

Software Defined Radio
The Software Communications Architecture

John Bard, Space Coast Communication Systems Inc., USA
Vincent J. Kovarik Jr., Harris Corporation, USA

Software Defined Radio

WILEY SERIES IN SOFTWARE RADIO

Series Editor: Dr Walter Tuttlebee, Mobile VCE, UK

The Wiley Series in Software Radio aims to present an up-to-date and in-depth
picture of the technologies, potential implementations and applications of software
radio. Books in the series will reflect the strong and growing interest in this subject.
The series is intended to appeal to a global industrial audience within the mobile
and personal telecommunications industry, related industries such as broadcasting,
satellite communications and wired telecommunications, researchers in academia
and industry, and senior undergraduate and postgraduate students in computer
science and electronic engineering.

Mitola: Software Radio Architecture: Object-Orientated Approaches to Wireless
Systems Engineering, 0471384925, 568 pages, October 2000
Mitola and Zvonar (Editors): Software Radio Technologies: Selected Readings:
0780360222, 496 pages, May 2001
Tuttlebee: Software Defined Radio: Origins, Drivers and International Perspectives,
0470844647, £65, 350 pages, January 2002
Tuttlebee: Software Defined Radio: Enabling Technologies, 0470843187, £65,
304 pages, May 2002
Dillinger, Madani and Alonistioti (Editors): Software Defined Radio: Architectures,
Systems and Functions, 0470851643, £85, 456 pages, April 2003

Software Defined Radio
The Software Communications Architecture

John Bard, Space Coast Communication Systems Inc., USA
Vincent J. Kovarik Jr., Harris Corporation, USA

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex, PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons
Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont, Blvd, Mississauga, ONT, L5R 4J3

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging in Publication Data

Bard, John.
Software defined radio : the software communications architecture / John Bard, Vincent J. Kovarik Jr.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-470-86518-7 (cloth : alk. paper)
ISBN-10: 0-470-86518-0 (cloth : alk. paper)
1. Software radio. I. Kovarik, Vincent J. II. Title. III. Title: Software communications architecture.
TK5103.4875.B37 2007
621.384—dc22

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-86518-7 (HB)

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two
trees are planted for each one used for paper production.

www.wiley.com

Contents

Acknowledgments xv

Foreword xvii

Preface xix

Audience xix
Scope xx
Conventions Used in this Book xx

Source Code xx
Terminology xxi
Unified Modeline Language (UML) xxi

Organization xxi
Additional Material and Author Contact xxi

PART I The Operating Environment (OE) 1

1 Introduction 3

1.1 Software Radios 3
1.1.1 Software Radio Aspects 4

1.2 The Software Communications Architecture 6
1.2.1 The Evolution of the SCA 6
1.2.2 What is the SCA? 9
1.2.3 Common SCA Perceptions 9
1.2.4 Why Use the SCA? 11

1.3 The Operating Environment 13
1.3.1 Conceptual Organization 14
1.3.2 OE Interface Constraints 14

1.4 The SCA Specification Structure 16
1.5 Summary 19

vi Contents

2 Operational Scenarios 21

2.1 Startup 22
2.2 Shutdown 26
2.3 Application (Un)Installation 28
2.4 Instantiate Application 30
2.5 Control Application 32
2.6 System Configuration 34

3 General Requirements and Services 37

3.1 Non-Functional Requirements 37
3.1.1 General Requirements 38
3.1.2 General Software Rules 39
3.1.3 Hardware Architecture Requirements 39
3.1.4 Interface Organization 40

3.2 Name Service 42
3.3 Event Service 44

3.3.1 Event Types 46
3.4 Log Service 47

3.4.1 Data Types 48
3.4.2 Exceptions 48
3.4.3 Types 50
3.4.4 LogStatus Operations 54
3.4.5 LogAdministrator Operations 56
3.4.6 LogProducer Operations 58
3.4.7 LogConsumer Operations 61

3.5 FileSystem 63
3.5.1 Exceptions 64
3.5.2 Types and Constants 64
3.5.3 Types 66
3.5.4 Operations 67

3.6 File 75
3.6.1 Exceptions 76
3.6.2 Attributes 77
3.6.3 Operations 78

4 Foundation Interfaces and Data Types 83

4.1 TestableObject 83
4.1.1 Exceptions 83
4.1.2 Operations 84

4.2 PortSupplier 86
4.2.1 Exceptions 87
4.2.2 Operations 87

Contents vii

4.3 LifeCycle 88
4.3.1 Exceptions 88
4.3.2 Operations 88

4.4 PropertySet 89
4.4.1 Exceptions 89
4.4.2 Operations 90

4.5 Resource 92
4.5.1 Exceptions 92
4.5.2 Attributes 93
4.5.3 Operations 93

4.6 ResourceFactory 95
4.6.1 Exceptions 95
4.6.2 Attributes 96
4.6.3 Operations 96

4.7 Port 99
4.7.1 Exceptions 101
4.7.2 Operations 102

5 Devices and the Device Manager 105

5.1 Introduction 105
5.1.1 SCA Device Abstraction 106

5.2 Device 108
5.2.1 Exceptions 109
5.2.2 Types and Constants 109
5.2.3 Attributes 110
5.2.4 Operations 118

5.3 LoadableDevice 121
5.3.1 Types 122
5.3.2 Exceptions 123
5.3.3 Operations 123

5.4 ExecutableDevice 127
5.4.1 Types and Constants 127
5.4.2 Exceptions 128
5.4.3 Operations 130

5.5 AggregateDevice 134
5.5.1 Types and Attributes 134
5.5.2 Operations 134

5.6 DeviceManager 135
5.6.1 Types 136
5.6.2 Attributes 137
5.6.3 Operations 140

6 Domain Management 151

6.1 DomainManager 151
6.1.1 Types 151
6.1.2 Exceptions 153

viii Contents

6.1.3 Attributes 155
6.1.4 DomainManager Instantiation 157
6.1.5 Operations 158

6.2 FileManager 178
6.2.1 Types 180
6.2.2 Exceptions 180
6.2.3 Operations 181

6.3 The ApplicationFactory 183
6.3.1 Exceptions 184
6.3.2 Attributes 184
6.3.3 Operations 185

6.4 Application 192
6.4.1 Types 192
6.4.2 Attributes 193
6.4.3 Operations 195
6.4.4 General Requirements 199

7 Operating Environment Security 201

7.1 Core Framework Security Requirements 201
7.1.1 Application 201
7.1.2 ApplicationFactory 202
7.1.3 DomainManager 203

8 Certification 205

8.1 Certification Process 205
8.2 Operating Environment Certification 206

8.2.1 OE-1 206
8.2.2 OE-2 208
8.2.3 OE-3 209

8.3 Waveform Assessment and Certification 210

PART II The Domain Profile 213

9 The Domain Profile 215

9.1 Overview 215
9.2 SCA Domain Profile XML 215
9.3 Domain Profile Data Types 218

10 Base Descriptor Files 219

10.1 Properties Descriptor 219
10.1.1 Simple 219
10.1.2 Simple Sequence 222
10.1.3 Struct 222
10.1.4 Struct Sequence 224
10.1.5 Test 224

Contents ix

10.2 softpkg 225
10.2.1 title 226
10.2.2 author 226
10.2.3 description 226
10.2.4 propertyfile 226
10.2.5 descriptor 227
10.2.6 implementation 227

10.3 Software Component Descriptor 230
10.4 Device Package Descriptor 232

11 Device Configuration Descriptor 235

11.1 Overview 235
11.2 deviceconfiguration 235

11.2.1 description 236
11.2.2 devicemanagersoftpkg 236
11.2.3 componentfiles 236
11.2.4 partitioning 237
11.2.5 connections 239
11.2.6 domainmanager 239
11.2.7 filesystemnames 239

12 The Domain Manager Descriptor 241

12.1 Overview 241

13 The Software Assembly Descriptor 243

13.1 Overview 243

PART III Building an SCA-Compliant System 251

14 The POSIX Operating System 253

14.1 An Operating Environment 253
14.2 Linux 2.6 Kernel 256

14.2.1 Unavailable POSIX Calls 262
14.2.2 More Unavailable POSIX Calls 273

15 POSIX Threads 277

15.1 The Thread Object 278
15.2 Un-named Semaphores 282
15.3 Mutex Variables 285
15.4 Thread Attributes 290
15.5 Conditional Variables 295
15.6 Less Interesting Thread Calls 299

x Contents

16 All ORBS are not Created Equal 303

16.1 CORBA Basics 305
16.1.1 Starting the Servant Object 307
16.1.2 Accessing the Object Reference 308

16.2 The Object Management Group 308
16.3 ‘C’ ORB versus C++ ORBs 310
16.4 Initial Services 311

16.4.1 Starting a Client 311
16.5 The Interface Repository 312

16.5.1 Type Codes 312
16.6 Minimum CORBA 313
16.7 The Portable Object Adapter (POA) 314

16.7.1 Policy 315
16.7.2 Run-time Performance 316
16.7.3 ORB Concurrency Models 317
16.7.4 One-ways, Two-ways, and Blocking 319

16.8 Real-time CORBA 319
16.9 Overview of Available ORBs 320

16.9.1 TAO ORB 320
16.9.2 ORBexpress 321
16.9.3 ORBit2 321
16.9.4 MICO 321
16.9.5 OMNI 322

17 The Services 325

17.1 Interoperable Naming Service 325
17.1.1 Universal Unique Identifiers 335
17.1.2 Core Framework Usage of the Naming Service 335
17.1.3 Application Usage of the Naming Service 336

17.2 Event Service 336
17.2.1 Core Framework Usage of the Event Service 349
17.2.2 Resource Usage of the Event Service 350

17.3 Log Service 350
17.3.1 Core Framework Usage of the Log Service 355
17.3.2 Resource Usage of the Log Service 357

18 Exploring the Domain 359

18.1 Application Factory Attributes 360
18.2 Application Attributes 362
18.3 DeviceManager Attributes 366
18.4 Device Attributes 368
18.5 AggregateDevice Attributes 370
18.6 DomainManager Attributes 371

Contents xi

18.7 Properties 373
18.8 Manipulating Ports 378
18.9 Summary 378

19 An SCA-compliant Application 383

19.1 Hello World Legacy Application 383
19.2 Legacy Hello World SPD 388
19.3 HMI Applications 391
19.4 Shutting Down 396
19.5 An SCA-compliant Hello World Application 397

19.5.1 An SCA-compliant Terminal Device 397
19.5.2 Domain Profile for Terminal Device 405
19.5.3 An SCA-compliant Talk Application 409
19.5.4 Multi-threaded Servant 414
19.5.5 Talk Application XML 417
19.5.6 Modifications for Minimum CORBA Compliance 423
19.5.7 Concluding Remarks 424

Appendix A Mandatory POSIX Calls 427

Appendix B References to Part III 429

Index 431

Disclaimer

The viewpoints, perspectives, and opinions expressed in this book are solely those of
the authors and do not represent or reflect any position, opinion, or interpretation on the
part of Harris Corporation, Space Coast Communication Systems, the Joint Tactical Radio
System (JTRS) Joint Program Executive Office (JPEO), or any other government or industry
organization.

Acknowledgments

Indeed, this has been a wonderful journey for Vince and I, but it hasn’t been nearly as
pleasant for our loved ones. To this end, I dearly want to thank Pam, Amela, and Amanda
for their long suffering and understanding. They stopped believing me when I said ‘I’m
almost done’, but now, for sure, I’m done.

I am grateful to Dr. Sam Aslam-Mir for providing source material used in Chapter 16.
His knowledge and pre-eminence in the CORBA community has added integrity and depth
to an otherwise hackers approach to CORBA.

John Bard

First, I would like to thank John for the invitation to collaborate on this book. I would
also like to thank Eric Held for providing valuable comments and Lance Starr for his
support in developing the Domain Management ToolKit (dmTK®), an implementation of the
SCA. Finally, a sincere thank you to my wife Madeline for her support and understanding
throughout this process.

Vincent J. Kovarik, Jr.

Foreword

When first approached by Wiley a few years back to write a book on software radio, I
immediately knew that the topic could not be condensed to fit within a single volume – thus
was conceived the Wiley book series on Software Defined Radio.

The early volumes addressed the emergence, concepts and international activities, and the
technological foundations – radio, baseband and software. These were followed by a volume
describing European research on software radio architectures and systems, from the mobile
telecom industry perspective, and then one addressing the specific application of software
radio baseband technologies to the emerging 3G marketplace.

This latest volume, by John Bard and Vince Kovarik, represents an essential and in
many ways a long overdue element of the series, addressing as it does the Software
Communications Architecture, or SCA, which lies at the heart of the world’s largest software
radio project, the US JTRS programme and which had its own origins a decade or more ago.

The SCA is a term that many have heard, but few truly understand. John Bard and Vince
Kovarik most definitely do not fit that description – indeed, they have spent many years now not
simply developing their own understanding and contributing to the development of the SCA,
but supporting others in applying the SCA to real world implementations. Thus, this volume
is very much a book by practitioners, for practitioners. The book is effectively structured into
three major sections – the first addressing the operating environment, the second focusing on the
domain profile and finally a substantial set of chapters on building an SCA-compliant system.

Whilst originating within the context of the JTRS programme and the defence industry,
the SCA has potential applicability beyond – this is an area which has yet to be commercially
explored. Existing SCA practitioners have to date been so busy and focused on the defence
requirements and contracts, that few experts have as yet had time and opportunity to begin
to apply it in the commercial domain. Perhaps availability of this volume may contribute to
the opening of such doors.

I would like to conclude this foreword by congratulating John and Vince on this epic work.
When I first proposed to John that he consider writing a volume on the SCA he wisely said he
would think about it and then, very quickly, proposed Vince as his co-author. At that time he
knew, far better than I, the true scale of the task, one that has not been made any easier by the way
in which the SCA has continued to dynamically evolve. That John and Vince have chosen to
make the time to write this book – from personal experience I know that one doesn’t find time
for such things – is a service to the industry for which many will be grateful; their book will serve
as a foundation for many engineers in the coming years. Thank you John & Vince – well done.

Dr. Walter Tuttlebee
Chief Executive, Mobile VCE

Preface

Over the past decade radio system design has seen an inexorable march towards more of the
waveform signal processing being performed digitally. As Moore’s law continues to push
the capabilities of the General Purpose Processor (GPP), the processing power of the Digital
Signal Processor (DSP), and the Field Programmable Gate Array (FPGA), this trend will
continue to accelerate along with the power of these devices. The natural consequence of
this trend is that more of the radio signal processing is being performed by software.

Although the use of software to perform more of the core radio functions has increased
dramatically, each radio manufacturer developed solutions that differed in their architecture
and implementation. Therefore, radio systems became more flexible as more capabilities were
provided via software, and each implementation was unique. So, although the characteristics
of the radio system could be changed through software, there was still little commonality in
the control structure and management architecture across radio systems.

This lack of common management and control architecture was a significant problem in
the military and public safety sectors. In these sectors, special-purpose radios were the norm
rather than the exception. These radios were typically limited to a small set of capabilities
or waveforms (or sometimes just one). Also, a significant number of legacy radios were
hardware-based and, consequently, could not be re-configured without physical modifications
or re-design. Those radios that were software-based were closed to software implemented
by sources other than the original manufacturer. Compounding the problem was the fact that
the radio system could not be managed, configured, or controlled using a consistent set of
interfaces and protocols. So, when multiple radio sets from different manufacturers came
together in response to some coordinated exercise, military operation, or disaster, the radios
did not interoperate and could not be easily reconfigured to do so.

To address this problem, the United States government initiated a series of programs
leading towards the specification of a common software infrastructure for software defined
radios. The initiative started in the mid-1990s and evolved into the Software Communications
Architecture (SCA). Although there have been prior radio infrastructures and architecture,
the SCA is the first such specification that represents the combined contributions of many
of the key radio system manufacturers for the United States government.

Audience

This book focuses on the SCA architecture; the use, issues, and benefits associated with
developing a radio system in compliance with the specification. The book is intended to

xx Preface

provide practical information on building an SCA-compliant system along with historical
and conceptual background information to help fill in the gaps between the intent of the
specification and the practice.

This book does not provide instruction on how to construct an implementation of the
SCA specification, i.e. a Core Framework. Rather, it is intended to provide guidance on
how to use a Core Framework implementation to build a software radio system, provide
an SCA-compliant hardware component for a radio system, or deliver a waveform for use
within an SCA radio system.

Consequently, this book is intended for anyone who has the need to design, develop,
support, or understand hardware or software in an SCA-compliant software radio system. It
provides information, background data, and interpretations of requirements presenting design
tradeoffs and decisions that must be addressed in fielding an SCA-compliant system.

Scope

As with any technical book that addresses a dynamic and changing technology, certain
decisions and tradeoffs were made regarding the scope. At the time this project was initiated,
SCA version 2.2 was the current version of the standard and was chosen as the baseline for
this book. SCA 2.2 continues to be the SCA version that is the contractual baseline for a
number of on-going contracts.

However, the SCA has continued to evolve. In April 2004, SCA 2.2.1 was released. SCA
2.2.1 provided several clarifications and corrections to issues identified in SCA 2.2. Then, in
August 2004, SCA 3.0 was released. SCA 3.0 was the first SCA release to attempt to address
issues related to waveform component construction and portability in the realm of DSPs and
FPGAs. These processors, although an integral part of a software radio, introduce coding,
transport, and interface requirements not addresses in prior SCA specifications. Upon its
release, however, it was apparent that SCA 3.0 had a number of shortcomings. Primarily,
although it began to address the issues noted above, SCA 3.0 did not address portability
issues related to DSP and FPGA processors substantively enough to provide a workable
set of requirements and guidance for these processors. In the area of Core Framework
functionality, there was little change to the baseline requirements.

As the final version of this book was being prepared for the publisher, version of SCA 2.2.2
was released. SCA 2.2.2 further refined the specification, corrected errors and omissions, and
provided clarifications to the specification. Where possible, notes and information regarding
key aspects of SCA 2.2.1 and 2.2.2 have been incorporated into this book.

Conventions Used in This Book

The following typography and terminology are used throughout the book to help the reader.

Source Code

Source code is presented using Courier New font, as shown below.

int add1(int number) {
return number++;

}

Preface xxi

Terminology

In this book, the term SCA-compliant will be used to denote that a part or the whole system
adheres to the requirements specified in the SCA specification. Hence, it is compliant with
the specification. The term SCA-certified or just certified is used only when referring to a
system or component that has passed the suite of tests performed by JTRS Test Application
(JTAP) tool.

Unified Modeline Language (UML)

Diagrams of software architecture and design are drawn using the UML graphical modeling
language developed by the Object Management Group (OMG). Information on the UML
standard can be found at http://www.uml.org/.

Organization

The book is divided into three parts. Part I focuses on the Operating Environment (OE). The
OE forms the common software infrastructure for implementing a software defined radio
that is SCA-compliant. General background on software defined radio systems, the origins
and history of the SCA evolution, and organization of the SCA specification and components
are provided. The SCA is discussed from the perspective of a hardware supplier, waveform
developer, radio system integrator, or other individual or corporation that must utilize and
adhere to the SCA requirements. Topics include the OE components, the requirements for
each component, a discussion of the essential concepts or rationale behind the component
along with discussion of any pros and cons, and a section on the certification process.

Part II discusses the Domain Profile. The Domain Profile describes the hardware and
software that form an SCA-compliant radio system and the applications that are hosted on
the system. A set of eXtensible Markup Language (XML) files are used as a platform-neutral
language to describe the hardware and waveform application components, their composition,
and the underlying SCA-compliant platform.

Part III provides code examples that apply and use the capabilities of the SCA as
described in the first two parts. The first offering is an in-depth view of the SCA Application
Environment Profile (AEP) including code examples for the use of POSIX threads. This
is followed by an examination of the OMG’s CORBA specification. Finally, a set of
straightforward examples are presented with explanation and commentary to help understand
and visualize the content presented in the first two parts of the book.

Additional Material and Author Contact

Additional reference material may be found at the website for the book hosted by the
publisher. For more details, please visit the URL http://wiley.com/go/bard.

Although every effort has been made to ensure the accuracy of the content of
this book, there may be errors. If you happen to find any errors or simply wish to
provide comments and suggestions, you can contact the authors at vkovarik@acm.org and
jbard@spacecoastcomm.com.

PART I

The Operating Environment
(OE)

Vincent J. Kovarik Jr.

In Part I, the Software Communications Architecture (SCA) specification is presented. The
aim of this part is to provide an overview of the specification with specific discussions related
to the interpretation and functional behavior of the SCA requirements. The intent is that this
part can be utilized as a self-contained reference document for the SCA specification, with
annotations and background information. As noted in the Preface, the objective of this book
is to provide information on the understanding and use of an SCA Core Framework.

1
Introduction

The fundamental objective of the SCA is to provide a common software infrastructure for
managing radio systems. Although software comprises a significant part of most recent
radios – thus enabling new capabilities and functions to be added to the radio at some future
times – the software is loaded and controlled through proprietary mechanisms and each radio
manufacturer typically employs a unique infrastructure or architecture. A software defined
radio, as interpreted here, refers to a class of radios, the capabilities of which are not simply
provided by software but utilize an infrastructure that supports interchangeable components
as well as functionality.

This chapter provide background information regarding the SCA. The SCA specification
desribes a collection of components, the configuration of the components, and the assembly
of the components into a functional waveform application on a radio system. Taken
together, these form an infrastructure for defining and constructing a software defined radio
system.

1.1 Software Radios

Figure 1.1 illustrates the abstraction space of bandwidth versus waveform abstraction. At
the lowest level is a set of hardware that provides the actual processing of the waveform
and support software. The processing is provided by one of four options, General Purpose
Processor (GPP), Digital Signal Processor (DSP), Field Programmable Gate Array (FPGA),
and Application Specific Integrated Circuit (ASIC). The ASIC is typically not considered
part of the solution set within a software radio because, once programmed, it cannot be
modified after deployment – one of the fundamental tenets of a software radio.1

The aim of Figure 1.1 is to illustrate the two orthogonal perspectives of software radio
design. The waveform design starts as a set of requirements, simulation, mathematical

1 This does not necessarily imply that an ASIC cannot be applied within a software def ined radio. It is the authors’
opinion that, given certain circumstances and architectural approaches, it is feasible to integrate ASICs within
the design of a software def ined radio. Such a design would need to support the ability to interchange f lexibly
functional components of the waveform processing implemented in ASICs. This would require some mechanism
such as the ability to call algorithms implemented on an ASIC as though it were a function call.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

4 Introduction

Radio System

Waveform Specification

Model Requirements Simulation

Waveform Implementation

C/C++ RTL / VHDL

Digital Subsystem

GPP FPGA ASIC

Bandwidth

W
av

ef
or

m
 A

bs
tr

ac
tio

n

Analog Subsystem

Digital Transport

A
m

pl
ifi

er
s

C
on

ve
rt

er
s

A /D

D/A RF

Waveform

Operating
System

CF

DSP

Figure 1.1. Waveform abstraction relative to bandwidth

model, or some other conceptual representation. As the waveform progresses from design
to implementation, the capabilities of the waveform, in terms of throughput and capacity,
typically drive the implementation to a high-level language for deployment on a GPP
or DSP. Higher throughput demands drive the deployment towards and FPGA or an
ASIC.

The GPP processor typically provides the management and control services for the system.
Overlaid on top of the processor is an operating system and, integrated with the operating
system, is a collection of software that provides the run-time infrastructure for the radio
set. The infrastructure, in SCA terms, is called the Core Framework. On top of the Core
Framework sits the waveform and other applications.

1.1.1 Software Radio Aspects

A software radio system can be viewed through one of four perspectives or aspects. Each
aspect forms a functional grouping of objects and services provided by the radio system.
Illustrated in Figure 1.2, these aspects are:

Software Radios 5

cd Software Radio Aspects

PhysicalElement

SWApplication

AppComponent EventLogicalDevice

SWComponent

Waveform Service

Port

Property

Radio

Application and Services

Software Infrastructure

Hardware

Radio User

Capacity

User

Resource

AntennaRFProcessor

GPP DSP FPGA

I/O Device

NIC AD-DA

«realize»

hasDependency

1..∗

1..∗

1
issues

0..∗

controls

operates

0..∗

«realize»

0..*
connectsVia

«realize»

«realize»

hasDependency

1
providesInterface

1

requires
1

isAllocatedTo

1..∗

hasDependency

Figure 1.2. Software defined radio aspects

• Hardware – This aspect describes the physical set of devices and components that
comprise the radio set.

• Software – This aspect defines the set of services and interfaces through which all
waveform applications must interface to the underlying hardware.

• Application – This aspect defines the application and service layer. All waveforms and
common services execute in this aspect.

• User – This aspect is the view through which the user interacts with the radio set. There
are two basic modes of interaction within this aspect. The user is either performing radio
control operations, e.g. setting system parameters, or performing application control and
data transfer, e.g. setting the gain parameter for a specific waveform instance.

The SCA can be viewed as one realization of the Software Infrastructure aspect with
some parts within the Applications and Services aspect. It defines a logical infrastructure
for management and abstraction of physical hardware components, a standard set of
abstractions for software components that form the digital processing portion of a waveform
implementation, general services available for use by the system, and a set of common
interfaces for managing, deploying, and configuring waveform applications within the
system.

6 Introduction

1.2 The Software Communications Architecture

Any new concept or technology has a learning curve associated with it and the SCA is
no exception. The SCA defines a software infrastructure for the management, control, and
configuration of a software defined radio. It does not mandate any specific architecture,
design, or implementation for the radio system hardware or waveform application. Before
launching into the detailed discussion of the SCA, it is advisable to spend a short bit of time
providing some background data and explanation on what the SCA is, and is not, the history
of its evolution, and the reasons why you would (or would not) want to apply the SCA to
your system.

The SCA is based on several related technologies: Object-Oriented (OO) techniques in
software engineering, the Common Object Request Broker Architecture (CORBA), and the
CORBA Components Model (CCM). Object-oriented languages have been around for a
number of years from Simula in the late 1960s, Smalltalk and Flavors in the early 1980s, to
current object-oriented languages such as C++, Python, Ruby, and Java, to name a few.

As systems evolved towards distributed architectures and a client-server model, CORBA
evolved as an industry standard for describing the interfaces provided or used by two
components using a pseudo-code called an Interface Definition Language (IDL). IDL
provided the means for specifying the available interfaces and, through the IDL ‘compiler’,
generated source code that is compiled into each of the applications. The code generated
includes the support routines necessary to support remote procedure calls between processes
on the same computer and between computers, i.e. in a distributed environment. Thus, the
developer was freed from the drudgery of writing low-level, inter-process communications
code and, more importantly, CORBA code built by one individual could interoperate with
code built by another individual, the only requirement being that both the author of the
client application and the server application use the same IDL. This was an important step
forward in the ability to develop modular software while encapsulating the internal logic
and requiring only that each of the developers agree on a set of IDL.

Although the CORBA technology provided several important advances, it became apparent
that the mechanism by which systems were deployed was still dependent on manual
configuration. The CCM evolved to address the need for specifying the requirements for
deploying a set of application software by describing what resources were required to deploy
the system successfully on a set of hardware. The method for describing the components of
a system and the related deployment requirements is through a set of eXtensible Markup
Language (XML) files. XML is a text-based language that utilizes tags to define items,
their attributes, and values. This CCM XML was the genesis of the SCA Domain Profile
XML.

With this brief summary of background information and foundation technology as a
backdrop, the next sections provide a summary of what the SCA is, is not, why you would
(or would not) want to use it, and a brief history of its evolution.

1.2.1 The Evolution of the SCA

The United States military was (and is) facing an increasingly critical need to support
communications for multiple missions, rapid deployment, diverse mission scenarios and
objectives, increased interoperability, and to reduce the cost of operations. One of the

The Software Communications Architecture 7

primary obstacles to meeting these challenges was that the bulk of the radio systems were
predominantly hardware-based, limited to those waveforms that were designed into the
system, and incapable of being upgraded or adding new waveforms without significant cost
due to hardware re-design.

Concurrently, over the past two decades, the capabilities of processors have increased
dramatically, special purpose processors such as DSPs and FPGAs have become commonly
available, and the speed and resolution of Analog to Digital and Digital to Analog circuits
have steadily increased. The result is that more of the waveform signal processing that once
was exclusively the preserve of the analog domain was migrating into the digital domain
implemented in software. Early experiments in software-based radios such as SpeakEasy
showed that there were significant benefits to be gained by moving towards a software-
based architecture. Many of the radio manufacturers had already started down the path
of implementing core signal processing components in software. Early multi-channel radio
systems developed in the 1990s, such as the Joint Combat Information Terminal (JCIT) and
the Digital Modular Radio (DMR), provided a software infrastructure for the management
of radio resources.

With the need to enhance reconfigurability, support multiple missions, and reduce long-
term operations and maintenance costs as a background, the Joint Tactical Radio System
(JTRS) Joint Program Office (JPO) was formed to develop a new family of software-based,
reconfigurable, radio systems. One of the first activities was to define a common software
infrastructure that would be applied to this new family of radio systems. Thus, the SCA
was born.

The timeline in Figure 1.3 illustrates several key milestones in the evolution of the SCA
specification. There were several preliminary versions but 1.0 was the first version of the
specification used to develop an initial implementation of the SCA. After an incremental
release with version 1.1, significant portions of the specification were re-worked resulting
in version 2.0. Version 2.0 had a number of issues and required some additional details and
specifications to address all the aspects required of a software infrastructure. Nonetheless,
there were several 2.0 implementations that provided valuable feedback to the specification
development process. Again, an incremental version was released in mid-2001, version 2.1,

January 00 December 06

1/01 1/02 1/03 1/04 1/05 1/06

8/06
SCA 2.2.2 (Draft)

11/01
SCA 2.2

5/01
SCA 2.1

4/04
SCA 2.2.1

8/04
SCA 3.0

6/02
Cluster 1 Awarded

2/00
SCA 1.0

7/00
SCA 1.1

12/00
SCA 2.0

5/04
OMG Software Radio Spec

dtc/04-05-04

Figure 1.3. SCA specification timeline

8 Introduction

followed by 2.2 in November of the same year. Version 2.2 was generally considered to be
complete enough to implement and apply to a fielded software radio system.2

In June 2002, the first major program to apply the SCA was awarded to Boeing by
the Communications and Electronics Command (CECOM). The Cluster 1, later renamed
the Ground Mobile Radio (GMR) program, was the inaugural project using version 2.2 of
the SCA. Other JTRS Cluster programs were awarded, then in April 2004, almost three
years after the 2.2 specification, version 2.2.1 was released. This version cleaned up many
of the errors in 2.2 and incorporated several clarifications and enhancements. One of the
significant changes was that with version 2.2.1, the Log Service was removed from the
SCA specification and the OMG Lightweight Log specification was referenced instead. In
mid-2004, the OMG released its Software Radio Specification. The OMG specification was
initiated by a number of the individuals who had contributed to the SCA development. The
original objective was to evolve the SCA into an industry standard rather than a military-
only specification. However, as the specification evolved in the OMG, it took on a life of
its own with the resultant OMG specification being significantly different from the SCA
specification.

At the same time, issues with waveform portability were being raised through the on-going
JTRS Cluster programs. The basic problem was that the code developed for a GPP was
reasonably portable between platforms. However, the code developed for a DSP and FPGA
generally remained specific to the particular processor and architecture of the radio.3

This portability issue came to a head in late 2004, resulting in several special workshops
called by the JPO to address the DSP and FPGA portability issue. The result of these
workshops was the SCA 3.0 specification. This version of the SCA changed little of the
core requirements describing the SCA. It did, however, define additional constraints on DSP
software related to what system calls could be used by DSP code, defined a proposed set of
waveform components, proposed a high-level data transport design (called HAL-C), and had
an Antenna API section. The general reaction in the community was that the specification
required additional work and, although the concepts and approaches were potentially useful,
more detail and analysis was required in order to achieve a set of descriptions that could be
implemented efficiently.

