  it has a small fractional 
bandwidth), and the time intevals over which the signal i s  
observed are short relative to the inverse of the signal 
bandwidth, then each observed waveform has the shape 
of a sinusoid. Note that as the observation time interval is  
increased, the bandwidth must decrease for the signal to 
remain sinusoidal in appearance. It turns out, based on 
statistical arguments, that the observation time bandwidth 
product (TBWP) is  the fundamental parameter that deter- 
mines whether a source can be viewed as narrowband 
(Buckley [19871, Compton [19881). 

An array provides an effective temporal aperture over 
which a source is  observed. Fig. 2.2 illustrates this tempo- 
ral aperture T(0) for a source arriving from direction 8. 
Clearly the TBWP is dependent on the source DOA. An 
array is  considered narrowband if the observation TBWP is 
much less than one for all possible source directions. 

Narrowband beamforming is  conceptually simpler than 
broadband since one can ignore the temporal frequency 
variable. This fact, coupled with interest in temporal fre- 
quency analysis for some applications, has motivated 
implementation of broadband beamformers with a nar- 
rowband decomposit ion structure, as illustrated in  

Fig. 2.4. The narrowband decomposition is  often per- 
formed by taking a discrete Fourier transform (DFT) of 
the data in each sensor channel using an FFT algorithm. 
The data across the array at each frequency of interest are 
processed by their own beamformer. This is  often termed 
frequency domain beamforming. The frequency domain 
beamformer outputs can be made equivalent to the DFT of 
the broadband beamformer output depicted in Fig. 2.lb 
with proper selection of beamformer weights and careful 
data partitioning. This equivalence corresponds to imple- 
menting FIR filters via circular convolution with the DFT. 

C. Beamformer Classification 

Beamformers can be classified as either data indepen- 
dent or statistically optimum, depending on how the 
weights are chosen. The weights in a data independent 
beamformer do not depend on the array data and are 
chosen to present a specified response for all signal/ 
interference scenarios. The weights in a statistically opti- 
mum beamformer are chosen based on the statistics of 
the array data to "optimize" the array response. In gen- 
eral, the statistically optimum beamformer places nulls in 
the directions of interfering sources in an attempt to maxi- 
mize the signal to noise ratio at the beamformer output. A 
comparison between data independent and Statistically 
optimum beamformers is illustrated in Fig. 2.5. 

The next four sections cover data independent, statisti- 
cally optimum, adaptive, and partially adaptive beamform- 
ing. Data independent beamformer design techniques are 
often used in statistically optimum beamforming (e.g., 
constraint design in linearly constrained minimum vari- 
ance beamforming). The statistics of the array data are not 
usually known and may change over time so adaptive algo- 
rithms are typically employed to determine the weights. 
The adaptive algorithm is  designed so the beamformer 

0 I I U  

series. 
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response converges to a statistically optimum solution. 
Partially adaptive beamformers reduce the adaptive algo- 
rithm computational load at the expense of a loss (designed 
to be small) in statistical optimality. 

Ill. DATA INDEPENDENT BEAMFORMING 

The weights in a data independent beamformer are de- 
signed so the beamformer response approximates a de- 
sired response independent of the array data or data statis- 
tics. This design objective-approximating a desired 
response- is the same as that for classical FIR filter design 
(see, for example, Parks and Burrus [19871). We shall ex- 
ploit the analogies between beamforming and FIR filtering 
where possible in developing an understanding of the de- 
sign problem and in presenting design procedures. We 
also discuss design problems specific to beamforming. 

The first part of this section discusses forming beams in 
a classical sense, i.e., approximating a desired response of 
unity at a point of direction and zero elsewhere. Methods 
for designing beamformers having more general forms of 
desired response are presented in the second part. 

A. Classical Beamforming 

Consider the problem of separating a single complex 
frequency component from other frequency components 
using the J tap FIR filter illustrated in Fig. 2.3. If frequency 

is  of interest, then the desired frequency response i s  
unity at w n  and zero elsewhere. A common solution to this 
problem is  to choose w as the vector d(w,). This choice can 
be shown to be optimal in terms of minimizing the 
squared error between the actual response and desired 
response. The actual response is  characterized by a main 
lobe (or beam) and many sidelobes. Since w = d(w,), each 
element of w has unit magnitude. Tapering or windowing 
the amplitudes of the elements of w permits trading of 
main lobe or beam width against sidelobe levels to form 
the response into a desired shape. Let T be a J by J diago- 
nal matrix with the real-valued taper weights as diagonal 
elements. The tapered FIR filter weight vector i s  given by 
Td(w). A detailed comparison of a large number of taper- 
ing functions is given in Harris [1978]. 

In spatial filtering one is  often interested in receiving a 
signal arriving from a known location point B o .  Assuming 
the signal is  narrowband (frequency wJ, a common choi- 
ce for the beamformer weight vector i s  the array reponse 
vector d(O,, U") .  The resulting array and beamformer is  
termed a phased array since the output of each sensor is  
phase shifted prior to summation. Fig. 1.2 depicts the 
magnitude of the actual response when w = d(O,, w o ) .  As 
in the FIR filter discussed above, beam width and sidelobe 
levels are the important characteristics of the response. 
Amplitude tapering can be used to control the shape of 
the response, i.e., to form the beam. Figs. 2.5a and b illus- 
trate the effect of amplitude tapering on the response. 

The equivalence of the narrowband linear equi-spaced 
array and FIR filter (see Fig. 2.3) implies that the same 
techniques for choosing taper functions are applicable to 

Y / 
.. . . . . . . . .  ~ , ~ ~ :  : I I . .**.*. 

. . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  

. .  

X 

Figure 3.1 Part (a) depicts the array configuration and 
defines azimuth angle Q, and elevation angle 0 for a 16 by 
16 rectangular planar array of sensors. The sensors are 
spaced at one-half wavelength along the x and y axes. The 
narrowband magnitude squared response is illustrated in 
Ibl as a function of azimuth and elevation angles. The 
array is phase shift steered to Q, = 30" and 0 = 45". The 
weights applied to each sensor channel are the product of 
x axis and y axis Dolph-Chebyshev taper weights. 

either problem (Schelkunoff [19431). Methods for choos- 
ing tapering weights also exist for more general array con- 
figurations. If the array is  narrowband and the sensors lie 
on a line, then methods evolving from continuous spatial 
aperture design can be employed. A desirable smooth 
amplitude distribution function from a continuous aper- 
ture is approximated by a step distribution in a discrete 
aperture (see lshimaru [I9621 for relationship between 
continuous and discrete apertures). 

