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Abstract

Software-Defined Radio (SDR) allows the signal pro-
cessing components of a wireless device to be im-
plemented in a reconfigurable processor. Recent re-
search has focused on using general-purpose pro-
cessors (GPPs) for performing signal processing in
SDRs. While older GPPs lacked the processing
power required for implementing many of the mod-
ern, commercial, digital waveforms, newer GPPs offer
promise.

In this paper, we explore Single Instruction Multi-
ple Data (SIMD) components of the x86, PowerPC,
and Cell Broadband Engine (CBE) processors. We
also explore the multiprocessing capabilities of the
CBE, and its impact on improving the performance
of GNU Radio.

1 Introduction

Currently, in order to support high-complexity, high-
bandwidth signals, e.g. digital waveforms with signal
bandwidths greater than 3 MHz, typically a Field
Programmable Gate Array (FPGA) or Digital Sig-
nal Processor (DSP) is required [1, 2, 3]. General
Purpose Processors (GPPs) simply do not have the
needed processing power. Unfortunately, it is gen-
erally more difficult to develop signal processing al-
gorithms for FPGAs and DSPs, and even more dif-
ficult to perform rapid reconfiguration at run-time.
However, by taking advantage of vector processors
built into GPPs, we can improve performance. Two
key examples of this are the SSE instructions for x86
processors and the Altivec instructions for PowerPC
processors.

In this work, we focus on an even higher-
performing GPP platform: the IBM Cell Broadband
Engine (CBE). The CBE contains a PowerPC pro-
cessor supporting the Altivec extensions, along with
eight Synergistic Processing Elements (SPEs). The

SPEs are single-instruction, multiple-data (SIMD)
processors capable of performing vector operations
in a single clock cycle. The PowerPC and SPEs are
all connected to high-speed memory and I/O via the
Element Interconnect Bus (EIB).

Recently work has begun to port the GNU Radio
SDR to the CBE, and compile critical signal process-
ing components for the SPEs. In this paper we ex-
amine various architectures for distributing a single
processing flow graph across a multi-processor (MP)
environment. We look at tradeoffs between pipelin-
ing and random access scheduling approaches to uti-
lizing the SPEs. We outline change to the GNU Ra-
dio engine necessary to support MP, and architec-
tures for threading a single-threaded processing en-
gine. We describe the design of a general-purpose
process scheduler constructed for the CBE to support
tasking jobs to the SPEs. Lastly, we present perfor-
mance figures for an implementation of the proposed
algorithms, and show order-of-magnitude increases in
signal processing performance.

The remainder of the paper is organized as follows.
Section 2 discusses vector-based processing, in par-
ticular the SIMD capabilities of the x86, PowerPC,
and CBE. Section 3 describes various multiprocessing
approaches, and their relation to the CBE environ-
ment. Section 4 discusses GNU Radio’s support for
these SIMD and MP processors. Section 5 examines
possibilities for future work and concludes.

2 Vector-Based Processing

During the late 1990’s, an ever increasing demand for
numerical processing in rendering graphics, multime-
dia processing, and physical modeling engines pres-
sured personal computing processors to satisfy the
need for repetitive computation on data arrays. Vec-
tor operations, specifically those which require a pro-
cessor to repeat a given basic operation for an entire
array of data, are common in signal processing algo-



rithms.

To accomplish vectorized operations on ordinary
GPPs, single-instruction processors must resort to
software loops in which only single calculations are
performed per processor instruction. Since each it-
eration of such a loop performs the same operation
on each element of input data, the operation may
be parallelized at the instruction level using SIMD
operations. SIMD instructions allow a processor to
engage multiple execution units simultaneously and
to produce a greater number of output elements per
clock cycle. The term vector instruction often applies
to a SIMD instruction since each SIMD instruction
may load, process, and store multiple scalar integer,
fixed-point, or floating point items in a single clock
cycle.

Historically, SIMD instruction sets existed only
for supercomputing platforms, but commercial pro-
cessor manufactures have taken strides to bring the
SIMD model for parallelization to commodity de-
vices through a combination of software and hard-
ware innovations. Instruction sets used for the x86
and PowerPC architectures have benefitted from in-
creased vector processing capabilities over recent
years. Starting with MMX, the first SIMD instruc-
tion set introduced for the x86 architecture, this plat-
form evolved over time to include the SSE (Streaming
SIMD Extensions), SSE2, and SSSE3 instruction sets
from Intel, while rival manufacture AMD introduced
similar extensions under the 3DNow! trademark.