From late 2005 to early 2006, the JPO was re-organized to address resolution of problems
with the Cluster programs more effectively and move forward. The program office was
moved to San Diego, CA, from Washington, D.C. and is now administered by the Navy
SPAWAR office. In mid-2006, version 2.2.2 was released. As the number implies, this is
an incremental version from the 2.2.1 version of the SCA. Furthermore, the 3.0 version is
shown on the JTRS website as ‘not supported.’ Thus, at the time of this publication, version
2.2.2 is the latest release supported by the program office.

2 Although in principle this was true, there remained a number of important clarifications, corrections, and
additional requirements that were necessary to transform the 2.2 release into a reasonably solid specification. For
example, the IDL provided in appendix C of the SCA specifications would not compile as defined due to name
conflicts with POSIX named values.
3 Waveform portability became a significant issue within the SCA community. Although the portability of waveforms
across multiple platforms is certainly a desirable objective, the interpretation of portability evolved into reuse
without modification. This was never a fundamental requirement of the SCA. Waveform portability can be viewed as
a cost function with the objective to minimize the cost as much as possible. Due to differences in physical hardware,
processor, and transport architectures between different board manufacturers, simply moving a waveform from
one system to another without modification is unrealistic.

The Software Communications Architecture 9

1.2.2 What is the SCA?

The main purpose of the SCA specification is to define the Operating Environment (OE)
software, also commonly referred to as the Core Framework, which implements the core
management, deployment, configuration, and control of the radio system and the applications
that run on the radio platform. In order to provide a common reference for describing what
the SCA is and isn’t, it is useful to refer back to the introduction provided with the SCA
specification. The quote below is an excerpt from the Introduction.

The Software Communication Architecture (SCA) specification is published by the
Joint Tactical Radio System (JTRS) Joint Program Office (JPO). This program office
was established to pursue the development of future communication systems, capturing
the benefits of the technology advances of recent years, which are expected to
greatly enhance interoperability of communication systems and reduce development
and deployment costs. The goals set for the JTRS program are:

• greatly increased operational flexibility and interoperability of globally deployed
systems;

• reduced supportability costs;
• upgradeability in terms of easy technology insertion and capability upgrades; and
• reduced system acquisition and operation cost.

In order to achieve these goals, the SCA has been structured to

• provide for portability of applications software between different SCA
implementations;

• leverage commercial standards to reduce development cost;
• reduce development time of new waveforms through the ability to reuse design

modules; and
• build on evolving commercial frameworks and architectures.

SCA V2.2, November 17, 2001, p. vii

As the above quote states, the key objectives are to increase flexibility and interoperability,
reduce support costs, provide upgradeability through technology insertion, and reduce
system acquisition costs. None of the stated objectives are related to any technical design,
development, or waveform aspect of the radio system Thus, the first fundamental objective
of the SCA is to improve the business case for evolving and enhancing communications
systems and their procurement.

In order to achieve this objective, the SCA structure is intended to ‘provide’ for portability
of applications software, leverage commercial standards, support the reuse of waveform
design modules, and build on evolving commercial frameworks. As with the objectives noted
in the previous paragraph, the SCA structure focuses on design and development processes
to reuse design modules and leverage commercial software and standards.

1.2.3 Common SCA Perceptions

The previous section provided a brief description of the SCA. It is a truism that any
technology is often received and perceived differently by each individual: Some of the

10 Introduction

perceptions are based in fact and some are based on an incomplete understanding of the
technology. The following paragraphs discuss some of the commonly cited misconceptions
about the SCA.

1.2.3.1 The SCA defines a technical architecture for a software radio

There is nothing in the SCA specification that provides technical data or guidance on the
design and implementation of a software radio. The SCA, based on the CORBA Components
Model, defines an architecture for the deployment of applications. In the case of a software
radio, those applications tend to be waveforms.

1.2.3.2 The SCA enables reusable components

The SCA enhances reusability from two perspectives. First, the SCA specification defines
a common set of interfaces for basic deployment configuration, and control of applications.
So, from the perspective of user interfaces and external control of the system, the same
interface calls that are used to load, start, and stop a SINCGARS waveform are identical to
the FM3TR waveform. Second, the Application Programmer Interface (API) appendix to the
specification is intended to promote reusability of waveform software components through
common waveform interfaces. This continues to be an area of on-going discussion because
all radio system developers have different perspectives as to what the interfaces should be
for a specific waveform.

1.2.3.3 A waveform can be moved from one SCA platform to another without
modification

Many individuals have interpreted the portability objective of the SCA as reusability without
modification. The SCA specification defines common, high-level interfaces for deploying,
configuring, controlling, and monitoring the hardware and software applications within an
SCA-based radio system. This simplifies the effort required to port applications because
the interfaces do not change. However, deploying waveforms across multiple radio systems
without modification was never a stated requirement.

1.2.3.4 The SCA results in a waveform performance impact on my system

The simple fact is that, once the SCA deploys the waveform on the radio system, the SCA
Core Framework goes into a quiescent state and does not utilize significant processor cycles.
Also, for waveforms implemented largely in FPGA or DSP processors, there is typically
no impact due to the SCA on functioning waveforms in those processors. There are some
impacts in terms of the memory footprint required to support an SCA framework. However,
the SDR Forum, NASA, and other groups are looking into reduced footprint architectures.
Where the framework is running on the same GPP being used for waveform processing,
some performance impact may be encountered. In this case, standard systems analysis to
evaluate the load margins is necessary.

The Software Communications Architecture 11

1.2.3.5 I must use CORBA for the data transport

CORBA should be the starting point but is not mandatory if performance reasons prohibit it.
Also, individuals often confuse the latency impacts of the underlying transport mechanism,
which typically defaults to TCP/IP, as being synonymous with CORBA. In reality, CORBA
is a protocol layer, much like Hypertext Transfer Protocol (HTTP), that rides on top of
the data transport mechanism. Most modern ORBs support plugable transports allowing
customization and optimization of the actual data transport.

1.2.3.6 The SCA is only applicable for small radios

The SCA is not specifically targeted for any one type or class of radio system. Small form-
factor, resource-limited radio systems have a more significant set of issues to overcome
when building an SCA-compliant handheld or manpack radio, due to their Size Weight, and
Power (SWaP) constraints. This is usually due to the fact that the GPP on the small radio
is already used extensively for waveform code, and processing impacts due to adding the
framework can be significant.

1.2.3.7 The SCA and/or CORBA is not suitable for large, complex systems

The origins of the SCA are based on the JTRS program which focused on tactical radio
systems. These systems ranged from small handhelds to rack-mount systems in vehicles,
ships, and aircraft. Although these systems do not have the complexity of large terminal
systems, it is possible to apply the SCA to larger systems. More thought must go into the
architecture of the system, however. It may be the case that the SCA manages the core set
of radio equipment and waveform deployment under the direction of a higher-level system
or network management operation. The key aspect is that the SCA is targeted towards
the management of the hardware and software that implement and support the end-to-end
waveform application.

As for the applicability of CORBA to large scale systems, it can be said that it is in
wide use throughout industry. Large, distributed Java-based applications are, in fact, using
CORBA and Java remote procedure calls are using the CORBA protocol. Also, the Iridium
satellite Command and Control segment integrated a COTS-based system, OS/COMET,
within a comprehensive CORBA framework. The resultant system ran on over 50 computers
and was comprised of several hundred processes.

1.2.3.8 The SCA is not suited to systems above 2 GHz

This reason is typically rooted in the fact that the SCA originated in the JTRS program,
which was focused on the tactical radio spectrum under 2 GHz. The simple fact of the matter
is that there is nothing in the SCA specification, either explicitly or implicitly, that limits
the usefulness or applicability of the SCA to systems above 2 GHz.

1.2.4 Why Use the SCA?

Given that the SCA is not a technical reference architecture for a software radio, why should
you use it? Part of the answer lies in the fact that, as discussed earlier, the objective of

12 Introduction

the SCA is to improve the business case for reduced cost for enhancements, upgrades, and
logistics. These are benefits that are primarily realized by the customer or recipient of the
SCA system. Thus, more often than not, the reason cited for using the SCA is that it is a
requirement levied on the project. In order to achieve longevity and acceptance, there must
be business reasons for the developers of software radios to use the SCA. Some of the
business reasons to consider using the SCA architecture are:

1.2.4.1 The SCA provides a common infrastructure for distributed application
deployment

Although the SCA was founded and focused on the radio domain, the basic infrastructure
for deployment of the application components is applicable across virtually any domain.
This includes radio-related areas, such as signal processing systems, as well as unrelated
domains, e.g. device and software management across processors within a vehicle.

1.2.4.2 The SCA allows quicker integration of external applications

Because of the small set of interfaces defined within the SCA, external applications can
easily be integrated using the IDL specified for loading, starting, stopping, and controlling
applications within an SCA system. One such example is the integration an SCA system
within a network of systems. Overall management of the radio nodes is often performed by a
network management or network control operation. These management systems often utilize
Simple Network Management Protocol (SNMP) or Java, which includes native support for
CORBA. So, when the network control software decides that it needs to load a particular
waveform or communications software on an SCA radio, it simply issues a Java Remote
procedure Call (RPC) to the SCA radio to load the desired waveform. If SNMP is used,
then an SNMP proxy can be implemented that provides the SNMP interface to the network
system and issues Java calls to the SCA radio.

1.2.4.3 The SCA enables easier insertion of new technology

Because the SCA specifies the interfaces for deployment, configuration, control, and
monitoring of the hardware and software with an SCA system, new technology can be
inserted with less cost and impact. As an example, part of the description of the application
in the SCA identifies a software component that provides a certain function. Within that
description, there may be several different implementations, e.g. one on a DSP, one for a Intel
GPP running VxWorks, and so on. As technology capabilities progress, an implementation
that could once only be realized on a DSP may now be realizable on a GPP.4

Because the SCA allows multiple implementations, the new implementation can be
deployed on an existing system that has the GPP resource but not the DSP without changing
other components. This concept also applies to new hardware.

4 This does not imply that no effort is required to port a component from one system to another. It does mean that,
if the implementation suitable for a particular system is now available, it can be deployed and configured on the
system without rebuilding the entire application.

The Operating Environment 13

1.2.4.4 The SCA provides an infrastructure for extensibility and integration

The SCA is a foundation for the design and development of a comprehensive radio system.
It defines the essential interfaces and behaviors provided in the infrastructure. Applications
may be developed and built that provide higher level capabilities and features. Technologies
such as cognitive radio may be integrated with an SCA system providing higher-level control
and management of the radio resources. For example, a set of SCA radio systems that have a
cognitive map of their surroundings and temporal logic can negotiate configurations between
them to enhance reliability of the communications. This may take the form of changing
parameters of the existing waveforms within the radio or loading new waveforms based on
the collaboration with other radio systems.

1.2.4.5 The SCA reduces the development of Non-Recurring Engineering (NRE)
for system development

Standardizing on a common software infrastructure reduces the effort required for future
systems because a common set of control routines and implementations are developed. This
can have a positive impact on the development cost and schedule. The key is to develop
a standard infrastructure that is applied across a variety of systems that supports the SCA
capabilities. This last item is central to how an organization approaches the development
and use of the SCA.

Now that we’ve covered several of the positive and negative viewpoints of the SCA,
let’s continue with a brief overview of the technical aspects of the SCA. The remainder of
this chapter will introduce the SCA Operating Environment and specification structure as a
foundation for the subsequent chapters.

1.3 The Operating Environment

The JTRS program Software Communications Architecture specifies the requirements for
a common software radio Operating Environment (OE). The OE consists of the Core
Framework (CF), the CORBA ORB, and the operating system. The operating environment
specifies the interfaces, rules, constraints, and procedures that must be adhered to in order
to implement an SCA-compliant radio system. The Core Framework provides

• a collection of common services used by the waveform and other applications;
• software enabling the installation, configuration, management, and control of waveforms;
• a federated file system enabling common file system operations and access across multiple

processing platforms;
• device interfaces that provide a common abstraction of the underlying physical hardware.

As illustrated in Figure 1.4, the SCA Core Framework is shown along the vertical axis and
can be thought of as the management plane of the SCA system. The waveform is illustrated
as a set of components that are assembled across the horizontal axis forming the application
plane.

14 Introduction

Red Hardware Bus

Network Stacks and Serial I/F Services

Operating System

CORBA ORB and Services SCA CF Services and Applications

Black Hardware Bus

Network Stacks and Serial I/F Services

Operating System

CORBA ORB and Services SCA CF Services and Applications

Red CORBA Bus (CF IDL)Black CORBA Bus (CF IDL)

Modem
Component

Link,
Network

Components

Modem
Adapter

Security
Adapter

Security
Components

Security
Adapter

RF

«Non-CORBA»
Modem

Components

Link,
Network

Components

I/O
Adapter

I/O
Components

«Non-
CORBA»

I/O
Componens

«Non-CORBA»
Security

Components

Core
Framework
Components

COTS
Components

Name: SCA Software Structure
Package: Component Model
Version: 2.2
Author: V. Kovarik

Data /Signal Processing Transport Path

Device and Waveform
application configuration and control

Hardware

Waveform

Figure 1.4. The SCA waveform component organization

1.3.1 Conceptual Organization

Conceptually, a SCA radio has three segments: i) The Waveform Deployment; ii) the Core
Framework; and iii) the Domain Profile. These three segments are each divided into physical
and logical views. In the Waveform Deployment segment, the radio hardware is the physical
view of the radio system. However, the waveforms are realized through software that is
loaded on the physical radio elements. There are two layers in the logical view of the radio
system. The first consists of the set of components that form a waveform application or other
service on the system. The second is the application that provides the top-level interface and
control for the set of components.

The Core Framework segment includes all software required to manage the radio system
and deploy applications. It has a physical view and a logical view as well. The physical view
of the Core Framework provides high-level management of the physical devices in the radio
system. The logical view provides the same for the waveform applications and other services.

The Domain Profile segment consists of the set of XML files that describe the hardware
resources within the radio system, the waveform application structure, and dependencies
between waveform components, connections between components, and dependencies on
hardware resources. This is illustrated in Figure 1.5.

1.3.2 OE Interface Constraints

Figure 1.6 illustrates the relationships between the primary components of an SCA-compliant
system. At the base level are the services provided as POSIX interfaces by the operating
system that form the AEP.

The Operating Environment 15

Device Configuration
Descriptor (DCD)

D
evice M

anager

Name
Service

DAC-1
ADC-1

FPGA-1
GPP-1

B

C

A

B

Applications

Components

Radio HW

D

B

DataLink-1

Telemetry-1

D
ataLink

A
pp F

actory

A

A

File
Manager

Resources Domain Manager

File
System

SCA Devices

Connections

Dependencies

Components

Waveform Deployment Core Framework
Domain Profile XML

Lo
gi

ca
l

P
hy

si
ca

l

DataLink-2

Telemetry
Waveform

DataLink Waveform
Software Assembly
Descriptor (SAD)

Domain Manager
Descriptor (DMD)

T
elem

etry
A

pp F
actory

Figure 1.5. Abstraction layers in an SCA system

Application's Resources, CF Base Application

CORBA ORB Core
Framework
(Framework
Control and

Services
Interfaces)

Non-CORBA
components,

device drivers,
etc.

OS access unlimited

CORBA APIOS access limited to SCA AEP

Application uses CF for file access and services

Logical device adapter

OS (function) that supports the SCA

Figure 1.6. The SCA interface constraints

16 Introduction

The objective of the Application Environment Profile is to provide a constrained set of
well-defined operating systems calls that minimize the impact to application code. This
objective is only valid for general purpose processor components because DSP and FPGA
processors do not have an operating system. However, some DSPs do support an operating
system and CORBA.5

The CORBA ORB provides a common middleware for the system and has unlimited
access to the underlying operating system. The core framework is an implementation of
the SCA specification providing the essential infrastructure components and services for the
radio system. The non-CORBA components and device drivers are comprised of low-level
drivers such as those provided by a device manufacturer for a particular physical device
for one or more operating systems. The application is composed of the set of application
components and resources that form an operational waveform. Finally, the operating system
provides the underlying set of platform specific services.

The CORBA ORB, Core Framework, and Device Drivers have unlimited access to the
underlying operating system calls and services. However, as illustrated in Figure 1.6, the
application is limited to a set of POSIX calls to the operating system. The rationale behind
this limitation is that the application will be more easily ported to other platforms if it is
constrained to a specific set of interfaces and the software radio platform is mandated to
support the set of POSIX calls specified in order to be SCA-compliant.

Although this rationale has some merit, the porting of a waveform has a wide ranging
set of complex issues and the POSIX constraints, in and of themselves, help but do not
achieve, portability of waveforms between platforms. This becomes particularly evident
when a waveform application is developed that uses a DSP or a FPGA as the processor for
some potion of the waveform functional chain.

1.4 The SCA Specification Structure

The SCA specification consists of three major components:

• Software Communication Architecture Specification (JTRS-5000SCA)
• Application Program Interface Supplement (JTRS-5000API)
• Security Supplement (JTRS-5000SEC)

The SCA specification is the primary specification for building an SCA-compliant radio
systems. The SCA specification defines the operational environment requirements and basic
functional requirements. The contents of the SCA specification are the primary focus of
this book.

The Application Program Interface (API) Supplement provides guidelines and
requirements for building modular and portable application components. Certain aspects of
the API Supplement will be referenced or discussed within this book. However, a thorough
treatment of the API Supplement and the construction of a portable SCA application would
requirement significantly more detail than can be reasonably included in this book.

5 The POSIX interface is required to be used by the application when accessing operating system services. All
other components, e.g. the CORBA ORB, the Core Framework, non-CORBA components, and device drivers, may
have unlimited access to the operating system.

The SCA Specification Structure 17

The Security Supplement defines specific security requirements and APIs related to the
design and construction of a Type 1 secure radio system. This book will reference some
portions of the Security Supplement as it relates to the rest of the content. However, as
with the API supplement, the level of detail required to address fully the security issues
associated with the design and development of an SCA-compliant system are beyond the
scope of this book.

Section 3 of the SCA specification identifies the requirements for the core software
infrastructure architecture definition. The organization of Section 3 is shown in Figure 1.7.
The subsection on the Operating Environment addresses the Core Framework and services.
Section 3.2 focuses on the application interfaces and functional requirements. Section 3.3
provides the requirements for the SCA device interface and Section 3.4 identifies general
requirements.

cd 3.0 Software Architecture Definition

3 Software
Architecture

Definition

3.1 Operating
Environment

3.2 Applications 3.3 Logical
Device

3.4 General
Software Rules

3.1 Operating Environment

+ 3.1 Operating Environment

+ 3.1.1 Operating System

+ 3.1.2 Middleware and Services

+ 3.1.3 Core Framework

+ 3.1.3.4 Domain Profile

+ 3.1.1 Operating System

+ 3.1.2 Middleware and Services

+ 3.1.3. Core Framework

3.2 Applications

+ 3.2 Applications

+ 3.2.1 General Application Rquirements

+ 3.2.2 Application Interfaces

3.3 Logical Device

+ 3.3 Logical Device

+ 3.3.1 OS Services

+ 3.3.2 CORBA Services

+ 3.3.3 CF Interfaces

+ 3.3.4 Profile

3.4 General Software Rule

+ 3.4 General Software Rules

+ 3.4.1 Software Development Languages

+ 3.4.1.1 New Software

+ 3.4.1.2 Legacy Software

Figure 1.7. The SCA specification organization

The Operating Environment, Section 3.1, of the SCA specification, defines the bulk of the
requirements that must be met for a system to be SCA-compliant. It contains the common
components of the Core Framework including the Domain Manager, the Log Service,
CORBA requirements, and other components.

In Section 3.2, the requirements that must be met by the SCA application are defined. The
application is comprised of the software that implements an end-to-end waveform. Thus, this
section is met primarily by the waveform application developer. However, certain common
aspects of the application are provided as part of the Core Framework components.

In order to manage, configure, and control the devices that make up a radio system,
a Logical Device interface must be implemented. Thus, the device manufacturer and/or
radio system integrator must provide implementations of the SCA Logical Device in order
to integrate the hardware into the overall SCA system. These requirements are defined in
Section 3.3. Sections 3.1 through 3.3 will be presented in more detail as each of the functional

18 Introduction

requirements areas are discussed in later chapters. The general software requirements,
Section 3.4, and other, non-functional requirements, are discussed in this section.

Figure 1.8 shows the relationships between the SCA specification and an implementation.
The SCA specification provides the interface and high-level behavioral specification to be
implemented by the Core Framework. Figure 1.8 also shows the standards developed by the
Object Management Group (OMG) that are referenced by the SCA specification.

pd Logical View

OMG Specifications

SCA ImplementationSCA Specification

DomainProfile

+ Author

+ Code

+ Descriptor

+ Descriptors

+ Device Configuration Descriptor

+ Device Package Descriptor

+ Domain Manager Configuration Descriptor

+ Domain Profile Types

+ FPGA Map

+ Implementation

+ OS Group

+ Properties Descriptor

+ Property File

+ Software Assembly Descriptor

+ Software Component Descriptor

+ Software Package Descriptor

CF_Impl

+ AppComponent

+ Capacity

+ Event

+ I/ODevice

+ LogicalDevice

+ Port

+ Processor

+ Radio

+ Resource

+ Service

+ SWApplication

+ SWComponent

+ Waveform

+ Application

+ CF

+ Components

+ CORBA
+ Devices

+ File System

+ Log Implementation

+ Resources

LogService

+ AdministrativeStateType

+ AdministrativeStateType

+ AvailabilityStatusType

+ AvailabilityStatusType

+ LogFullActionType

+ LogLevel

+ LogLevelType

+ LogRecordType

+ LogTimeType

+ OperationalStateType

+ OperationalStateType

+ ProducerLogRecordType

+ LogAdministrator

+ LogConsumer

+ LogProducer

+ LogStatus

StandardEvent

+ DomainManagementObjectAddedEventType

+ DomainManagementObjectRemovedEventType

+ SourceCategoryType

+ StateChangeCategoryType

+ StateChangeEventType

+ StateChangeType

PortTypes

Lightweight Log

Event Service

Name Service

Starting with SCA
2.2.1, the Log Service

has been removed
from the SCA
specification
and the OMG

Light weight Log
implementation is

referenced.

CF

+ AdminType

+ ComponentElementType

+ ComponentProcessIdType

+ DataType

+ DeviceAssignmentSequence

+ DeviceAssignmentType

+ DeviceSequence

+ ErrorNumberType

+ ErrorNumberType

+ FileException

+ FileInformationType

+ FileType

+ InvalideObjectReference

+ InvalidFileName

+ InvalidFileSystem

+ InvalidProfile

+ LoadType

+ MountPointAlreadyExists

+ MountSequence

+ MountType

+ NonExistentMount

+ OctetSequence

+ OperationalType

+ Properties

+ ServiceType

+ StringSequence

+ String Sequence

+ Unknown Properties

+ UsageType

+ AggregateDevice

+ Application

+ ApplicationFactory

+ Device

+ DeviceManager

+ DomainManager

+ ExecutableDevice

+ File

+ FileManager

+ FileSystem

+ LifeCycle

+ LoadableDevice

+ Port

+ Port Supplier

+ Property Set

+ Resource

+ ResourceFactory

+ TestableObject

+ UnknownProperties

Uses

UsesUses

«realize»

«realize»

«realize»

Uses

Uses

Figure 1.8. SCA specification versus implementation

Summary 19

The bulk of the Core Framework interfaces and behavioral specifications are contained
within the Core Framework package. The IDL for the set of interfaces is defined as a single
interface module. The Domain Profile specifies the XML files that are used to describe the
underlying hardware and the software components and the interconnections that are required
to deploy the waveform. There are some differing interpretations of what constitutes the
Domain Profile. Some interpretations refer to the set of XML files as the Domain Profile,
some view the internal parsed XML data structures as the Domain Profile, and others view
the Domain Profile as a collection of internal data structures that form the internal domain
knowledge of the SCA radio system.

This book takes the stance that the XML files represent a human readable version of the
Domain Profile and that the internal data structures built as part of the processing of the
XML profile form the internal Domain Profile used by the Core Framework in the process of
instantiating a waveform. The hierarchical tree structure generated by the parser is viewed as
an intermediate data structure that takes the text form of the XML files and parses them into
a canonical form that allows easy extraction of the salient information required to deploy
a waveform. It is true that the XML parse tree can be traversed and used directly as the
internal representation of the Domain Profile. However, this form of the data is inefficient for
the types of constraint enforcement required of the Application Factory during application
instantiation.

Underlying all the above abstractions are a set of common services that provide critical
capabilities for all the SCA components:

• Name Service – The Name Service enables a component within the radio system to locate
a required service or application component and connect to that component.

• Event Service – The Event Service provides an asynchronous mechanism for components
to publish events on an Event Channel and other components to register to receive those
events.

• Log Service – The Log Service provides a basic logging capability within the SCA radio
system that allows components to create a record describing some activity or state and
have that record time-stamped and saved within a log for subsequent retrieval.

• File Service – Perhaps one of the most crucial services provided is the File Service which
provides a common abstraction of a file system for all SCA radio components independent
of the actual underlying operating system and file system implementation.

Part I of this book is organized along the high-level abstractions identified above. Chapter 2
addresses the common framework services to provide a frame of reference for components
and references used in the description of other logical interfaces. After describing the
common services, each of the subsequent chapters addresses each of the logical abstractions
defined above starting with the Resource and ending with the Domain Manager.

1.5 Summary

The SCA specification provides an implementation-neutral framework for implementing
and deploying applications. The general requirements of the SCA define a set of hardware
and software constraints that the system must adhere to or provide. In the next chapter, a
conceptual view of the operation of an SCA-compliant system is presented using the Use
Case model approach of the Unified Modeling Language (UML).

2
Operational Scenarios

In order to provide a context of the operational behavior of a system, it is helpful to define
a set of use cases that describe the overall behavior of the system from an external or
user’s point of view. This section provides a set of use cases for the software defined
radio. The use cases discussed are intended to provide a broad overview of the essential
operational characteristics of an SCA-compliant software radio. Any specific radio system
would require a more extensive set of operational scenarios and uses cases to describe the
detailed dependencies and interactions of that particular system.

Figure 2.1 shows the simplified set of operations and users that interact with the radio
system. Two broad user types or roles are shown in the figure. The Radio User represents
a typical operator of the radio set. As such, she would interact with the radio at a basic
equipment level, e.g. power on the radio, basic hardware initialization, and shutdown. At
a more abstract level, the Radio User interacts with the radio to instantiate and control a
waveform application. At this level, the uniqueness of the software defined radio begins to
emerge. The Radio User can configure the radio to load and run a waveform dynamically;
that is, the radio may be (re)configured to execute a set of components that supports different
waveform applications on demand.

In addition to the Radio User, there is another role, the Radio Engineer, who provides the
radio system configuration, integration, testing, and waveform installation.

The following paragraphs provide a high-level overview of essential activities involved
in each of the use cases identified in Figure 2.1. The aim of these use cases is to provide
a common foundation of behavior and interrelationships for the key functionality of an
SCA-compliant radio system. The objective is to identify essential steps and conditions
in each of the high-level use cases. These will provide a foundation that will be referred
to in subsequent chapters as we explore the specific behaviors of the components of
an SCA Core Framework. It should be noted that the sequence diagrams presented
in the following sections are intended to provide a high-level view of the interaction
between the use cases and not to provide a rigorous UML model of the use case
interaction.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

22 Operational Scenarios

pd Overview

Application Installation

+ Install Application

+ Load Domain Profile

+ Uninstall Application

+ Unload Domain Profile

Radio Startup

+ Start Device

+ Start Device Manager

+ Start Domain Manager

+ Start Event Channel

+ Start File System

+ Start Log

Radio User

Radio Engineer

Instantiate Waveform

+ Allocate Capacity

+ Configure

+ Create Application

Radio Shutdown

+ Shutdown Device

+ Shutdown Device Manager

+ Shutdown Domain Manager

+ Shutdown Event Channel

+ Shutdown File System

+ Shutdown Log

Control Waveform

+ Deallocate Capacity

+ Query

+ Release Application

+ Start Application

+ Stop Application

System Configuration

+ Create Domain Profile

+ Validate Domain Profile

Security

+ Manage Key Fill
Security Mgr

«trace»«trace»

«trace»«trace»

«trace» «trace»

«trace»

Figure 2.1. Top-Level radio user roles and activities

2.1 Startup

The Startup use case addresses the process of bringing up the radio system from a power
off state to power on, with each of the hardware components powered on and initialized
and the essential components of the SCA Core Framework loaded and initialized. Figure 2.2
illustrates the core relationship between the use cases that form the startup sequence.

The Start Device Manager use case describes the startup of what is commonly referred
to as a node. Here ‘node’ will be used to identify a physical hardware component, such as

Startup 23

a VME or Compact PCI card that contains one or more physical devices that provide some
part of the processing necessary to implement an SCA-compliant software defined radio
system. Typically, the initial or boot node is a Single Board Computer (SBC) or some other
configuration of a general purpose processor and operating system.

ud Radio Startup

Radio User

Start Device
Manager

Start Domain
Manager

Start Log

Start File System

Start Device

Start Event
Channel

«include»
0..∗

1

«include»

0..1

1

«extend»

1..∗

«extend»
0..1

«extend»
0..∗

«include»

Figure 2.2. Radio system Startup use cases

When starting up an SCA system, the premise is that there is an initial boot device and it is
the Device Manager for this initial boot device that orchestrates the startup and initialization
of the SCA Core Framework and its related components. As the Device Manager starts,
it launches a number of services and applications (Figure 2.3), beginning by initializing a
file system. This file system then provides a storage repository for the Device Manager and
its associated Devices. The Device Manger then starts up the Log Service, which provides
the ability to record system messages, warnings, and failures across the entire set of SCA
hardware and software. The Device Manager then starts the Domain Manager which will
serve as the primary repository and control point for the system. The Device Manager then
starts each of the Devices associated with the Device Manager.

This approach is new to the current version of the SCA. Prior versions had the Domain
Manager starting first which then provided an initialized and running Domain Manager for
the Device Manager and Devices to access. In the current approach, it is not guaranteed
that a component is completely initialized and ready to accept incoming CORBA calls when
initiated by a client.

24 Operational Scenarios

For example, since the Device Manager on the boot device can start the Domain Manager,
when the Device Manager attempts to register with the Domain Manager, the Domain
Manager may not have completed loading and initializing. Consequently, a mechanism for
automatic retry must be incorporated into the design of certain components. This ensures
that the Core Framework components have a reasonable chance of completing the start up
process without failing by hitting a deadlock condition.

sd SystemStartup

Radio User

Start Device
Manager

Start File
System

Start Log Start Domain
Manager

Start Device

SCA 2.2 allows for the
startup of the Domain
Manager to be included
as part of the Boot Node's
Device Manager startup.

PowerOn

Boot ROM

Load OS

Start Naming Service

Load Device Manager

Start Device Manager

Instantiate

Instantiate

Initialize

[If defined in XML]: Instantiate

Initialize

[For Each Device]: ∗Instantiate

Initialize

Register

Device List

[For Each Device]: ∗Get Device Info

Start Other Device Managers

System Ready

Figure 2.3. Radio system Startup sequence

Upon power up, the boot node will execute the Boot ROM for that particular hardware
configuration. The Boot ROM provides the power-on logic and initialization for the hardware.
Once the Boot ROM has been loaded, an operating system is loaded. This provides the core

Startup 25

set of services and functions to load and manage the core SCA software components for the
system.

Once the operating system is loaded, the system is ready to start loading components of
the Core Framework. The first entity that needs to be loaded is the CORBA Name Service.
The Name Service provides a ‘well known’ location for applications to look up available
services and applications. Several components of the Core Framework will register with the
Name Service; hence, it needs to be available and running prior to the initiation of Core
Framework components.

At this point, the Device Manager software implementation is loaded. As the Device
Manager software component initializes, one of the first tasks it performs is to read the
Device Configuration Descriptor (DCD) associated with the Device Manager. This is the
XML file that contains the configuration and startup data required. Part II of this book
addresses the syntax of the DCD and XML files and Part III provides some examples.