If the array i s  planar and factorable, then line array tech- 
niques can be used to synthesize the overall response as 
the product of two linear array responses. A planar array in 
the xy plane i s  factorable if its response can be "factored" 
into the product of responses due to line arrays in the x 
and y directions. Fig. 3.1 depicts the beampattern for a 
16 x 16 narrowband planar array. The sensors are spaced 
by one-half wavelength in both the x and y directions and 
the direction of interest is 30" bearing and 45" elevation. 
The response is  synthesized as the product of Dolph- 
Chebyshev tapered line arrays in the x and y directions. 

If the beamformer is  broadband and employs FIR filters, 
then tapering can be applied independently to both the 
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the desired source. 

sensor outputs and FIR filters as illustrated in Fig. 3.2. The 
taper weights are chosen to shape the spatial response 
and the FIR filter coefficients to present a desired temporal 
response. As noted in Section I I ,  spatial and temporal re- 
sponse interact so the spatial and temporal responses 
cannot be synthesized completely independently. One ex- 
ample of where the structure of Fig. 3.2 is  used is  delay 
sum beamforming. Here the FIR filters approximate the 
propagation delays (linear phase over the frequency band 
of interest) and the taper weights are chosen to shape the 
main beam and sidelobe structure of the spatial response. 

B. General Data Independent Response Design 

The methods discussed in this subsection apply to de- 
sign of beamformers that approximate an arbitrary desired 
response. This is  of interest in several different applica- 
tions. For example, we may wish to receive any signal 
arriving from a range of directions, in which case the de- 
sired response is unity over the entire range. As another 
example, we may know that there is  a strong source of 
interference arriving from a certain range of directions, in 
which case the desired response is  zero in this range. 
These two examples are analogous to bandpass and band- 
stop FIR filtering. Although we are no longer ”forming 
beams,” it is  conventional to refer to this type of spatial 
filter as a beamformer. 

Consider choosing w so the actual response r(O,w) = 
wHd(O, w )  approximates a desired response rd(O, w ) .  
Ad hoc techniques similar to those employed in FIR filter 
design can be used for selecting w;  however, here we 
only consider choosing w to minimize the weighted L, 
norm of the difference between desired and actual re- 
sponse. Weighted L, approximation is  utilized in several 
established FIR filter design techniques. The most com- 
monly used norms are L, (minmax) and L2 (least squares). 
Specific techniques include (see Parks and Burrus [19871): 

1) Windowing of an ideal filter’s unit pulse response 
(minimizes L2 norm over continuous w ) ;  

2) Frequency response sampling and linear weighted 
least squares (minimized L2 norm over discrete w ) ;  
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3) Minmax design with the Remez exchange algorithm 

4) Minmax complex and magnitude response design 

FIR filter design corresponds to a polynomial approxi- 
mation problem since the frequency response (2.4b) is  the 
discrete Fourier transform of the FIR filter weight se- 
quence. Several of the above methods exploit this poly- 
nomial structure. 

Excluding the cases for which beamformer design can 
be reduced to equi-spaced line array geometries, beam- 
former design is  not a polynomial approximation problem. 
In general, the response in (2.6) is a weighted sum of 
exponentials raised to non-integer powers. Thus, the L, 
methods (3 and 4) are not applicable since they are based 
on the alteration theorem of polynomial approximation. 
The windowing method (1) is  based on the discrete time 
Fourier transform and i s  also not applicable. However, the 
L2 procedure using linear weighted least squares (2) i s  
applicable. 

To illustrate data independent beamformer design via Lz 
optimization, consider minimizing the squared error be- 
tween the actual and desired response at P points ( O , ,  w , ) ,  
1 5 i 5 P. I f  P > N, then we obtain the overdetermined 
least squares problem 

(minimizes L, norm over discrete w ) ;  

(minimizes L, norm over discrete w ) .  

i 

min IAHw - rdlL (3.1) 
w 

where 

A = [d(Oq, w i )  d(O,, Wd*..d(Op, W P ) ] ;  

rd = [Td(O,, w , )  rd(O2, W2)’..Td(OP, w d l H .  

Provided AAH i s  invertible (i.e., A i s  full rank), then the 
solution to (3.1) i s  given as 

W = A+rd (3.2) 

where A+ = (AAH)-’A i s  the pseudo inverse of A. Fig. 3.3 
depicts the response of a beamformer design using (3.2). 

A note of caution is in order at this point. The white 
noisegain of a beamformer is  defined as the output power 
due to unit variance white noise at the sensors. Thus, the 
norm squared of the weight vector, wHw, represents the 
white noise gain. If the white noise gain is  large, then 
the accuracy by which w approximates the desired re- 
sponse is  a moot point, since the beamformer output will 
have a poor SNR due to white noise contributions. If A i s  
ill-conditioned, then w can have a very large norm and still 
approximate the desired response. The matrix A i s  ill- 
conditioned when the numerical dimension of the space 
spanned by the d(O’, w ’ ) ,  1 5 i 5 P, is  less than N. For ex- 
ample, if only one source direction is  sampled, then the 
numerical rank of A i s  approximately given by the TBWP 
for that direction. Low rank approximates of A and A’ 
should be used whenever the numerical rank i s  less 
than N. This ensures that the norm of w will not be unnec- 
essarily large. 

Specific directions and frequencies can be emphasized 
in (3.1) by selection of the sample points ( O , , w , )  and/or 
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sensors space 

unequally weighting of the error at each ( f ? , ,  w , ) .  Parks and 
Burrus [I9871 discuss this in the context of FIR filtering. 
Kumar and Murthy [I9771 consider unequal weighting of 
the error to obtain minimax response design for beam- 
former weights in a linear narrowband array. In general, 
guidelines for selection of the error weighting and ( O , ,  U , )  

are not available. 

There are several alternatives to L, optimization for 
general data independent response design, including 
methods discussed in Butler and Unz [I9671 and Sanzgiri 
and Butler [19711. 

IV. STATISTICALLY OPTIMUM BEAMFORMING 

In statistically optimum beamforming the weights are 
chosen based on the statistics of the data received at the 
array. Loosely speaking, the goal i s  to ”optimize” the 
beamformer response so the output contains minimal 
contributions due to noise and signals arriving from direc- 
tions other than the desired signal direction. We discuss 
below several different criteria for choosing statistically 
optimum beamformer weights. Table 4.1 summarizes 
these different approaches. Where possible, equations 
describing the criteria and weights are confined to 
Table 4.1. Throughout the section we assume that the data 
i s  wide-sense stationary and that its second order statistics 
are known. Determination of weights when the data statis- 
tics are unknown or time varying i s  discussed in the fol- 
lowing section on adaptive algorithms. 