The IBM PowerPC architecture received a simi-
lar SIMD upgrade through the Altivec instruction
set. Graphics Processor Units (GPUs) have, for some
time, offered a hardware-based engine for SIMD par-
allelization, and manufacturers have begun to tune
these units for use as general-purpose coprocessors,
completing the package with documented software in-
terfaces to the devices. The CBE offers an Altivec-
enabled primary processor as well as a number of sub-
processors able to execute Altivec-like instructions.

With the addition of SIMD capabilities to common
personal computing platforms, GPPs have become in-
creasingly able to compete with DSPs, making real-
time signal processing on GPP hardware a viable con-
sideration. The ease of programming and reconfigur-
ing programs for GPPs makes advancements in the
vector processing capabilities of these platforms no-
table. Unfortunately, the addition of SIMD instruc-
tions can complicate the interface between the pro-
grammer and the GPP. While version 3.x of the GNU
C Compiler (GCC) included support for SIMD in-
structions, upgrading compilers and interpreters to
make use effectively of SIMD instructions remains
a difficult, uncompleted task. Ultimately, we want

for compilers automatically to identify vectorizing
opportunities and to translate from high-level code
to SIMD instruction where appropriate. In order to
achieve this task, a language compiler or interpreter
must analyze software loop structures and loop un-
rolling, both complicated processes. GCC did not
support auto-vectorization until version 4.x, and the
results have proved limited. Currently, programmers
seeking to reap the full benefits of SIMD instructions
often resort to hand-coded, assembly language pro-
graming for select routines to achieve peak perfor-
mance.

2.1 x86 and PowerPC SIMD Support

Initial SIMD instruction sets for the x86 architec-
ture, namely Intel MMX and AMD 3DNow!, proved
to be of limited value in signal processing applica-
tions. MMX aliased existing Floating Point Unit
(FPU) registers rather than adding new registers and
limited vectorization to 64-bit integer operations al-
lowing for configurations of 2 32-bit scalar integers, 4
16-bit scalar integers, or 8 8-bit scalar integer paral-
lelization. Additionally, since the ALU and the FPU
shared registers, only one functional unit could oper-
ate at a given time, requiring expensive mode switch-
ing operations. 3DNow!, similar to MMX in imple-
mentation, featured highly valuable floating-point ca-
pabilities. These original SIMD extensions featured
only vectorized versions of traditional basic arith-
metic and logic, a further limitation [4].

SSE, the second generation of SIMD extensions for
the x86 architecture, fixed many shortcomings of the
first-generation. This implementation introduced 8
new physical vector registers (16 for the Intel64 and
AMD64 versions) and extended the size of the regis-
ters from 64 to 128-bits. The first SSE implementa-
tions could not issue both SSE and FPU instructions
in the same clock cycle (known as dual-issue), but
they did allow for mixed SSE/FPU instructions with-
out the expensive performance hit of earlier genera-
tions. In addition to supporting vectorized versions
of basic arithmetic and logic operations, SSE added
cache access optimization instructions and advanced
floating-point instructions for mathematic reciprocal,
square root, reciprocal square root, min, and max,
which are of great use in signal processing algorithms
[5].

Initially, the SIMD operation sets from Intel and
AMD worked exclusively with hardware from the re-
spective manufacturer, but AMD has since adopted
the SSE family of instructions for their hardware.
Each SIMD extension adds to the capabilities of prior
releases, and old instruction sets continue to work.



The second edition of SSE, named SSE2 by Intel,
featured improvements to existing instructions and
finer cache control. SSE3 and SSSE3 featured in-
structions to address many byte-alignment difficulties
when using SIMD instructions, horizontal arithmetic
operations, and primitive assistance for the manip-
ulation of complex numbers. Recently, Intel has re-
leased specifications for an SSE4 version. Planned
improvements include instructions for performing dot
product and absolute difference operations [6].

Concurrent with the rise of the SSE family of SIMD
instructions on the x86 platform came the develop-
ment of Altivec instructions for the PowerPC archi-
tecture. In terms of evaluating different platforms
for use with SDR projects, Altivec instructions oper-
ate in a manner more or less equivalent to SSE in-
structions, but we consider some of the more notable
differences.

Architectures supporting Altivec make available 32
128-bit registers for vector manipulation as opposed
to eight such registers. Altivec commands include
fairly broad support for horizontal arithmetic, and
among the primitives we find a dot product, in ad-
dition to the usual reciprocal and reciprocal square
root estimations, min, and max. In addition, Altivec
supports a byte-shuffling routine with a wide array
of uses from managing alignment issues to facilitat-
ing complex multiply routines.