As the DCD is read and processed by the Device Manager software, it specifies the
additional software components and Devices that must be started as part of the Device
Manager’s overall initialization. Typically, one of the first tasks the Device Manager performs
is the instantiation of a File System. The SCA File System provides a CORBA-based
abstraction of the specific file system implemented by the underlying hardware and operating
system. Usually, the Device Manager instantiates one file system. However, it may instantiate
more than one or none, depending on the specific type of hardware and operating system
configuration and capabilities of the Device Manager’s underlying hardware.

The next component instantiated is usually the Event Channel. The Event Channel provides
an asynchronous notification mechanism enabling components to post status changes and
other state events to an event channel. Other components interested in receiving the event
notification need only subscribe to the event channel of interest. The functionality of the
Event Channel referenced in the SCA is defined in OMG Document formal/01-03-01: Event
Service, v1.1.

Once the event channel is created, the Device Manager starts the Log Service. Prior to
SCA v2.2, the Log Service was defined as part of the SCA Specification. Beginning with
SCA v2.2.1, the SCA specification references the OMG Lightweight Log specification. Both
are similar in functionality and IDL interface. The Log Service provides a short-term, in-
memory log that may be accessed by any SCA component. The persistent mechanism used
by the log is a memory buffer.

Subsequent to starting the log, the Device Manager starts the Domain Manager, if specified
in the DCD XML file. The Domain Manager provides the top-level repository and control
over the collection of hardware and software that comprises the ‘domain’ of the radio system.

At this point the Device Manager then starts and initializes each of the Devices specified
in the DCD XML file. Each Device is started and initialized. Once the Devices are started by
the Device Manager, the Device Manager then notifies the Domain Manager by registering
each Device with the Domain Manager. For each Device registered, the Domain Manager
then queries the Device to obtain its properties and configuration information.

Finally, any additional Device Managers that need to be started as part of the system
startup would be started by the boot node Device Manager. Each of the subsequent Device
Managers started would follow the same startup sequence just described for the boot node
Device Manager. However, subsequent Device Managers would typically not start a Domain
Manager, or Event Channel, as only one of those per system would be started. A File

26 Operational Scenarios

System and Log Service may or may not be instantiated depending on the resources and
requirements of the radio system.

2.2 Shutdown

Radio shutdown is, interestingly enough, not explicitly addressed in the SCA specification.
The logical assumption one could make (illustrated in Figure 2.4) is that the Domain Manager
functions as the master control component over the entire radio set. Thus, it is the component
that is instructed to shutdown the radio set. This is performed by iterating through the set
of the Device Managers registered with the Domain Manager and instructing each Device
Manager to shutdown (Figure 2.5). Each Device Manager, in turn, instructs each of the
Devices registered with the Device Manager to shutdown. Subsequently, the Device Manage
terminates the Log Service, if provided, and the File System associated with the Device
Manager is shutdown. Once the Device Manager has completed each of these activities, it
shuts down. Note that since the Device Manager, and its related components, are terminated,
there is no response back from the device being terminated because it ceases to exist.

ud Radio Shutdown

Radio User

Shutdown Device

Shutdown Device
Manager

Shutdown File
System

Shutdown Log

Shutdown
Domain

Manager

Shutdown Event
Channel

«extend»

«use»

1..∗

0..1

«extend»

0..∗
«extend»

1..∗

«extend»

Figure 2.4. Radio system Shutdown use case

After instructing each Device Manager to shutdown, the Domain manager terminates.
Again, because of the potential for errors or other notifications being issued by components as
they are shut down, the Domain Manager should wait for a reasonable amount of time before
shutting down to be sure that the collection of components have successfully terminated.

Shutdown 27

sd System Shutdown

Process Termination

Radio User

Shutdown
Domain Manager

Shutdown
Device Manager

Shutdown File
System

Shutdown
Device

Shutdown Log

Depending on the implementation
architecture, the Device implementation
may be running as a thread within the
Device Manager process. Thus, the
terminate would result in the termination
of that thread.

The Device implementation for the
General Purpose Processor (GPP)
hosting the Device Manager may then
issue a reboot, restart, or shutdown
for the primary processor device
associated with the Device Manager.

Shutdown

[For each Device Manager]:
∗

Shutdown

[For each Device]:
∗

Shutdown

Terminate

Shutdown

Terminate

Shutdown

Shutdown Complete

System Shutdown

Terminate

Terminate

Reboot/Restart

Figure 2.5. Radio system Shutdown sequence diagram

Since one of the Device Managers functions as the boot node and typically is the node
running the Domain Manager, it may include interface calls to the operating system to
address hardware shutdown or system reboot. Whether it includes this behavior or not,
the Device Manager for the processor running the Domain Manager should wait until the
Domain Manager has terminated prior to initiating its shutdown sequence. Once the Domain
Manager has terminated, the Device Manager will perform its shutdown sequence. Thus,
when the Domain Manager receives the call from the Domain Manager to shutdown, it
defers its actual shutdown process until the Domain Manager, and any other SCA processes,
have completed their shutdown processes. Then it shuts down and/or initiates a call to the
operating system requesting a reboot or restart.

Device Managers that do not have a general purpose process associated with a Device
that is part of the collection of Devices associated with the Device Manager, simply issue
the shutdown call to the set of Devices associated with the Device Manager. Each Device
then performs its shutdown actions.

28 Operational Scenarios

2.3 Application (Un)Installation

Installation of an application in the context of an SCA-compliant radio system refers to the
reading of a set of XML files that describe the hardware and software components necessary
to deploy a waveform on a system. The key concept here is that the waveform software is
not loaded onto the hardware at this point; only the list of components required, the hardware
devices on which the software components are to be loaded, and the connections that tie the
components together into a functioning application.

The installation of an application results in the loading of the Software Assembly
Descriptor (SAD) file. The SAD file is the top-level XML file that specifies the components,
connections, and constraints for a given waveform application.

The term Domain Profile is sometimes used interchangeably to refer to both the set of
XML files and the resultant internal set of data structures that represent the content of the
XML files in a form useable by the Core Framework components. Although the intent of
the original SCA specification intends the XML files to comprise the domain information, it
is computationally expensive to re-parse the textual representation of the domain each time
a particular waveform is instantiated.

Most Core Framework implementations parse the information into an internal, machine
usable representation. This internal representation may be simply nothing more than the
XML tree or Document Object Model (DOM) created by the XML parser. Using the XML
parse tree, however, does not capture and represent the semantics between the components
of the profile. This results in the need to perform tree traversal when instantiating the
application.

Consequently, several Core Framework implementations create an internal set of data
structures that provide a more efficient representation for retrieving information and updating
when creating or destroying an application instance.

Uninstalling an application is the process of removing the Domain Profile information for
the specified waveform application. (Note that the SCA specification states that the XML
files containing the Domain Profile information are to be removed from the file system
as well. This was finally changed in SCA 2.2.1 to allow the XML files to remain on the
system.)

This requirement creates a problem for Core Framework implementations that utilize
internal data structures to represent a parsed and installed waveform application, because
uninstalling the application simply means removal of the internal data structures representing
the waveform profile.

Additionally, removal of the files presents operational problems if the end-user is
provided the ability to uninstall an application. Rather than merely removing the internal
data structures, which prevents the radio from instantiating the waveform until the XML
files are once again loaded (i.e. the waveform is again installed), the waveform cannot
be instantiated at all because the XML files describing the waveform profile no longer
exist.

Some implementations provide the ability to specify optionally whether or not the
XML files associated with the waveform should be physically deleted from the system
or merely that the internal data structures should be removed. This affords the ability to
uninstall an application, freeing up internal resources and memory for other uses while
still allowing the user to re-install the waveform as some point in the future, should it be
required.

Application (Un)Installation 29

ud App Install

Install Application

Uninstall
Application

Radio
Engineer

Load Domain
Profile

Validate Domain
Profile

Unload Domain
Profile

«extend»

«extend»

«include»

Figure 2.6. (Un)Install application use case

Installation of a waveform application is performed by reading and parsing the set of
XML files that define the waveform. The Install application use case (Figure 2.6) creates the
basic internal data structures that represent the set of components and hardware necessary
to load the waveform application. The Load Domain Profile provides the parsed XML
information necessary to create the internal model of the waveform profile. The Validate
Domain Profile performs the validation parsing of the XML files against the Document Type
Definitions (DTDs) specified in the SCA specification. The sequence diagram is shown in
Figure 2.7.

Uninstalling an application entails the removal of any internal data structures representing
the waveform profile information and, optionally, removing the XML files that form the
waveforms profile from the file system. Note that the removal of the XML files is specified as
a mandatory functional capability. However, this makes little sense because, once the XML
files are removed, to install the application again the set of XML files must be re-loaded to
the radio system.

Also, as noted in Figure 2.6, uninstallation of the waveform application has no effect
on an instantiation of the waveform. Although, at first glance, the concept of having

30 Operational Scenarios

sd Application (Un)Installation

Radio Engineer

Install
Application

Unload
Domain
Profile

Load Domain
Profile

Uninstall
Application

Uninstalling an application
does not imply that an
instantiation of the
application is removed.

Validate
Domain
Profile

Install

Load Profile

Validate XML

XML Valid

Profile Loaded

Application Installed

Uninstall

Remove Profile

Profile Removed

Application Uninstalled

Installing an application does
not mean that an instance of
the application has been created.

Figure 2.7. (Un)Install application sequence diagram

an instantiation of a waveform that has been uninstalled seems contradictory, it makes
perfect sense. Once the waveform has been instantiated, it no longer requires the profile
information for that waveform. That is because the profile information is used during
the instantiation process. After the waveform is instantiated, all the components necessary
have been loaded and device capacities have been allocated. Thus, once instantiated, the
waveform may be started, stopped, and configured, and any other operation valid for an
instantiated waveform may be performed without requiring access or reference to the profile
information.

This allows a waveform to be instantiated, then uninstalled, freeing up memory and
other support processing resources to allow, for example, another waveform to be installed.
However, if the waveform is uninstalled, even though any instantiated waveforms will
continue to function without the profile information, it does mean that no new instantiations
of the waveform can be performed until the waveform is once again installed providing the
necessary profile information.

Similarly, if the radio is shutdown, the Domain Manager is required to re-install any
waveforms that were installed at the time of shutdown. If the waveform is uninstalled, even
if there is an instance of the waveform at shutdown, the Domain Manager will not re-install
the waveform.

2.4 Instantiate Application

Once an application has been installed, the necessary information required to instantiate the
application, i.e. load the software components onto the requisite hardware and connect the
software components together, is completed. The process of applying the Domain Profile

Instantiate Application 31

information to the instantiation of a waveform is performed as part of the Create Application
use case (Figure 2.8).

ud Instantiate Waveform

Create Application Allocate Capacity

Configure

Radio User

«extend»

«use»

Figure 2.8. Waveform instantiation use cases

The Create Application process has two major aspects. The primary function is the process
of loading the software components onto the hardware. However, a prerequisite function is
the allocation of capacity on the devices where the software components are to be loaded
(see Figure 2.9).

The Allocate Capacity use case checks to see that the Device on which a component is
to be loaded has the available capacity required to load the component and, in the case of
general purpose processors, execute the component.

For example, the component may require a specific amount of memory or a certain
minimum clock cycle. If it is a FPGA load, it may require a certain type of FPGA or a
minimum number of gates. Issues related to device capacity allocation are discussed in more
detail in Chapter 6, where application instantiation is covered.

As part of the application instantiation, properties associated with the components and
devices are often set to certain known or initial values. These values are defined in the
Domain Profile XML files and reflected in the internal Domain Profile representation, if
used. However, subsequent to the instantiation of the application, property values may be set
via the configure operation. This allows the user to instantiate an application and then, prior
to starting and using the application, customize properties based on specific requirements or
needs at a given point in time. For example, although a waveform may be instantiated to
use a default hopping rate, a different hopping rate may be required based on the current
situation in which the waveform will be utilized. This is a situation when configuration
subsequent to the instantiation of the waveform using the default property values may be
used.

32 Operational Scenarios

sd Application Instantiation

Block repeated for each component

Radio User

Create
Application

Allocate
Capacity

Configure

Create

Get Info

Identify Capacity

Allocate Capacity

Capacity Allocated

Load Component

Configure Component

Component Configured

Application Created

Configure

Component Configured

Figure 2.9. Waveform instantiation sequence diagram

2.5 Control Application

Once an application has been instantiated it is ready to be used and controlled by the user
(see Figures 2.10 and 2.11). The user may Start or Stop the application, Query and Configure
properties of the application or any of its components, or Release the application, which will
remove the component software from the memory of the system.1

Starting the application is the process by which an application that has been already
instantiated (i.e. loaded into memory and all the components have been connected), is

1 The removal of the waveform performed by the Release operation discussed in this section is the destruction of
the instantiated waveform and not the uninstallation of the waveform profile as discussed in the previous section.

Control Application 33

ud Control Waveform

Start Application

Stop Application

Release
Application

Deallocate
Capacity

Radio User

Query

Configure

«include»

Figure 2.10. Radio system application control use cases

instructed to start performing waveform processing. Start essentially turns on the flow of the
data through the system for that particular waveform.2

For waveform components loaded onto an executable device, such as a General Purpose
Processor, this may seem a bit odd since, once loaded by the operating system, the executable
device is running, i.e. receiving time slices by the operating system. The distinction is,
however, that the executable image is in a quiescent state and is not processing the waveform
data stream.

Use can also be made of the Stop command. This puts the waveform application back
into a paused or quiescent state in which all the software components are still loaded and
connected but the data stream for the waveform is not being processed.

Once the waveform is installed, Query and Configure operations may be performed on
the waveform application and its components. These operations may be performed while

2 Start only applies to the specific instance for which the Start command is issued. Any other instances of the same
waveform will remain in the state they were in prior to the Start call for another waveform instance.

34 Operational Scenarios

sd Control Waveform

Radio User

Start
Application

Stop
Application

Query Deallocate
Capacity

Configure

Start

[If property value setting required]: Configure

Configured

Started

Stop

[For each capacity allocation]: Deallocate Capacity

Stopped

Query

Property Values

Capacity Released

Figure 2.11. Radio system application control sequence diagram

the waveform application is started or stopped. The waveform implementor decides whether
or not specific Query and Configure operations can be performed when the waveform is
running. For example, certain property values may only be accessible while the waveform
application is in a stopped state, whereas other properties may be accessible at any time.

Finally, an installed waveform may be released. This operation is performed on a waveform
that is stopped and instructs the waveform application to remove itself from memory. Part
of this process is the deallocation of capacity on those devices that had been hosting the
components. This activity is crucial to the total operation of the system because it frees up
device capacity making it available for use on subsequent waveform applications. Removing
an instance of a waveform application does not affect any other instances of the same
waveform currently in memory.

2.6 System Configuration

The final set of use cases (Figure 2.12) address the development of the XML files that contain
the Domain Profile information necessary to install, instantiate, and operate a waveform. The
Domain Profile XML files can roughly be categorized as being descriptions of the physical
radio system (e.g. processors, antennas, amplifiers, etc.) or descriptions of the software
components that comprise a waveform and their dependencies and relationships. Generally
speaking, there is a single set of XML files that describe the physical radio system and one
or more sets of XML files describing a waveform application.

System Configuration 35

ud System Configuration

Radio Engineer

Validate Domain
Profile

Create Domain
Profile

«extend»

Figure 2.12. System configuration use cases

Certain components of a waveform may be referenced or used by multiple waveform
implementations. Thus, an XML file may be used in more than one waveform application.
The set of XML files and their organization are discussed in more detail in Part II. This
section addresses the high-level tasks that must be performed in order to build the XML
files containing the Domain Profile information.

This chapter has provided a use case view of the SCA architecture and organization. The
following section provides an overview of the common services and functions provided or
used by the SCA Core Framework.

3
General Requirements and
Services

This chapter begins the SCA discussion by presenting several common services used by or
implemented as part of the SCA Core Framework. The services provide common capabilities
and functions utilized by several SCA components.

As with any complex system, there are several common services that provide support
capabilities to the components that comprise the primary system. The SCA has several basic
services that are identified. These services are:

1. Naming
2. Event
3. Log
4. FileSystem

These services are described in the following sections. Although not identified in the
specification as a service, File System is also discussed in this chapter. The File System is a
capability implemented by the Device Manager and the federated file system is implemented
by the Domain Manager, having a common file system interface across multiple operating
systems and processing platforms is a capability utilized by any component accessing data
within the context of the SCA. Consequently, basic FileSystem operations are discussed
in this chapter. The File System is discussed in the Device Manager chapter and the File
Manager is discussed in the Domain Manager chapter (Chapters 5 and 6 respectively).

3.1 Non-Functional Requirements

There are several types of non-functional requirements specified in the SCA that identify
limitations, preferences, and parameters that must be adhered to but do not define or

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

38 General Requirements and Services

contribute to the functional behavior of the SCA. These requirements are referenced in several
areas of the SCA specification. They have been collected in this section as a convenience.1

3.1.1 General Requirements

The general requirements (Table 3.1) define a small set of features common to the entire
SCA environment. For the most part they address operating system, object request broker,
and other services or third party components of the system.

Table 3.1. General software requirements

Section ID Resp Requirement

3.1.1 SR:1 OS The OS shall provide the functions and options
designated as mandatory by the AEP defined in
Appendix B.

3.1.1 SR:2 OS/CF The OS and related file systems shall support at a
minimum a file name length of 40 characters and
at a minimum a combined pathname/filename
length of 1024 characters.

3.1.2.1 SR:3 %ORB The OE shall use middleware that, at a minimum,
provides the services and capabilities of
minimumCORBA as specified by the OMG
Document orbos/98-05-13, May 19, 1998.

3.1.3.2 SR:120 CF Framework Control Interfaces shall be implemented
using the CF IDL presented in Appendix C.

3.1.3.3 SR:506 CF Framework Services Interfaces shall be implemented
using the CF IDL presented in Appendix C.

The POSIX requirements levied by Appendix B of the SCA specification, as noted in
requirement SR:1, are intended to provide a minimal set of mandatory operating system
interfaces to enhance portability between platforms. This constrained set of interfaces
facilitates portability for those waveforms that utilize operating system services as part of
their implementation. Consequently, those waveforms that are predominantly, if not entirely,
implemented by GPP code are the primary beneficiaries of the POSIX requirements. It should
be noted that the POSIX interface requirements are intended to provide a common set of
interfaces used by the application thereby improving the portability of waveform applications
across operating systems and SCA platforms. It is entirely possible to achieve compliance
with this requirement through the use of a POSIX library layer that implements the interfaces
on top of an operating system. The applicability and usefulness of this requirement tends to
lessen for application components written for a DSP and more so for FPGA implementations.2

The file name size requirement (SR:2) leaves some room for interpretation and has resulted
in much discussion within the SCA community. The requirement states that the operating

1 In addition, there is a small set of requirements that identify security capabilities for an SCA system. These are
discussed in Chapter 7.
2 In SCA 3.x, a portion of the POSIX interfaces in defined for DSP implementations.

Non-Functional Requirements 39

system will support a minimum of 40 characters and a minimum of 1024 characters for the
composite file name consisting of the directory path and file name. The requirement should
be modified to specify a maximum as well since several operating systems enforce some
maximum, usually 255 characters, file name length.

The last two requirements (SR:120, SR:506) specify that the core framework components
are to implement the control and service interfaces specified by the Interface Definition
Language (IDL). The IDL specification is provided in Appendix C of the SCA specification.

3.1.2 General Software Rules

There are two general software requirements within the SCA specification (Table 3.2). These
requirements provide general guidance for the implementation of an SCA-compliant system.

Table 3.2. General software rules

Section ID Resp Requirement

SR:628 CF, SI Software developed for an SCA-compliant product
shall be developed in a standard higher order
language, except as provided below, for ease in
processor portability.

SR:630 SI Legacy software shall be interfaced to the core
framework in accordance with this specification.

The use of a high-level language (SR:628) is intended to minimize the effort required
to port a waveform or other functional component of an SCA-compliant system from one
platform to another. The specification mentions that if there are performance requirements
that can’t be met using a high-order language, then assembly language can be utilized.
This statement underscores the general orientation of the SCA specification towards a GPP.
Although a variety of waveforms can be implemented in a GPP – as the throughput of the
waveform in terms of bits per second that must be processed – the implementation approach
is driven towards specialized processors such as a DSP or a (FPGA). These processors have
significantly different architectures and implementation schemes impacting portability.

Any legacy software must be integrated into the SCA-compliant system (SR:630). This
is typically accomplished through the use of an adapter or wrapper that provides an SCA-
compliant set of interfaces to the SCA components and interfaces to the legacy software
using the interfaces provided by that software.

3.1.3 Hardware Architecture Requirements

The hardware requirements (Table 3.3) do not provide a mandatory or even recommended
hardware configuration. This is both a help and a hindrance to the proliferation of the
SCA architecture and is symptomatic of a larger problem that is endemic to the software
radio industry as a whole. In order to truly achieve interoperability between radio system
components, a common set of hardware interface specifications must be established. To date,

40 General Requirements and Services

the SCA specification has focused on the software aspect of the SDR and little attention has
been given to the standardization of hardware infrastructure components.

Table 3.3. Hardware requirements

Section ID Resp Requirement

4.5.1 SR:632 SI Each supplied hardware device shall be provided
with its associated Domain Profile files as
defined in section 3.1.3.4, Domain Profile.

4.5.2.1 SR:633 SI Hardware critical interfaces shall be defined in
Interface Control Documents that are available to
other parties without restriction.

4.5.2.2 SR:634 SI Hardware critical interfaces shall be in accordance
with commercial or government standards, unless
there are program performance requirements that
require a non-standard interface.

4.5.2.2 SR:635 SI If so required, the non-standard interface shall be
clearly and openly documented to the extent that
interfacing or replacement hardware can be
developed by other parties without restriction.

XML files are used to specify the Domain Profile information (SR:632) for the hardware
comprising an SCA-compliant system. The use of the term Domain Profile in the requirement
is somewhat at odds with uses of the term in other sections of the specification. The term
Domain Profile loosely refers to the set of XML files that provide the necessary descriptive
information regarding the hardware and software components of an SCA-compliant system.
Taken together, the set of hardware related XML files for a system forms the Domain Profile
for the physical system. In addition, there are XML files that describe the essential software
components of the Core Framework. Finally, one or more sets of XML files are used to
describe the functional components of a waveform application and the resources, in terms of
hardware and software, required to load and run the waveform application. The organization
and construction of the Domain Profile is addressed in Part III of this book.

Since one of the primary objectives of the SCA is to promote interoperability,
reconfigurability, and portability of hardware and software, each hardware device requires
an Interface Control Document (SR:633). This specifies the hardware critical interfaces
and provides the information necessary to enable a third party to use the hardware in an
SCA-compliant system.

Any interfaces that are critical to the operation of the hardware are to be documented
(SR:634) using industry or government standards; and any non-standard interfaces are to be
documented (SR:635) such that the hardware may be integrated into third party systems.

3.1.4 Interface Organization

Figure 3.1 illustrates the collection of interfaces for the SCA Core Framework. The UML
diagram in the figure shows the set of defined interfaces and their organization. As the figure
shows, there is a group of common interfaces, LifeCycle, TestableObject, PortSupplier, and

Non-Functional Requirements 41

cd CF Interfaces

«CORBAInterface»
PropertySet

«CORBAInterface»
Device

«CORBAInterface»
DeviceManager

«CORBAInterface»
Resource

«CORBAInterface»
LifeCycle

«CORBAInterface»
PortSupplier

«CORBAInterface»
LoadableDevice

«CORBAInterface»
ExecutableDevice

«CORBAInterface»
ApplicationFactory

«CORBAInterface»
ResourceFactory

«CORBAInterface»
File

«CORBAInterface»
FileSystem

«CORBAInterface»
FileManager

«CORBAInterface»
Port

«CORBAInterface»
AggregateDevice

«CORBAInterface»
Application

«CORBAInterface»
TestableObject

«CORBAInterface»
DomainManager

uses

uses

uses

uses

uses

uses

uses

Figure 3.1. SCA IDL interface organization

PropertySet that converge into a single Resource Interface. Each of these base interfaces
provides a distinct set of capabilities for the SCA environment. The Resource can be thought
of as one of the fundamental building blocks of an SCA system.

The remaining chapters in Part I explore the above interfaces and the associated requirements
to provide a view into the strategies and approach to development of a SCA implementation
or Core Framework. The interfaces can be grouped into six high level abstractions:

• Resource – This abstraction incorporates key foundation interfaces and melds them into
a collection at the Resource that provides a base set of functions for most of the Core
Framework components.

• Device – This abstraction extends the Resource specification and provides the basic
abstraction for all device interfaces and common behavior within an SCA system.

• Device Manager – The Device Manager provides several key services for a set of devices
and provides the logical encapsulation of a device that is capable of performing actions
such as booting a node in the system.

42 General Requirements and Services

• Application – The Application interfaces specify the common control and data items for
an application within the SCA-compliant radio system.

• Domain Manager – The Domain Manager defines the overall configuration and control
behavior for the SCA radio system. Included within the domain management functions
is the Application Factory which is responsible for the instantiation of the waveform
application.

• Port – The Port abstraction provides a high-level formalism for connecting the different
component resources within an application to perform the waveform processing.

The rest of the interfaces are subsumed within the above groups. For example, the File and
FileSystem interfaces are implemented within a Device Manager providing the interface to
the native file system provided by the Device Manager (Figure 3.2).

(C) 2005 Vincent Kovarik

cd Functional Requirements

Waveform/Application

Services

File System

Device

Framework ControlCommon

Aggregate Device

Application

ApplicationFactory

Device

Device Manager

DomainManager

PortPortSupplier

PropertySet

Resource

TestableObject

File

File Manager

File System

LifeCycle

Loadable Device

Executable Device

Event Service LogNaming Service

AssemblyControllerApplication Component

Figure 3.2. Functional organization of requirements

3.2 Name Service

The Name Service provides a central registry of services and applications within the SCA
radio (Table 3.4). Since, in a distributed system, there is no guarantee that an application or
resource will be located at the same load point between invocations, a Name Service is used
as the method for applications to locate services and programs required by the application

Name Service 43

and as the point where an application registers the service(s) that it provides for use by other
applications and components.

The premise of the naming service is very simple. It is a hierarchical name structure,
much like that of a hierarchy of directories within the file system of an operating system.
An application that wishes to make its services or capabilities available to other applications
registers with the naming service using a well-known name. A simple example might be a
program named FFT that accepts a sequence of binary data representing a digital sampling
of an RF waveform over a given period of time and calculates the frequency components
of the waveform. It would register with the naming service using a string such as ‘\FFT’
and provide the information required by a client program to contact and make a call on the
program. This information is typically referred to as a CORBA endpoint.

Thus, any program that wishes to use the FFT application need only request the naming
service to provide the endpoint for the name ‘/FFT’ and, if the name exists in the naming
service, the endpoint is provided to the requestor.

Table 3.4. Naming Service requirements

Section ID Resp Requirement

3.1.2.2.1 SR:4 CF, OV A CORBA Naming Service shall be provided in the OE.
3.1.2.2.1 SR:5 CF, OV A CORBA Naming Service supplied by an OE shall

support the CosNaming CORBA module and
its NamingContext interface’s operations: bind,
bind_new_context, unbind, destroy, and resolve.

3.1.2.2.1 SR:6 CF, OV These operations shall meet the requirements of OMG
Document formal/00-11/01: Interoperable Naming
Service Specification.

3.1.2.2.1 SR:7 CF, OV The ‘kind’ element of each NameComponent shall be “”
(null string).

Providing a naming service (SR:4) is one area of functionality that goes beyond the
Minimum CORBA requirement (SR:3). Basic naming service functionality requires a core
set of operations (SR:5) as defined in the OMG specification (SR:6). The ‘name’ for a
component is a hierarchical tree of strings, much like a directory structure or hierarchy of
folders in a file system. The hierarchy starts with a Context or initial string defining the top
level portion of the name. Each level of the hierarchical name, as with a file system path, is
separated by a slash ‘/’. Each level of the hierarchical name is a NameComponent.

In a naming service, a NameComponent may have a portion of the NameComponent called a
‘kind’, which is an additional string appended to the base portion of the NameComponent with a
period ‘.’. The SCA specifies (SR:7) the ‘kind’ portion of the NameComponent is to be null “”.
Therefore so, for an SCA implementation, a starting context might be ‘CF’ and there might
be three items in the Naming Service as shown below and in Figure 3.3.

/CF/EventService

/CF/DomainManager

/CF/LogService

44 General Requirements and Services

<TBD>

EventService

DomainManager

LogService

Figure 3.3. Naming Service context graph

Each of the entries in the Name Service has a reference to the component or program
providing the service. An application requiring an AGC2 capability, for example, would
query the name service for /CF/LogService. The Name Service would look up the name
string provided by the requesting program and return the reference information, a CORBA
endpoint, to the requestor. The requesting process would then use the endpoint to establish
a communications link with the service provider.

3.3 Event Service

The Event Service provides a mechanism for processes within a distributed application to post
data concerning events from the originator of the event to one or more event subscribers. It is,
essentially, a simple, asynchronous message system between processes. The requirements
related to the event channel are illustrated in Table 3.5. The event channel specification
is a referenced OMG specification that is incorporated into the SCA specification. Thus,
any third party supplier of an event channel implementation that complies with the OMG
specification will work within an SCA Core Framework system.

The basic requirement establishes that a CORBA Event Service shall be provided (SR:61)
as part of the operating environment. The requirement references the OMG standard
specification for an Event Service. The required functionality of the Event Service is limited
to the interfaces for the event producer and the event consumer (SR:62).

Figure 15 illustrates the relationship of requirements for the Event Service. The top two
requirements establish the need for an Event Service to be provided (SR:61) and that the
Event Service supports the ‘Push’ interfaces (SR:62). There are two styles of event channel
implementation, push or pull. The pull implementation requires the consumer to request or
‘pull’ the event from the producer. The push implementation, conversely, implements the
model in which the producer of an event pushes the data to the consumer when the event
occurs.

Event Service 45

Table 3.5. Event Service requirements

Section ID Resp Requirement

3.1.2.4.1 SR:61 CF, OV A CORBA Event Service (e.g. OMG’s Event Service)
shall be provided in the OE.

3.1.2.4.1 SR:62 CF, OV The CORBA Event Service shall support Push
interfaces (PushConsumer and PushSupplier) of the
CosEventComm CORBA module as described in OMG
Document formal/01-03-01: Event Service, v1.1.

3.1.2.4.1 SR:63 CF, DS, SI A component (e.g. Resource, DomainManager, etc.) that
consumes events shall implement the CosEventComm
PushConsumer interface.

3.1.2.4.1 SR:64 CF, DS, SI A component (e.g. Resource, Device, DomainManager,
etc.) that produces events shall implement the
CosEventComm PushSupplier interface and use the
CosEventComm PushConsumer interface for generating
the events.

3.1.2.4.1 SR:65 CF, DS, SI A producer component shall handle all cases, without
raising any exceptions outside of the producer
component, due to the connections to a CosEventComm
PushConsumer interface being nil or an invalid
reference.

3.1.2.4.1 SR:66 CF The Incoming Domain Management Channel name shall
be ‘IDM_Channel’.

3.1.2.4.1 SR:67 CF The Outgoing Domain Management Channel name shall
be ‘ODM_Channel’.

The push model tends to be more applicable to systems where it is important for a
consumer to be notified of an event as soon as it occurs. This is more appropriate for the
types of operations and notification requirements between processes in an SCA system.
Consequently, it is the mandatory implementation for the SCA OE and is explicitly specified
in requirements SR:63 and SR:64. Associated with the push model is the requirement (SR:65)
that no exceptions shall be raised outside of the producer in the event of a PushConsumer
reference being nil or invalid. This requirement essentially states that, in the event that
the consumer of a particular event is terminated, crashes, or otherwise ceases to exist,
the reference to the consumer becomes invalid or nil and the producer shall not raise the
exception. This requirement specifically references the connection to the PushConsumer
being invalid or nil. However, in the larger sense, the event channel is a self-contained
service that is not actively managed by a higher level entity of the system. Consequently, it
could be argued that the event producer should handle all error conditions associated with
the push channel.