A. Multiple Sidelobe Canceller 

The multiple sidelobe canceller (MSC) is  perhaps the 
earliest statistically optimum beamformer. An MSC con- 
sists of a ”main channel” and one or more “auxiliary 
channels” as depicted in Fig. 4.la. The main channel can 
be either a single high gain antenna or a data independent 

Type 
Definitions 

Optimum wa=R;’rma 
Weights 

Advantages Simple Direction of 
desired signal 
can be unknown 

Disadvantages Req Must generate 
reference signal 

Max SNR 
x=s+n-array data 
s-signal component 
n-noise component 
R,= E{&} 
R,=E{nnH} 
output: y=wHx 

RZ1R,w=h w 

True maximization 
of SNR 

Must know R, 
and R,, 
Solve generalized 
eigenproblem for 
weights 

Monzingo and 
Miller [I9801 

LCMV 
x -a r ray  data 
C- constraint matrix 
f- response vector 
R,=E{xx~} 
output: y=wHx 

rnin{w”R,w}s.t.CHw=f W 

w = R, IC[ C R;’C]-’f 

Flexible and general 
constraints 

Computation of 
constrained 
weight vector 

Frost 11972) 
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main channel response 

V 
main channel 

auxiliary branch response 
1 

auxiliary channels 

a) b) 

Figure 4.1 The multiple sidelobe canceller [MSCI con- 
sists of a main channel and several auxiliary channels as 
illustrated in a1 The auxiliary channel weights are chosen 
to  “cancel” interference entering through the sidelobes of 
the main channel response. Part b l  depicts the main chan- 
nel, auxiliary branch, and overall system response when an 
interferer arrives from direction 8,. 

beamformer (see Section I l l ) .  It has a highly directional 
response, which i s  pointed in the desired signal direction. 
Interfering signals are assumed to enter through the main 
channel sidelobes. The auxiliary channels also receive the 
interfering signals. The goal is  to choose the auxiliary 
channel weights to cancel the main channel interference 
component. This implies that the responses to interferers 
of the main channel and linear combination of auxiliary 
channels must be identical. The overall system then has a 
response of zero as illustrated in Fig. 4.lb. In general, 
requiring zero response to all interfering signals i s  either 
not possible or can result in significant white noise gain. 
Thus, the weights are usually chosen to trade off inter- 
ference suppression for white noise gain by minimizing 
the expected value of the total output power as indicated 
in Table 4.1. 

Choosing the weights to minimize output power can 
cause cancellation of the desired signal, since it also con- 
tributes to total output power. In fact, as the desired signal 
gets stronger it contributes to a larger fraction of the total 
output power and the percentage cancellation increases. 
Clearly this is  an undesirable effect. The MSC is very effec- 
tive in applications where the desired signal i s  very weak 
(relative to the interference), since the optimum weights 
will not pay any attention to it, or when the desired signal 
i s  known to be absent during certain time periods. The 
weights can be adapted in the absence of the desired 
signal and frozen when it is  present. 

B. Use of Reference Signal 

If the desired signal were known, then the weights could 
be chosen to minimize the error between the beamformer 
output and the desired signal. Of course, knowledge of 
the desired signal eliminates the need for beamforming. 
However, for some applications enough may be known 
about the desired signal to generate a signal that closely 
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represents it. This signal is  called a reference signal. As 
indicated in Table 4.1, the weights are chosen to minimize 
the mean square error between the beamformer output 
and the reference signal. 

The weight vector depends on the cross covariance be- 
tween the unknown desired signal present in x and the 
reference signal. Acceptable performance is  obtained pro- 
vided this approximates the covariance of the unknown 
desired signal with itself. For example, i f  the desired signal 
i s  amplitude modulated, then acceptable performance i s  
often obtained by setting the reference signal equal to 
the carrier. It is  also assumed that the reference signal is 
uncorrrelated with interfering signals in x. The fact that 
the direction of the desired signal does not need to be 
known is  a distinguishing feature of the reference signal 
approach. 

C. Maximization of Signal to Noise Ratio 

Here the weights are chosen to directly maximize the 
signal to noise ratio (SNR) as indicated in Table 4.1. A gen- 
eral solution for the weights requires knowledge of both 
the desired signal, R,, and noise, R,, covariance matrices. 
The attainability of this knowledge depends on the appli- 
cation. For example, in an active radar system R ,  can be 
estimated during the time that no signal is  being trans- 
mitted and R, can be obtained from knowledge of the 
transmitted pulse and direction of interest. If the signal 
component i s  narrowband, of frequency w ,  and direction 
8, then R, = c2d(0 ,w)dH(0 ,w)  from the results in Sec- 
tion II. In this case the weights are obtained as 

w = aRL’d(8, 0) (4.1) 

where the (Y is  some non-zero complex constant. Substi- 
tution of (4.1) into the SNR expression shows that the SNR 
is independent of the value chosen for a .  

D. Linearly Constrained Minimum Variance Beamforming 

In many applications none of the above approaches i s  
satisfactory. The desired signal may be of unknown 
strength and may always be present, resulting in signal 
cancellation with the MSC and preventing estimation of 
signal and noise covariance matrices in the maximum SNR 
processor. Lack of knowledge about the desired signal 
may prevent utilization of the reference signal approach. 
These limitations can be overcome through the applica- 
tion of linear constraints to the weight vector. Use of lin- 
ear constraints is  a very general approach that permits 
extensive control over the adapted response of  the 
beamformer. In this subsection we illustrate how linear 
constraints can be employed to control beamformer re- 
sponse, discuss the optimum linearly constrained beam- 
forming problem, and present the generalized sidelobe 
canceller structure. 

The basic idea behind linearly constrained minimum 
variance (LCMV) beamforming i s  to constrain the re- 
sponse of the beamformer so signals from the direction of 
interest are passed with specified gain and phase. The 
weights are chosen to minimize output variance or power 
subject to the response constraint. This has the effect of 
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preserving the desired signal while minimizing con- 
tributions to the output due to interfering signals and 
noise arriving from directions other than the direction of 
interest. The analogous FIR filter has the weights chosen 
to minimize the filter output power subject to the con- 
straint that the filter response to signals of frequency w o  
be unity. 