Apple’s replacement of PowerPC with x86
prompted migration from Altivec to SSE instructions,
and this migration in turn prompted comparisons be-
tween the platforms. At the time of Apple’s con-
version in 2005, Altivec running on a G5 processor
outperformed SSE3 running on a Xeon 3.4GHz pro-
cessor [7]. The benchmarks used for this compari-
son rely heavily on many aspects of hardware, not
just those directly related to SIMD instruction sets.
Moreover, hardware has evolved since 2005, and we
hesitate to take this comparison as evidence for the
natural superiority of Altivec-enabled architectures
in the present day. The CBE features a PowerPC
processor equipped with Altivec instructions [8, 9].

2.2 General Purpose Computation on

GPU

The x86 and Altivec families of instruction sets rep-
resent productive efforts on the part of industry
to squeeze vector-based performance from general-
purpose architectures, but the design of these ar-
chitectures limits their use as a SIMD program-
ming platform. Graphics processing demands, on the
other hand, have yielded GPU architectures tuned to
achieving high bandwidth SIMD parallelism at the

Figure 1: Performance achieved for FFT implemen-
tation on a GPU, as a function of the FFT length
[10]

expense of the low-latency performance a CPU must
offer. Both AMD and NVIDIA have taken strides
to unhinge the compute power of their GPU prod-
ucts from the specific tasks of physics engine compu-
tations, rasterization, and pixel shading. The AMD
Close To Metal (CTM) approach provides an applica-
tion binary interface and an assembly instruction set
to the developer but provides no interface to a high
level programming language such as C. The NVIDIA
Compute Unified Device Architecture (CUDA) pro-
vides a C interface to the hardware, but debilitates
performance tuning by keeping the assembly instruc-
tions under lock and key. Their results offer flexible
DSP horsepower in a commodity computing package,
but certain disadvantages apply.

We look closely into the NVIDIA CUDA hardware
in order to understand the potential benefits and ob-
stacles to using GPUs as DSPs. NVIDIA organizes
as many as 128 processors into groups of eight, each
group forming a multiprocessor. Each processor op-
erates at the GPU clock speed, current models fea-
turing clock speeds of no more than 650MHz. An
instruction unit feeds each processor within a multi-
processor identical commands for execution. A mul-
tiprocessor features 8192 32-bit registers and the pro-
cessors can perform floating or fixed-point operations
on these registers.

Processors draw data from a complicated mem-
ory hierarchy. Each multiprocessor hosts 16KB of
low-latency, on-chip shared memory. Though limited
in size, this memory allows for data sharing among
processors of the same multiprocessing unit with-
out cache coherency issues and without performance-
throttling load and store times from off-chip mem-
ory. In addition, each multiprocessor owns an 8KB
set of cached shading memory and another 8KB set
of cached constant memory. The remainder of the



device memory comprises uncached global memory
and uncached memory local to each multiprocessor.
Data passed between the GPU coprocessor and the
host processor must traverse a PCI express connec-
tion rated at a maximum of 31.25Gb/s [11, 10].

The architecture promises high theoretical perfor-
mance for many algorithms associated with signal
processing. The CUDA approach hard-wired sup-
port for highly parallelizable algorithms with little
data dependencies between threads. Input data must
fit in shared memory in order to achieve full effect,
and data-sharing across multiprocessors must occur
minimally. Processes bound by I/O stand to take a
performance hit, as data flow from the host processor
to the GPU coprocessor involves significant overhead.

To examine the potential performance of the
CUDA architecture, we consider the discrete Fourier
transform (DFT), a workhorse operation common to
almost every signal processing project. The Cooley-
Turey algorithm for DFT computation in O(n log n)
time shows a method for parallelizing the operation
into as many as n/2 threads, where n is the resolu-
tion, or number of points, in the DFT output. Sizes
of input vectors to the DFT operation commonly
fall well below the 16KB threshold when perform-
ing real-time signal analysis. Preliminary experimen-
tation from The National Radio Astronomy Obser-
vatory suggests NVIDIA’s proprietary CUFFT func-
tion running on the GeForce 8800 GTX clocks nearly
identically to FFTW running on an Intel Core 2
Quad at 2.4GHz with input sizes up to 16384, achiev-
ing around 6 Gflop/s for an input size of 2048 [10].
This performance benchmark takes into account data
transfer times. These numbers represent an apprecia-
ble win for the GPU. Theoretically, the GPU could
perform up to 16 DFT computations of size 2048 si-
multaneously in the same time the host CPU could
compute a single pass through the same algorithm,
and the host CPU could focus on less parallelizable
tasks while the coprocessor executes.