Although the event service may be used by multiple applications components, only
two event channels are identified as the mandatory requirements for the Core Framework:
the Incoming Domain Management (IDM) channel (SR:66) and the Outgoing Domain
Management (ODM) event channel (SR:67).

The Event Service is a key mechanism for notifying the Domain Manager of changes
in state of devices, software modules, and other components of the SCA environment. The

46 General Requirements and Services

notification of state changes in SCA components is a primary application of the Event
Service. The standard Event Types are described in the next section.

3.3.1 Event Types

There are three basic Event Types defined for the SCA. These Event Types can be categorized
as state change events, removal of an object from the SCA event, or insertion of an object
to the SCA OE event. These Event Types are illustrated in Figure 3.4.

cd StandardEvent

«CORBAEnum»
StateChangeCategoryType

+ ADMINISTRATIVE_STATE_EVENT: int
+ OPERATIONAL_STATE_EVENT: int
+ USAGE_STATE_EVENT: int

«CORBAEnum»
StateChangeType

+ LOCKED: int
+ UNLOCKED: int
+ SHUTTING_DOWN: int
+ ENABLED: int
+ DISABLED: int
+ IDLE: int
+ ACTIVE: int
+ BUSY: int

«CORBAStruct»
StateChangeEventType

+ producerId: string
+ sourceId: string
+ stateChangeCategory: StateChangeCategoryType
+ stateChangeFrom: StateChangeType
+ stateChangeTo: StateChangeType

«CORBAEnum»
Source CategoryType

+ DEVICE_MANAGER: int
+ DEVICE: int
+ APPLICATION_FACTORY: int
+ APPLICATION: int
+ SERVICE: int

«CORBAStruct»
DomainManagementObjectRemovedEventType

+ producerId: string
+ sourceId: string
+ sourceName: string
+ sourceCategory: SourceCategoryType

«CORBAStruct»
DomainManagementObjectAddedEventType

+ producerId: string
+ sourceId: string
+ sourceName: string
+ sourceCategory: SourceCategoryType
+ sourceIOR: Object

+stateChangeTo

+stateChangeFrom

+stateChangeCategory

+sourceCategory +sourceCategory

Figure 3.4. Event channel types

The StateChangeEventType messages represent the bulk of the messages sent via the Event
Service. These messages notify components, typically the Domain Manager, of changes to
component state within the system. The producerID and sourceID provide information about

Log Service 47

the source of the message, the producer, and the component that has changed state, the
source. The message contains three additional fields describing the category of the state
change, the new state value, and the original state value.

The state change categories are not explicitly defined but generally can be thought of
as state changes that are the result of system control, initialization, and shutdown, for
example. These would generally be classified as Administrative events. Changes in state due
to functional behavior and logic, e.g. initiated processing thus changing the state to Active,
would be Usage state changes. Finally, changes due to capacity changes, e.g. the capacity is
allocated or is increased as part of the processing, are Operational state changes.

The remaining two event types, the DomainManagementObjectRemovedEventType and
the DomainManagementObjectAddedEventType provide notification when components are
added to the system or removed from the system. Because components, hardware or software,
may be added or removed dynamically, events are produced to announce the arrival or
departure of the component.

As with the state change event, a producerID and a sourceID are part of the message. The
added and removed events also have a sourceName parameter that provides a string name for
the object entering or leaving the system. A sourceCategory is also provided identifying the
type of component that is the source of the event. Currently this is constrained to the values
shown in Figure 16, Device Manager, Device, Application Factory, Application, and Service.
It has been proposed that the sourceCategory be expanded to include additional component
types: the Resource, Loadable Device and Executable Device are potential additions. The
Loadable Device and Executable Device are extensions of the Device; so, it could be argued
that they could utilize the current Device category. However, it would be more precise to
specify which type of device was entering or leaving the system. Adding Resource to the
collection of types would be valuable because there are often multiple libraries and other
code components that provide some capability in support of a waveform implementation.
These resources may be part of an application for a shared library supporting multiple
applications as a component on which the applications are dependent. Consequently, being
able to support the notification of a Resource entering or leaving the system would be
valuable.

3.4 Log Service

SCA version 2.2 specified a Log Service as part of the specification. With the release of
SCA 2.2.1, the Log Service has been deleted from the SCA and the SCA specification now
references the OMG Lightweight Log specification. The basic functions and IDL of the
OMG Lightweight Log Service and the SCA Log Service are the same. The differences
between the two versions lie in the organization of the IDL. The Lightweight Log Service
organizes the IDL into logical groups as shown in Figure 3.5. In the SCA 2.2 Log Service,
all the IDL operations are grouped into a single interface.

The Log Service requirements are organized into four subsets following the organization
of the interface IDL. The first subset is Log Status. Log Status requirements address the
common log capabilities across all users of the Log Service. The capabilities address the
ability to retrieve status information regarding the state of the Log Service including the
number of records currently in the log, the availability of the log, and the operational state of
the log, to name a few. These requirements are subsumed within each of the following roles as

48 General Requirements and Services

cd Log Interface

«CORBAInterface»
LogAdministrator

+ setMaxSize(size :unsigned long long) : void
+ setLogFullAction(action :LogFullActionType) : void
+ getAdministrativeState() : AdministrativeStateType
+ setAdministrativeState(state :AdministrativeStateType) : void
+ clearLog() : void
+ destroy() : void

«CORBAInterface»
LogProducer

+ writeRecords(records :ProducerLogRecordSequence) : void

«CORBAInterface»
LogConsumer

+ getRecordIdFromTime(fromTime :LogTime) : RecordIdType
+ retrieveById(howMany :unsigned long, currentId :RecordIdType) : LogRecordSequence

«CORBAInterface»
LogStatus

+ getMaxSize() : unsigned long long
+ getCurrentSize() : unsigned long long
+ getNumRecords() : unsigned long long
+ getLogFullAction() : LogFullActionType
+ getAvailabilityStatus() : AvailabilityStatusType
+ getOperationalState() : OperationalStateType

«CORBAStruct»
LogRecordType

writes

reads

Figure 3.5. CORBA Lightweight Log Service interfaces

capabilities of the users of the log. The LogAdministrator encapsulates the requirements
associated with the configuration and management of the Log Service. Therefore, it allows
the log full action to be set as well as clearing and removing the log from service. The
LogProducer requirements define the capabilities implemented by a component that
writes entries to the log. Finally, the LogConsumer allows two basic methods of retrieving
entries from the log, by record Id or by time.

Figure 3.6 illustrates the Lightweight log implementation aspects. The log implementation
implements the CORBA calls for all aspects of the log. On the client side, only those
IDL interfaces required would be included. Typically a client would include the LogStatus
interfaces and then either the LogProducer or LogConsumer interfaces or both, depending on
the type of client access required. The applications that will manage the log would include
the LogStatus and LogAdministrator interfaces.

3.4.1 Data Types

The Log Service has several data types defined for use within the Log Service as well as the
format of the log records that are created by the LogProducer, stored by the Log Service,
and retrieved by the LogConsumer.

3.4.2 Exceptions

Several exceptions are defined for the log interfaces. The IDL definition of the exceptions
is shown in the following two sections.

Log Service 49

cd Log Implementation

Log

- administrativeState: AdministrativeState
- availabilityStatus: AvailabilityStatus
- currentSize: unsigned long long
- logFullAction: LogFullAction
- maxSize: unsigned long long
- numRecords: unsigned long long
- operationalState: OperationalState

+ getAvailabilityStatus() : AvailabilityStatusType
+ getCurrentSize() : unsigned long long
+ getLogFullAction() : LogFullActionType
+ getMaxSize() : unsigned long long
+ getNumRecords() : unsigned long long
+ getOperationalState() : OperationalStateType
+ getRecordIdFromTime(LogTime) : RecordIdType
+ retrieveById(unsigned long, RecordIdType) : LogRecordSequence
+ writeRecords(ProducerLogRecordSequence) : void

ProducerLogRecord

- level: LogLevel
- logData: string
- producerId: string
- producerName: string

«exception»
InvalidParam

- details: string

«CORBAEnum»
OperationalStateType

- DISABLED: int
- ENABLED: int

«CORBAEnum»
AdministrativeStateType

- LOCKED: int
- UNLOCKED: int

«integer»
LogLevel

«CORBAStruct»
AvailabilityStatusType

- logFull: boolean
- offDuty: boolean

LogRecord

- id: RecordIdType
- time: LogTime

const int SECURITY_ALARM = 0;
cont int FAILURE_ALARM = 1;

«CORBAInterface»
LogStatus

+ getAvailabilityStatus() : AvailabilityStatusType
+ getCurrentSize() : unsigned long long
+ getLogFullAction() : LogFullActionType
+ getMaxSize() : unsigned long long
+ getNumRecords() : unsigned long long
+ getOperationalState() : OperationalStateType

«CORBAInterface»
LogProducer

+ writeRecords(ProducerLogRecordSequence) : void

«CORBAInterface»
LogConsumer

+ getRecordIdFromTime(LogTime) : RecordIdType
+ retrieveById(unsigned long, RecordIdType) : LogRecordSequence

«CORBAInterface»
LogAdministrator

+ clearLog() : void
+ destroy() : void
+ getAdministrativeState() : AdministrativeStateType
+ setAdministrativeState(AdministrativeStateType) : void
+ setLogFullAction(LogFullActionType) : void
+ setMaxSize(unsigned long long) : void

responsibilities
getAdministrativeState Operation
getAvailabilityStatus Operation
getCurrentSize Operation
getLogFullAction Operation
getMazSize Operation
getNumRecords Operation
getOperationalState Operation
getRecordIdFromTime Operation When none qualify
Log Record Order of Retrieval
retriefeById Operation
setAdministrativeState Operation
setLogFullAction Operation
setMaxSize InvalidParam Exception
setMaxSize Operation
writeRecords Local Time
writeRecords Operation
writeRecords Unique Id
writeRecords When Full

raises

1

1

«realize»

«realize»

«realize»

0 . .
∗

«realize»

Figure 3.6. Lightweight Log implementation

InvalidLogFullAction

The InvalidLogFullAction exception is raised when an application call attempts to set the
logFullAction of the log to a value that is not defined.

exception InvalidLogFullAction {
string Details;
};

InvalidParam

The InvalidParam exception is raised when a parameter supplied to a call is incorrect.

exception InvalidParam {
string details;
};

The organization of the LogService data types is shown in Figure 3.7.
Each of the data types and structures in Figure 3.7 are described individually in the

following sections.

50 General Requirements and Services

cd Log Data Types

«integer»
LogLevel

- SECURITY_ALARM: int = 1
+ FAILURE_ALARM: int = 2
+ DEGRADED_ALRAM: int = 3
+ EXCEPTION_ERROR: int = 4
+ FLOW_CONTROL_ERROR: int = 5
+ RANGE_ERROR: int = 6
+ USAGE_ERROR: int = 7
+ ADMINISTRATIVE_EVENT: int = 8
+ STATISTIC_REPORT: int = 9
- PROGRAMMER_DEBUG10: int = 10
+ PROGRAMMER_DEBUG11: int = 11
+ PROGRAMMER_DEBUG12: int = 12
+ PROGRAMMER_DEBUG13: int = 13
+ PROGRAMMER_DEBUG14: int = 14
+ PROGRAMMER_DEBUG15: int = 15
+ PROGRAMMER_DEBUG16: int = 16
+ PROGRAMMER_DEBUG17: int = 17
+ PROGRAMMER_DEBUG18: int = 18
+ PROGRAMMER_DEBUG19: int = 19
+ PROGRAMMER_DEBUG20: int = 20
+ PROGRAMMER_DEBUG21: int = 21
+ PROGRAMMER_DEBUG22: int = 22
+ PROGRAMMER_DEBUG23: int = 23
+ PROGRAMMER_DEBUG24: int = 24
+ PROGRAMMER_DEBUG25: int = 25
+ PROGRAMMER_DEBUG26: int = 26

ProducerLogRecord

+ producerId: string
+ producerName: string
+ level: LogLevel
+ logData: string

«enumeration»
AdministrativeState

+ LOCKED:
+ UNLOCKED:

«enumeration»
AvailabilityStatus

+ offDuty: boolean
+ logFull: boolean

«enumeration»
LogFullAction

+ WRAP:
+ HALT:

«enumeration»
OperationalState

+ DISABLED:
+ ENABLED:

LogTime

+ nanoseconds: long
+ seconds: long

LogRecord

+ id: RecordId
+ time: LogTime
+ info: ProducerLogRecord

A value of zero (0) for the
LogLevelType is invalid. Values
above 26 to the maximum integer
value may be used for implementation
unique interpretations.

«integer»
RecordID The Log class

must ensure that
the RecordID
value is unique
within a log.

+ level

Figure 3.7. Log Service data types

3.4.3 Types

OperationalStateType

Several items define the state of the Log Service. The OperationalState identifies if
the log is available. If the value is ENABLED, the log is available to support log producers
and log consumers. Also, if the log is full and the LogFullAction has been set to HALT, then
the logFull value is set to true.

enum OperationalStateType {
DISABLED,
ENABLED

};

The enumeration OperationalStateType defines the log states of operation. When the log
is ENABLED it is fully functional and is available for use by log producer and log consumer
clients. A log that is DISABLED has encountered a runtime problem and is not available
for use by log producers or log consumers. The internal error conditions that cause the log
to set the operational state to ENABLED or DISABLED are implementation specific.∗

AdministrativeStateType

The AdministrativeState specifies whether log records may be written to the log. If the value
is LOCKED, the log will not accept new records from log producers. However, log records
may still be read by log consumers or deleted by the LogAdministrator.

enum AdministrativeStateType {
LOCKED,
UNLOCKED

};

Log Service 51

The AdministrativeStateType denotes the active logging state of an operational log. When
set to UNLOCKED the log will accept records for storage, as per its operational parameters.
When set to LOCKED the log will not accept new log records and records can be read or
deleted only.

AvailabilityStatusType

The AvailabilityStatus indicates whether or not the log is available for use. The offDuty
value, if true, indicates that the log is not available for use. A log is unavailable is the
OperationalState is DISABLED or the AdministrativeState is LOCKED.

struct AvailabilityStatusType {
boolean offDuty;
boolean logFull;

};

AvailabilityStatusType denotes whether or not the log is available for use. When true,
offDuty indicates the log is LOCKED (administrative state) or DISABLED (operational
state). When true, logFull indicates the log storage is full.

LogFullActionType

This type specifies the action that the log should take when its internal buffers become full
of data, leaving no room for new records to be written. WRAP indicates that the log will
overwrite the oldest LogRecords with the newest records, as they are written to the log.
HALT indicates that the log will stop logging when full.∗

enum LogFullActionType {
WRAP,
HALT

The LogFullAction indicates the behavior to be followed when the number of records
written to the log reaches the maximum available for the log. If the value is WRAP, then the
log behaves as a circular queue and the next record written by a producer is inserted at the
beginning of the log. If the value is HALT, then the log stops accepting records and sets the
appropriate AvailabilityStatus property.

LogLevelType

The LogLevelType is an enumeration type that is utilized to identify log levels. Each
of the LogLevel is represented as a bit value within the enumeration type. This allows
multiple LogLevel attributes to be specified within a single data value through the logical
OR operation (Table 3.6).

enum LogLevelType {
FAILURE_ALARM,
DEGRADED_ALRAM,
EXCEPTION_ERROR,
FLOW_CONTROL_ERROR,
RANGE_ERROR,
USAGE_ERROR,

52 General Requirements and Services

ADMINISTRATIVE_EVENT,
STATISTIC_REPORT,
PROGRAMMER_DEBUG1,
PROGRAMMER_DEBUG2,
PROGRAMMER_DEBUG3,
PROGRAMMER_DEBUG4,
PROGRAMMER_DEBUG5,
PROGRAMMER_DEBUG6,
PROGRAMMER_DEBUG7,
PROGRAMMER_DEBUG8,
PROGRAMMER_DEBUG9,
PROGRAMMER_DEBUG10,
PROGRAMMER_DEBUG11,
PROGRAMMER_DEBUG12,
PROGRAMMER_DEBUG13,
PROGRAMMER_DEBUG14,
PROGRAMMER_DEBUG15,
PROGRAMMER_DEBUG16

};

Table 3.6. LogLevelType values

Attribute Description

FAILURE_ALARM Identifies a major failure within the LogProducer.

DEGRADED_ALARM

Identifies the LogProducer as being in a degraded
state. The originator of the message may still
function but in limited capacity.

EXCEPTION_ERROR

Identifies that an exception was raised by the
LogProducer subsequent to writing the
LogRecord.

FLOW_CONTROL_ERROR

An error has occurred in managing the flow of
data between the LogProducer and another
component. The LogProducer may be the
sender or the receiver of the data stream that
encountered the error.

RANGE_ERROR
A value provided to the LogProducer through an

API call, such as a configure Property call.

USAGE_ERROR

This attribute identifies an error in the usage of
a parameter or call to set the state of the
LogProducer. An example is incorrectly setting
the AdministrativeState

ADMINISTRATIVE_EVENT
The LogProducer has changed its

AdministrativeState value.

STATISTIC_REPORT
The LogProducer is providing some operational

statistic.

PROGRAMMER_DEBUG1
This attribute is open for definition and use by the

system and application developer.

Log Service 53

PROGRAMMER_DEBUG2 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG3 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG4 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG5 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG6 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG7 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG8 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG9 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG10 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG11 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG12 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG13 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG14 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG15 This attribute is open for definition and use by the
system and application developer.

PROGRAMMER_DEBUG16 This attribute is open for definition and use by the
system and application developer.

LogTimeType

This type provides the time format used by the log to time-stamp LogRecords. The log
implementation is required to produce time-stamps that are compatible with the POSIX-
defined time_t type.

struct LogTimeType {
long seconds;
long nanoseconds;

};

LogRecordType

The LogRecordType defines the format of the LogRecords as stored in the log. The ‘info’
field is the ProducerLogRecord that is written by a client to the log. The basic structure in
the log is the LogRecord definition. There are three attributes that comprise an instance of
a LogRecord: i) the RecordId, ii) the LogTime, and iii) the ProducerLogRecord. The first
two items are relatively straightforward. The RecordId is an integer data item that provides

54 General Requirements and Services

a unique value for the record within the log. Note that it is the responsibility of the log
implementor to ensure that the RecordId is unique within the log. However, it is permissible
to have duplicate RecordId values across instances of a log. The LogTime contains a time-
stamp consisting of two parts, nanoseconds and seconds, and map to the POSIX timespec
structure.

struct LogRecordType {
RecordIdType id;
LogTimeType time;
ProducerLogRecordType info;

};
typedef sequence <LogRecordType> LogRecordSequence;

3.4.4 LogStatus Operations

The LogStatus set of interfaces provides access to the status information of the log. This
interface is inherited by all other log interfaces. The LogStatus requirements address the
accessibility of configuration and status information associated with the log (see Figure 3.7).
These capabilities are, in turn, flowed down to the various roles, administrator, producer,
and consumer.

Table 3.7. LogStatus requirements

Section ID Resp Requirement

3.1.2.3.3.5.1.4 SR:29 CF, OV The getMaxSize operation shall return the integer
number of bytes that the log is capable of storing.

3.1.2.3.3.5.3.4 SR:33 CF, OV The getCurrentSize operation shall return the current
size of the log storage in bytes. (i.e. if the log
contains no records, getCurrentSize will return a
value of 0 (zero).)

3.1.2.3.3.5.4.4 SR:34 CF, OV The getNumRecords operation shall return the current
number of LogRecords contained in the log.

3.1.2.3.3.5.5.4 SR:35 CF, OV The getLogFullAction operation shall return the log’s
log full action setting.

3.1.2.3.3.5.7.4 SR:37 CF, OV The getAvailabilityStatus operation shall return the
current availability status of the log.

3.1.2.3.3.5.8.4 SR:38 CF, OV The getAdministrativeState operation shall return the
current administrative state of the log.

3.1.2.3.3.5.10.4 SR:40 CF, OV The getOperationalState operation shall return the
current operational state of the log.

getMaxSize

The getMaxSize operation allows an SCA application to retrieve the upper limit of the
storage capabilities of the log.

unsigned long long getMaxSize ();

Log Service 55

The size of a log is specified in bytes. So, when requesting the maximum size of a
log (SR:29), the value returned will be the number of bytes that the log is capable of
storing.

getCurrentSize

The current size of the log (SR:33) provides the number of bytes allocated to the entries
currently in the log.

unsigned long long getCurrentSize ();

getNumRecords

The number of records (SR:34) can also be requested. Note that, because the actual message
data is an unbounded string, there is no direct mapping from the number of records in a log
to the number of bytes currently allocated to the records. Nor is there a method of calculating
the number of records that can be stored in the log based on the number of available bytes
of storage.

unsigned long long getNumRecords ();

getLogFullAction

The LogFullAction (SR:35) specifies the action to be performed by the log when it is full.
This interface allows the action to be retrieved by an SCA application.

LogFullActionType getLogFullAction ();

getAvailabilityStatus

This interface provides the ability to retrieve the AvailabilityStatus of the log (SR:37).

AvailabilityStatusType getAvailabilityStatus ();

getAdministrativeState

This interface provides the ability to retrieve the AdministrativeState of the log (SR:38).

AdministrativeStateType getAdministrativeState ();

getOperationalState

The OperationalState may be retrieved through this interface (SR:40).

OperationalStateType getOperationalState ();

56 General Requirements and Services

3.4.5 LogAdministrator Operations

The LogAdministrator interface provides access to set the operational parameters of the log.
The LogAdministrator requirements are described in Table 3.8.

The LogAdministrator is the entity that configures and manages the log. This is usually
an SCA DeviceManager although there is no explicit reference prohibiting another entity
within the framework, such as the DomainManager, from managing a log.

Table 3.8. Log Service configuration and management requirements

Section ID Resp Requirement

3.1.2.3.3.5.2.3 SR:30 CF, OV The setMaxSize operation shall set the maximum size
of the log measured in number of bytes.

3.1.2.3.3.5.2.5 SR:31 CF, OV The setMaxSize operation shall raise the InvalidParam
exception if the size parameter passed is less than
the current size of the log.

3.1.2.3.3.5.2.5 SR:32 CF, OV The setMaxSize operation shall raise the InvalidParam
exception if the input size parameter is greater than
the storage space available to the log.

3.1.2.3.3.5.6.3 SR:36 CF, OV The setLogFullAction operation shall set the action
taken by a log, when its maximum size has been
reached, to the value specified in the action
parameter.

3.1.2.3.3.5.9.3 SR:39 CF, OV The setAdministrativeState operation shall set the
administrative state of the log.

3.1.2.3.3.5.14.3 SR:55 CF, OV The clearLog operation shall delete all records from
the log.

3.1.2.3.3.5.14.3 SR:56 CF, OV The clearLog operation shall set the current size of the
log storage to zero.

3.1.2.3.3.5.14.3 SR:57 CF, OV The clearLog operation shall set the current number of
records in the log to zero.

3.1.2.3.3.5.14.3 SR:58 CF, OV The clearLog operation shall set the logFull availability
status element to false.

3.1.2.3.3.5.15.3 SR:59 CF, OV The destroy operation shall release all internal memory
and/or storage allocated by the log.

3.1.2.3.3.5.15.3 SR:60 CF, OV The destroy operation shall tear down the component
(i.e. it is released from the CORBA environment).

setMaxSize

The LogAdministrator may set the maximum size of the log in bytes (SR:30). Although it
seems that the size of the log may be dynamically modified using the setMaxSize operation,
the operation is monotonic, i.e. once instantiated the setMaxSize operation may only increase
the size of the log. If the request is made to reduce the size of the log through the setMaxSize
operation, an exception is raised (SR:31). Also, if the amount of storage requested by the
setMaxSize operation exceeds the available storage, then an exception is raised (SR:32)
as well.

Log Service 57

void setMaxSize (
in unsigned long long size

)
raises (InvalidParam);

It should be noted that the wording of the requirements assumes that the storage requested
by the setMaxSize operation is allocated in its entirety. Practically speaking, it is feasible
to view the MaxSize of the log as just that: the maximum size that the log may use.
This would allow storage space to be allocated incrementally with the error being returned
only when the requested allocation exceeds available memory. This strategy is analogous
to disk storage algorithms with size limits imposed by the operating system. A maximum
amount of storage for a particular user or process may be specified but it is not allocated
at once. Instead, ‘chunks’ of memory are allocated when more storage is required and each
allocation request checks to see if it is still within the bounds specified by the MaxSize
value.

setLogFullAction

When the log reaches the maximum amount of storage allocated, it follows the behavior
specified by the LogFull value (SR:36). The two possible behaviors are WRAP and HALT.

void setLogFullAction (
in LogFullActionType action

);

As implied by the logFull types, if the LogFull action is set to HALT, the log will stop
storing entries to the log. This is an important aspect to be aware of in your design because
the log does not return an error or raise an exception to the producer that is writing a record
to the log. So, unless the status of the log is checked, it is possible for a log producer to
write records to the log that are ignored by the log because it is full. If the LogFull action
is set to WRAP, then the log behaves like a circular queue and starts overwriting the log
records at the start of the log.

setAdministrativeState

This interface enables the ability to set the AdministrativeState of the log (SR:39).

void setAdministrativeState (
in AdministrativeStateType state

);

clearLog

The clearLog operation removes all of the entries within the log (SR:55). If all of the records
are deleted successfully, the logSize and the numberOfRecords are set to zero (SR:56 and
SR:57). It also sets the LogFull availability status property to false (SR:58)

void clearLog ();

58 General Requirements and Services

destroy

The destroy operation initiates the termination of a LogService. When a destroy operation
is received, it releases all the internal memory used by the log (SR:59), tears down the log
program (SR:60), and terminates.

void destroy ();

3.4.6 LogProducer Operations

The LogProducer is any software component of an SCA system that needs to write to the
log. For most systems, this includes all implementations of the Core Framework components
such as Resources, Devices, DeviceManagers, and the Domain Manager.

ProducerLogRecordType

The ProducerLogRecord class defines the content of the data portion of the LogRecord. It has
four components: i) producerId; ii) producerName; iii) level; and iv) logData. The producerId
is a string value that identifies the component that created the log entry. The producerName
is a string value providing a human understandable name for the producer of the log entry.
The level is an integer that identifies the type of log entry according the definitions of the
LogLevel described earlier. The logData is a string that contains the actual body of the log
record.

typedef unsigned long long RecordIdType;
struct ProducerLogRecordType {

string producerId;
string producerName;
LogLevelType level;
string logData;

};
typedef sequence <ProducerLogRecordType>

ProducerLogRecordSequence;

Logproducers format log records as defined in the structure ProducerLogRecordType (see
Tabel 3.9).

• producerID: This field uniquely identifies the source of a log record. The value is
the component’s identifier and is unique for each SCA Resource and Core Framework
component with the Domain.

• producerName: This field identifies the producer of a log record in textual format. This
field is assigned by the log producer, and thus is not unique within the Domain (e.g.
multiple instances of an application will assign the same name to the ProducerName
field).

• level: The level field can be used to classify the log record according to the LogLevelType.
• logData: This field contains the informational message being logged.

Table 3.10 shows the requirements associated with a LogProducer. There are several
general requirements associated with the LogProducer and several sub-requirements
associated with the writeRecords operation.

Log Service 59

Table 3.9. ProducerLogRecordType fields

Attribute Type Notes

producerId public: string This attribute uniquely identifies the source of a log
record. The value is unique within the Domain. The
DomainManager and ApplicationFactory are
responsible for assigning this value.∗

producerName public: string This attribute identifies the producer of a log record in
textual format. This field is assigned by the log
producer, thus is not unique within the Domain (e.g.
multiple instances of an application will assign the
same name to the ProducerName field).∗

level public:
LogLevelType

This attribute identifies the type of message being
logged as defined by the type LogLevelType.∗

logData public: string This attribute contains the informational message
being logged.

Table 3.10. Logproducer requirements

Section ID Resp Requirement

3.1.2.3.1 SR:9 CF, OV Log producers shall implement a configure property
with an Id of ‘PRODUCER_LOG_LEVEL’. The
PRODUCER_LOG_LEVEL configure property
provides the ability to ‘filter’ the log message
output of a log producer.

3.1.2.3.1 SR:10 CF, OV The type of this property shall be a
LogLevelSequence.

3.1.2.3.1 SR:11 CF, OV Only the messages that contain an enabled log level
shall be sent by a log producer to a log. Log levels
that are not in the LogLevelSequence are disabled.

3.1.2.3.1 SR:12 CF, OV Log producers shall use their component identifier
in the producerId field of the ProducerLogRecord.

3.1.2.3.1 SR:13 CF, OV Log producers shall operate normally in the case
where the connections to a log are nil or an
invalid reference.

3.1.2.3.1 SR:14 CF, OV Log producers shall output only those log records
that correspond to enabled LogLevelType values.

3.1.2.3.3.5.11.3 SR:41 CF, OV The writeRecords operation shall add each log
record supplied in the records parameter to the
log.

3.1.2.3.3.5.11.3 SR:42 CF, OV When there is insufficient storage to add one of
the supplied log records to the log, and the
LogFullAction is set to HALT, the writeRecords
method shall set the availability status logFull
state to true.

60 General Requirements and Services

Table 3.10. Continued

Section ID Resp Requirement

3.1.2.3.3.5.11.3 SR:43 CF, OV The writeRecords operation shall write the current
local time to the time field of each record written
to the log.

3.1.2.3.3.5.11.3 SR:44 CF, OV The writeRecords operation shall assign a unique
record Id to the Id field of the LogRecord.

3.1.2.3.3.5.11.3 SR:45 CF, OV Log records accepted for storage by the
writeRecords shall be available for retrieval in the
order received.

The LogProducer must have a LOG_PRODUCER_LEVEL property (SR:9) that is used to
store the log level as a LogLevelSequence (SR:10). The log level is used to filter which
messages are actually written to the log. Only those messages which contain a log level
that is present in the LOG_PRODUCER_LEVEL property will be sent to the log (SR:11).
All other log messages are not written.

When constructing the ProducerLogRecord, the producerId field is set to the componentId
of the LogProducer (SR:12). The LogProducer does not output any log record where the
logLevel is not one of the entries in the LOG_PRODUCER_LEVEL (SR:14). Also, if the
LogProducer does not have a connection to a log, the LogProducer must continue to operate
(SR:13). In other words, if a waveform component also produces log records as part of its
operation but does not have – or loses – a connection to a log, it must continue to perform
the primary functions.

writeRecords

The writeRecords operation writes log records to the log. As seen in the IDL below,
the call is defined as a CORBA oneway call. This means that the LogProducer process
making the call does not wait for a function call return. Even though there is no return
value, normally the caller would wait until there is a positive acknowledgement that the
function has completed on the server side of the call. A oneway call does not wait for
this return. However, the oneway still waits for the TCP acknowledgement (or some other
verification method if a different underlying protocol is used) to verify that the call was
received successfully by the server before continuing execution. Thus, there is still the
opportunity for performance impacts due to latency. So, it is usually advisable to issue
the writeRecords call in a LogProducer in a thread. Then, if there is a problem on the
receiving side of the call, the normal processing performed by the LogProducer may continue
uninterrupted.

oneway void writeRecords (
in ProducerLogRecordSequence records

);

Each record in the records field is added to the log sequentially (SR:41). During the call,
if there is insufficient storage to add the next record and the LogFullAction is set to HALT,

Log Service 61

then the logFull value is set to true (SR:42) and the call is terminated. Any records that may
have been added prior to the insufficient storage condition will remain in the log. The record
being processed at the time the logFull condition was reached, along with any subsequent
records in the sequence, are discarded.

As the log records are processed by the writeRecords operation, the current local time
is stored in the time field of each record (SR:43) and a unique record Id is generated and
stored in the record Id field (SR:44). The order in which records are written to the log is the
order in which they may be retrieved (SR:45).

3.4.7 LogConsumer Operations

The LogConsumer interface to the log allows client programs to retrieve records from the
log. As noted in the previous section on the writeRecords call, log records are available for
retrieval in the order they were written. However, there are several options available to specify
at what point in the log the retrieval should start and how many records should be retrieved.