In Section II we saw that the beamformer response to a 
source at angle 8 and temporal frequency w i s  given by 
wHd(8, U ) .  Thus, by linearly constraining the weights to 
satisfy wHd(8, w )  = g, where g i s  a complex constant, we 
ensure that any signal from angle 0 and frequency U is 
passed to the output with response g. Minimization of 
contributions to the output from interference (signals not 
arriving from 6, with frequency w )  i s  accomplished by 
choosing the weights to minimize the expected value of 
output power or variance E{jyj2} = wHR,w. The LCMV 
problem for choosing the weights i s  thus written 

"2 w"R,w subject to dH(H,w)w = g*. (4.2) 

The method of Lagrange multipliers can be used to solve 
(4.2) resulting in 

R;'d( 8, U )  

d"(8, w)R['d(O, w )  
w = g* (4.3) 

Note that in practice the presence of uncorrelated noise 
will ensure that R, i s  invertible. If g = 1, then (4.3) is  often 
termed the minimum variance distortionless response 
(MVDR) beamformer. It can be shown that (4.3) is  equiva- 
lent to the maximum SNR solution given in (4.1) by substi- 
tuting cr2d(8,w)dH(6,,w) + R, for R, in (4.3) and applying 
the matrix inversion lemma. 

The single linear constraint in (4.2) is  easily generalized 
to multiple linear constraints for added control over the 
beampattern. For example, if there i s  a fixed interference 
source at a known direction 6, then it may be desirable to 
force zero gain in that direction in addition to maintaining 
the response g to the desired signal. This is expressed as 

(4.4) 

If there are L < N linear constraints on w, we write them 
in the form CHw = f where the N by L matrix C and L 
dimensional vector f are termed the constraint matrix and 
response vector. The constraints are assumed to be lin- 
early independent so C has rank L. The LCMV problem and 
solution with this more general constraint equation are 
given in Table 4.1. 

Constraint Design. Several different philosophies can 
be employed for choosing the constraint matrix and re- 
sponse vector. We discuss point (Kelly and Levin [19641), 
deriv&ive (Owsley [1973], Er and Cantoni [1983]), and ei- 
genvector (Buckley [1987]) constraints below. In many 
applications, a combination of the different types of con- 
straints is  most effective. Each linear constraint uses one 
degree of freedom in the weight vector so with L constraints 
there are only N - L degrees of freedom available for 
m i n irnizing variance. 

Point constraints fix the beamformer response at points 
of spatial direction and temporal frequency. Equation (4.4) 
represents an example of two point constraints on w. The 
number of points at which response can be constrained i s  
limited to N .  If N constraints are used then there are no 
degrees of freedom left for power minimization and a data 
independent beamformer i s  obtained. 

Derivative constraints are employed to influence re- 
sponse over a region of direction and/or frequency by 
forcing the derivatives of the beamformer response at 
some point of direction and frequency to be zero. They 
are usually employed in conjunction with point con- 
straints. An example where derivative constraints are use- 
ful is when the desired signal direction i s  only known 
approximately. If the signal arrives near the direction at 
which a point constraint i s  employed, then application of 
a derivative constraint at that point prevents the beam- 
former from synthesizing a response of zero to the de- 
sired signal. 

Eigenvector constraints are based on a least squares ap- 
proximation to the desired response and are typically used 
to control beamformer response over regions of direction 
and/or frequency. Constraining the beamformer response 
in a least squares sense ensures that the mean square error 
between desired and actual beamformer response over a 
region is minimized for a given number of constraints. In 
this sense eigenvector constraints are efficient. Consider 
designing a set of constraints which will control the beam- 
former response to a source from direction 8, over the 
frequency band [w , ,ub ] .  The dimension of the span of 
d(O,,w) over this band i s  approximately given by the 
source TBWP discussed in Section I I .  Eigenvector con- 
straints are derived from (3.1) by choosing P significantly 
greater than the TBWP. The w ,  then oversample [ua, w b l  
and A is ill-conditioned. A rank L approximation of A i s  
obtained from its singular value decomposition 

AL = VZ LUH (4.5) 

where XL i s  an L by 1. diagonal matrix containing the largest 
singular values of A, and the L columns of V and U are 
respectively the left and right singular vectors of A corre- 
sponding to these singular values. Replacing A in (3.1) by 
its rank L approximate (4.5) and bringing UC, to the right 
side (the pseudo inverse of U i s  U"), yields 

Equation (4.6) has the same form as the constraint equa- 
tion CHw = f .  The columns of V correspond to the eigen- 
vectors of AAH; hence the name eigenvector Constraints. 
(Note that AAH represents an approximation of R, in (2.9) 
if S ( w )  = 1.) 

Example. Fig. 4.2 depicts the response of an LCMV 
beamformer at eight equally spaced frequencies on the 
interval [ 2 ~ / 5 , 4 ~ / 5 1  when two interferers arrive from 
-17.5 and -5.75 degrees in the presence of white noise. 
The interferer power levels relative to the white noise are 
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icts the LCMV beamformer 

51 when two inter- 

151 and have powers of 40 

30 and 40 dB, respectively, and the interferers have a flat 
spectrum on [ 2 ~ / 5 , 4 ~ / 5 ] .  The array has sixteen linear 
equi-spaced sensors with five taps per sensor. The tap 
spacing i s  normalized to one second and the sensors are 
spaced at one-half wavelength corresponding to fre- 
quency 4 ~ / 5 .  The response is  constrained to pass signals 
arriving from 18 degrees in the band [ 2 ~ / 5 , 4 ~ / 5 ] ,  with 
unit gain and linear phase using ten eigenvector con- 
straints designed from (4.6). The effectiveness of the con- 
straints is  evident, since all the frequency curves pass 
through zero dB at 18 degrees. The response has nulls in 
the directions of the interferers with the deeper null corre- 
sponding to the stronger interferer. The response as a 
function of frequency for the interferer directions is  plot- 
ted in Fig. 6.2. The array gain is  50 dB for this example. 

Generalized Sidelobe Canceller. The generalized side- 
lobe canceller (GSC) represents an alternative formulation 
of the LCMV problem, which provides insight, is useful for 
analysis, and can simplify LCMV beamformer implementa- 
tion. It also illustrates the relationship between the MSC 
and LCMV beamforming. Essentially, the CSC is a mecha- 
nism for changing a constrained minimization problem 
into unconstrained form. Perhaps the first reference to 
this concept is  in Hanson and Lawson [19691, where a pro- 
cedure for transforming constrained least squares prob- 
lems to unconstrained least squares problems i s  given. 
Griffiths and Jim [I9821 applied the same concept to LCMV 
beamforming and coined the term GSC. Similar tech- 
niques were discussed in Applebaum and Chapman [1976]. 