Despite the obvious strengths of the GPU as a co-
processor, not every process in an SDR flow graph
would map well to architecture like CUDA. By ty-
ing multiple processors to a single instruction unit,
the CUDA design greatly complicates branching and
branch prediction. Since data differs from proces-
sor to processor, code with branches can force dif-
ferent processors down different execution paths. A
program executed in parallel on a multiprocessor
must run to completion on each thread in order for
the program to free the associated processors, so a
missed prediction in one thread slows completion for
all threads. In an architecture allowing each thread
to maintain its own instruction code, branch predic-

tion can save on clock stalls whenever that predic-
tion proves correct more than half the time. If eight
processors share the same instruction code, a branch
prediction can improve performance only if it proves
correct more than 7/8 of the time. Additionally, with
the GPU running at a slower clock speed, any code
requiring low-latency execution would probably meet
with greater success on a host processor than on a
GPU coprocessor.

Longer, more complicated SDR code passages
might involve more branches, might contain seg-
ments requiring low-latency execution, and might in-
volve non-parallelizable subroutines. All these fac-
tors suggest the GPU might lend itself better to fine-
granularity parallelism restricting the use of the co-
processor to low-level routines more than to coarser
models stringing subroutines into larger programs.

2.3 The Synergistic Processing Ele-

ment

The CBE utilizes SIMD processing in a manner sim-
ilar to the PowerPC Altivec and x86 SSE models.
Each SPE includes 256KB of low-latency local store
memory. For each of 128 128-bit registers available
to a SPE, load and store operations from local store
require 6 cycles at a clock speed of 3.2 GHz. Regis-
ters 128 bits in length offer the opportunity to vec-
torize four 32-bit operations per clock tick, and the
assembly instruction set implements this vectoriza-
tion. Some valuable SIMD instructions available to
the SPE include a reciprocal estimator and a recip-
rocal square root estimator, an element-wise averag-
ing instruction and an absolute difference instruction.
The SPE also preserves the Altivec byte-shuffle prim-
itive. Notably missing is support for primitives using
horizontal arithmetic such as min, max, and multiply-
accumulate.

Compared to the massive parallelization of the
GPU, the 128-bit-at-a-time SIMD operations of the
SPE appear paltry, but the SPE competes through
different means. Meanwhile, the SPE matches the
128-bit vectorized performance of SSE and Altivec
instructions but offers some architectural differences,
both good and bad. Unlike the x86 and PowerPC
platforms, each SPE is a true dual pipeline archi-
tecture with load, store, and shuffle instructions in
one pipeline, and arithmetic instructions in the other.
Well-ordered code can take advantage of this archi-
tecture to execute two instructions with every clock
tick, effectively doubling the theoretical processing
power of the SPE as compared to commodity GPPs.
In terms of branch prediction, the SPE offers no hard-
ware support. On the other hand, the SPE does sup-



port limited static branch prediction through soft-
ware. This branch-prediction utility involves much
more overhead for the programmer than the highly-
sophisticated, hardware-supported branch prediction
in GPP units, and the software prediction model lim-
its the programmer to a single outstanding predic-
tion. As a result, the GPP platforms have an advan-
tage over the SPE in running branch-intensive code.
On the other hand, since each SPE operates essen-
tially as its own thread, the existence of branch pre-
diction in software can yield advantages for the SPE
versus the GPU coprocessor model. The SPE comes
complete with a C/C++ compiler and a comprehen-
sive list of C-language extensions to the assembly in-
structions. These extensions allow for SIMD vector-
ization without resorting to assembly, but the com-
piler does not, in our limited experience, handle dual
issues or pipeline stalls with great effect [12].

Firing on all cylinders, the SPE theoretically can
post 25.6 Gflop/s. The SDK for the CBE architecture
comes complete with a SIMD vectorized, C-language
DFT program for radix-2 input sizes. In experiments,
we have obtained close to 9 Gflop/s from this pro-
gram. IBM engineers have reported attaining 98%
of the theoretical performance limit using a matrix-
multiply program [12].