As the requirements listed in Table 3.11 show, the basic method for retrieving log records
is via the retrieveById operation. The record Id to be used in the retrieval call must first be
obtained through the getRecordFromTime call.

Table 3.11. LogConsumer requirements

Section ID Resp Requirement

3.1.2.3.3.5.12.3 SR:47 CF, OV The getRecordIdFromTime operation returns
the record Id of the first record in the log
with a time-stamp that is greater than, or
equal to, the time specified in the fromTime
parameter. If the log does not contain a
record that meets the criteria provided, then
the RecordType returned shall correspond to
the next record that will be returned in the
future.

3.1.2.3.3.5.12.4 SR:48 CF, OV If the log does not contain a record that meets
the criteria provided, then the RecordIdType
returned shall correspond to the next record
that will be recorded in the future.

3.1.2.3.3.5.13.3 SR:49 CF, OV The retrieveById operation shall set the inout
parameter currentId to the LogRecord Id of
the record following the last record in the
LogRecordSequence returned.

3.1.2.3.3.5.13.3 SR:50 CF, OV If the record sequence returned exhausts the
log records, then the currentId parameter
shall be set to the LogRecordId of where the
log will resume writing logs on the next
write.

3.1.2.3.3.5.13.4 SR:51 CF, OV The retrieveById operation shall return a
LogRecordSequence that begins with the
record specified by the currentId parameter.

62 General Requirements and Services

Table 3.11. Continued

Section ID Resp Requirement

3.1.2.3.3.5.13.4 SR:52 CF, OV The number of records in the LogRecordSequence
returned by the retrieveById operation shall be equal to
the number of records specified by the howMany
parameter, or the number of records available if the
number of records specified by the howMany parameter
is greater than the number of records available.

3.1.2.3.3.5.13.4 SR:53 CF, OV If the record specified by currentId does not exist, the
retrieveById operation shall return an empty list of
LogRecords and leave the currentId unchanged.

3.1.2.3.3.5.13.4 SR:54 CF, OV If the Log is empty, or has been exhausted, the
retrieveById operation shall return an empty list of
LogRecords and leave the currentId unchanged.

getRecordIDFromTime

This operation returns the Id of the first record in the log that has a time-stamp that is equal
to or greater than the time provided in the call (SR:47). If the time-stamps of all the entries
in the log are less than the time provided, then the log returns the record Id that will be
assigned to the next log record (SR:48).

RecordIdType getRecordIdFromTime (
in LogTimeType fromTime

);

It should be noted that it is possible to issue the getRecordIDFromTime call with a time
that is in the future. If such a call is issued and the log returns the next Id to be assigned to a
log record, then the next record written to the log may be earlier than the time requested. For
example, if the log contains records written through Id 100 and the time-stamp for that record
is (1 000 000 000) and the call is made with a time of (1 100 000 000) or 1000 seconds in the
future, the log will return the next Id to be assigned to a log record which, in this case is 101.
It is entirely possible for another LogProducer to write multiple records prior to the time of
(1 100 000 000). Thus, when the process that issued the original getRecordIDFromTime
actually retrieves the records using the retrieveById call below, it will actually receive
records that are earlier than the time requested. Although this scenario does not cause any
operational problems, the developer should be aware that such a situation may occur.

retrieveById

The retrieveById operation retrieves a sequence of records from the log starting with the
record identified by the value in the currentId parameter (SR:51). The number of records to be
retrieved is specified by the howMany parameter and a sequence of log records is returned.

LogRecordSequence retrieveById (
inout RecordIdType currentId,
in unsigned long howMany

);

FileSystem 63

As shown in the IDL, the currentID is an inout parameter. If the log has additional records
subsequent to the last record returned in the log record sequence, then the currentId is set
to the Id of the next log record in the log (SR:49). If, however, the number of records to be
retrieved exceeds the number of records in the log (i.e. the howMany parameter exceeds the
number of records subsequent to the first record to be retrieved), the currentId parameter is
then set to the Id of the next record that will be written to the log (SR:50). The number of
records in the log record sequence is equal to the value of the howMany parameter if the
number of records specified were available for retrieval. If the number of records available
is less than what was requested via the howMany parameter, then the number of records
in the log record sequence returned reflects the number that were available (SR:52). This
allows the caller to check if the retrieval process encountered the end of the log prior to
retrieving the number of records requested. If the record specified by the currentId parameter
does not exist, then an empty log record sequence is returned and the currentId parameter is
not changed (SR:53). Similarly, if the log is empty when the retrieveById call is received,
an empty sequence of log records is returned and the currentID parameter is not changed
(SR:54). This can happen if one process issues a getRecordIDFromTime call and receives a
log record Id as a return value. Then a second process issues the clearLog call which will
remove all the records from the log. Then the original process issues the retrieveById call
on a log that is now empty.

3.5 FileSystem

One of the key capabilities of the SCA is to provide a federated file system across a
heterogeneous processor and operating system environment. The FileSystem provides the
fundamental interfaces to a file system and is the common abstraction across all file systems.
It should be noted that the SCA FileSystem is not a file system that is implemented as part of
an operating system. Instead, it is a common set of file and file system interfaces defined in
the CORBA IDL that provide the expected interfaces and operations of a file system. When
running on a general purpose processor on top of a standard operating system, the SCA
FileSystem is, in fact, an application process running on the system that acts as a façade to
the actual file system.

The question might be asked: ‘Why bother to define such file system?’ The benefit is
gained in two key areas. First, for those hardware configurations that might not have a native
file system, such as flash memory residing on a VME board, an SCA file system can be
developed that provides the standard file system interfaces enabling external applications
to access the flash as if it were a disk system. Second, in the context of a heterogeneous
collection of hardware, there may be multiple operating systems with different file system
characteristics. Having a single, consistent set of interfaces allows SCA applications to access
the storage devices across all hardware and operating systems using a single set of calls.
Finally, through the File Manager of the Domain Manager the aggregate set of FileSystems
appear as a single, federated file system. So, not only can data storage be accessed across
multiple hardware and operating systems using a single set of interfaces, the entire set of
file systems can be accessed as a single entity.

The rest of this chapter discusses the three basic divisions that provide this service, the
FileSystem, File, and FileManager. Since access to a file is obtained through the file system,
the FileSystem willbe discussed first, followed by the File, and the FileManager will be
discussed in the Domain Management Chapter (Chapter 6).

64 General Requirements and Services

The SCA FileSystem provides the essential interface to access and manipulate files as an
abstract entity. The intent of the SCA FileSystem, as with many of the other components
of the Core Framework, is to provide an implementation-neutral method of interacting with
the lower level services, software, and hardware in the system. In this case, a common set
of interfaces for interacting with the file system is provided on the underlying hardware and
operating software.

cd FileSystem

«CORBAInterface»
FileSystem

+ remove(string) : void
+ copy(string, string) : void
+ exists(string) : boolean
+ list(string) : FileInformationSequence
+ create(string) : File
+ open(boolean, string) : File
+ mkdir(string) : void
+ rmdir(string) : void
+ query(Properties*) : void

«CORBAException»
InvalidFileName

- errorNumber: ErrorNumberType
- msg: string

«CORBAEnum»
FileException

- errorNumber: ErrorNumberType
- msg: string

«CORBAInterface»
File

«CORBATypedef»
Properties

- sequence: DataType

«CORBATypedef»
StringSequence

- sequence: string

uses

usesuses
uses

uses

Figure 3.8. FileSystem interface

Figure 3.8 illustrates the FileSystem interfaces, related interfaces, data types, and
exceptions used or referenced by the FileSystem. As can be seen from the figure, essential
file manipulation, creation, deletion, and other operations are provided.

3.5.1 Exceptions

UnknownFileSystemProperties

The UnknownFileSystemProperties exception is raised in cases where one or more property
names used in a configure or query call are not recognized by the FileSystem.

exception UnknownFileSystemProperties {
Properties invalidProperties;

};

3.5.2 Types and Constants

There are several data types and constants defined for the file system. Several string constants
are related to FileSystem information and others provide information about each file managed
by the FileSystem. The constants are shown in the following subsections.

FileSystem 65

SIZE

This string constant is used to refer to the current size of the FileSystem. It maintains the
total size in octets of the entire file system. This is a summation of each of the size of
each file plus any additional overhead incurred by the FileSystem. In most cases this value
reflects the summation of file sizes of the underlying operating system file system.

const string SIZE = "SIZE";

AVAILABLE_SPACE

This string constant is used to refer to the total available space of the FileSystem. In most
cases this corresponds to the available space remaining on a disk drive or other storage
volume.

const string AVAILABLE_SIZE = "AVAILABLE_SPACE";

CREATED_TIME

This string refers to the file property that maintains the time that the file was created. The
create time reference is stored as the number of seconds since midnight, January 1, 1970.

const string CREATED_TIME_ID = "CREATED_TIME";

MODIFIED_TIME

This string refers to the file property that maintains the time that the file was last modified.
The modified time reference is stored as the number of seconds since midnight, January 1,
1970.

const string MODIFIED_TIME_ID = "MODIFIED_TIME";

LAST_ACCESS_TIME

This string refers to the file property that maintains the time that the file was accessed. The
access time reference is stored as the number of seconds since midnight, January 1, 1970.

const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";

What appears to be missing from the general file information is information as to whether
the file is currently in use, i.e. it is locked. This can lead to seemingly errant conditions in
the operation of the FileSystem. For example, if an SCA process opens a file system, the
operating system associates the file Id of the file with the process that opened it. Another
process may ‘delete’ the file, removing it from the directory, but because the file is in use
by another process, it would not actually remove the file until the file Id was released by
the process that owns it. This ensures that the process using the file would not abort because
the file was deleted from under it.

Since the SCA FileSystem does not maintain information about the mapping of a file to a
process, it has no method of inhibiting the deletion of the file and no method for integrating the

66 General Requirements and Services

information from the lower level file system. Consequently, it is possible to start an SCA process
that accesses a file, delete the file, and have the process continue to access the file normally.

Also, it is unclear as to the utility of maintaining the last access time. Unless there is
some method of binding the file to a process, knowing when the file was last accessed is of
limited value. This area of the SCA is continuing to evolve.

3.5.3 Types

FileType

The FileType enumeration is used to identify whether the file within a FileSystem is a
directory, a basic file, or another FileSystem. The use of the FILE_SYSTEM enumeration
value enables support for nested FileSystems.

enum FileType {
PLAIN,
DIRECTORY,
FILE_SYSTEM

};

FileInformationType

Each file entry within the FileSystem has a set of descriptive information. This information
provides common information normally available in a file’s directory entry. The information
is specified in the FileInformationType below.

struct FileInformationType {
string name;
FileType kind;
unsigned long long size;
Properties fileProperties;

};

The name of the file is stored in the ‘name’ field. The ‘kind’ field identifies the type
of file as defined by the FileType above. The current size of the file is maintained in the
‘size’ field. This field is stored as the number of octets that comprise the file. Finally, an
instance of the SCA ‘Properties’ is part of the FileInformationType struct that provides
the capability to store additional descriptive information about the file.

FileInformationSequence

The collection of FileInformationType instances for each file is managed in the
FileInformationSequence.

typedef sequence <FileInformationType>
FileInformationSequence;

The specific requirements are listed in Table 3.12.
The FileInformationType defines the struct that maintains the minimum information

required for a file (SR:528). The time values associated with the creation (SR:529),

FileSystem 67

Table 3.12. FileType requirements

Section ID Resp Requirement

3.1.3.3.2.3.3 SR:528 CF At a minimum, the FileSystem shall support
name, kind, and size information for a file.

3.1.3.3.2.3.6 SR:529 CF The value for created time shall be
unsigned long long and measured in
seconds from midnight, January 1, 1970.

3.1.3.3.2.3.7 SR:530 CF The value for modified time property shall be
unsigned long long and measured in
seconds from midnight, January 1, 1970.

3.1.3.3.2.3.8 SR:531 CF The value for last access time property shall
be unsigned long long and measured in
seconds midnight, January 1, 1970.

modification (SR:530), and last access (SR:531) times are maintained for each file as
discussed earlier in this section.

3.5.4 Operations

create

The create operation creates a new file in the FileSystem with the name specified in the call.
The create call allocates the initial space to be used for the file on the underlying operating
system file system, creates an entry in the native file system, creates an instance of an SCA
File, populates the instance with data about the file, and returns the instance.

Exceptions raised by the create call are the InvalidFileName if the string name provided
is invalid and the FileException if the file already exists or another file error occurs.

File create (
in string fileName
)

raises (InvalidFileName, FileException);

The create method instantiates a new instance of an SCA File within the FileSystem
(SR:547) with the name specified in the filename argument (see Table 3.13). The SCA
File created is mapped to an underlying file on the hardware and operating software of
the system. If successful, an instance of a File is returned. The create operation returns a
File reference upon creation of the file requested (SR:548). If a file with the same name
already exists, then a FileException is raised (SR:550). If the name provided in the create
call is invalid, then an InvalidFileName exception is raised (SR:551). If any other error is
encountered, then a null File reference is returned (SR:549).

copy

The copy operation copies the contents of a source file to a target file within a FileSystem.
The IDL for the call is shown below. The source and destination file names are provided as

68 General Requirements and Services

Table 3.13. FileSystem create file requirements

Section ID Resp Requirement

3.1.3.3.2.5.5.3 SR:547 CF The create operation shall create a new File based
upon the provided fileName attribute.

3.1.3.3.2.5.5.4 SR:548 CF The create operation shall return a File component
reference to the opened file.

3.1.3.3.2.5.5.4 SR:549 CF The create operation shall return a null file
component reference if an error occurs.

3.1.3.3.2.5.5.5 SR:550 CF The create operation shall raise the CF
FileException if the file already exists or another
file error occurred.

3.1.3.3.2.5.5.5 SR:551 CF The create operation shall raise the InvalidFileName
exception when a fileName is not a valid file
name or not an absolute pathname.

string inputs to the call and both must be absolute pathnames to the function call (despite
the fact that it is not explicitly called out in the requirements). The copy call copies the
contents of the source file to the destination file.

void copy (
in string sourceFileName,
in string destinationFileName
)

raises (InvalidFileName, FileException);

Exceptions raised by the copy call are the InvalidFileName or FileException. The
InvalidFileName is raised if the file name provided does not meet the requirements for a
valid SCA file name. The FileException is used for all other types of file processing errors,
e.g. insufficient space to copy the file.

There are no explicit requirements regarding the absence or presence of the target file
when the copy call is made. The nominal case is when the destination file does not exist
prior to the copy. In this case, the copy call implicitly includes the create call to create a
target file to receive the contents of the source file and then initiates the copy operation. In
the case where a file already exists with the destination file name, it is equally valid to copy
over the existing file as it is to raise an exception.

In most cases the interpretation is simply to copy over the file if it exists as this is
a normal interpretation on UNIX and other operating systems. However, when using a
framework implementation, it is important to be sure that the copy behavior implemented
by the framework is documented and understood.

The copy operation instructs the FileSystem to copy the contents of the file identified by
the sourceFileName parameter to the file specified by the destinationFileName parameter
(SR:535) (see Table 3.14). If an error related to the files specified in the function call
is encountered during the execution of the copy operation, then the operation raises a
FileException exception (SR:536). The FileException errorNumber provides an indication
of the type of error encountered. There is some ambiguity in the requirements with respect
to the default behavior when the destinationFileName already exists, i.e. should an exception

FileSystem 69

Table 3.14. File copy requirements

Section ID Resp Requirement

3.1.3.3.2.5.2.3 SR:535 CF The copy operation shall copy the source file with
the specified sourceFileName to the destination
file with the specified destinationFileName.

3.1.3.3.2.5.2.5 SR:536 CF The copy operation shall raise the CF FileException
when a file-related error occurs.

3.1.3.3.2.5.2.5 SR:537 CF The copy operation shall raise the InvalidFileName
exception when the filename is not a valid file
name or not an absolute pathname.

be raised or not? Generally speaking the default approach, as implemented by most operating
systems, is to copy over the existing file if it already exists.

If either the sourceFileName or the destinationFileName arguments are not valid file names
or absolute pathnames, then the InvalidFileName exception is raised (SR:537). Requirement
SR:2 defines the format of a legal SCA file name. The SCA FileSystem copy operation
must map through to the underlying file system of the hardware and operating software that
is implementing the file system.

open

The open operation opens a file for access by the process issuing the call. The file name is
provided to the call as a full path name. Additionally, a second argument specifies whether
the open call is for read access only. If the read_Only parameter is true, then the file
is opened for read only access. If it is false, then the file is opened for read/write access.
An SCA File instance is returned to the caller upon successful completion of the call.

File open (
in string fileName,
in boolean read_Only
)

raises (InvalidFileName, FileException);

The standard exceptions are raised for the open call. The InvalidFileName is raised if the
file name provided is not a full path name or otherwise does not meet the requirements for
a standard SCA file name. The FileException is raised when any other file related error is
encountered.

The specific requirement details for the open operation are provided in table 12.
The open call takes the file name provided and checks that it is a valid SCA file name and

a full path name to the file desired. If not, it raises the InvalidFileName exception (SR:559).
If the file name is valid, the operation then attempts to open the file in the native file system
(SR:552). The file is opened with write access, i.e. the caller issuing the open operation can
add data to the file, if the Read_ONLY parameter is false (SR:555).

70 General Requirements and Services

Table 3.15. FileSystem open requirements

Section ID Resp Requirement

3.1.3.3.2.5.6.3 SR:552 CF The open operation shall open a file based upon the
input fileName.

3.1.3.3.2.5.6.3 SR:555 CF The open operation shall open the file for write
access when the read_Only parameter is false.

3.1.3.3.2.5.6.4 SR:556 CF The open operation shall return a File component
parameter on successful completion.

3.1.3.3.2.5.6.4 SR:557 CF The open operation shall return a null file
component reference if the open operation is
unsuccessful.

3.1.3.3.2.5.6.5 SR:558 CF The open operation shall raise the CF FileException
if the file does not exist or another file error
occurred.

3.1.3.3.2.5.6.5 SR:559 CF The open operation shall raise the InvalidFileName
exception when the filename is not a valid file
name or not an absolute pathname.

If any error occurs during the open operation, other than an InvalidFileName exception
(SR:559), then a FileException exception is raised (SR:558). If the file does not exist or
another error is encountered, then a null File object reference is returned (SR:557).3

An instance of an SCA File object, i.e. CORBA reference, is returned on successful
completion (SR:556).

query

The query operation provides the ability for a client program to request and receive
information about the SCA FileSystem. The FileSystem must implement two standard
properties: SIZE and AVAILABLE_SPACE. These property names are defined as string
constants and were discussed in Section 3.5.2.

void query (
inout Properties fileSystemProperties
)

raises (UnknownFileSystemProperties);

The UnknownFileSystemProperties is raised if a property is requested through the query
operation that is undefined.

When called, the query operation provides the FileSystem property information, as
specified in the fileSystemProperties parameter (SR:567) (see Table 3.16). A minimum
of two properties must be supported providing the overall size of the FileSystem and the
available space on the storage device on which the FileSystem resides (SR:568). Finally,

3 Requirement SR:557 states that a null File object reference is to be returned when an error is encountered.
However, SR:559 and SR:558 indicate that an exception is to be thrown. This is an instance of conf licting
requirements because return values are not provided when an exception is raised.

FileSystem 71

Table 3.16. FileSystem query requirements

Section ID Resp Requirement

3.1.3.3.2.5.9.3 SR:567 CF The query operation shall return file system
information to the calling client based upon the
given fileSystemProperties’ Id.

3.1.3.3.2.5.9.3 SR:568 CF As a minimum, the FileSystem query operation
shall support the following fileSystemProperties:

1. SIZE – an Id value of ‘SIZE’ causes a query to
return an unsigned long long containing
the file system size (in octets).

2. AVAILABLE SPACE – an Id value of
‘AVAILABLE_SPACE’ causes the

3.1.3.3.2.5.9.5 SR:569 CF The query operation shall raise the
UnknownFileSystemProperties exception when
the given file system property is not recognized.

if the properties requested are not defined in the set of properties on the FileSystem, an
UnknownFileSystemProperties exception is raised (SR:569).

remove

The remove operation supports the removal of a file from the FileSystem. The name of the
file to be removed is provided in the filename parameter. The file name must provide the
full path name to the file within the FileSystem.

void remove (
in string fileName
)

raises (FileException, InvalidFileName);

The InvalidFileName exception is raised if the name provided in the filename parameter
does not meet the requirements of a valid SCA file name. If any file related error occurs
during the execution of the remove operation, then the FileException is raised.

Table 3.17. FileSystem remove requirements

Section ID Resp Requirement

3.1.3.3.2.5.1.3 SR:532 CF The remove operation shall remove the file with the
given filename.

3.1.3.3.2.5.1.3 SR:533 CF The remove operation shall raise the
InvalidFileName exception when the filename is
not a valid filename or not an absolute pathname.

3.1.3.3.2.5.1.5 SR:534 CF The remove operation shall raise the CF
FileException when a file-related error occurs.

72 General Requirements and Services

The remove operation first ensures that the file name provided meets the requirements
for an SCA file (see Table 3.17). If it does not, then the InvalidFileName exception is
raised (SR:533). The primary action of the remove operation is to remove the file specified
by the filename parameter from the FileSystem (SR:532). If any other file related error is
encountered, the operation aborts, raising the FileException (SR:534).

It should be noted that the remove operation may execute successfully on a file that has
been opened by another process. As discussed earlier, the file will appear to be deleted
because it will be removed from the list of files not only in the SCA FileSystem but also
in the native file system. However, the process that opened and is still using the file will
continue to have access to the file until it has completed execution. At that point, the
operating system will delete the file.

exists

The exists operation provides the capability to test if a specific file name exists within the
FileSystem. The fileName parameter must contain the full path name for the file.

boolean exists (
in string fileName
)

raises (InvalidFileName);

The InvalidFileName exception is raised if the file name provided does not meet the
requirements for a valid SCA file name.

Table 3.18. File exists requirements

Section ID Resp Requirement

3.1.3.3.2.5.3.3 SR:538 CF The exists operation shall check to see if a file
exists based on the fileName parameter.

3.1.3.3.2.5.3.4 SR:539 CF The exists operation shall return True if the file
exists, or False if it does not.

3.1.3.3.2.5.3.5 SR:540 CF The exists operation shall raise the InvalidFileName
exception when fileName is not a valid file name
or not an absolute pathname.

The exists operation will check the files within the FileSystem to see if the file specified
by the filename argument exists (SR:538) (see Table 3.18). If the file does exist in the
FileSystem then the function returns True and if it is not in the FileSystem it returns False
(SR:539) . If the file name provided is invalid, then a InvalidFileName exception is raised
(SR:540).

list

The list operation provides a listing of the files within a FileSystem. The operation returns a
sequence of FileInformationType that provides the file name and the additional information

FileSystem 73

maintained by the native file system and the SCA FileSystem. This is analogous to the
directory list command, e.g. ls in UNIX or dir in DOS. The operation supports the use of
search patterns and wildcards in the file name provided.

Search patterns are supported through the use of the normal wildcard characters, question
mark (?) and asterisk (∗). The question mark matches any single character in a sequence
of characters that make up a file name. The asterisk matches one or more characters in a
sequence of characters that make up a file name.

For example, the pattern ‘/fs/DeviceMgr1/f??’ would match any three letter file name
in /fs/DeviceMgr1/ that begins with an ‘f’. So, /fs/DeviceMgr1/foo would match and
/fs/DeviceMgr1/foo.exe would not.

FileInformationSequence list (
in string pattern
)

raises (FileException, InvalidFileName);

Exceptions raised are InvalidFileName and FileException. The InvalidFileName exception
in this case is raised whenever the search pattern cannot be interpreted or resolved to a legal
SCA file name. For example, if the file pattern contains unexpected characters, i.e. characters
that are illegal in a POSIX file name, or if the file name pattern does not start with an initial slash
‘/’. The FileException is raised for any other type of file processing error that occurs.

Table 3.19. FileSystem list requirements

Section ID Resp Requirement

3.1.3.3.2.5.4.3 SR:541 CF The list operation shall return a list of file
information based upon the search pattern given.

3.1.3.3.2.5.4.3 SR:542 CF The list operation shall support the following
wildcard characters for base file names (i.e., the
part after the right-most slash):

1. ∗ used to match any sequence of characters
(including null).

2. ? used to match any single character.

3.1.3.3.2.5.4.4 SR:543 CF The list operation shall return a
FileInformationSequence for files that match the
wildcard specification as specified in the input
pattern parameter.

3.1.3.3.2.5.4.5 SR:545 CF The list operation shall raise the InvalidFileName
exception when the input pattern does not start
with a slash ‘/’ or cannot be interpreted due to
unexpected characters.

3.1.3.3.2.5.4.5 SR:546 CF The list operation shall raise the FileException
when a file-related error occurs.

The general requirement for the list call is to return a sequence of FileInformationType
(SR:543) for each of the files in the FileSystem whose name matches the search pattern
specified in the call (SR:541) (see Table 3.19). The search pattern, as noted earlier, may

74 General Requirements and Services

contain two wild card characters, the question mark (?), which matches a single character, and
the asterisk ‘∗’, which matches one or more characters (SR:542). When the file search string
provided does not begin with a slash ‘/’ or cannot be interpreted, then the InvalidFileName
exception is raised (SR:545). Any other file related error encountered during the process
raises the FileException (SR:546).

mkdir

The mkdir operation supports the creation of a directory within an SCA FileSystem. If the
directory name provided is a hierarchical name, e.g. /tmp/myfile/test, the then mkdir operation
will create all directories in the hierarchical name, as required.

void mkdir (
in string directoryName
)

raises (InvalidFileName, FileException);

Two exceptions may be raised by the mkdir operation. If the directory name provided
does not conform to a valid SCA file name, then the InvalidFileName exception is raised.
If any other file related error is encountered the FileException is raised.
The requirements for the mkdir operation are listed in Table 3.20.

Table 3.20. FileSystem mkdir requirements

Section ID Resp Requirement

3.1.3.3.2.5.7.3 SR:560 CF The mkdir operation shall create a FileSystem
directory based on the directoryName given.

3.1.3.3.2.5.7.3 SR:561 CF The mkdir operation shall create all parent
directories required to create the directoryName
path given.

3.1.3.3.2.5.7.5 SR:562 CF The mkdir operation shall raise the CF
FileException if a file-related error occurred
during the operation.

3.1.3.3.2.5.7.5 SR:563 CF The mkdir operation shall raise the InvalidFileName
exception when the directoryName is not a valid
directory name.

The mkdir first checks that the directory name provided is a valid SCA file name. If it is
not a valid file name then the InvalidFIleName exception is raised (SR:563). The operation
then checks to see if the parent directories of the base directory exist. If one or more do
not exist, mkdir creates each one starting with the highest level working to the directory
just above the lowest level directory specified (SR:561). The operation then creates the base
directory specified (SR:560). If any other file related error occurs, the FileException is raised
(SR:562) and the operation terminates.

File 75

rmdir

The rmdir operation removes a directory from the FileSystem (see Table 3.21). The directory
to be removed is identified by the directoryName parameter. Unlike the mkdir operation,
which will create any parent directories in the path, rmdir only removes the lowest level or
leaf directory specified in the directory. For example, if the call is made with the directory
name ‘/tmp/files/test’, only the directory ‘test’ will be removed.

void rmdir (
in string directoryName
)

raises (InvalidFileName, FileException);

If the directory name provided does not conform to the requirements for SCA file names,
an InvalidFileName exception is raised. If any other file related error occurs, e.g. the directory
specified does not exist, the FileException is raised.

Table 3.21. FileSystem rmdir requirements

Section ID Resp Requirement

3.1.3.3.2.5.8.3 SR:564 CF The rmdir operation shall remove a FileSystem
directory, based on the directoryName given,
only if the directory is empty (no files exist in
directory).

3.1.3.3.2.5.8.5 SR:563 CF The rmdir operation shall raise the CF
FileException when the directory does not exist,
if the directory is not empty, or another
file-related error occurred.

3.1.3.3.2.5.8.5 SR:566 CF The rmdir operation shall raise the InvalidFileName
exception when the directoryName is not a valid
directory name.

The rmdir operation first checks that the directoryName contains a valid SCA file name.
If not, the InvalidFileName exception is raised (SR:566) and the operation terminates. If the
directoryName is a valid SCA file name, then the directory is removed from the FileSystem.
However, the directory is removed only if no file exists in the directory (SR:564). If any
file-related error is encountered, then the FileException is raised (SR:563) and the operation
terminates.

3.6 File

Basic file operations such as read and write must be supported within the SCA file system.
The File interfaces provide this functionality. In addition to these essential operations, three
additional operations are defined: close, setFilePointer, and sizeOf.

As shown in Figure 3.9, there are five basic operations that can be called on an SCA
File and (read, write, close, setFilePointer, and sizeOf there are two attributes (filePointer

76 General Requirements and Services

cd File

«CORBAInterface»
File

+ fileName: string
+ filePointer: unsigned long

+ close() : void
+ read(OctetSequence*, unsigned long) : void
+ setFilePointer(unsigned long) : void
+ sizeOf() : unsigned long
+ write(OctetSequence) : void

«CORBAException»
FileException

«CORBATypedef»
OctetSequence

«CORBAEnum»
ErrorNumberType

usesuses
uses

Figure 3.9. File interfaces

and fileName). The following sections discuss the requirements and implementation of the
SCA File.

3.6.1 Exceptions

IOException

Several exceptions and types are defined as part of the File interface. The IOException is
used to identify errors that occur during the basic read or write operations.

exception IOException {
ErrorNumberType errorNumber;
string msg;

};

The errorNumber identifies the type of error (SR:507) (see Table 3.22) and the msg field
provides the ability to insert a user readable string.

Table 3.22. File Error type requirements

Section ID Resp Requirement

3.1.3.3.1.3.1 SR:507 CF The errorNumber shall indicate an
ErrorNumberType value (e.g. EFBIG, ENOSPC,
EROFS). The message is component-dependent,
providing additional information describing the
reason for the error.

File 77

InvalidFilePointer

The InvalidFilePointer is raised in cases where the file pointer provided in a call is outside
the range of the file’s size.

exception InvalidFilePointer {
};

3.6.2 Attributes

The SCA File requirements are organized into several groups. The first group discusses the
File attributes; fileName and filePointer (see Table 3.23).

fileName

readonly attribute string fileName;

filePointer

readonly attribute unsigned long filePointer;

When a file is opened for access in an operating system, a file handle or file descriptor
(FD) is returned. The file descriptor is then used by the application that opened the file
for issuing calls and performing operations on the file. Typically, the file descriptor is an
unsigned integer that is uniquely assigned by the operating system such that the same file
descriptor number will never be assigned to different files at the same time. In an SCA
file system, the file descriptor is the instance of an SCA File that is returned by the open
operation on the SCA FileSystem.

Table 3.23. File Attribute requirements

Section ID Resp Requirement

3.1.3.3.1.4.1 SR:509 CF The readonly fileName attribute shall contain the
file name given to the FileSystem open/create
operation.

3.1.3.3.1.4.2 SR:510 CF The readonly filePointer attribute shall contain
the file position where the next read or write will
occur.

The filename attribute of the SCA file contains the name provided during the open/create
operation (SR:509). It is a read-only that is set when the file is instantiated. The filePointer
attribute readonly contains the offset used to retrieve the next octet for a read operation
or place the next octet for a write operation (SR:510).

78 General Requirements and Services

3.6.3 Operations

read

The read operation provides the basic capability to read data from the file. The operation is
provided by the number of bytes to be read through the length parameter. The data obtained
by the read operation is provided to the caller as an out parameter named data. Data returned
is provided as an OctetSequence.

void read (
out OctetSequence data,
in unsigned long length
)

raises (IOException);

If any error occurs during the execution of the read operation, the IOException is raised.

Table 3.24. File Read requirements

Section ID Resp Requirement

3.1.3.3.1.5.1.3 SR:511 CF The read operation shall read, from the referenced
file, the number of octets specified by the input
length parameter and advance the value of the
filePointer attribute by the number of octets
actually read.

3.1.3.3.1.5.1.3 SR:512 CF The read operation shall read less than the number
of octets specified in the input-length parameter,
when an end of file is encountered.

