\bigcirc 1

IN THE NAME OF GOD

BEAM-FORMING

2

ZAHRA NAGHSH

JULY 2009

CONTENT

3

- Introduction
- Smart antenna and SDR
- Several beam-forming methods
- Adaptive beam-forming algorithms
- summery

INTRODUCTION

• Growing the demand for wireless mobile communications services at an explosive rate

+

• Limited available frequency spectrum

SULUTION?

INTRODUCTION...

5

Smart antenna

An array of antennas

Array signal processing

Diversity combining

Beam-forming

Increasing the reliability & capacity of the system

INTRODUCTION ...

6

• Smart the ability of the antenna to adapt itself to different signal environments through the use of different algorithms.

INTRODUCTION ...

7

• Exp: smart antenna in a nonstationary environment

Signal processing algorithms ²

dynamic

Position of the desired source 4

Beam-forming algorithms

Forming the beam in the direction of the source

INTRODUCTION...

Beam-forming

Spatial filtering

Several users can use the same frequency channel at the same time

INTRODUCTION...

9

• Smart antenna was first used about 40 years ago in RADAR applications.

• The first issue of IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, published in **1964**.

CONTENT

- Introduction
- Smart antenna and SDR
- Several beam-forming methods
- Essential signal-processing algorithms
- Adaptive beam-forming algorithms
- summery

SMART ANTENNA AND SDR

- Smart antenna and SDR complement each other.
 - Smart antenna help software radio to adapt to different protocols, systems, channel conditions and ... trough the use of signal processing algorithms to either **combine** the received signals in an optimum manner or **beam-forming** .
 - Implementation of smart antenna algorithms require software and flexibility in hardware that is provided by software radios.

CONTENT

- Introduction
- Smart antenna and SDR
- Several beam-forming methods
- Essential signal-processing algorithms
- Adaptive beam-forming algorithms
- summery

- Terminology and signal model:
 - An array of L omnidirectional elements in the far field of M uncorrelated sinusoidal point sources of frequency f_0 narrow band beam-forming
 - The time taken by a plane wave arriving from the i th source in direction (φ_i, θ_i) and measured from the l th element to the origin is $\tau_l(\varphi_i, \theta_i)$.

 (φ_0, θ_0) :Look direction

$$s_{-0} = [\exp(j2\pi f_0 \tau_1(\varphi_0, \theta_0)), ..., \exp(j2\pi f_0 \tau_l(\varphi_0, \theta_0))]$$

Narrow-band beam-former structure

$$w = [w_1, w_2, ..., w_L]^T$$

$$x(t) = [x_1(t), x_2(t), ..., x_L(t)]^T$$

$$y(t) = w^{H} x(t) = \sum_{l=1}^{L} w_{l}^{*} x_{l}(t)$$

• $x(t) \rightarrow$ zero mean stationary process

• The mean output power of the processor is:

$$P(w) = E[y(t)y^{*}(t)] = w^{H} R w$$

Where \mathbf{R} is the array correlation matrix:

$$R = E[x(t) x^{H}(t)]$$

 R_{ij} : correlation between i th and j th element.

Conventional (delay and sum) beam-former

Two-element delay and sum beam-former structure

- Null-steering Beam-Former :
 - Goal:

Producing a null in the response pattern in a response pattern in a known direction

Cancelling the plane wave arriving from that direction

- Limitations of null-steering beam-former :
 - It requires knowledge of the directions of interferers.
 - It does not maximize the output **SNR**.

The **optimal beam-forming** overcome these limitations.

- Optimal Beam-Forming (in the sense of output SINR):
 - Optimal beam-former solves the following optimization problem :

$$\min_{w} \quad w^{H} R \quad w$$

subject to
$$w^H s = 1$$

Where $w^H R$ w is the mean output power.

Minimizing the total output power while maintaining the desired signal power in the output equal to the desired source power

Maximizing the output **SINR**

• An increase of a few decibels in the output SNR can make a significant increase in the channel capacity of the system possible.