By hand-coding to keep both pipelines of the SPE
architecture at capacity, we might expect to see ap-
proximately a threefold increase from the C-language
DFT program currently available. At around 20
Gflop/s, our operation would compare roughly to the
performance of CUDA’s CUFFT measured without
considering data movement overhead. Section 3.3 will
address the CBE’s EIB in greater detail, but we note
the EIB’s transfer rate indicates we might expect bet-
ter data-transfer overhead performance from the SPE
than from CUDA. Effective use of the EIB will deter-
mine, in the end, how much reward we can reap from
the impressive raw computing power of the SPE. By
minimizing data-transfer overhead to within even a
wide approximation of the theoretical limit, we could
easily produce a DFT program running at an effec-
tive rate of at least twice that of our benchmarks for
SSE2-aided GPP processing and CUDA. Our efforts
to schedule SPE processes and to use the EIB effec-
tively occupy much of the remaining sections.

We have depicted the SPE as a capable coproces-
sor limited mostly by the size of its local store mem-
ory and by the complexity of performance-tuning its
code. Using 128-bits as an atomic unit for register
loads and stores imposes alignment considerations for
all data manipulation on the SPE. Hand-coding rou-
tines in order to achieve dual-issued instructions takes
vastly more time and energy than constructing a vec-

torized C-language program. These considerations
leave out entirely the difficulties involved in schedul-
ing data transfers and SPE execution.

The SPE occupies an interesting position in the
world of SIMD capable processors and coprocessors.
Compared to SSE- or Altivec-enabled GPP proces-
sors, the SPE provides roughly equivalent SIMD ca-
pabilities with the addition of a dual-issue pipeline
and a low-latency local store under the control of the
programmer. In return, the programmer must do
without effective, automated branch prediction and
transparent loads and stores through multiple layers
of cache. Compared to the CUDA architecture, the
SPE appears overmatched in terms of SIMD power,
but high theoretical computing power owing to the
dual-pipeline architecture and a high clock rate to-
gether with high theoretical data-transfer times make
the SPE more than competitive with the GPU on pa-
per.

Of course, reaching for theoretical limits on the
SPE requires a great deal of effort compared to simply
utilizing the less tunable, more transparent interface
CUDA provides to the developer. Moreover the SPE
clock rate and branch prediction utilities make it a
candidate for coarser parallelization than the GPU
coprocessor. It remains important, however, not to
overstate the viability of the SPE as a stand-alone
processor. Without more automated and effective
branch prediction and memory access, the SPE will
under perform certain kinds of code execution as com-
pared to SSE or Altivec-equipped GPPs.

3 Multiprocessing

Multiprocessing is rapidly becoming one of the most
common and effective strategies for continuing to pro-
vide increased usable computational ability from the
ever-increasing transistor counts on modern proces-
sors, as we continue to follow the Moore’s law curve.

While both SIMD and Multiprocessing achieve this
goal, they do so in different ways and with differ-
ent limitations. SIMD introduces new wide-operand
instructions into the micro-architecture, in an at-
tempt to reduce required instruction counts. How-
ever the vector data operations enabled by SIMD are
only effective for some applications, and often require
careful, architecture-specific hand coding of assembly
instructions or the use of efficient auto-vectorizing
compilers to exploit. In contrast, multiprocessing
provides an increase in available computational abil-
ity by assuming we are able to split our total task
into multiple, mostly-independent paths of execution
which may be executed simultaneously on multiple



Figure 2: Random Access Processing Model

processing units, instead of time-sharing on a sin-
gle unit. The primary challenge with this form of
multiprocessing has long been determining how to ef-
fectively break tasks up over multiple cores, how to
ensure their synchronization and cache concurrency,
and how to enable all of this without overly encum-
bering the application developer.

In short, SIMD provides effective small-grained
parallelism for a few simple, well-defined, instruction-
level tasks which are well suited to accelerating many
signal processing primitives. On the other hand, mul-
tiprocessing provides effective, large-grained paral-
lelism. This allows separate processes to run simulta-
neously on distinct resources with carefully planned
interactions. This is well suited to hosting separate,
independent, signal-processing tasks. Both of these
strategies provide effective speedup, and both must
be utilized to maximize the potential of current-day
architectures.

There has been much research exploring how to
effectively organize multi-core and many-core archi-
tectures efficiently for various tasks, and they can
roughly be broken down into random-access and
pipelined processing.

3.1 Random Access Processing

In a random-access multi-processor architecture,
tasks running on each processor all access a common
main memory controller to retrieve their inputs and
write back their outputs. There is no notion of data
flow between processors; all access occurs from mem-
ory back to memory. This architecture provides the
feature that each processor is essentially the same
from the task’s standpoint. Any task may be sched-
uled on any of processor, and its job of reading and
writing data to main memory does not change. This
makes it an ideal architecture if we are interested in
providing a generic platform onto which we schedule
a random selection of independent tasks.