Suppose we decompose the weight vector w into two 
orthogonal components w, and -v (w = wo - v) that lie 
in the range and null space of C, respectively. The range 
and null space of a matrix span the entire space so this 
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decomposition can be used to represent any w. Since 
CHv = 0, we must have 

WO = C(CHC)-’f (4.7) 

if w i s  to satisfy the constraints. (4.7) i s  the minimum L, 
norm solution to the underdetermined equivalent of (3.1). 
The vector v i s  a linear combination of the columns of an 
N by N-L matrix C,(v = C,w,) provided the columns of C, 
form a basis for the null space of C. C, can be obtained 
from C using any of several orthogonalization procedures 
such as Gram-Schmidt, QR decomposition, or singular 
value decomposition. The weight vector w = w, - Cnw,, 
is depicted in block diagram form in Fig. 4.3. The choice 
for w, and C, implies that w satisfies the constraints inde- 
pendent of wn and reduces the LCMV problem to the 
unconstrained problem 

Gnn[wo - CnwnIHRx[wo - Cnwn]. (4.8) 

The solution i s  

w, = (C!R,C,) -’C:R,w,. (4.9) 

Figure 4.3 The generalized sidelabe canceller (GSCI rep- 
beamformer in 

ned. I t  consists 
matrix, C,, and 

The primary implementation advantages of this alter- 
nate but equivalent formulation stem from the facts that 
the weights w, are unconstrained and a data independent 
beamformer w, is implemented as an integral part of the 
adaptive beamformer. The unconstrained nature of the 
adaptive weights permits much simpler adaptive algo- 
rithms to be employed and the data independent beam- 
former i s  useful in situations where adaptive signal 
cancellation occurs (see subsection E). 

As an example, assume the constraints are as given in 
(4.2). (4.7) implies w, = g*d(H, w)/[dH(8, w)d(O, w ) ] .  C, sat- 
isfies dH(8,w)C,, = 0 so each column [ C , , ] , ;  1 5 i 5 N-L, 
can be viewed as a data independent beamformer with a 
null in direction 0 at frequency w :  dH(8, w )  [C,,], = 0. Thus, 
a signal of frequency w and direction 8 arriving at the ar- 
ray will be blocked or nulled by the matrix c,, .  In general, 
if the constraints are designed to present a specified re- 
sponse to signals from a set of directions and frequencies, 
then the columns of C, will block those directions and 
frequencies. This characteristic has led to the term “block- 
ing matrix” for C,. These signals are only processed by wc, 
and since w, satisfies the constraints, they are presented 
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with the desired response independent of w,,. Signals 
from directions and frequencies over which the response 
i s  not constrained will pass through the upper branch in 
Fig. 4.3 with some response determined by w,. The lower 
branch chooses wn to estimate the signals at the output of 
w0 as a linear combination of the data at the output of the 
blocking matrix. This is similar to the operation of the MSC, 
in which weights are applied to the output of auxiliary 
sensors in order to estimate the primary channel output 
(see Fig. 4.1). 

E. Signal Cancellation in Statistically Optimum 
Beam forming. 

Optimum beamforming requires some knowledge of 
the desired signal characteristics, either its statistics (for 
maximum SNR or reference signal methods), its direction 
(for the MSC), or its response vector d(0, w )  (for the LCMV 
beamformer). If the required knowledge is  inaccurate, the 
optimum beamformer will attenuate the desired signal as 
i f  it were interterence. Cancellation of the desired signal i s  
often significant, especially if the SNR of the desired signal 
is large (Cox [1973]). Several approaches have been sug- 
gested to reduce this degradation (e.g., Jablon [19861, Cox 
et al. 119871). 

A second cause of signal cancellation i s  correlation be- 
tween the desired signal and one or more interference 
signals. This can result either from multipath propagation 
of a desired signal or from smart (correlated) jamming. 
When interference and desired signals are uncorrelated 
the beamformer attenuates interferers to minimize output 
power. However, with a correlated interferer the beam- 
former minimizes output power by processing the inter- 
fering signal in such a way as to cancel the desired signal. 
If the interferer is  partially correlated with the desired 
signal, then the beamformer will cancel the portion of the 
desired signal that i s  correlated with the interferer. Meth- 
ods for reducing signal cancellation due to correlated 
interference have been suggested (e.g., Widrow et al. 
[19821, Shan and Kailath [19851, Yang and Kaveh [19871). 

, ? - I :  I 1 
Figure 5.1 The standard adaptive filter configuration. 

V. ADAPTIVE ALGORITHMS FOR BEAMFORMING 

The optimum beamformer weight vector equations 
listed in Table 4.1 require knowledge of second order sta- 
tistics. These statistics are usually not known, but with the 
assumption of ergodicity, they (and therefore the opti- 
mum weights) can be estimated from available data. Sta- 
tistics may also change over time (e.g., due to moving 
interferers). To solve these problems, weights are typically 
determined by adaptive algorithms. 

There are two basic adaptive approaches: 1)  block adap- 
tation, where statistics are estimated from a temporal 
block of array data and used in an optimum weight equa- 
tion; and 2) continuous adaptation, where the weights are 
adjusted as the data i s  sampled such that the resulting 
weight vector sequence converges to the optimum solu- 
tion. If a nonstationary environment is anticipated, block 
adaptation can be used, provided that the weights are 
recomputed periodically. Adams, et al. [I9801 and others 

have described applications of block data processing. 
Continuous adaptation is  usually preferred when statistics 
are time-varying or (for computational reasons) when the 
number of adaptive weights M i s  moderate to large (values 
of M > 50 are not uncommon). 

Among notable adaptive algorithms proposed for 
beamforming are the Howells-Applebaum adaptive loop 
developed in the late 1950's and reported by Howells 
[1966,1976] and Applebaum [1966], and the Frost LCMV 
algorithm [19721. Rather than recapitulating adaptive algo- 
rithms for each optimum beamformer listed in Table 4.1 
(for this see texts by Monzingo and Miller [1980], Hudson 
[I9811 and Compton [1988]), we take a unifying approach 
using the standard adaptive filter problem illustrated in 
Fig. 5.1. 

I I 

1 K-1 

K k = U  
R, = - c u(k)u"(k) 
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and sample cross-covariance vector 

a 
V w M t k )  = - / ( W M )  

dWM WM wM(kl 

adaptive algorithm. The L M S  algorithm replac:s Ywu(kl  

wi th  the instantaneous gradient estimate V w , , ( k ,  = 

-2 [u (k )yd (k )  - u ( k ) u ” ( k ) w M ( k ) l .  Denoting y (k )  = yd(k)  - 
w % k ) u ( k ) ,  we have 

WM(k + 1) = WM(k) + p u ( k ) y * ( k ) .  (5.4) 

The gain constant p controls convergence characteristics 
of the random vector sequence w d k ) .  Table 5.1 provides 
guidelines for its selection. 