3.1.3.3.1.5.1.4 SR:513 CF The read operation shall return via the out Message
parameter a CF OctetSequence that equals the
number of octets actually read from the File.

3.1.3.3.1.5.1.4 SR:514 CF If the filePointer attribute value reflects the end of
the File, the read operation shall return a 0-length
CF OctetSequence.

3.1.3.3.1.5.1.5 SR:515 CF The read operation shall raise the IOException
when a read error occurs.

The read operation initiates the read at the current offset into the file as specified by the
value of the filePointer (see Table 3.24). The read operation reads the number of octets
specified by the length parameter on the read operation (SR:511). If the number of octets to
be read is greater than the number of octets remaining in the file, i.e. between the filePointer
and the end of the file (EOF), then the number of octets passed back to the caller will be
the octets between the filePointer and the EOF (SR:512). The number of octets returned
is equal to the number of octets read (SR:513). If the read operation is invoked when
the filePointer is set to the end of the file, then a zero length octet sequence is returned
(SR:514). If an error occurs during the read operation, then the IOException is raised
(SR:515).

File 79

write

The write operation provides the capability to insert data into a File. The data to be written
to the file is provided as an OctetSequence. The data is written to the file starting at the
location specified by the filePointer.

void write (
in OctetSequence data
)

raises (IOException);

Upon completion of the write operation, the filePointer is set to the position of the last
octet written to the file. If any error occurs during the write operation, then the IOException
is raised.

Table 3.25. File Write requirements

Section ID Resp Requirement

3.1.3.3.1.5.2.3 SR:516 CF The write operation shall write data to the file
referenced.

3.1.3.3.1.5.2.3 SR:517 CF If the write is successful, the write operation shall
increment the filePointer attribute to reflect the
number of octets written.

3.1.3.3.1.5.2.3 SR:518 CF If the write is unsuccessful, the filePointer attribute
value shall maintain or be restored to its value
prior to the write operation call.

3.1.3.3.1.5.2.5 SR:519 CF The write operation shall raise the IOException
when a write error occurs.

The write operation writes the octets provided in the data parameter to the file starting
at the position specified by the filePointer (SR:516) (see Table 3.25). Upon successfully
writing the data to the file, the filePointer is updated to reflect the new offset into the file
(SR:517). If an error occurs during the write, then an IOException is raised (SR:519) and,
as part of the exception handler routine, the filePointer is restored to the offset value at the
initiation of the write operation (SR:518).

close

The close operation terminates the connection between the calling process that was utilizing
the file.

void close ()
raises (FileException);

If the file cannot be closed for any reason, the FileException is raised.
The close operation terminates the connection between the calling program that was using

the file and the file (see Table 3.26). Any resources associated with the connection, e.g.

80 General Requirements and Services

buffers, are released (SR:522) and the file is made unavailable to the caller (SR:523). If the
file cannot be closed for any reason, then the FileException is raised (SR:524).

Table 3.26. File Close requirements

Section ID Resp Requirement

3.1.3.3.1.5.4.3 SCA443 CF The error number shall indicate an
ErrorNumberType value (e.g. EFBIG, ENOSPC,
EROFS). The message is component-dependent,
providing additional information describing the
reason for the error.

3.1.3.3.1.5.4.3 SR:522 CF The close operation shall release any OE file
resources associated with the component.

3.1.3.3.1.5.4.3 SR:523 CF The close operation shall make the file unavailable
to the component.

3.1.3.3.1.5.4.5 SR:524 CF The close operation shall raise the CF FileException
when it cannot successfully close the file.

setFilePointer

As with standard file systems, the file within an SCA FileSystem allows the index into the
file system, i.e. offset to the next byte to be read, to be set. The setFilePointer operation
allows the calling program to set the index into the file specified. This offset is then used as
the starting offset for the next read or write operation.

void setFilePointer (
in unsigned long filePointer
)

raises (InvalidFilePointer, FileException);

Table 3.27. File Pointer requirements

Section ID Resp Requirement

3.1.3.3.1.5.5.3 SR:525 CF The setFilePointer operation shall set the filePointer
attribute value to the input filePointer.

3.1.3.3.1.5.5.5 SR:526 CF The setFilePointer operation shall raise the CP
FileException when the file pointer for the
referenced file cannot be set to the value of the
input filePointer parameter.

3.1.3.3.1.5.5.5 SR:527 CF The setFilePointer operation shall raise the
InvalidFilePointer exception when the value of
the filePointer parameter exceeds the file size.

The setFilePointer provides the ability to set the position reference of the underlying
file to a byte offset from the beginning of the file (SR:525) (see Table 3.27). If the offset

File 81

specified in the call is outside the range of the file, e.g. greater than the number of bytes in
the file or less than zero, then the call raises the InvalidFilePointer exception (SR:527). If
the file pointer cannot be set for any other reason, e.g. less than zero, then the FileException
is raised (SR:526).

sizeOf

The sizeOf operation provides the means for obtaining the file size. The file size is return

unsigned long sizeOf ()
raises (FileException);

The sizeOf operation provides a method for obtaining the size of the file in octets, i.e.
bytes.

Table 3.28. File Size requirements

Section ID Resp Requirement

3.1.3.3.1.5.3.4 SCA443 CF The error number shall indicate an
ErrorNumberType value (e.g. EFBIG, ENOSPC,
EROFS). The message is component-dependent,
providing additional information describing the
reason for the error.

3.1.3.3.1.5.3.4 SR:520 CF The sizeOf operation shall return the number of
octets stored in the file.

3.1.3.3.1.5.3.5 SR:521 CF The sizeOf operation shall raise the CF
FileException when a file-related error occurs
(e.g. file does not exist anymore).

When called, the sizeOf operation returns the number of octets within the file, i.e. the size
of the file (SR:520) (see Table 3.28). If any error is encountered accessing the file, then the
FileException is raised (SR:521). The error number within the FileException provides some
indication of the type of error encountered (SCA443).

4
Foundation Interfaces and Data
Types

Most of the SCA implementation rests on several interfaces. These foundation interfaces
define the common operational interfaces across all devices and applications within an SCA
system.

Figure 4.1 illustrates the foundation IDL defined as part of the SCA. The Resource is
a pivotal interface as it is inherited by all devices and applications. Thus, it forms the
foundation for much of the operational components of an SCA system. As can be seen in
Figure 4.1, four common interfaces are inherited by the Resource interface: i) TestableObject;
ii) PortSupplier; iii) LifeCycle; and iv) PropertySet.

These interfaces are discussed in the following sections, along with the ResourceFactory,
which provides the ability to instantiate a set of Resources as a logical unit.

4.1 TestableObject

The TestableObject provides the basic ability to initiate one or more internal tests for a
component (Figure 4.2). The component under test may be a hardware component, such as
a signal processing board, or it may be a software component running on a GPP.

4.1.1 Exceptions

UnknownTest

The UnknownTest exception is raised when the test requested by the runTest operation is
unknown.

exception UnknownTest {
};

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

84 Foundation Interfaces and Data Types

cd Resource Interface

«CORBAInterface»
Resource

+ identifier: string

+ start() : void
+ stop() : void

«CORBAInterface»
PropertySet

+ query(configProperties :Properties) : void

+ configure(configProperties :Properties∗) : void

«CORBAInterface»
PortSupplier

+ getPort(name :string) : Object

«CORBAInterface»
LifeCycle

+ initialize() : void
+ releaseObject() : void

«CORBAInterface»
ResourceFactory

+ identifier: string

+ createResource(resourceId :string, qualifiers :Properties) : Resource
+ releaseResource(resourceId :string) : void
+ shutdown() : void

«CORBAEnum»
ErrorNumberType

«CORBATypedef»
Properties

- sequence: DataType

«CORBAInterface»
TestableObject

+ runTest(testValues :Properties∗, testid :unsigned long) : void

uses
uses

uses

Figure 4.1. Common interfaces

cd Testable

«CORBAInterface»
TestableObject

+ runTest(Properties*, unsigned long) : void

Figure 4.2. TestableObject interface

4.1.2 Operations

runTest

The runTest operation is the method by which an SCA program may initiate a test for a given
component. The caller provides an unsigned long which identifies the test to be run and a
set of Properties that identify the test values to be applied to the test. Mapping the testid
provided to the test to be performed is unique to each component and must be documented
as part of the components implementation. For example, a testid value of 3 for a signal
processing board may initiate a checksum calculation on the contents of flash memory on
the board while a testid of 3 to a software component may check to see if all threads are in
a nominal state.

TestableObject 85

void runTest (
in unsigned long testid,
inout Properties testValues
)

raises (UnknownTest, UnknownProperties);

If the testid provided does not map to any internally defined tests, then the UnknownTest
exception is raised. If the testid is valid but one or more properties provided in the testValues
parameter do not match those expected by the specified test, then the UnknownProperties
exception is raised.

The runTest operation is called with a testid parameter value that maps to a pre-defined
test within the component receiving the call (SR:79) (see Table 4.1). If the testid provided
does not map to any test defined by the component, then the UnknownTest exception is
raised (SR:85). The caller also passes in a set of testvalues as a property set to the component
to be tested (SR:80). The tests specified are run and the results are returned (SR:81). The
component then verifies the validity of the test results against the test properties defined in
the component’s Software Package Descriptor (SPD) XML file (SR:83). The XML files are
discussed in Part II of this book on The Domain Profile. If any of the properties provided
are not defined, the UnknownProperties exception is raised (SR:86). The values provided
with the properties are also verified. If any of the values are invalid or outside a pre-
defined range, then the InvalidProperties exception is raised (SR:87). If either the testId or

Table 4.1. TestableObject requirements

Section ID Resp Requirement

3.1.3.1.3.5.1.3 SR:79 DS The runTest operation shall use the testId
parameter to determine which of its predefined
test implementations should be performed.

3.1.3.1.3.5.1.3 SR:80 DS The testValues parameter CF Properties
(id/value pair(s)) shall be used to
provide additional information to the
implementation-specific test to be run.

3.1.3.1.3.5.1.3 SR:81 DS The runTest operation shall return the result(s)
of the test in the testValues parameter.

3.1.3.1.3.5.1.3 SR:82 DS Valid testId(s) and both input and output
testValues (properties) for the runTest
operation shall at a minimum be test properties
defined in the properties test element of the
component’s Properties Descriptor (refer to
Appendix D Domain Profile).

3.1.3.1.3.5.1.3 SR:83 DS All inputValues properties shall be validated (i.e.
test properties defined in the propertyfile(s)
referenced in the component’s SPD).

3.1.3.1.3.5.1.3 SR:84 DS The runTest operation shall not execute any
testing when the input testId or any of the
input testValues are not known by the
component or are out of range.

86 Foundation Interfaces and Data Types

Table 4.1. Continued

Section ID Resp Requirement

3.1.3.1.3.5.1.5 SR:85 DS The runTest operation shall raise the
UnknownTest exception when there is no
underlying test implementation that is
associated with the input testId given.

3.1.3.1.3.5.1.5 SR:86 DS The runTest operation shall raise the
UnknownProperties exception when the input
parameter testValues contains any DataTypes
that are not known by the component’s test
implementation or any values that are out of
range for the requested test.

3.1.3.1.3.5.1.5 SR:87 DS The exception parameter invalidProperties shall
contain the invalid inputValues properties
Id(s) that are not known by the component or
the value(s) are out of range.

testValues parameters contain an error as described above, then the execution of testing shall
be inhibited (SR:84).

Valid testId values are, at a minimum, the set of test properties defined in the properties
test element of the component’s property descriptor (SR:82). If the testId and testValues
parameters are valid, the test is run and the results of the test are returned through the inout
testValues parameter.

4.2 PortSupplier

Any Resource or component that inherits the Resource interface, i.e. all devices and
applications, may support one or more ports. As noted earlier, the Port is an endpoint that
can be used to connect two components together. The PortSupplier interface provides the
mechanism for obtaining a reference to a Port.

cd PortSupplier

«CORBAInterface»
PortSupplier

+ getPort(name :string) : Object

Figure 4.3. PortSupplier interface

As illustrated in Figure 4.3, a single operation is defined for the PortSupplier interface.

PortSupplier 87

4.2.1 Exceptions

UnknownPort

If the port requested by the getPort operation is not defined, then the UnknownPort exception
is raised.

exception UnknownPort {
};

4.2.2 Operations

getPort

The getPort operation is provided the string name of a Port. The string name is defined
as part of the component’s interface description in the Software Component Descriptor
(SCD) file. The call matches the string name provided against those ports instantiated as
part of the component. If a match is found, then an Object reference to the requested port
is returned.

Object getPort (
in string name
)

raises (UnknownPort);

As noted above, if the string name of the port requested is not found, the UnknownPort
exception is raised.

The string name provided as input to the getPort call is matched against those ports
instantiated by the component. If a match is found, then the Object reference to the port is
returned (SR:89) (see Table 4.2). If no match is found, then the UnknownPort exception is
raised (SR:90).1

Table 4.2. PortSupplier requirements

Section ID Resp Requirement

3.1.3.1.4.5.1.4 SR:89 DS The getPort operation shall return the
CORBA Object reference that is associated
with the input port name.

3.1.3.1.4.5.1.5 SR:90 DS The getPort operation shall raise an
UnknownPort exception if the port name is
invalid.

1 The Object reference is a handle to an IDL interface. The object calling the getPort method would then bind
to the interface returned in order to establish a communications link. This process is discussed in more detail in
Section 4.7.

88 Foundation Interfaces and Data Types

4.3 LifeCycle

The LifeCycle interface addresses common operations associated with the instantiation and
startup of a component and the tear down and termination of a component.

cd LifeCycle

«CORBAInterface»
LifeCycle

+ initialize() : void
+ releaseObject() : void

Figure 4.4. LifeCycle interface

Figure 4.4 shows the LifeCycle interface. Two operations are defined, initialize and
releaseObject.

4.3.1 Exceptions

InitializeError

The InitializeError exception indicates that one or more errors were encountered during
the initialization process (see Table 4.3). The exception includes one or more messages
providing some descriptive data on the errors encountered.

exception InitializeError {
StringSequence errorMessages;

};

ReleaseError

The ReleaseError exception indicates that one or more errors were encountered during the
tear down process of the releaseObject operation. As with the InitializeError exception,
the ReleaseError exception provides a sequence of one or more strings providing some
descriptive information regarding the errors encountered.

exception ReleaseError {
StringSequence errorMessages;

};

4.3.2 Operations

initialize

The initialize operation is unique to each component. As such, there are no requirements
specific to the initialization process or states. The intent is to provide a common interface
call that will initiate the initialization of the component to some defined and stable state.

PropertySet 89

Table 4.3. LifeCycle initialize and releaseObject requirements

Section ID Resp Requirement

3.1.3.1.2.5.1.5 SR:74 CF, WF, DS The initialize operation shall raise an
InitializeError exception when an initialization
error occurs.

3.1.3.1.2.5.2.3 SR:75 CF, WF, DS The releaseObject operation shall release all
internal memory allocated by the component
during the life of the component.

3.1.3.1.2.5.2.3 SR:76 CF, WF, DS The releaseObject operation shall tear down the
component (i.e. released from the CORBA
environment).

3.1.3.1.2.5.2.3 SR:77 CF, WF, DS The releaseObject operation shall release
components from the OE.

3.1.3.1.2.5.2.5 SR:78 CF, WF, DS The releaseObject operation shall raise a
ReleaseError exception when a release error
occurs.

No arguments are defined and all initialization values and states must be defined and
implemented internally to the initialize call.

void initialize ()
raises (InitializeError);

If an error is encountered during the initialization process, the operation raises the
InitializeError exception with one or more string messages describing the errors encountered
(SR:74).

releaseObject

The releaseObject operation performs the tear down process associated with a component
(SR:76). The first action is to remove itself from the CORBA ORB (SR:77). The component
releases all memory or other resources allocated to the component (SR:75). The component
removes itself from the Operating Environment.

void releaseObject ()
raises (ReleaseError);

If any error is encountered during the operation, a ReleaseError is raised (SR:78) with
one or more string messages providing some description of the errors encountered.

4.4 PropertySet
4.4.1 Exceptions

InvalidConfiguration

This exception is raised when the configuration of a component, i.e. setting the values of
the properties specified, fails. The exception indicates that none of the property values were

90 Foundation Interfaces and Data Types

modified. A string value provides descriptive information regarding the failure and a set of
Properties containing the error(s) is returned in the exception.

exception InvalidConfiguration {
string msg;
Properties invalidProperties;

};

PartialConfiguration

A PartialConfiguration exception is raised when an error is encountered attempting to
configure a component, i.e. set the property values specified but one or more properties
were configured successfully. This exception is usually encountered when an attempt is
made to set the value on a readonly property. The set of properties that resulted in the
exception is returned.

exception PartialConfiguration {
Properties invalidProperties;

};

4.4.2 Operations

configure

The configure operation accepts a set of property-value pairs and attempts to set each of the
properties in the sequence to the value specified.

void configure (
in Properties configProperties
)

raises (InvalidConfiguration, PartialConfiguration);

The configure operation accepts a list of property names and values. Each value is assigned
to the property name specified in the configure operation (SR:91) (see Table 4.4). A property
must be specified as a readwrite or writeonly property for the configure operation to assign
the value (SR:92). It is possible that one or more properties in the set may have been assigned
values and one or more values were not set, e.g. the operation attempted to set a readonly
property. In this situation, a PartialConfiguration exception is raised (SR:93). If any error is
encountered that prevents a property configuration operation from successfully completing,
then an InvalidConfiguration exception is raised (SR:94). For example, a property
configuration operation may need to perform an operation on a physical device. If the
interface to the device fails for some reason, then the InvalidConfiguration exception is raised.

query

The query operation enables an application to retrieve the values associated with one or
more property names.

void query (
inout Properties configProperties
)

raises (UnknownProperties);

PropertySet 91

Table 4.4. PropertySet configure requirements

Section ID Resp Requirement

3.1.3.1.5.5.1.3 SR:91 CF The configure operation shall assign values
to the properties as indicated in the
configProperties argument.

3.1.3.1.5.5.1.3 SR:92 CF Valid properties for the configure operation
shall at a minimum be the configure
readwrite and writeonly properties
referenced in the component’s SPD.

3.1.3.1.5.5.1.5 SR:93 CF The configure operation shall raise a
PartialConfiguration exception when some
configuration properties were successfully
set and some configuration properties were
not successfully set.

3.1.3.1.5.5.1.5 SR:94 CF The configure operation shall raise an
InvalidConfiguration exception when a
configuration error occurs that prevents any
property configuration on the component.

A sequence of Properties identifying the property items to be queried is provided as an
input argument. The sequence provided may be empty.

The query operation accepts a sequence of Properties and returns the values for each of the
property names specified in the sequence (SR:96) (see Table 4.5). If the property sequence
provided is empty, i.e. zero length, then all of the properties and the value associated
for each property currently defined for the object receiving the call is returned (SR:95).

Table 4.5. PropertySet query requirements

Section ID Resp Requirement

3.1.3.1.5.5.2.3 SR:95 CF If the configProperties are zero size, then the
query operation shall return all component
properties.

3.1.3.1.5.5.2.3 SR:96 CF If the configProperties are not zero size,
then the query operation shall return only
those Id/value pairs specified in the
configProperties.

3.1.3.1.5.5.2.3 SR:97 CF Valid properties for the query operation shall at
a minimum be the configure, readwrite, and
readonly properties, and allocation properties
that have an action value of ‘external’ as
referenced in the component’s SPD.

3.1.3.1.5.5.2.5 SR:98 CF The query operation shall raise the CF
UnknownProperties exception when one or
more properties being requested are not
known by the component.

92 Foundation Interfaces and Data Types

In order to return a value successfully for a property, the property must be defined as a
configure, readwrite, or readonly property or an allocation property that has an action value
of ‘external’ (SR:97). A configure property means that the property is initially configured
when the component containing the property is instantiated. If the property is not designated
as a configure property, it may be queried if the property mode is defined as readwrite
or readonly. An allocation property refers to a property that identifies some capacity that
is allocated through the allocateCapacity operation. This typically occurs during waveform
instantiation when the system is attempting to map waveform components to the hardware
devices and other resources. If the allocation property is defined to be external, then the
property may be queried. If any of the properties specified in the input sequence is not
defined then the operation raises an UnknownProperties exception (SR:98).

4.5 Resource

The Resource forms a fundamental component of the SCA framework. Much of the interfaces
implemented by components that form the software radio inherit from the Resource interface.
Resource itself inherits from several interface specifications. As illustrated in Figure 4.1 at the
beginning of this chapter, the Resource incorporates the interfaces from the TestableObject,
PortSupplier, LifeCycle, and PropertySet. These interfaces were discussed in the preceding
sections. Thus, any implementation of the Resource interface, including those interfaces that
inherit the Resource interface, must also implement the interfaces inherited by the Resource.
This section discusses the individual interfaces that compose the Resource interface.

The key aspect introduced by the Resource interface is the start and stop operations.
These operations provide the top-level control mechanism for the control of the Resource
implementation. This ranges from physical devices to software components and applications,
since the Device and Application interfaces inherit from the Resource interface.

4.5.1 Exceptions

StartError

If an error is encountered within a device or other component that implements the Resource
interface during execution of the start operation, a StartError exception is raised. The
exception contains an enumeration type indicating the type of error and a string providing
additional information in human readable form.

exception StartError {
ErrorNumberType errorNumber;
string msg;

};

StopError

If an error is encountered within a device or other component that implements the Resource
interface during execution of the stop operation, a StopError exception is raised. The
exception contains an enumeration type indicating the type of error and a string providing
additional information in human readable form.

Resource 93

exception StopError {
ErrorNumberType errorNumber;
string msg;

};

4.5.2 Attributes

A single attribute is defined for the Resource: identifier.

identifier

The identifier attribute maintains the unique identifier for the resource instance.

readonly attribute string identifier;

Table 4.6. Identifier requirements

Section ID Resp Requirement

3.1.3.1.6.4.1 SR:101 CF,WF,
DS

The readonly identifier attribute shall contain
the unique identifier for a resource
instance.

The identifier is a readonly attribute that is initialized when the Resource is instantiated
(SR:101) (See Table 4.6). The unique identifier value is a GUID defined or generated for
the component. If the GUID is assigned, the value is specified using the Id attribute in the
domain profile XML.

4.5.3 Operations

As previously noted, there are two operations defined by the Resource interface: start and
stop.

start

Once a resource is instantiated and initialized, the start operation is used to place it into
an operational mode. Any error encountered during the start operation triggers a StartError
exception (See Table 4.7).

void start ()
raises (StartError);

As can be observed from the requirements in Table 4.7, there are no functional requirements
related to the start operation specified. This is because the start operation and associated
functional logic is unique to each Resource. Therefore, the only requirements specified
refer to the case when some problem occurs during the start operation. When a problem

94 Foundation Interfaces and Data Types

Table 4.7. start requirements

Section ID Resp Requirement

3.1.3.1.6.3.2 SR:99 CF, WF,
DS

The error number shall indicate an
ErrorNumberType value (e.g. EDOM,
EPERM, ERANGE).

3.1.3.1.6.5.2.5 SR:105 CF, WF,
DS

The start operation shall raise the
StartError exception if an error occurs
while starting the resource.

is encountered during the start operation, the startError exception is raised (SR:105). The
startError exception contains a number that enumerates the type of error encountered (SR:99)
and a text string providing additional descriptive information about the error encountered.

stop

The stop operation is used to halt the processing performed by the Resource. This means
that the operational functions of the Resource are stopped (see Table 4.8). It does not
terminate the Resource or remove it from the system. In the context of an executable program,
the stop operation may be viewed as a halt command to the application. For example, if the
application accepts a data value, performs some transformation on the data and forwards the
data to the next processing component, the stop operation would cause the application to
stop accepting, transforming, and forwarding data values. The application would still be in
memory and running, in terms of the operating system. However, the CPU time consumed
by the application would be minimal to none. In the context of a component implemented
as a VHDL component on an FPGA, the stop operation may be realized by a register value
or logic line that inhibits the state machine implemented by the VHDL. Similar to the
application on the GPP, the functional logic is not removed from the FPGA.

void stop ()
raises (StopError);

Table 4.8. stop requirements

Section ID Resp Requirement

3.1.3.1.6.3.3 SR:100 CF, WF,
DS

The error number shall indicate
an ErrorNumberType value
(e.g. ECANCELED, EFAULT,
EINPROGRESS).

3.1.3.1.6.5.1.3 SR:102 CF, WF,
DS

The stop operation shall disable all current
operations and put the Resource in a
non-operating condition.

3.1.3.1.6.5.1.5 SR:103 CF, WF,
DS

The stop operation shall raise the
StopError exception if an error occurs
while stopping the resource.

ResourceFactory 95

As with the start operation, the functional logic of the stop operation is unique for each
implementation of a Resource. The only requirement associated with the functional operation
of the Resource is that the stop operation places the Resource in a non-operational state
(SR:102). If an error is encountered during the stop operation, a stopError exception is
raised (SR:103). The stopError exception contains an errorNumber indicating the type of
error encountered (SR:100) and a string containing the additional information regarding the
cause of the exception.

4.6 ResourceFactory

Although a Resource may be instantiated directly, an instance of a Resource may be
utilized by multiple applications or components that require maintaining a reference count
of client applications using the Resource. In addition to maintaining a set of server-side
references for a Resource, a set of resources may be frequently instantiated as a logical set.
The ResourceFactory construct provides the facility to perform these types of operations
and capabilities (Figure 4.5). In addition, utilizing a ResourceFactory can help reduce
the overhead of instantiating multiple resources. As can be inferred from the name, the
ResourceFactory follows the Factory design pattern.

cd Resource Interface

«CORBAInterface»
ResourceFactory

+ identifier: string

+ createResource(resourceId :string, qualifiers :Properties) : Resource
+ releaseResource(resourceId :string) : void
+ shutdown() : void

Figure 4.5. ResourceFactory interface

4.6.1 Exceptions

InvalidResource

When the ResourceFactory is requested to release a Resource using the releaseResource
method (described on page xxx), a resourceId is provided as an input argument to specify
the Resource to be released. If the resourceId provided does not match any Resources known
by the ResourceFactory, then the InvalidResource exception is raised.

exception InvalidResourceId {
};

96 Foundation Interfaces and Data Types

ShutdownFailure

The shutdown method, described on page xxx, is used to halt and terminate all the Resources
that have been instantiated through the ResourceFactory. If an error is encountered during
the shutdown process preventing the ResourceFactory from releasing all the Resources, the
ShutdownFailure is raised. The exception contains a string describing the error condition.

exception ShutdownFailure {
string msg;

};

CreateResourceFailure

If there is a problem performing a createResource, then a CreateResourceFailure exception
is raised. The exception contains an errorNumber to indicate the type of error encountered
and a string providing some additional information regarding the exception.

exception CreateResourceFailure {
ErrorNumberType errorNumber;
string msg;

};

4.6.2 Attributes

identifier

As previously discussed for the Resource, the ResourceFactory also has an identifier attribute
that contains a unique identifier.

readonly attribute string identifier;

4.6.3 Operations

createResource

As noted previously, the ResourceFactory provides the capability to instantiate one or more
Resources on demand. Another scenario is to have the ResourceFactory create a pool
of resources by instantiating multiple Resources at startup and then simply returning the
reference to a Resource in response to the createResource call. This approach trades a longer
startup time in return for faster execution because when the createResource is called at run
time, the Resource has already been created. The resourceId specifies the resource to be
created.

Resource createResource (
in string resourceId,
in Properties qualifiers
)

raises (CreateResourceFailure);

When the createResource operation is called, the ResourceFactory either creates a new
Resource instance (SR:109) or returns a reference to an available instance of the type
specified by the resourceId argument (see Table 4.9). A reference to the Resource is returned

ResourceFactory 97

Table 4.9. ResourceFactory createResource requirements

Section ID Resp Requirement

3.1.3.1.7.3.3 SR:108 WF,
DS

The error number shall indicate an
ErrorNumberType value (e.g. NOTSET,
EBADMSG, EINVAL, EMSGSIZE,
ENOMEM).

3.1.3.1.7.5.1.3 SR:109 WF,
DS

If no Resource exists for the given
resourceId, the createResource operation
shall create a Resource.

3.1.3.1.7.5.1.3 SR:110 WF,
DS

The createResource operation shall assign the
given resourceId to a new Resource and
either set a reference count to one, when
the Resource is initially created, or
increment the reference count by one,
when the Resource already exists.

3.1.3.1.7.5.1.4 SR:111 WF,
DS

The createResource operation shall return a
reference to the created Resource or the
existing Resource.

3.1.3.1.7.5.1.4 SR:112 WF,
DS

The createResource operation shall return a
nil CORBA component reference when the
operation is unable to create or find the
Resource.

3.1.3.1.7.5.1.5 SR:115 WF,
DS

The createResource operation shall raise the
CreateResourceFailure exception when it
cannot create the Resource.

to the calling application (SR:111). As part of the createResource execution, a reference
count is maintained internally by the ResourceFactory. As each Resource is created or
provided from a pool of Resources, a reference count is set to one, if initially created during
the call, or incremented if a pre-existing Resource is returned (SR:110).

If an error is encountered that prevents a Resource from being created or returned (if a pool
of Resources is used), then a CreateResourceFailure exception is raised (SR:115). Within
the exception structure, an error number is provided to indicate the type of error encountered
(SR:108). The functional requirements also state that, in the event of an error, a null CORBA
reference is returned as the Resource reference (SR:112). This last requirement and SR:115
is one of several instances within the SCA specification that specify a return value and an
exception is to be raised when an error condition is encountered. In a programming language
that supports true exception handling, either an exception is raised or a value is returned.
Thus, requirements SR:112 and SR:115 are mutually exclusive because both cannot be
satisfied in an implementation.

releaseResource

When a component has no further need for a Resource obtained through the createResource
call described above, the component (referred to as a client), uses the Resource and notifies

98 Foundation Interfaces and Data Types

the ResourceFactory that it has completed using the Resource using the releaseResource call.
The client component must still release the CORBA reference that it has to the Resource.

This operation does not return a value. The releaseResource operation raises the
InvalidResourceId exception if an invalid resourceId is received.

void releaseResource (
in string resourceId
)

raises (InvalidResourceId);

Table 4.10. ResourceFactory releaseResource requirements

Section ID Resp Requirement

3.1.3.1.7.5.2.3 SR:116 WF,
DS

The releaseResource operation shall
decrement the reference count for the
specified resource, as indicated by the
resourceId.

3.1.3.1.7.5.2.3 SR:117 WF,
DS

The releaseResource operation shall make the
Resource no longer available (i.e. it is
released from the CORBA environment)
when the Resource’s reference count is
zero.

3.1.3.1.7.5.2.5 SR:118 WF,
DS

The releaseResource operation shall raise the
InvalidResourceId exception if an invalid
resourceId is received.

When the client has no further need of the Resource, it notifies the ResourceFactory
using the releaseResource call (see Table 4.10). The ResourceFactory decrements the
internal reference count of the Resource identified by the resourceId provided in the call
(SR:116). If the resourceId provided does not match any Resource instances within the
ResourceFactory, then an InvalidResource exception is raised (SR:118). When the last
client releases the Resource, the reference count will go to zero when decremented by
the ResourceFactory. When the reference count for a Resource goes to zero, then the
ResourceFactory will release the Resource from the CORBA environment making it no
longer available (SR:117).

shutdown

When no longer needed, the ResourceFactory must be terminated using the shutdown
operation. This operation provides a mechanism for orderly termination of the
ResourceFactory. The shutdown operation raises the ShutdownFailure exception for any
error that prevents the shutdown of the ResourceFactory.

void shutdown ()
raises (ShutdownFailure);

Port 99

Table 4.11. ResourceFactory shutdown requirements

Section ID Resp Requirement

3.1.3.1.7.5.3.3 SR:119 WF,
DS

The shutdown operation shall result in the
ResourceFactory being unavailable to any
subsequent calls to its object reference
(i.e. it is released from the CORBA
environment).

SCA575 The shutdown operation shall raise the
ShutdownFailure exception, if processing
errors prevent the release of the
ResourceFactory from the server side
CORBA environment.