Figure 3: Pipelined-Processing Model

It is ideal then that commercial desktop processors
have followed this model, allowing generic applica-
tions to continue operating unmodified on concurrent
processors, with little complication. There are obvi-
ous benefits to this highly-flexible architecture in the
case of SDR where we are interested in dynamically
building waveforms out of a number of component
tasks which will only be determined at runtime.

However, this blind random access model provides
some challenges in scaling. Since all processors must
access main memory over some common bus, we are
limited by both memory access speeds and common
bus throughput. This issue is compounded if proces-
sors have traditional caches governed by automatic
caching algorithms which select blocks to store lo-
cally without the knowledge of the running task. In
this case, each processor must also broadcast cache
invalidations over the common bus to other proces-
sors, ensuring that stale copies of the same memory
block are not used.

3.2 Pipelined Processing

In the pipelined approach, processors are generally
laid out in a way that one processor may pass in-
formation to another over a direct or switched inter-
connect. By connecting a chain of processors in this
fashion, data rates achieved between processors may
be extremely high since there is no contention for a
common bus.

There have been numerous architectures proposing
different static or switch layouts of processors, I/O
devices, and memories. Many of the approaches have
shown promising performance results, but in virtually
all of these cases, the problem of mapping the de-
sired well-defined application onto this architecture
was done manually. In the case of a highly-flexible
SDR in which the appropriate waveform and all of
its components may not be known until run-time,
and may need to be updated repeatedly, the constant
optimal re-mapping of tasks onto a purely pipelined
architecture is challenging problem.

3.3 Multiprocessing on GPPs

Since the 1960s, mainframe computers have sup-
ported multiple GPPs. Throughout the 1980s and
1990s, high-end servers utilized multiple processors.



For example, Sun Microsystems’s top-end server in
the late 1990s utilized 64 Ultrasparc processors. How-
ever it wasn’t until Pentium II and the Athlon MP
systems that multi-processor systems began showing
up on desk tops in significant quantities. With the
Intel Core 2 Duo and AMD Athlon64 X2 releases
in 2006 and 2007, respectively, the majority of new
desktop and laptop PCs have multiprocessing built-
in. Similarly, PowerPC 970MP was released in 2005,
and is used in Apple G5 processors and in the IBM
JS21 blade server.

With multiple processors, users can run multiple
applications simultaneously, and see immediate per-
formance gains. Modern operating systems involve
running 100s of independent applications simultane-
ously, which can each be assigned to one of the multi-
ple processors. However, if a single application wants
to take full advantage of a multi-processor system, it
must be multi-threaded. Modern operating systems
allow each thread of a threaded application to execute
on an independent processor.

In SDR applications, this can manifest itself in
different ways. An approach taken by the Software
Communications Architecture (SCA) is to run each
signal processing block within a separate application,
and use CORBA to perform communication between
them. GNU Radio, as discussed in the next section,
will use a thread pool and assign processing blocks to
specific threads.

Running each signal processing block in its own
thread is the easiest approach to threading a system,
but utilization of a thread pool gives the engine more
fine-grained control over block execution, allowing for
better overall performance tuning for a specific archi-
tecture.

3.4 CBE Design Considerations

The IBM CBE provides 1 PowerPC core (the PPE)
and 8 SPEs (Figure 4) interconnected with each other
and the main memory via the EIB. Each SPE sup-
ports SIMD execution, as described in Section 2.
Generally, applications can either be written to pri-
marily run on the PPE and offload compute-intensive
sections to the SPEs (i.e. the random access model),
or be designed to pipeline execution through the
SPEs. There are two basic approaches for pipelined
execution: one where code is loaded on to the SPEs,
and data is then DMA’d from one to the next, being
processed as it goes; or alternatively where chunks
data are DMA’d to SPEs, and then code is moved on
and off the SPEs.

While the EIB, does provide a common bus from
which all devices may access main memory, it is not

a traditional random access model. The local cache
blocks on each processor, referred to as local store,
are managed manually by moving blocks in and out
only as instructed by the application, and there is no
need for any kind of cache concurrency traffic on the
EIB, allowing the bus to scale effectively to a large
number of cores.