The primary virtue of the LMS algorithm is  its simplicity. 
Its performance is  acceptable in many applications; how- 
ever, its convergence characteristics depend on the shape 
of the error surface and therefore the eigenstructure of R,. 
When the eigenvalues are widely spread, convergence 
can be slow and other adaptive algorithms with better 
convergence characteristics should be considered. Alter- 
native procedures for searching the error surface have 
been proposed in addition to algorithms based on least- 
squares and Kalman filtering. Roughly speaking, these 
algorithms trade-off computational requirements with 
speed of convergence to wept. We refer you to texts on 
adaptive filtering for detailed descriptions and analysis 
(Widrow and Stearns 119851, Haykin [19861, Alexander 
[1986], Treichler et al. [1987], and others). 

One alternative to LMS is  the exponentially weighted 
recursive least squares (RLS) algorithm. At the Kth time 

Algorithm 
Initialization 

Update 

Equations 

Multiplies 
per update 

Performance 
Characteristics 

TABLE 5.1 
COMPAAJSON OF THE LMS AND RLS WEIGHT ADAPTATtON ALGORITHMS 

2M 

RLS 

WM(0) = 0 
P(0) = rll 

6 small, I identity matrix 

v(k) = P(k - I)u(k) 

k(k) = 1 f h-’uH(k)v(k) 
X-’v(k) 

a (k)  = y&) - wZ(k - l)u(k) 
W M ( ~ )  = w M ( ~  - I) + k(k)a*(k) 

P(k) = h-’P(k - 1) - A-‘k(k)vH(k) 

4M* f 4M + 2 

The w d k )  represents the least- 
squares solution at each instant 
k and are optimum in a deter- 
ministic sense. Convergence to 
the statistically optimum weight 
vector wept is often faster than 
that obtained using the LMS 
algorithm because it is inde- 
pendent of the eigenvalue 
spread of R,. 
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step, wM(K) i s  chosen to minimize a weighted sum of past 
squared errors 

K 

min AK-kIyd(k) - w%K)u(k)/'. (5.5) 
W M ( K )  k 0 

A i s  a positive constant less than one which determines 
how quickly previous data are deemphasized. The RLS 
algorithm is obtained from (5.5) by expanding the mag- 
nitude squared and applying the matrix inversion lemma. 
Table 5.1 summarizes both the L M S  and RLS algorithms. 

VI. INTERFERENCE CANCELLATION AND PARTIALLY 
ADAPTIVE BEAMFORMING 

The computational requirements of each update in 
adaptive algorithms are proportional to either the weight 
vector dimension M or dimension squared (M'). If M i s  
large, this requirement is  quite severe and for practical real 
time implementation it i s  often necessary to reduce M. 

The expression degrees o f  freedom refers to the num- 
ber of unconstrained or "free" weights in an imple- 
mentation. For example, an LCMV beamformer with L 
constraints on N weights has N-L degrees of freedom; the 
GSC implementation separates these as the unconstrained 
weight vector wn. There are M degrees of freedom in the 
structure of Fig. 5.1. A fully adaptive beamformer uses all 
available degrees of freedom and apartiallyadaptive beam- 
former uses a reduced set of degrees of freedom. Re- 
ducing degrees of  f reedom lowers computational 
requirements and often improves adaptive response 
time.' However, there is  a performance penalty associated 
with reducing degrees of freedom. A partially adaptive 
beamformer cannot converge to the same optimum solu- 
tion as the fully adaptive beamformer. The goal of partially 
adaptive beamformer design is  to reduce degrees of free- 
dom without significant degradation in performance. 

The discussion in this section is  general, applying to 
different types of beamformers although we borrow much 
of the notation from the GSC. We assume the beamformer 
i s  described by the adaptive structure of Fig. 5.1 where the 
desired signal yd i s  obtained as yd = w,"x and the data 
vector U as U = THx.  Thus, the beamformer output is  
y = wHx where w = wo - TwM. In order to distinguish be- 
tween fully and partially adaptive implementations we 
decompose T into a product of two matrices C,TM. The 
definition of C, depends on the particular beamformer 
and TM represents the mapping which reduces degrees of 
freedom. The MSC and GSC are obtained as special cases 
of this representation. In the M S C  wo i s  an N vector that 
selects the primary sensor, C, is an N by N-I matrix that 
selects the N-I possible auxiliary sensors from the com- 
plete set of N sensors, and TM i s  an N-I by M matrix that 
selects the M auxiliary sensors actually utilized. In terms of 

'Adaptive algorithm convergence characteristics have not been dis- 
cussed in this paper. Generally, more data are required to derive an 
accurate estimate of a larger optimum weight vector with block adap- 
tive processing or RLS [Reed et al., 19741. With LMS, convergence is 
governed by the covariance matrix eigenvalue spread, which tends to 
be larger for larger dimensional problems. 

the GSC, w, and C, are defined as in Section IV and TM i s  
an N-L by M matrix that reduces degrees of freedom 

This section begins by considering the interference 
cancellation process in these general beamformer imple- 
mentations. This develops the intuition required for under- 
standing why and how the number of adaptive weights can 
be reduced. We conclude this section by surveying differ- 
ent partially adaptive beamformer design philosophies. 

A. Interference Cancellation Vs Degrees of Freedom. 
The results in this subsection depend on T and are inde- 

pendent of the individual terms C, and TM. We assume 
that the beamformer does not cancel the desired signal 
(see Section 1V.E.) and that the optimum weights affect 
only interferers and uncorrelated noise. This simplifies 
the analysis by permitting us to exclude consideration of 
the desired signal. 

Suppose a narrowband interfering source of frequency 
w o  arrives at the array from direction 0, .  The response of 
the w, branch i s  g, = w,Hd(O,, w o ) .  Perfect cancellation of 
this source requires wHd(Ol,w,) = 0 so we must choose 
WM to satisfy 

WETHd(O,, wC1) = gi . (6.1) 

If we asume that THd(O,, w,) i s  nonzero, (6.1) represents a 
system of one equation in M unknowns (elements of wM) 
for which a solution always exists. To simultaneously can- 
cel a second interferer located at 0 2 ,  wM must satisfy 

(M < N-L). 

where g 2  = w,Hd(O,, w o ) .  Assuming THd(B,,  w o )  and 
THd(f12, U,) are linearly independent and nonzero, and 
provided M 2 2, then at least one whl exists that satisfies 
(6.2). Continuing this reasoning, we see that wM can be 
chosen to cancel M narrowband interferers (assuming the 
THd(O,, w,) are linearly independent and nonzero), inde- 
pendent of T. Total cancellation occurs i f  wM i s  chosen so 
the response of TwM perfectly matches the wo branch re- 
sponse to the interferers. 