The shutdown operation will be unique to each ResourceFactory. Consequently, there
are no functional requirements placed on the shutdown operation. The shutdown operation,
upon completion, removes the ResourceFactory from the CORBA environment making it
unavailable to further calls (SR:119) (see Table 4.11).

If some error is encountered during the shutdown process, the ShutdownFailure exception
is raised (SCA575). In version 2.2, the IDL included the exception specification but no
requirement explicitly stated that the exception be raised. So, although it was implicitly clear
that an exception should be raised and virtually all implementations of the SCA specification
did so, technically there was no requirement to do so. This minor omission was corrected
by adding the requirement to SCA 2.2.1.

4.7 Port

The Port is the essential mechanism for connecting components to establish communications.
The Port provides a common abstraction that is inherited by component-specific interfaces
that inherit the Port interface. So, in essence, the Port interface in the SCA is a means of
obtaining a reference to the actual interface implemented by a component. The interface
implemented by the component provides the actual interface for performing the data transfer
and control operations. Specific formats, data level protocols, and any other data structure or
interpretation is implemented as part of the operational interface. Thus, the Port interface is
used merely for establishing a connection between two operational interfaces (Figure 4.6).

cd Port

«CORBAInterface»
Port

+ connectPort(connectionId :string, connection :Object) : void
+ disconnectPort(connectionId :string) : void

Figure 4.6. Port interface

100 Foundation Interfaces and Data Types

As Figure 4.6 shows, only two functions are defined for the Port interfaces: connectPort
and disconnectPort. As noted previously, the style of communications within a CORBA-
based system follows a client-server style. The client application obtains a reference to a
server interface that implements one or more operations defined by the IDL. Figure 4.7
provides a conceptional example of how the Port interface is used. The upper half of the
figure shows the SCA portions of the connection process and the lower half shows the
implementation.

+ connectPort ()

«interface»
Port

+ getPort()

«interface»
PortSupplier

+ PushPacket()

«interface»
DecimatePacket

+ PushPacket()

«interface»
DecimatePacket

Client Server

SCA

Implementation

getPort

pushPacket

DecimatePacket

_bind

Figure 4.7. Establishing an SCA Port connection

In the example in Figure 4.7, there are two components within the application. The
Client side component provides a sequence of packets that comprise the waveform in digital
form. The packet data stream is to be processed through a decimation filter provided by a
decimation filter component shown on the Server side. The Client obtains a reference to
the Port object through the PortSupplier interface (see Section 4.2). The DecimatePacket
interface object reference is returned as a Port object. Once the Port reference is obtained,
the connectPort on the Client is called with the Port reference passed as an argument.
The connectPort implementation then binds to the server endpoint that implements the
PushPacket interface. Once the connection is established, shown in the figure by the dashed
arrow from the Server DecimatePacket to the Client DecimatePacket, the Client can then
issue the up-call to the Server and start sending the signal processing packet stream through
the decimation filter.

The example shown in Figure 4.7 is a simple push operation and is likely to be
implemented as a oneway call, i.e. there is no return data expected or provided by the server
implementation. Hence, the client side need not wait for a return value. However, other
interfaces are certainly valid and required for different needs. For example, the interface
may implement not only a data path but also one or more functions to provide flow control.

The format of the data exchanged between any two interfaces is totally at the discretion
of the designer and is only limited to the set of IDL data types. Thus the data exchanged
may be discrete values, a stream of octets, or any other combination built on IDL data types.

Port 101

It should be emphasized that the Port abstraction in the SCA establishes a connection
between a client side component, typically a data source, and the server side that implements
the interface, a data sink. Although the example in Figure 4.7 illustrates the process of
establishing communications between the source and sink components using a CORBA
interface, the same abstraction may be applied to other methods of data transport. So, for
example, if a vendor of a single processing board provides a DSP and FPGA on the board
and an flexible fabric interconnect bus between the two processors, the same connectPort
interface could be used to establish a specific data path between components on the two
processors. The difference would be that, at the lower-level transport, the actual data path
between the two components would be realized by part of the vendor’s Board Support
Package (BSP) software which establishes a data path through the flexible fabric from one
component to the other.

The connections to be established are unique to a particular application and are specified
as part of the waveform’s XML files. Specifically, the connections are specified within
the Software Assembly Descriptor (SAD) file. The format and content of this and other
waveform XML files are discussed in Part II of this book.

4.7.1 Exceptions

InvalidPort

The InvalidPort exception indicates one of two possible errors, and which error is the cause
of the exception is identified by the value of the errorCode field in the exception. The
interpretation of the errorCode value is as follows:

1. The Port component is invalid, i.e. it cannot be narrowed to an Object reference.
2. The Port name specified is not found.

A string message field is defined to provide some descriptive information regarding the
cause of the exception.

exception InvalidPort {
unsigned short errorCode;
string msg;

};

OccupiedPort

The OccupiedPort exception is raised when an attempt is made to connect to a destination
port that already has a connection.

exception OccupiedPort {
};

Note that the decision as to whether a Port is occupied or not is dependent on the
implementation. It does not imply that if a component is already connected to a Port another
component may not connect to the Port. A Port implementation may support multiple
connections by providing a connection for the data provider and a different connection from
a different component for control information. Both components would be connected to the

102 Foundation Interfaces and Data Types

same port but would be different connections. Multiple connections may also be supported
through CORBA conventions such as enabling a thread-per-invocation model which supports
multiple client connections to the same method by initiating a new thread to handle the
up-call from the client.

4.7.2 Operations

connectPort

The connectPort operation establishes a connection to the port identified by the Object
reference in the connection parameter. Several connections may be supported by a port.
A unique Id is provided for this connection using the connectionId parameter. This name is
used to identify each individual connection for tear down. The operation may raise either
the InvalidPort or OccupiedPort exceptions described above.

The connectPort operation establishes only half of the association.

void connectPort (
in Object connection,
in string connectionId

)
raises (InvalidPort, OccupiedPort);

The connectPort operation establishes a connection to the port referenced by the Object
reference parameter assigning it the string identifier provided in the connectionId parameter
(SR:69) (see Table 4.12). If the port is already in use and cannot accept additional
connections, then the OccupiedPort exception is raised (SR:71). If the object reference
provided cannot be resolved to a valid port connection, e.g. the object reference cannot be
narrowed to a valid port reference, then the InvalidPortException is raised (SR:70).

disconnectPort

Port connections are terminated using the disconnectPort operation. The operation uses the
connectionId string to identify the connection uniquely at the time it was created with the

Table 4.12. connectPort requirements

Section ID Resp Requirement

3.1.3.1.1.5.1.3 SR:69 WF,
DS

The connectPort operation shall make a
connection to the component identified by
the input parameters.

3.1.3.1.1.5.1.5 SR:70 WF,
DS

The connectPort operation shall raise the
InvalidPort exception when the input
connection parameter is an invalid
connection for this Port.

3.1.3.1.1.5.1.5 SR:71 WF,
DS

The connectPort operation shall raise the
OccupiedPort exception when unable to
accept the connections because the Port is
already fully occupied.

Port 103

connectPort operation. If the connectionId does not refer to a known connection, then the
InvalidPort exception is raised.

void disconnectPort (
in string connectionId
)

raises (InvalidPort);

Table 4.13. disconnectPort requirements

Section ID Resp Requirement

3.1.3.1.1.5.2.3 SR:72 WF,
DS

The disconnectPort operation shall break the
connection to the component identified by
the input parameter.

3.1.3.1.1.5.2.5 SR:73 WF,
DS

The disconnectPort operation shall raise the
InvalidPort exception when the name
passed to disconnectPort is not connected
with the Port component.

The disconnectPort takes the connectionId provided and terminates the connection
specified by the string (SR:72) (see Table 4.13). If the connectionId provided is not found
within the internal table of connections maintained by the application, then the InvalidPort
exception is raised (SR:73).

5
Devices and the Device Manager

5.1 Introduction

The ability to represent and manage the underlying physical hardware that implements the
radio system is core to the concept of the SCA. The approach embodied within the SCA is to
define a minimal set of interfaces that provide essential management and control capabilities
for all devices within the radio system.

In the context of an SCA radio system, an SCA Device is a logical interface to the
underlying physical hardware. This hardware includes any physical component that processes
any part of the signal chain from the antenna through to the I/O connection.

Figure 5.1 illustrates some key concepts regarding the layered components of an SCA
Device interface. The figure refers to an FPGA type of device but the same general abstraction
layers can be applied to other types of hardware.

At the lowest layer, the physical device (an FPGA in this example), resides on a board
that is sold by a vendor or manufacturer of the board. As shown in Figure 5.1, there is
typically some type of control on the board that manages the physical interface between the
board and the computer system in which it is integrated. The physical interface with the
host computer may be a PCI type interface or some other type of standard for physical and
electrical compatibility. Within the host computer, a device driver is loaded that provides
the interface between the operating system and the hardware. The device driver provides the
service routines that facilitate the exchange of control, status, and data between the operating
system and the internal state information and processing on the board.

Moving up higher, the device service routines plug into the operating system and expose
operating system level calls to the user applications using the device. The SCA Device
implementation resides at the application level. Thus, there are a number of physical and
logical abstraction layers that provide the basic interaction and control mechanism before
implementation of an SCA Device is implemented. Therefore, the SCA Device interface
provides a common abstraction of control and status that allows other SCA components
and applications to utilize the device without having to integrate with the specific device
interface API provided by the vendor. That does not mean that the SCA Device interface
covers all the API calls to the device as provided by the manufacturer. The SCA Device

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

106 Devices and the Device Manager

Executable Device (GPP)
Executable Device (GPP)

Device
Device

Executable Device (GPP)

Device

FPGA

Device Ctrl

Device Driver &
Interrupt Service

O/S Device I/F

Operating System

SCA Device

CORBA Other
Components

G
en

ra
l P

ur
po

se
 P

ro
ce

ss
or

 (
G

P
P

)
C

om
pu

te
r

U
se

r
A

pp
lic

at
io

n
S

pa
ce

O
pe

ra
tin

g
S

ys
te

m
In

te
rr

up
t

R
ou

tin
es

V
endor-S

pecific H
ardw

are

Internal
C

ontrol
P

rocessing D
evice

Physical Board I/F
e.g. PCI, VME, XMC

Digital Signal
Processing
HardwareDSP

n

nn Signal Processing
Data Paths

Core
Framework

CORBA
Core

CORBA
Lib

CORBA
Protocol

CORBA
Protocol

Chip-to-chip
Direct Connect

Figure 5.1. Layering in an SCA Device interface

interface is intended to provide a small set of essential, common interfaces for all devices.
If there are extensions provided by the device manufacturer that are to be made available
to SCA application components, then the Device interface would be extended by deriving
another interface class from the Device interface.

5.1.1 SCA Device Abstraction

The SCA defines an abstraction hierarchy of three types of devices (as described below).
The standard Device interface inherits from the Resource interface and, consequently,
provides all of the interfaces already described for the Resource. The Device abstraction is
used to allocate capacity on some physical resource within the system. For example, this
may be a processor, and amplifier, a switch, or antenna. When a waveform application

Introduction 107

is instantiated by the ApplicationFactory, the collection of devices required to support the
waveform are inspected and the capacity required by the waveform application is allocated.
For some devices, the allocation may be a binary function. For example a high power
amplifier may only be capable of supporting a single waveform at a time. Other device
capacity allocations may be partial allocation of the devices total capacity. For example,
the memory used by a waveform application may only be a portion of the total memory
available.

A Device in the SCA is an abstraction of the underlying physical hardware within the
software radio. The SCA has defined three basic device types to encompass the range of the
hardware found within the radio system:

• Device – This type provides the basic representation and control interface and serves as
the basic interface for the other device types.

• LoadableDevice – This type extends the basic Device definition by adding the interface
to load data or signal processing code.

• ExecutableDevice – This type extends the LoadableDevice by adding the ability to
start/stop processes.

Figure 5.2 illustrates the organization of interfaces for the SCA Device hierarchy and the
AggregateDevice. As shown, the Device interface inherits from the Resource. Thus, all of
the Resource requirements, as well as those inherited by the Resource, apply to the Device
as well.

As a logical abstraction, the Device interface is defined as the interface to a set of
zero or more hardware devices. This opens the door for a large, monolithic Device
implementation, i.e. a single device that encompasses a potentially large set of physical
devices. Although this is perfectly legal in the SCA, it is generally a poor design practice
in that it reduces the degree of granularity of control within the system by hiding multiple
devices and the control of those devices behind a high-level abstract interface. For example,
a signal processing card may have multiple FPGAs, one or more DSPs, and other physical
resources on the single card. Although it is within the bounds of the SCA to have a
single Device interface for the set of processors on the board, it is easy to see that it
is more advantageous to have Device interfaces for each of the processor on the board.
Individual Device interfaces provide greater visibility and control for the physical processing
resources.

An AggregateDevice is also defined in the SCA, and is typically used to provide
a convenient mechanism for maintaining a logical collection of devices. As defined in
the SCA, the AggregateDevice is merely a mechanism for maintaining a collection of
SCA Devices. Because it does not inherit the Device interface, it cannot be used to
implement a CompositeDevice. The distinction is that a CompositeDevice represents a
physical aggregation of Devices such as several FPGAs on a single card. Each FPGA would
be a Device and the board that contains the FPGAs would be the CompositeDevice. The
Device interface contains a compositeDevice attribute. Using this attribute it is possible to
build a CompositeDevice. This enables a Device that supports the normal Device behaviors,
e.g. start, stop, etc., and the ability to manage the set of processors as a logical entity.
However, each FPGA can be configured individually as a LoadableDevice (Section 5.3).
This concept is discussed in more detail in the sections on Device and AggregateDevice
(Sections 5.2 and 5.5).

108 Devices and the Device Manager

cd Device

Resource
«CORBAInterface»

Device

+ usageState: UsageType
+ adminState: AdminType
+ operationalState: OperationalType
+ softwareProfile: string
+ label: string
+ compositeDevice: AggregateDevice

+ allocateCapacity(Properties) : boolean
+ deallocateCapacity(Properties) : void

«CORBAInterface»
ExecutableDevice

+ execute(string, Properties, Properties) : ProcessID_Type
+ terminate(ProcessID_Type) : void

«CORBAInterface»
LoadableDevice

+ load(FileSystem, string, LoadType) : void
+ unload(string) : void

«CORBAInterface»
AggregateDevice

+ devices: DeviceSequence

+ addDevice(Device) : void
+ removeDevice(Device) : void

«CORBATypedef»
Properties

- sequence: DataType

«CORBAException»
InvalidFileName

- errorNumber: ErrorNumberType
- msg: string

«interface»
FileSystem::FileSystem

FPGA and DSP
(w/o O/S)

Any type of
device.

GPP and
DSP (with
O/S)

uses

uses

uses

uses

uses

uses

Figure 5.2. Device hierarchy and interfaces

5.2 Device

The SCA Device is the top-level abstraction of a physical device in the SCA system. The
Device inherits from the Resource as illustrated in Figure 5.3. The definition provides several
attributes that define state information about the device. In order to manage the physical
resources in any system, one must be able to manage the allocation of the resources to
support operations and processes. Thus, the key capabilities defined at the top level are
the allocateCapacity and deallocateCapacity. As the names imply, these interfaces provide
the essential behavior of allocating and deallocating some level or capacity of one or more
resources entities associated with the Device.

Device 109

cd Device

Resource
«CORBAInterface»

Device

+ adminState: AdminType
+ compositeDevice: AggregateDevice
+ label: string
+ operationalState: OperationalType
+ softwareProfile: string
+ usageState: UsageType

+ allocateCapacity(Properties) : boolean
+ deallocateCapacity(Properties) : void

Figure 5.3. Device interface

5.2.1 Exceptions

There are two essential exceptions that are defined for the Device operations. InvalidState
and InvalidCapacity.

InvalidState

This exception is raised when the Device is requested to be set into an invalid state.

exception InvalidState {
string msg;

};

InvalidCapacity

When a capacity allocation is requested, it must be checked against the resource type and
amount available. If the resource requested is undefined or the amount requested exceeds
the amount available, then this exception is raised. Other conditions may also raise an
invalidCapacity exception and are dependent on the type of resource on the device.

exception InvalidCapacity {
string msg;
Properties capacities;

};

5.2.2 Types and Constants

AdminType

There are three possible administrative states defined by the AdminType. In the LOCKED
state the device does not accept any requests for actions from external entities but does
accept calls in the UNLOCKED state. The SHUTTING_DOWN state, as the name implies,
specifies that the device is in the process of terminating and, consequently, may be in an

110 Devices and the Device Manager

unstable state as it shuts down. Therefore, as with the LOCKED state, the device does not
accept any external calls while in the SHUTTING_DOWN state. The operational state also
affects whether or not the device responds to external calls.

enum AdminType {
LOCKED,
SHUTTING_DOWN,
UNLOCKED

};

OperationalType

The device may have two possible operational states. The ENABLED state means that the
device has initialized, is in a stable state, and is ready to accept external requests, i.e. it is
in service. If the device has been removed from service or is temporarily unavailable, the
operational state will be DISABLED.

enum OperationalType {
ENABLED,
DISABLED

};

UsageType

The usage type reflects the activity of the device. It reflects the capacity allocations of
one or more resources on the device. Three simple forms are used. A usage state of IDLE
means that the device currently has none of its resources allocated. A usage state value of
BUSY means that the device has allocated all of the resource capacities. When the value is
ACTIVE, some of the resources of the device have been allocated but additional capacities
are available to be allocated to other tasks.

enum UsageType {
IDLE,
ACTIVE,
BUSY

};

5.2.3 Attributes

There are six attributes defined by the Device. These are shown in the following IDLs. All
of the attributes except for the adminState are readonly. Each of the attributes are discussed
in the following subsections.

label

The label attribute provides a user-readable name for the Device (SR:403) (see Table 5.1).
This is typically used as the name of the Device in user interfaces to provide a more easily
recognizable reference for the Device.

Device 111

Table 5.1. Device label attribute requirements

Section ID Resp Requirement

3.1.3.2.4.4.5 SR:403 DS The readonly label attribute shall contain the
Device’s label.

readonly attribute string label;

softwareProfile

The softwareProfile attribute stores the file name of the Software Package Descriptor (SPD)
that provides the software implementation information for the Device.

readonly attribute string softwareProfile;

The softwareProfile attribute may contain a file reference, i.e. a file name, of the SPD file
or the actual XML that specifies the software implementation information for the Device
(SR:401) (see Table 5.2). There is no indication as to whether the text data on the attribute
is a file name or the actual XML. This is an implementation detail of the SCA Device.
However, in most implementations, a reference to the SPD file is stored in the attribute.

Table 5.2. Device softwareprofile requirements

Section ID Resp Requirement

3.1.3.2.4.4.4 SR:401 DS The readonly softwareProfile attribute shall
contain either a profile DTD element with
a file reference to the SPD profile file or
the XML for the SPD profile.

compositeDevice

The compositeDevice attribute maintains a reference to the instance of the AggregateDevice,
if any, of which the current Device is a member.

readonly attribute AggregateDevice compositeDevice;

The compositeDevice attribute has a single requirement specifying the legal values that
may be stored on the attribute (see Table 5.3).

The compositeDevice attribute stores the AggregateDevice reference containing this
Device and zero or more other Devices. If the Device is not part of an AggregateDevice,
then the attribute contains a nil reference (SR:404). This provides the capability to represent
a compositeDevice within a Device by instantiating an AggregateDevice and using it to store
and manage the set of Devices as a logical unit. This is illustrated in Figure 5.4.

112 Devices and the Device Manager

Table 5.3. compositeDevice requirements

Section ID Resp Requirement

3.1.3.2.4.4.6 SR:404 DS The readonly compositeDevice attribute shall
contain the object reference of the
aggregateDevice, with which this Device is
associated, or a nil CORBA object
reference if no association exists.

Device-23AggregateDevice-01

Device-X
Device-Y
Device-23
Device-Z

compositeDevice

AggregateDevice-01

Figure 5.4. compositeDevice attribute

As shown in the figure, Device-23 is a member of AggregateDevice-01. Thus the
AggregateDevice instance has a reference to each of the devices specified as part of
the AggregateDevice. Device-23, as well as each of the devices of the AggregateDevice,
maintains a reference to the AggregateDevice instance in which it is a member.

adminState

The basic requirement states simply that the adminState attribute contains the adminState
value (SR:386) (see Table 5.4).

attribute AdminType adminState;

Whenever the adminState value changes, the Device must send an event to the
DomainManager describing the state change (SR:390). There are five fields that comprise
the event change message:

• ProducerId – This field contains the Id of the Device. This is the identifier attribute of
the Device producing the message (SR:391).

• SourceId – Since the producer of the event is also the source of the event, the SourceId
is the Id of the Device (SR:392).

• stateChangeCategory – Since this event is generated because of a change to the
adminState, the stateChangecategory field is set to ADMINISTRATIVE_STATE_EVENT
(SR:393).

• stateChangeFrom – This field is set to the initial value of the adminState attribute
(SR:394).

• stateChangeTo – This field is set to the new value of the adminState attribute (SR:394).

Device 113

Table 5.4. Device adminState requirements

Section ID Resp Requirement

3.1.3.2.4.4.2 SR:386 DS The adminState attribute shall contain the
device’s admin state value.

3.1.3.2.4.4.2 SR:387 DS The adminState attribute shall only allow the
setting of LOCKED and UNLOCKED values,
where setting ‘LOCKED’ is only effective
when the adminState attribute value is
UNLOCKED, and setting ‘UNLOCKED’ is
only effective when the adminState attribute
value is LOCKED or SHUTTING_DOWN.

3.1.3.2.4.4.2 SR:388 DS The adminState attribute, upon being
commanded to be LOCKED, shall
transition from the UNLOCKED to the
SHUTTING_DOWN state and set the
adminState to LOCKED for its entire
aggregation of Devices (if it has any).

3.1.3.2.4.4.2 SR:389 DS The adminState shall then transition to the
LOCKED state when the Device’s usageState
is IDLE and its entire aggregation of Devices
are LOCKED.

3.1.3.2.4.4.2 SR:390 DS Whenever the adminState attribute changes,
the Device shall send an event to the
Incoming Domain Management event
channel with event data consisting of a
StateChangeEventType. The event data will
be populated as follows:

3.1.3.2.4.4.2 SR:391 DS The producerId field shall be the identifier
attribute of the Device.

3.1.3.2.4.4.2 SR:392 DS The sourceId field shall be the identifier
attribute of the Device.

3.1.3.2.4.4.2 SR:393 DS The stateChangeCategory field shall be
ADMINISTRATIVE_STATE_EVENT.

3.1.3.2.4.4.2 SR:394 DS The stateChangeFrom and stateChangeTo fields
shall reflect the adminState attribute
value before and after the state change,
respectively.

The remainder of the requirements describe the conditions under which the adminState
attribute is changed and which state transitions are legal.

As shown in Figure 5.5, upon Device start, the adminState value is set to UNLOCKED. This
initial case is implicitly defined in the state diagram. However, it is not explicitly specified as
a requirement. As defined in the specification, the setting of the adminState to UNLOCKED
is only valid when the adminState is LOCKED or SHUTTING_DOWN (SR:387). When the
Device is UNLOCKED and commanded to be LOCKED, it transitions to the SHUTTING_DOWN
state and the Device commands each of the Devices contained with the AggregateDevice, if

114 Devices and the Device Manager

sm Device

Device Start

UNLOCKED

LOCKED

SHUTTING_DOWN
adminState(UNLOCKED)

adminState(LOCKED) adminState(UNLOCKED)

adminState(LOCKED) [Usage State = IDLE and its devices' adminState = LOCKED]

Figure 5.5. State diagram for the adminState attribute

any, stored on the compositeDevice attribute to be LOCKED (SR:388). This state is an interim
state that allows the Device to perform all necessary control and configuration operations,
enabling it to reach a stable state prior to proceeding to the LOCKED state.

Once i) the Device has completed all internal clean-up routines for itself; ii) each of
the Devices contained in the AggregateDevice structure on the compositeDevice attribute
has completed its clean-up routines and transitioned to the LOCKED state; and iii) the
usage state for each of the aggregate devices and the Device for which the LOCKED state
has been commanded has been set to IDLE, then the Device transitions to the LOCKED
state.

While the Device is in the process of the SHUTTING_DOWN state and is waiting for
its aggregate devices to transition to the LOCKED state, the Device may be commanded to
transition back to the UNLOCKED state, as previously noted in requirement SR:387. Thus,
as illustrated in Figure 5.6, there is essentially a lower level state machine that handles a
request to transition back to the UNLOCKED state. If the aggregate devices have completed
their shutdown and the Device’s usageState is set to IDLE, then the Device transitions to
the LOCKED state (SR:389). If the set of aggregate devices has not completed its shutdown
process, or the Device is not yet in the IDLE usageState, then it transitions back to the
UNLOCKED state.

The above scenario is not explicitly defined within the SCA specification and there are
variations on how the state machine may be represented. Also, how the Device implements
the transition back to the UNLOCKED state must be addressed, particularly if some subset of

Device 115

sm SHUTTING_DOWN SHUTTING_DOWN

SHUTTING_DOWN_DEVICES

adminState = LOCKED

adminState = LOCKED

Devices shut down?

adminState(UNLOCK) issued?

usageState = IDLE?

No

Yes

No

Yes

Yes

No

Figure 5.6. Sub-state diagram of the SHUTTING_DOWN state

the aggregate devices on the Device have already performed their transition to the LOCKED
state. Each of the devices contained in the aggregateDevice structure on the compositeDevice
attribute must be commanded to transition back to the UNLOCKED state. Furthermore, in
order to be in a consistent state, each of the aggregate devices must be set back to the
UNLOCKED state prior to the top-level Device transitioning back to the UNLOCKED state.

usageState

The usageState attribute contains the current state of the Device (see Table 5.5).

readonly attribute UsageType usageState;

There are three legal values for this attribute (SR:345):

• IDLE – This value indicates that the Device has been initialized and is available for use.
• ACTIVE – This state indicated that the Device has some portion of its capabilities in use

but still has additional capacity that could be utilized.
• BUSY – When all of the capacity available on the Device is in use, the usageState is set

to BUSY indicating that the Device is not available for any additional requests for use.

116 Devices and the Device Manager

Table 5.5. usageState requirements

Section ID Resp Requirement

3.1.3.2.4.4.1 SR:345 DS

The readonly usageState attribute shall
contain the Device’s usage state (IDLE,
ACTIVE, or BUSY). UsageState indicates
whether or not a device is actively in use at
a specific instant, and if so, whether or not
it has spare capacity for allocation at that
instant.

3.1.3.2.4.4.1 SR:381 DS

Whenever the usageState attribute changes,
the Device shall send an event to the
Incoming Domain Management event
channel with event data consisting of a
StateChangeEventType. The event data
will be populated as follows:

3.1.3.2.4.4.1 SR:382 DS
The producerId field shall be the identifier

attribute of the Device.

3.1.3.2.4.4.1 SR:383 DS
The sourceId field shall be the identifier

attribute of the Device.

3.1.3.2.4.4.1 SR:384 DS
The stateChangeCategory field shall be
USAGE_STATE_EVENT.

3.1.3.2.4.4.1 SR:385 DS

The readonly usageState attribute shall
contain the Device’s usage state (IDLE,
ACTIVE, or BUSY). UsageState indicates
whether or not a device is actively in use at
a specific instant, and if so, whether or not
it has spare capacity for allocation at that
instant.

Whenever the usageState value changes, the Device must send an event to the
DomainManager describing the state change (SR:381). There are five fields that comprise
the event change message:

• producerId – This field contains the Id of the Device. This is the identifier attribute of
the Device producing the message (SR:382).

• sourceId – Since the producer of the event is also the source of the event, the SourceId
is the Id of the Device (SR:383).

• stateChangeCategory – Since this event is generated because of a change to the
adminState, the stateChangeCategory field is set to USAGE_STATE_EVENT (SR:384).

• stateChangeFrom – This field is set to the initial value of the adminState attribute
(SR:385).

• stateChangeTo – This field is set to the new value of the adminState attribute (SR:385).

operationalState

The operationalState attribute identifies the current state of the Device (see Table 5.6).

Device 117

Table 5.6. Device operationalState requirements

Section ID Resp Requirement

3.1.3.2.4.4.3 SR:395 DS

The readonly operationalState attribute shall
contain the device’s operational state
(ENABLED or DISABLED).

3.1.3.2.4.4.3 SR:396 DS

Whenever the operationalState attribute
changes, the Device shall send an event to
the Incoming Domain Management event
channel with event data consisting of a
StateChangeEventType. The event data
will be populated as follows:

3.1.3.2.4.4.3 SR:397 DS
The producerId field shall be the identifier

attribute of the Device.

3.1.3.2.4.4.3 SR:398 DS
The sourceId field shall be the identifier

attribute of the Device.

3.1.3.2.4.4.3 SR:399 DS
The stateChangeCategory field shall be
OPERATIONAL_STATE_EVENT.

3.1.3.2.4.4.3 SR:400 DS

The stateChangeFrom and stateChangeTo
fields shall reflect the operationalState
attribute value before and after the state
change, respectively.

readonly attribute OperationalType operationalState;

There are two values for the operationalState attribute (SR:395):

• ENABLED – The Device is operational and available to process calls from clients.
• DISABLED – The Device is not currently accepting calls from clients and may not be

in a stable state.

Whenever the operationalState value changes, the Device must send an event to the
DomainManager describing the state change (SR:396). There are five fields that comprise
the event change message:

• ProducerId – This field contains the Id of the Device. This is the identifier attribute of
the Device producing the message (SR:397).

• SourceId – Since the producer of the event is also the source of the event, the SourceId
is the Id of the Device (SR:398).

• stateChangeCategory – Since this event is generated because of a change to the
adminState, the stateChangeCategory field is set to OPERATIONAL_STATE_EVENT
(SR:399).

• stateChangeFrom – This field is set to the initial value of the adminState attribute
(SR:400).

• stateChangeTo – This field is set to the new value of the adminState attribute (SR:400).

118 Devices and the Device Manager

5.2.4 Operations

allocateCapacity

The allocateCapacity is the basic call used to request a Device to allocate the capacities
specified in the capacities argument. In the general interpretation of the allocateCapacity
requirements, the call is passed to the Device instance which checks if it has the capacities
requested and, if they are available, the Device allocates the capacities specified and returns
true indicating success.

In practicality, this call needs to be passed to the actual Device instance when the Device
may have allocations that occur outside the scope of the SCA. For example, in the case
of a GPP, an SCA ApplicationFactory may request a certain amount of memory to be
allocated. In addition to the SCA request for some memory resource, other applications
executing within the processor and operating system may require memory. For example,
a process management application running on the GPP outside the SCA may use some
block of memory resulting in a decrease in the available memory independently of the SCA
environment.

However, for a significant number of devices, the capacity allocation may be shortcircuited
by maintaining a table of device resources and their allocation internally. For example, a
simple antenna has a simple capacity model and typically does not implement sophisticated
behavior as part of its operational behavior. It is either in use or not. Thus, such a simple,
binary allocation could be maintained as part of a device table within the SCA Core
Framework rather than passing the call through to a separate process or thread implementing
the device.

boolean allocateCapacity (
in Properties capacities
)

raises (InvalidCapacity, InvalidState);

The allocateCapacity call provides a sequence of Properties that specify a value
representing the amount of the capacity to allocate for the Property specified (see Table 5.7).
If the capacity of the Property specified is available, the Device adminState is UNLOCKED,
the operationalState is ENABLED, and the usageState is not BUSY, the total capacity of the
Device is reduces by the requested amount (SR:405).

For example, a Device Property may be memory and the allocateCapacity may request
some amount of memory to be allocated for use by the object requesting the allocation.
Note that, in the case of memory on a processor, this typically corresponds to the amount
of memory to be decremented from the total capacity device.