However, the EIB is not a broadcast bus at all, it is
a double-wide, bi-directional, pipelined bus in which
data is transferred one hop per two processor cycles in
the shortest path from source to destination around
a ring. Transfers may be pipelined, so we can achieve
the full transfer rate of 25.6 Gbytes/s along any non-
overlapped path on the ring. This design enables it to
function as a high-speed ring of pipelined processors
if desired, with the appropriate software mappings.
This flexibility is ideal for a highly-configurable SDR
platform, providing the potential for the scheduler to
simply lay out independent tasks on arbitrary pro-
cessor cores working from main memory, or to inten-
tionally take existing logical flow graph chains and
map them to physical processors located next to each
other along the ring to ensure that their communica-
tions have low contention from each other, and pro-
vide both high-throughput and low latency.

This hybrid architecture is able to achieve many
of the benefits from both the random access and
pipelined multiprocessing models and provides an
ideal platform for building highly flexible signal pro-
cessing chains.

4 GNU Radio Implementation

In this section we describe current GNU Radio sup-
port for both SIMD and multiprocessing, and provide
results from specific benchmarks on the IBM CBE.

4.1 Support for SIMD

GNU Radio currently takes advantage of processor-
specific SIMD instructions in the lowest level filter
kernels. These were selected for optimization based
on profiling common workloads. Example kernels
include dot products, with all mixes of input types
and output types including float, complex¡float¿, and
short.

Each SIMD interface is defined by an abstract
C++ class. For each supported architecture and
SIMD instruction set there exists a concrete class
that calls out to hand-coded assembly. There is also
a generic C implementation that serves as a fallback
for architectures that aren’t currently supported, and
as a reference implementation for the SIMD ver-
sions. The selection of which concrete classes to use is



Figure 4: Logical Diagram of Cell Broadband Engine

partitioned between compile-time and run-time. At
compile-time all concrete classes that could run on
the given architecture are compiled and linked into a
table. At run-time, based on the hardware detected,
the fastest implementation is selected and returned
by a factory method.

GNU Radio has SIMD code for the 3DNow!, SSE,
and SSE2 instruction sets on x86 and x86 64 plat-
forms, and limited support for Altivec on the Pow-
erPC.

We are currently investigating additional SIMD
routines for frequent operations, such as point-wise
multiply of arrays, fast single-precision transcenden-
tals, and numerically controlled oscillators.

4.2 Support for MP

At this time, GNU Radio does a poor job of exploit-
ing the capabilities of commodity multi-processor ma-
chines. GNU Radio currently only uses multiple
threads if it can localize independent subgraphs in
the processing graph. Each subgraph, for example
implementing the transmitter and receiver chain of a
radio transceiver system, is currently run in an inde-
pendent thread.

Work is underway to extend the GNU Radio sched-
uler so that it is cognizant of the number of cores
available and to have it exploit them effectively. Be-
cause of the data flow model used in GNU Radio,
each signal processing block becomes an opportunity
for parallel execution. No changes to the user visi-
ble API will be required. Existing applications will
just run faster when additional cores are available.
The approach being pursued is implementation of a
thread pool that GNU Radio’s scheduler can use to
implement the work() function of various processing
blocks simultaneously.

4.3 Support for CBE SIMD and MP

Although it is possible to build a software radio that
has fixed computational requirements (e.g., an em-

bedded HDTV receiver), the SDRs and cognitive ra-
dios that we’re interested in have time-varying work-
loads.

Some problems are trivially parallelizable and can
be statically mapped across computational elements.
Many image processing applications fall into this cat-
egory.

The time-varying nature of the SDR problem ar-
gues against a static partitioning of the computation
across the available processing elements. In the case
of the CBE the vast majority of the computational
resources are contained in the SPEs. As pointed out
in Section 2.3, SPEs have a relatively small amount
of local store which must hold the instructions and
data that are to be operated upon.

The PowerPC element in the CBE, though clocked
at 3.2 GHz, is very stripped down and has moder-
ate performance. In order to make best use of the
CBE, as much work as possible needs to offloaded
onto the SPEs. To effectively utilize the CBE, paral-
lelism must be extracted at two levels: pieces of work
that can be handed off to the SPEs for execution in
parallel, and SIMD parallelism on the SPEs realized
through adroit use of the SPE instruction set.

4.3.1 gcell

gcell is a generic offload mechanism and asynchronous
RPC mechanism for handing off potentially small
jobs for execution on SPEs. It consists of a small
kernel (∼10 KB) that runs on the SPE, and a PPE-
based library that allows jobs to be asynchronously
submitted for execution on any of the available SPEs.

At initialization time, PPE code creates the man-
ager, telling it the number of SPEs that it should al-
locate and manage (1 to 16 on current hardware) and
the code that should run on the SPEs. At this time,
all SPEs run the same code, though in the future we
expect to dynamically load code into the SPEs, as re-
quired, using some variation on position-independent
code and a least-recently-used (LRU) plug-in man-
ager. Overlays would work too if you can live with



their constraints.