So far we have only considered narrowband point inter- 
ferers. Uncorrelated noise will be present in any real sys- 
tem and contributes to the output power. In an optimum 
beamformer wM i s  chosen to minimize the overall output 
power. Recall that the output power due to uncorrelated 
noise is  proportional to the L2 norm squared of the overall 
weight vector w (white noise gain). The norm of w can 
become large when wM i s  chosen to provide total inter- 
ference cancellation, depending on the choice for T and 
the interferer locations. Thus, although in principle point 
sources of energy in direction and frequency can be totally 
canceled with one weight per interferer independent of T, 
the presence of uncorrelated noise results in the degree of 
cancellation being dependent on the mapping described 
by T. 

Now consider interferers that are spatial point sources 
but emit broadband energy on the band w a  5 w 5 wh. 
The response of the w, branch to an interferer at 0 ,  is  
w,Hd(e,, w )  = gl(w).  To achieve total cancellation wM must 
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be chosen to satisfy 

WzTHd(OT,W) = g i (w)  w a  5 w 5 w b .  (6.3a) 

Define the response of each column of T as 

f,(w) = [T]?d(O,,w) 1 5 i 5 M (6.3b) 

where [TI, denotes the ith column of T. (6.3a) requires 
gl (w)  to be expressed as a linear combination of the f,(w), 
1 5 i 5 M, on w ,  5 w 5 wb. In general, this cannot be 
accomplished and we conclude that total cancellation of 
broadband interference cannot be obtained. The output 
power due to the broadband interferer can be expressed 
as the integral over frequency of the magnitude squared of 
the difference between the wo branch and adaptive 
branch responses weighted by the interferer power spec- 
trum. The degree of cancellation can vary dramatically and 
i s  critically dependent on the interferer direction, fre- 
quency content, and choice for T. Good cancellation can 
be obtained in some situations when M = 1, while in oth- 
ers even large values of M result in poor cancellation. 
These conclusions are also valid for narrowband sources 
that are broad in direction (spatially distributed radiation). 

B.  Partially Adaptive Beamformer Design. 

The preceding discussion indicates that the degree of 
interference cancellation is critically dependent on the 
ability of the adaptive channel (TWM) to match the main 
beam response over the interferer frequency extent. This 
provides a means by which to evaluate partially adaptive 
beamformers. The majority of work reported on partially 
adaptive beamforming has been concerned with narrow- 
band environments. We begin with a discussion of several 
narrowband approaches and briefly discuss their ex- 
tension to broadband situations. We then consider 
techniques that are directly applicable to broadband situ- 
ations. Some techniques select Thl for a given C ,  while 
others select T directly.2 

Several approaches to reducing degrees of freedom are 
based on processing a subset of the outputs of the matrix 
C , .  This implies that TM i s  a sparse matrix of zeros and 
ones. The outputs of C ,  in the MSC are simply auxiliary 
sensor outputs. Morgan [I9781 evaluated partially adaptive 
beamformer performance when TM selected various sub- 
sets of the auxiliary outputs. This i s  termed an element 
space approach, since a subset of the sensor element out- 
puts i s  utilized. Several investigators, including Vural 
[19771, Adams, et al. [19801, and Gabriel [1986al have con- 
sidered choosing the columns of T to form beams. This is 
traditionally termed a beam space approach. The columns 
of C,,  are designed as data independent beamformers, 
each steered to a different direction, and TM can be used 
to select a subset of the beam outputs. The objective i s  to 
direct a beam at each interfering source so that it can be 
subtracted from the output of thew, branch. One way to 

'In principle one can generate auxiliary constraints in an LCMV 
beamformer to reduce the number of adaptive weights in a GSC 
implementation (Griffiths (19871). Here we assume all constraints are 
already specified in partially adaptive LCMV beamforming. 

accomplish this i s  by selecting enough beams to cover al l  
possible directions from which interferers might arrive. 
Another is  to utilize source direction finding techniques to 
select which beams correspond to estimated interferer 
directions. The biggest advantage of the element space 
approach i s  the simplicity of implementation. Improved 
performance obtained using beam space processing i s  es- 
pecially evident for interference due to either spatially 
distributed sources or sources with appreciable temporal 
bandwidth. However, this improvement i s  obtained at the 
expense of implementing the required beams. 

Chapman 119761 and Owsley [I9781 have considered 
choosing the columns of T to select subarrays, i.e., each 
column involves only a subset of the sensors in the array. 
The weightings applied to each subarray (elements of T) 
can be chosen in various ways, one of which i s  to use the 
subarray to form a beam. Performance depends on the 
number of sensors in each subarray, which sensors are 
used in each subarray, and the weightings used to com- 
bine the sensor outputs in each subarray. Note that each 
column of T will have zeros in locations corresponding to 
sensors excluded from that subarray, so the overall T i s  of 
sparse structure. 

Owsley [I9851 suggests a narrowband method for the 
GSC in which the columns of TM are chosen as a basis for 
the space spanned by the fully adaptive weight vectors. 
The dimension of this space is  given by the rank of the 
spatially correlated component of the interference co- 
variance matrix. Van Veen [1988a] extended this approach 
to the broadband case. The dimension of the fully adap- 
tive space can be large in this case since it i s  given by the 
rank of the correlated components of the broadband in- 
terference covariance matrix. 

The above approaches are capable of satisfactory per- 
formance with narrowband interference since cancella- 
tion requires about one degree of freedom per interferer 
to match the main beam response at each interferer direc- 
tion. However, with broadband interference the main 
beam response must be matched over a range of fre- 
quency at each interferer direction. Although the narrow- 
band approaches can be extended, it is difficult to do this 
and keep the number of adaptive weights M small. For 
example, several banks of beams could be designed to 
span the range of directions, with each bank operating at 
different frequency. The problem is  that the number of 
beams required can become large as the frequency band- 
width increases. We seek aT that i s  efficient, i.e., provides 
good cancellation with a minimum of columns. 