Main beam

Weighted sum of secondary beams

- Other beam-formers
 - Broad- band beam-formers
 - Frequency-domain beam-former
 - •

CONTENT

- Introduction
- Smart antenna and SDR
- Several beam-forming methods
- Essential signal-processing algorithms
- Adaptive beam-forming algorithms
- summery

• Adaptive Algorithms :

• To calculate the optimal weights (in different senses) we usually need the correlation matrix \mathbf{R} .

For example in optimal beam-former the solution of the optimization problem is : \mathbf{p}^{-1}

$$\stackrel{\wedge}{w} = \frac{R^{-1} S}{S^{H} R^{-1} S}_{-0}$$

 \triangleright However, in practice **R** is not available.

The weights are **adjusted** using available information derived from the array output, array signals and so on to make an **estimate** of the optimal weights.

There are many such schemes, which are normally referred to **adaptive algorithms**.

• LMS Algorithm (unconstrained):

• Reference signal:

For some applications, enough may be known about the desired signal (arriving from the look direction) to generate an appropriate **reference signal**.

The weights are chosen to minimize the mean square error between the beam-former output and the reference signal.

• For example, if the desired signal is amplitude modulated, then acceptable performance is often obtained by setting the reference signal equal to the carrier.

• In the unconstrained LMS algorithm reference signal is used.

31

In this algorithm:

$$w(n+1) = w(n) - \mu g(w(n))$$

Where:

w(n+1): new weights computed at the (n+1) th iteration

 μ : a positive scalar (gradient step size)

g(w(n)): an estimate of the gradient of the **MSE** between the beam-former output and the reference signal

Estimated weights

Mean= E[w(n)]

Covariance -

$$E[(w(n)-w)(w(n)-w)^{T}]$$

- The algorithm updates the weights at each iteration by estimating the gradient of the MSE surface and then moving the weights in the negative direction of the gradient by a small amount (μ) .
 - μ should be small enough for **convergence** of the algorithm to the optimum weights .

(convergence : convergence the mean of the estimated weights to the optimal weights)

34

Convergence speed :

The speed by which the mean of the estimated weights (ensemble average of many trials) approaches the optimal weights.

• The larger the eigenvalue spread of the correlation matrix **R**, the longer it takes for the algorithm to converge.

35

• The availability of time for an algorithm to converge for mobile communications depends on:

1-System design the duration that the user signal is present (e.g. User slot duration in a TDMA system)

2-The rate of the fading :

The higher the rate at which the signal fades algorithm needs to converge faster

36

• Even when the **mean** of the estimated weights converges to the optimal weights, they have finite **covariance**.

The average **MSE** is more than **MMSE**

Misadjustment = (average excess MSE) /MMSE

Misadjustment the size of the region that weights wandering around it after the convergence.

• Increasing μ increases the misadjustment.

• An increase in μ causes the algorithm to converge faster.

We have a **trade off** in the selection of the **gradient step size** μ

38

• This trade off is between:

1-Reaching vicinity of the solution point more quickly but wandering around over a larger region and causing a bigger misadjustment.

2-Arriving near the solution point slowly with the smaller movement in the weights at the end.

- We select μ based on the following considerations :
- The mentioned trade off
- Being small enough for convergence
- Application and requirements

CONTENT

- Introduction
- Smart antenna and SDR
- Several beam-forming methods
- Essential signal-processing algorithms
- Adaptive beam-forming algorithms
- summery

SUMMARY

- ✓ Smart antenna
 - Beam-forming
 - Diversity combining
 - •
- ✓ Smart antenna and SDR
- ✓ Different beam-formers
 - Delay and sum beam-former

SUMMARY

- Null-steering beam-former
- Optimal beam-former
 - Correlation matrix **R** is required
- > **R** is not available in practice

- Adaptive algorithms
 - LMS algorithm
 - Trade off in selecting step size

QUESTIONS?

THANKS FOR YOUR ATTENTION