After the one-time initialization is performed, PPE
user code allocates and fills in job descriptors and
submits them to the job manager. Fundamentally
the job descriptor contains a proc id that identifies
the code that is to be executed on the SPE along with
descriptions of the input and output arguments that
are to be passed. gcell handles the details required
to achieve high-throughput DMA on the CBE. The
user need only provide the EA address and length of
each argument. gcell arranges for all transfers to be
cache aligned for maximum throughput, and handles
all corner cases for arbitrary length transfers.

Jobs are submitted into a global work queue. The
kernel running on the SPEs extracts a job from the
global work queue when it is ready for new work,
DMAs any input arguments into the SPE local store,
and then calls the designated procedure. Once the
procedure completes, the SPE kernel double buffers
any arguments that need to be written back to EA
memory and asynchronously notifies the PPE job
manager using a combination of DMA to EA memory
and non-blocking writes to an interrupt mailbox.

User code can asynchronously submit as many jobs
as it likes and then wait for all or any of them to
complete. With little effort, this allows parallelism
to be extracted and realized. Using GNU Radio as
an example, the FFT signal processing block is often
called with sufficient input data and output buffers
to allow multiple FFTs to be evaluated. Instead of
iterating over the vectors of data serially, calling the
underlying FFT primitive on each one, the gcell ver-
sion of the FFT signal processing block iterates over
the vectors and submits an asynchronous job for each
vector, then waits for them all to complete.

4.3.2 SPE SIMD Support

SIMD support on SPEs is quite similar to that seen
on GPPs: vectorizing compilers are not yet generally
effective, coding in C or C++ using intrinsics that
map more or less 1-to-1 to instructions is a viable
option, but for the ultimate in performance hand-
coded assembly language is required.

Unlike contemporary superscaler GPPs with com-
plex cache hierarchies, getting near-theoretical per-
formance out of the SPEs at the assembly level is
relatively straight forward. All directly addressable
memory is effectively L1 cache and has a fixed and
known latency (6 clock cycles). The SPE has a dual-
issue pipeline with simple rules that assign instruc-
tion classes to one pipe or the other. Instruction ex-
ecution time is completely deterministic and easy to
predict.

Figure 5: Speedup as f(nspes, t delay)

4.4 Performance Analysis

gcell has been benchmarked on Sony Playstation
3s (PS3s) and IBM QS21 blade servers running
GNU/Linux. When running on top of the Sony hy-
pervisor, PS3s have 6 SPEs available to use. The
IBM QS21 2-way blade server has 16 SPEs.

Our benchmark consists of an application that sub-
mits and waits for a total of njobs, typically 500,000,
where each job busy waits for a specified period of
time (t delay) on the SPE before returning. There
are a maximum of 64 jobs in flight at any given time.
total elapsed time is the wall clock time between
the time the first job is submitted and the final job
completes. For each combination of number of SPEs
used and t delay we compute a speedup factor (total
useful work divided by the total elapsed time):

speedup =
njobs ∗ t delay

total elapsed time
(1)

Results are plotted in Figure 5. When using be-
tween 1 and 8 SPEs we see near linear speedup for
jobs with t delay ≥ 50 µs. Jobs with t delay ≥ 100
µs are near linear out to 12 SPEs, while jobs with
t delay ≥ 200 µs are near linear all the way to 16
SPEs.

The current bottleneck is believed to be contention
on the lock protecting the shared work queue. We
have several ideas on how to mitigate this. We believe
that near-linear speedup out to 16 SPEs for jobs with
t delay ≥ 25 µs should be possible with a bit of
additional effort.



5 Conclusion

In this paper we’ve discussed both SIMD and mul-
tiprocessing aspects of high-performance SDR im-
plementations on GPPs. Through the various ap-
proaches described, we show how we can harness com-
ponents in GPPs to give SDR performance previously
only thought to be possible with FPGAs.

We believe that using gcell we can implement
a real-time transceiver system that supports band-
widths on the order of 20 MHz. This would allow
SDR-based implementations of wideband, high-rate,
commercial waveforms on commodity GPP hardware.

Current work is also underway with GNU Radio to
implement a Virtual Radio Kernel (VRK) within the
GNU Radio scheduler. This would allow SDR pro-
cessing blocks to exist across multiple, independent
machines, allowing for GPP, cluster-based processing
for GNU Radio-based SDR systems.
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