Van Veen and Roberts [1987a] have considered an opti- 
mization based approach for choosing the columns of T in 
the context of LCMV beamforming. The matrix C, ,  i s  de- 
signed to meet the constraints, reducing the problem to 
an unconstrained optimization over the elements of TU. 
TM i s  chosen to minimize the average interference output 
power over a range of likely interference environments. 
Let a vector (Y parameterize the interference environment 
of interest. In general a can represent interferer loca- 
tions, power levels, spectral distributions, numbers of in- 
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terferers, etc. Defining PI(@) as the interference output 
power, TM i s  chosen according to 

min 1, Pl(a) d a  (6.4) 

where [a,, (Yb] denotes the set of interference scenarios of 
interest. Since output power corresponds to the error be- 
tween the w, branch and adaptive channel responses, in 
effect (6.4) selects TM to provide the best response match 
possible for interference environments in [aa ,  ab ] .  

Equation (6.4) represents a design problem that is  
nonlinear in the design parameters (elements of TM). A 
suboptimal approach to solving (6.4), in which TM i s  se- 
quentiallydesigned one column at a time, has been shown 
to be effective in achieving near fully adaptive interference 
cancellation using a small adaptive dimension. The prob- 
lem i s  still nonlinear; however an effective approximate 
solution is  obtained by solving a linear least squares prob- 
lem. An interpretation of this approximate solution i s  
given in Van Veen [1988b]. 

Fig. 6.1 illustrates the magnitude response at several 
frequencies for a partially adaptive beamformer designed 
using this approach for the same interference environ- 
ment and array geometry as the fully adaptive example 
in Section IV (see Fig. 4.2). The partially adaptive beam- 
former has 28 adaptive weights compared to 70 for the 
fully adaptive beamformer. Fig. 6.2 compares the magni- 
tude response of the fully and partially adaptive beam- 
formers as a function of frequency at the interferer DOA's. 
TM i s  designed assuming (Y is  a two-dimensional vector 
with each element corresponding to the DOA of an inter- 
ferer. Both interferers have white spectra on 2 ~ / 5  s o s 
4 ~ / 5  and power levels of 40 dB relative to white noise. The 

TM a 

WA 1n degrees 

o t  depicts the magnitude response of 
beamformer designed to  minimize av- 
r a t  eight frequencies on the normal- 

Val [2n/5,4s/51. The beamformer 
ights and was designed assuming 

power 40 dB relative to  white noise 
-45 and 45 degrees. The actual inter- 

nt,  constraints, and array geometry 
ig. 4.2. Note that the beamformer of 

Figure 6.2 This plot gnitude response of 
the partially and fully formers correspond- 

on of frequency a t  the 

I 
region [a,,abl includes all DOA's between -45 and 
45 degrees. Partially and fully adaptive array gain was 
evaluated at 190 points in this region; the maximum dif- 
ference between partially adaptive and fully adaptive 
array gain was 2.4 dB and the average .7 dB for this par- 
ticular design. 

VII. BEAMFORMER IMPLEMENTATIONS 

In its simplest form, a beamformer represents a linear 
combination of the sensor data. However, there are many 
different ways of implementing the weighted sum, each 
with its own performance and complexity characteristics. 
The section begins by introducing a general description 
for implementations and then briefly overviews several 
beamformer implementations. For additional detail the 
reader i s  encouraged to consult the references given in 
this section. 

In essence, most implementations can be represented 
by decomposing w into a product of matrices and a vector 

w = nv, w,. (7.1 1 
[iy, 

V,, 1 5 i 5 v,, are a series of matrix transformations of 
conformable dimensions and wv i s  a vector. As a general 
rule, the matrix transformations are chosen to enhance 
performance and/or lower computational complexity. The 
FFT implementation of the DFT is  analogous to (7.1), since 
the DFT matrix can be expressed as a product of permuta- 
tion and butterfly matrices, representing a series of very 
simple computations. The GSC is an example of (7.1) where 
v, = 1, V, = [w,/C,], and w, = [1,w,HIH. VI simplifies 
adaptive algorithm implementation by permitting uncon- 
strained adaptation of wn. In order to simplify multiplica- 
tion of the data by w, and C,, several researchers have 
studied decomposition of [w, IC,] into products of simple 
matrices (e.g., Kalson and Yao [I9851 and Ward, et al. [19861). 
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As discussed in Section II, broadband beamforming can 
be performed in the frequency domain or time domain. 
The weights used to obtain the outputs at each frequency 
for the frequency domain beamformer depicted in Fig. 2.4 
are easily represented in terms of (7.1) by employing the 
matrix representation of the DFT. Frequency domain opti- 
mum beamformers usually choose the weights at each 
frequency based solely on the data at the frequency. This 
partitioning of the data influences both performance and 
computational complexity. Discussion and evaluation of 
frequency domain beamforming is  given in Owsley [1985], 
Vural [1977], and Gabriel [1986bl. 

Systolic implementations of optimum beamformers 
have been studied by a number of investigators. They are 
usually designed to both compute and implement the 
adaptive weights. In general, systolic implementations 
can be described in terms of (7.1) where each V, has a 
structure amenable to parallel computation and local com- 
munication. McWhirter [I9831 (see also Haykin [I9861 
ch. I O )  has developed a systolic array that computes the 
beamformer output without explicit computation of the 
adaptive weight vector. Additional references to systolic 
implementations include Schreiber and Kuekes [1985], 
Ward, et al. [19861, Owsley 119871, and Van Veen and 
Roberts [1987bl. 

The study of beamformer implementations is  an evolv- 
ing research area. Future developments will result from 
advances in VLSl and parallel computing technologies. 

VIII. S U M M A R Y  

A beamformer forms a scalar output signal as a weighted 
combination of the data received at an array of sensors. 
The weights determine the spatial filtering characteristics 
of the beamformer and enable separation of signals having 
overlapping frequency content if they originate from 
different locations. The weights in a data independent 
beamformer are chosen to provide a fixed response inde- 
pendent of the received data. Statistically optimum beam- 
formers select the weights to optimize the beamformer 
response based on the statistics of the data. The data sta- 
tistics are often unknown and may change with time so 
adaptive algorithms are used to obtain weights that con- 
verge to the statistically optimum solution. Computational 
considerations dictate the use of partially adaptive beam- 
formers with arrays cornposed of large numbers of sen- 
sors. Many different approaches have been proposed for 
implementing optimum beamformers. Future work will 
likely address signal cancellation problems, further reduc- 
tions in computational load for large arrays and improved 
structures for implementation. Beamforming truly repre- 
sents a versatile approach to spatial filtering. 
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