After a capacity is allocated for a device, if the Device determines that it has no further
capacity that can be requested, the usageState is set to BUSY (SR:406). However, if capacity
is still available for allocation, then the usageState attribute is set to ACTIVE (SR:407).
These requirements do not explicitly address how to handle Devices that have multiple
Properties with capacities that may be allocated. For example, it may be possible to request
an allocation of capacities on a Device that exhausts the capacity available for a single
Property while other types of capacity may be available. In this case, it is up to the developer
to decide whether the Device’s usageState should be set to BUSY when any one of a set
of capacities is depleted or to remain ACTIVE if it is possible to allocate other capacities
independently of the depleted capacity.

Device 119

Table 5.7. Device allocateCapacity requirements

Section ID Resp Requirement

3.1.3.2.4.5.1.3 SR:405 DS

The allocateCapacity operation shall reduce
the current capacities of the Device based
upon the input capacities parameter, when
the Device’s adminState is UNLOCKED,
Device’s operationalState is ENABLED,
and Device’s usageState is not BUSY.

3.1.3.2.4.5.1.3 SR:406 DS

The allocateCapacity operation shall set the
Device’s usageState attribute to BUSY,
when the Device determines that it is not
possible to allocate any further capacity.

3.1.3.2.4.5.1.3 SR:407 DS

The allocateCapacity operation shall set the
usageState attribute to ACTIVE, when
capacity is being used and any capacity is
still available for allocation.

3.1.3.2.4.5.1.3 SR:408 DS

The allocateCapacity operation shall return
‘True’, if the capacities have been
allocated, or ‘False’, if not allocated.

3.1.3.2.4.5.1.3 SR:409 DS

The allocateCapacity operation shall raise the
InvalidCapacity exception, when the
capacities are invalid or the capacity values
are the wrong type or Id.

3.1.3.2.4.5.1.3 SR:410 DS

The allocateCapacity operation shall raise
the InvalidState exception, when the
Device’s adminState is not UNLOCKED or
operationalState is DISABLED.

The allocateCapacity call returns a value of ‘True’ if the capacities requested were
successfully allocated (SR:408). The requirement also states that a value of ‘False’ will be
returned in the event that the capacities requested were not successfully allocated. However,
when using the exception mechanism of a programming language, the return value specified
by a function is not provided if the function encounters an error and raises the exception. If
any of the capacities or the values specified in the argument are invalid, the allocateCapacity
call will raise the InvalidCapacity exception (SR:409).

In order to allocate capacity, the operationalState of the Device may not be set to
DISABLED and the adminState may not be UNLOCKED. If the allocateCapacity is called
when either of these states does not meet the conditions, an InvalidState exception
is raised (SR:410).

deallocateCapacity

The deallocateCapacity operation sets the adminState attribute to LOCKED as specified in
adminState attribute.

void deallocateCapacity (

120 Devices and the Device Manager

Table 5.8. deallocateCapacity requirements

Section ID Resp Requirement

3.1.3.2.4.5.2.3 SR:411 DS

The deallocateCapacity operation shall adjust
the current capacities of the Device based
upon the input capacities parameter.

3.1.3.2.4.5.2.3 SR:412 DS

The deallocateCapacity operation shall set the
usageState attribute to ACTIVE when, after
adjusting capacities, any of the Device’s
capacities are still being used.

3.1.3.2.4.5.2.3 SR:413 DS

The deallocateCapacity operation shall set the
usageState attribute to IDLE when, after
adjusting capacities, none of the Device’s
capacities are still being used.

3.1.3.2.4.5.2.3 SR:414 DS

The deallocateCapacity operation shall set the
adminState attribute to LOCKED as
specified in 3.1.3.2.4.4.2.

3.1.3.2.4.5.2.5 SR:415 DS

The deallocateCapacity operation shall raise
the InvalidCapacity exception, when the
capacity Id is invalid or the capacity value
is the wrong type.

3.1.3.2.4.5.2.5 SR:416 DS

The deallocateCapacity operation shall raise
the InvalidState exception, when the
Device’s adminState is LOCKED or
operationalState is DISABLED.

in Properties capacities
)

raises (InvalidCapacity, InvalidState);

The deallocateCapacity is used to make a Device’s resources available for use when the
current application no longer requires the resources. The capacities specified in the call will
be returned to the available pool of the Device’s capacities (SR:411) (see Table 5.8). If any
of the Device’s capacities are still in use after adjusting the capacities, the usageState will be
set to ACTIVE to denote that the Device is still in use by one or more applications (SR:412).
If the capacities returned to the Device result in no capacities in use then the usageState is
set to IDLE (SR:413).

As with the allocation of capacities, if the capacity Id is invalid or the value is the wrong
type, the deallocateCapacity raises the InvalidCapacity exception (SR:415). If the Device
adminState is set to LOCKED or the operationalState is DISABLED, the deallocateCapacity
raises the InvalidState exception (SR:416).

releaseObject

The releaseObject is defined as part of the LifeCycle IDL. However, there are specific
requirements that must be satisfied when a Device is torn down and released. The
requirements are discussed below and shown in Table 5.9.

LoadableDevice 121

Table 5.9. releaseObject requirements

Section ID Resp Requirement

3.1.3.2.4.5.3.3 SR:418 DS

The releaseObject operation shall call the
releaseObject operation on all of the Device’s
aggregated Devices (i.e. those Devices that are
contained within the AggregateDevice’s
devices attribute).

3.1.3.2.4.5.3.3 SR:419 DS

The releaseObject operation shall transition the
Device’s adminState to SHUTTING_DOWN
state, when the Device’s adminState is
UNLOCKED.

3.1.3.2.4.5.3.3 SR:420 DS

The releaseObject operation shall cause the
Device to be unavailable (i.e. released from
the CORBA environment, and its logical
Device’s process terminated on the OS
when applicable), when the Device’s
adminState transitions to LOCKED, meaning
its aggregated Devices have been removed
and the Device’s usageState is IDLE.

3.1.3.2.4.5.3.3 SR:421 DS

The releaseObject operation shall cause the
removal of its Device from the Device’s
compositeDevice.

3.1.3.2.4.5.3.3 SR:422 DS
The releaseObject operation shall unregister its

Device from its DeviceManager.

3.1.3.2.4.5.3.5 SR:423 DS

The releaseObject operation shall raise the
ReleaseError exception when releaseObject is
not successful in releasing a logical Device
due to internal processing errors that occurred
within the Device being released.

When a Device receives the releaseObject call, it sets the value of adminState to
SHUTTING_DOWN (SR:419). If the Device as a list of Devices in an AggregateDevice
instance on the compositeDevice attribute, it issues the releaseObject call on all devices
contained within the instance of AggregateDevice on the compositeDevice attribute (SR:418).
As each Device in the aggregate device list completes the releaseObject call, it is removed
from the list of aggregate devices (SR:421). When the list of devices in the compositeDevice
attribute is empty, the AggregateDevice instance is destroyed and the Device transitions to
the LOCKED state for the adminState attribute. The Device then issues the unregisterDevice
call to the DeviceManager that instantiated the Device (SR:422) removing it from the list
of registeredDevices on the DeviceManager. At this point the Device instance is released
from the CORBA environment making it unavailable and the Device process is terminated
(SR:420).

5.3 LoadableDevice

The LoadableDevice extends the definition of the Device by supporting the loading of
‘software’ to a device and unloading ‘software’ from the device. The term ‘software’ is

122 Devices and the Device Manager

highlighted because, in the context of a LoadableDevice, the term is applied to any image
that may be loaded or unloaded. So, although the typical interpretation of a program that
might run on a GPP such as found in a personal computer is true, the LoadableDevice
also encompasses loading programs on a DSP, and bit images into a FPGA. Thus, for the
remainder of this section on LoadableDevice, the term image will be used to denote the item
that is loaded or unloaded.

5.3.1 Types

LoadType

As shown in the IDL declaration in Figure 5.7, the LoadableDevice inherits from and extends
the Device. There are four types of images that may be loaded:1

cd Device

«CORBA Interface»
Loadable Device

+ load (File System, string, Load Type) : void

+ unload (string) : void

Figure 5.7. LoadableDevice interface

enum LoadType {
KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,
EXECUTABLE

};

• KERNEL_MODULE – This type encompasses images that are loaded as part of or extensions
to, the operating system. For example, this might include an object file that provides a
specific extension to the operating system for a operating system call or service.

• DRIVER – This type typically encompasses the low-level drivers that bridge the gap
between a hardware device, such as a network card or Analog to Digital Converter (ADC),
and the operating system or, if no operating system is used (i.e. on a DSP), bridges the
gap to the program that might use the device directly.

1 The above types are specified in the Software Package Descriptor (SPD) XML file that describes the
implementation details of the implementation. It can be said, in looking at the above set of load types, that the types
defined are strongly oriented towards a GPP running an operating system. Load types that provide bit images for
an FPGA or a program that runs within a DSP without an operating system do not have a corresponding load
type. Consequently, these loads must be ‘coerced’ into one of the above types. Extending the load types to include
these types of images could be accomplished by adding types such as NATIVE for a DSP or GPP program running
natively on the processor without an operating system. The type BIT_IMAGE might be used for an FPGA load.
For now, however, these loads must utilize one of the above in order to be compliant with the specification.

LoadableDevice 123

• SHARED_LIBRARY – A shared library is a collection of code that typically performs a
set of logically related functions that has been compiled and organized in a single file
as a set of binary routines that may be integrated, i.e. linked, to a program. A library is
shared when only a single copy of the code is loaded into the processor’s memory and
multiple programs can call the routines in the library.

• EXECUTABLE – The executable type refers to a program that is loaded and run under
the control of an operating system, e.g. Linux, Windows, VxWorks, Integrity, and has a
process Id or number that uniquely identifies the program within the operating system.

5.3.2 Exceptions

InvalidLoadKind

The InvalidLoadKind exception indicates that the LoadType provided is not one of the
valid, defined types (see Section 5.3.1). No additional information is provided as part of the
exception.

exception InvalidLoadKind {
};

LoadFail

The LoadFail exception indicates that the requested load operation did not successfully
complete. An errorNumber is provided to identify the type of error encountered. A string is
also part of the exception structure to provide some additional information.

exception LoadFail {
ErrorNumberType errorNumber;
string msg;

};

5.3.3 Operations

load

The load operation provides the functionality to load an image onto a device. Typically,
a LoadableDevice is a processor such as an FPGA or DSP (as noted earlier, a DSP is
included as a type of LoadableDevice when it does not provide an operating system that
enables separate processes that may be identified and controlled through a unique process Id).
However, a LoadableDevice may also include Programmable Logic Arrays, digital matrix
or crossbar switches that provide data pathways based on a binary image that is loaded into
those devices.

void load (
in FileSystem fs,
in string fileName,
in LoadType loadKind
)

raises (InvalidState,
InvalidLoadKind,

124 Devices and the Device Manager

InvalidFileName,
LoadFail);

The load call is provided with the name of the file to be loaded, the SCA FileSystem in
which the file resides, and a LoadType parameter.

When a LoadableDevice receives the load call, it locates the file containing the image
to be loaded as specified in the fileName argument of the call and, based on the loadKind
argument in the call, loads the file on the LoadableDevice (SR:426) (see Table 5.10). The
load types supported by the load operation on the LoadableDevice must include those types
stated in the LoadType allocation properties specified in the Domain profile XML files
(SR:427).2

Table 5.10. LoadableDevice load requirements

Section ID Resp Requirement

3.1.3.2.5.5.1.3 SR:426 DS The load operation shall load a file on the
specified device based upon the input
loadKind and fileName parameters using the
input FileSystem parameter to retrieve the
file.

3.1.3.2.5.5.1.3 SR:427 DS The load operation shall support the load types
as stated in the Device’s software profile
LoadType allocation properties.

3.1.3.2.5.5.1.3 SR:428 DS The load operation shall keep track of the
number of times a file has been successfully
loaded.

3.1.3.2.5.5.1.5 SR:429 DS The load operation shall raise the InvalidState
exception when the Device’s adminState is
not UNLOCKED or operationalState is
DISABLED.

3.1.3.2.5.5.1.5 SR:430 DS The load operation shall raise the
InvalidLoadKind exception when the input
loadKind parameter is not supported.

3.1.3.2.5.5.1.5 SR:431 DS The load operation shall raise the
InvalidFileName exception when the file
designated by the input filename parameter
cannot be found.

3.1.3.2.5.5.1.5 SR:432 DS The load operation shall raise the LoadFail
exception when an attempt to load the device
is unsuccessful.

As noted in the IDL definition, the fileName argument specifies the string name of the
file to be loaded. The SCA FileSystem containing the file is also supplied. This provides

2 The load types defined as valid do not effectively capture the range of images, binaries, programs, etc. that may
be loaded. See Section 5.3.1 for more details.

LoadableDevice 125

the information necessary to locate and open the file based on the SCA FileSystem that
has the mount point for the underlying platform file system. However, for a load operation
to be successful for a GPP and operating system, i.e. to load a file to the GPP from the
underlying operating file system, the SCA FileSystem and file string must be resolved to a
file descriptor (FD) that the operating system can successfully load.

The LoadableDevice also maintains a reference count for files loaded (SR:428). This is
typically used to manage the load process such that repeated load requests for the same file
simply increment the reference count, thereby maintaining only a single copy for the load.
This is the same strategy used internally by an operating system for a shared library. In the
case of a LoadableDevice, such as an FPGA however, it is unclear as to the use of the load
count at the SCA level other than for informational purposes.

The load operation is only valid when the LoadableDevice is ENABLED and UNLOCKED.
If it is in any other state when the load call is received, the load fails and an InvalidState
exception is raised (SR:429).

If the loadKind parameter does not match one of the defined types, then the load fails
raising an InvalidLoadKind exception (SR:430). Thus, as noted previously, for FPGA and
DSP loads, the loadKind must use one of the existing types, even when there is not a good
match to the type of load actually being performed.

Also, if the file referenced by the fileName and FileSystem parameters cannot be found,
an InvalidFileName exception is raised (SR:431).

If, for any reason other than those noted above, the load call fails, the Loadfail exception
is raised (SR:432) indicating that some error condition prevented the call from successfully
completing.

As described above, when a load request fails, the LoadFail exception is raised (SR:424)
and includes an error number indicating the type of error encountered (Table 5.11). Error
types that may be returned for the LoadFail exception include:

Table 5.11. LoadableDevice LoadFail requirements

Section ID Resp Requirement

3.1.3.2.5.3.3 SR:424 DS The error number shall indicate an
ErrorNumberType value (e.g. EACCES,
EAGAIN, EBADF, EINVAL, EMFILE,
ENAMETOOLONG, ENOENT, ENOMEM,
ENOSPC, ENOTDIR).

• EACCES – Access to the file specified is not available or not granted. This may be due
to underlying operating system restrictions based on the privileges associated with the
process making the request.

• EAGAIN – The resource requested is temporarily unavailable.
• EBADF – The contents of the file are corrupted or do not match the type of load specified.
• EINVAL – The file specified is invalid.
• EMFILE – Too many files are currently open.

126 Devices and the Device Manager

• ENAMETOOLONG – The file name specified exceeds the SCA limit or exceeds the limit
of the underlying file system.

• ENOENT – No such file or directory.
• ENOMEM – Insufficient memory is available to complete the load. For files that map to a

specific area of memory, this error code may also be used.
• ENOSPC – No space is left on the device specified.
• ENOTDIR – The file path provided in the load call is not a valid directory.

The above error types are not intended to be exhaustive. Thus, it is possible to use some
other error number indicating the type of load error if none of the list applies.

unload

The onload operation supports the capability to unload software previously loaded using the
load operation. The unload decrements a reference counter and, when the reference count
goes to zero, removes the software from the device. There are some unique conditions and
exceptions to implementing this behavior, however. For example, some loadable devices,
such as FPGAs, may not have a low-level device operation that ‘unloads’ a bit image from
the FPGA. The FPGA may be re-loaded with a new image or, if clearing the device is
required (i.e. for security reasons), the unload operation may write a zero load to the FPGA.

Two exceptions may be raised by the operation. InvalidState is raised if the device is
not in the proper state to perform the unload function. If the file specified by the filename
parameter is invalid, then the InvalidFileName is raised.

void unload (
in string fileName
)

raises (InvalidState, InvalidFileName);

Table 5.12. LoadableDevice unload requirements

Section ID Resp Requirement

3.1.3.2.5.5.2.3 SR:433 DS The unload operation shall decrement the
load count for the input filename parameter
by one.

3.1.3.2.5.5.2.3 SR:434 DS The unload operation shall unload the
application software on the device based
on the input fileName parameter, when the
file’s load count equals zero.

3.1.3.2.5.5.2.3 SR:435 DS The unload operation shall raise
the InvalidState exception when the
Device’s adminState is LOCKED or its
operationalState is DISABLED.

3.1.3.2.5.5.2.3 SR:436 DS The unload operation shall raise the
InvalidFileName exception when the file
designated by the input filename parameter
cannot be found.

ExecutableDevice 127

When the unload operation is received by the LoadableDevice, the load count for the file
specified is decremented (SR:433) and, when the load count eaches zero, the file is unloaded
from the LoadableDevice (SR:434) (see Table 5.12).

If the LoadableDevice is LOCKED or DISABLED then the InvalidState exception is raised
(SR:435).

If the file name provided in the unload call cannot be found, then the InvalidFileName
exception is raised (SR:436). This requirement raises some questions in that the wording
specifies that the exception is raised if the file name reference by the parameter cannot be
found. However, the file referenced by the fileName parameter has already been loaded
and, therefore, already been found within the file system. Furthermore, the critical factor
is not locating the file within a file system but identifying the image of the file previously
loaded.

So, for the unload operation, the InvalidFileName exception applies to the situation when
an unload operation is requested and the file name specified in the filename parameter
cannot be found in the list of files previously loaded on to the LoadableDevice. So,
although the exception is the same as the load operation, the root cause of the exception is
different.

5.4 ExecutableDevice

The ExecutableDevice extends the LoadableDevice by defining a device that supports the
execution of a program within an operating system (see Figure 5.8). It should also be
noted, however, that an ExecutableDevice also supports loading of libraries, drivers, and
kernel components. Thus, although the intent of the ExecutableDevice is to extend the
LoadableDevice by supporting processes running under an operating system, loads that are
not executable are still supported and frequently required.

cd Device

«CORBA Interface»
Executable Device

+ execute (string, Properties, Properties) : ProcessID_Type

+ terminate(ProcessID_Type) : void

Figure 5.8. ExecutableDevice interface

5.4.1 Types and Constants

Two string constants are specified for the STACK_SIZE and PRIORITY arguments passed
to the execute call.

128 Devices and the Device Manager

ProcessID_Type

When an executable program is loaded and started on an ExecutableDevice, such as a GPP
running an operating system, a unique process or task Id is created by the operating system.
This Id is used by the operating system to manage the program within the computer. The
process Id is also maintained by the core framework in order to be able to control the overall
set of processes. The ProcessID_Type defines the data type used to store the Id of the
process.

typedef unsigned long ProcessID_Type;

STACK_SIZE

Under certain operating systems, the size of the stack to be allocated or allowed for a given
program can be specified. The string constant STACK_SIZE defines a common string that
is used as a command line argument to the call that starts the program.

const string STACK_SIZE = "STACK_SIZE";

PRIORITY_ID

As with the STACK_SIZE, certain operating systems allow the execution priority of a
program to be specified at the time the program is started. The PRIORITY_ID is a string
constant that is used as a common command line argument name to pass in a numeric value
that specifies the priority to be assigned to the program.

const string PRIORITY_ID = "PRIORITY";

5.4.2 Exceptions

The exceptions requirements are shown in Table 5.13.

Table 5.13. ExecutableDevice exceptions requirements

Section ID Resp Requirement

3.1.3.2.6.3.1 SR:438 DS The error number shall indicate an
ErrorNumberType value (e.g. ESRCH,
EPERM, EINVAL).

3.1.3.2.6.3.6 SR:442 DS The value for a stack size shall be an
unsigned long.

3.1.3.2.6.3.7 SR:443 DS The value for a priority shall be an unsigned
long.

3.1.3.2.6.3.8 SR:444 DS The error number shall indicate an
ErrorNumberType value (e.g. EACCES,
EBADF, EINVAL, EIO, EMFILE,
ENAMETOOLONG, ENOENT, ENOMEM,
ENOTDIR).

ExecutableDevice 129

ExecuteFail

Due to the dynamic nature of general purpose computers and operating systems, there are a
number of reasons why the operating system may fail to start an application program. When
this occurs the SCA component launching the program must be notified. The ExecuteFail
exception provides that notification. The errorNumber value contains an enumerated value
indicating the type of error (SR:444).

exception ExecuteFail {
ErrorNumberType errorNumber;
string msg;

};

InvalidProcess

The InvalidProcess exception is raised when a process Id provided is invalid, e.g. it is
unknown, for the ExecutableDevice that implements the call. The errorNumber parameter
in the exception provides an indication of the type of error encountered (SR:438). The msg
parameter provides additional, textual information about the exception.

exception InvalidProcess {
ErrorNumberType errorNumber;
string msg;

};

InvalidFunction

The InvalidFunction exception is raised when a function specified within a call cannot be
found, i.e. it has not been loaded on the ExecutableDevice servicing the call. This exception
typically occurs within executable devices that implement the ability to load an executable
image and then start a task or thread at a specified function call.

For applications or components implemented as a standard executable on a GPP in
an operating system such as Linux, a ‘well known’ initial function is defined, i.e. main
in a C/C++ program, as part of the implementation or implicitly inserted as part of the
development tools or environment, such as the Windows event loop.

exception InvalidFunction {
};

InvalidParameters

The InvalidParameters exception is raised when the execution parameters provided are
invalid. Each execution parameter is provided as a pair of strings consisting of the name
of the parameter and the value, similar to the argv** parameter on the top-level function,
main, in a C program.

The exception provides the set of invalid parameters as a set of Properties where each
entry in the invalidParms property set consists of the Property, i.e. parameter, name and
value.

130 Devices and the Device Manager

exception InvalidParameters {
Properties invalidParms;

};

InvalidOptions

The InvalidOptions exception is raised when one or more of the options provided to the
execute call are invalid. The invalidOpts parameter on the exception identifies the invalid
options using a Property set where each Property, i.e. option, in the set consists of the name
and value of the invalid option.

exception InvalidOptions {
Properties invalidOpts;

};

5.4.3 Operations

execute

The execute call provides the means for initiating the execution of a program or task on an
ExecutableDevice that includes basic operating system functionality such as the ability to
create a process or task within the operating system, uniquely identify the program or task,
and terminate the task based on the process Id.

ProcessID_Type execute (
in string name,
in Properties options,
in Properties parameters
)

raises (InvalidState, InvalidFunction, InvalidParameters,
InvalidOptions, InvalidFileName, ExecuteFail);

This is not the same as the start operation defined on the Resource. Although the
ExecutableDevice inherits the Resource interface and therefore implements the start and stop
operations, the start/stop operations for the ExecutableDevice refer to the device itself and
not the application components running on the device. This is illustrated in Figure 5.9.

The start and stop calls on the ExecutableDevice provide the control interface for starting
and stopping the device. The execute operation initiates the execution of the Application
process on the ExecutableDevice. That does not mean that the processing performed by the
Application has started. The start and stop calls on the Application (or any type of Resource)
start and stop the processing performed by the Application.

Thus, the execute operation is used to instruct the underlying operating system to
begin running the process associated with the software, as specified in the file name
argument. As with other similar functions for starting processes, the initial or starting
function is specified followed by a set of execution parameters that are used to configure
the software execution. The standard input options defined are STACK_SIZE_ID and
PRIORITY_ID. When provided, the execute operation uses the values specified to set

ExecutableDevice 131

Executable Device-1

Application-22

Application-17

start/stop

execute

start/stop

Calls on
Executable Device

Calls on
Application

Figure 5.9. Calls on ExecutableDevice and Application

the priority of the process or thread created. The STACK_SIZE_ID provided must be an
unsigned long (SR:442) and the PRIORITY_ID provided must also be an unsigned long
(SR:443).

Several possible exceptions may be raised depending on the type of error encountered.
The exceptions InvalidFunction, InvalidOptions, InvalidParameters, and InvalidFileName
all indicate a problem encountered with the input parameters. The InvalidState exception
indicates that the ExecutableDevice was not in a valid state for performing the execute
operation. The ExecuteFail exception indicates that a problem was encountered while
attempting to start the process or thread, which resulted in a failure to do so.

The execute operation checks that the ExecutableDevice is in a valid state to perform the
operation (see Table 5.14). If it is not then the InvalidState exception is raised (SR:450)
and the operation terminates. The execute operation provides the means to execute the
file name specified by the name argument (SR:445). The function attempts to open the
file name specified in order to initiate execution on the ExecutableDevice. If the file
name provided cannot be found, then the InvalidFileName exception is raised (SR:452).
The execute function converts the parameters provided into POSIX form using the initial
argument as the function name at which execution should begin (SR:446). The execute
operation converts the parameters into a set of input arguments to the process following the
standard convention of name and value pairs (SR:447). When the parameters provided are not
strings, then the InvalidParameters exception is raised (SR:453) If the STACK_SIZE_ID and
PRIORITY_ID options are provided, then the execute operation uses the values provided
to set the priority and stack size of the process (SR:448). If the options provided are invalid
then the InvalidOptions exception is raised (SR:454). The execute operation then initiates the
operating system call to begin the execution of the file specified, passing the parameters to
the execute operation as input arguments to the function specified, and returning the unique
process or thread Id provided by the operating system at the completion of its operation
(SR:449). If an error is encountered by the operating system that prevents it from properly

132 Devices and the Device Manager

Table 5.14. ExecutableDevice execute requirements

Section ID Resp Requirement

3.1.3.2.6.5.1.3 SR:445 DS The execute operation shall execute the function
or file identified by the input name parameter
using the input parameters and options
parameters.

3.1.3.2.6.5.1.3 SR:446 DS The execute operation shall convert the input
parameters (iD/value string pairs) parameter to
the standard argv of the POSIX exec family of
functions, where argv(0) is the function name.

3.1.3.2.6.5.1.3 SR:447 DS The execute operation shall map the input
parameters to argv starting at index 1 as
follows: argv (1) maps to input parameters (0)
iD and argv (2) maps to input parameters (0)
value and so forth.

3.1.3.2.6.5.1.3 SR:448 DS The execute operation shall use these options,
when specified, to set the operating system’s
process/thread stack size and priority, for the
executable image of the given input name
parameter.

3.1.3.2.6.5.1.4 SR:449 DS The execute operation shall return a unique
processID for the process that it created or a
processID of minus 1 (−1) when a process is
not created.

3.1.3.2.6.5.1.5 SR:450 DS The execute operation shall raise the InvalidState
exception when the Device’s adminState is not
UNLOCKED or operationalState is DISABLED.

3.1.3.2.6.5.1.5 SR:451 DS The execute operation shall raise the
InvalidFunction exception when the function
indicated by the input name parameter does not
exist for the Device.

3.1.3.2.6.5.1.5 SR:452 DS The execute operation shall raise the
InvalidFileName exception when the file name
indicated by the input name parameter does not
exist for the Device.

3.1.3.2.6.5.1.5 SR:453 DS The execute operation shall raise the
InvalidParameters exception hen the input
parameters parameter item ID or value are not
string types.

3.1.3.2.6.5.1.5 SR:454 DS The execute operation shall raise the
InvalidOptions exception when the input
options parameter does not comply with
sections 3.1.3.2.6.3.5 STACK_SIZE_ID and
3.1.3.2.6.3.6 PRIORITY_ID.

3.1.3.2.6.5.1.5 SR:455 DS The execute operation shall raise the ExecuteFail
exception when the operating system ‘execute’
function for the device is not successful.

ExecutableDevice 133

initiating the execution of the software, then the execute operation raises the ExecuteFail
exception (SR:455).3

terminate

As the name implies, the terminate operation provides the capability to terminate a process
or thread previously initiated with the execute operation. A single argument, the processId
of the process to be terminated, is provided. There is no return value specified.

If the ExecutableDevice adminState is LOCKED or the operationalState DISABLED, then
the InvalidState exception is raised. If the processId is not found then the InvalidProcess is
raised.

void terminate (
in ProcessID_Type processId
)

raises (InvalidProcess, InvalidState);

The terminate operation terminates the execution of the process or thread specified by
the processId argument (SR:456) (see Table 5.15). The terminate operation checks that
ExecutableDevice adminState is not LOCKED and the operationalState is not DISABLED.
If either is true then the InvalidState exception is raised (SR:457). If the processId specified
does not exist, then the InvalidProcess exception is raised (SR:458).

Table 5.15. ExcecutableDevice terminate requirements

Section ID Resp Requirement

3.1.3.2.6.5.2.3 SR:456 DS The terminate operation shall terminate the
execution of the process/thread designated
by the processId input parameter on the
Device.

3.1.3.2.6.5.2.5 SR:457 DS The terminate operation shall raise the
InvalidState exception when the Device’s
adminState is LOCKEDor operationalState
is DISABLED.

3.1.3.2.6.5.2.5 SR:458 DS The terminate operation shall raise the
InvalidProcess exception when the
processId does not exist for the Device.

3 The execute operation raises an interesting problem related to the file. In order for the operating system call
to load and execute the file specified, the operating system must be able to open the file using the native file I/O
routines within the operating system and obtain a native File Descriptor (FD) in order to access the file. Since the
SCA FileSystem is an abstraction layered on top of a native file system in the operating system, there are two issues
that must be addressed. First, as noted, the native FD must be provided to the operating system call. If the SCA
FileSystem containing the file is on the same ExecutableDevice as where the process is to be run, then the native
FD can be provided as part of the internal state when opening the SCA File. However, if the file is located on
another node, then the file will need to be copied so there is a copy of the file that is located within the native file
system on the ExecutableDevice where the process is to be executed. The implementation approaches to handling
this problem vary but the implementation of the execute operation must address this issue.

134 Devices and the Device Manager

5.5 AggregateDevice

As briefly described earlier in this chapter, the AggregateDevice provides a mechanism for
managing a set of Devices as a logical unit. The AggregateDevice is a simple entity that
provides an interface for adding and removing a Device (see Figure 5.10). The interface is
somewhat limiting, however, as it does not provide a method for iterating over the list of
Devices or looking up an individual Device within the AggregateDevice.

cd Device

«CORBAInterface»
AggregateDevice

+ devices: DeviceSequence

+ addDevice(Device) : void
+ removeDevice(Device) : void

Figure 5.10. AggregateDevice interface

5.5.1 Types and Attributes

devices

The Aggregate Device attribute requirements are shown in Table 5.16.
The devices attribute contains a list of Devices that have been added to the

AggregateDevice (SR:459).

readonly attribute DeviceSequence devices;

Table 5.16. AggregateDevice attribute requirements

Section ID Resp Requirement

3.1.3.2.7.4.1 SR:459 DS The readonly devices attribute shall contain a
list of Devices that have been added to this
Device or a sequence length of zero if the
Device has no aggregation relationships
with other Devices.

5.5.2 Operations

addDevice

The addDevice operation inserts a Device reference into the sequence of devices stored on
the devices attribute.

void addDevice (
in Device associatedDevice
)

raises (InvalidObjectReference);

DeviceManager 135

Table 5.17. AggregateDevice addDevice requirements

Section ID Resp Requirement

3.1.3.2.7.5.1.3 SR:460 DS The addDevice operation shall add the input
associatedDevice parameter to the
AggregateDevice’s devices attribute when
the associatedDevice does not exist in the
devices attribute.

3.1.3.2.7.5.1.3 SR:461 DS The addDevice operation shall write
a Failure_Alarm log record, upon
unsuccessful adding of an associatedDevice
to the AggregateDevice’s devices attribute.

3.1.3.2.7.5.1.5 SR:462 DS The addDevice operation shall raise the CF
InvalidObjectReference when the input
associatedDevice is a nil CORBA object
reference.

The addDevice call checks that the Device identified in the associatedDevice parameter
is not already in the devices attribute (see Table 5.17). If it is not already a member of
the sequence, it is inserted into the list of Devices in the devices attribute (SR:460). If the
addDevice operation fails for any reason, it writes a FAILURE_ALARM record to the log
(SR:461). If the addDevice call receives a nil CORBA reference for the associatedDevice
parameter, it raises an InvalidObjectReference exception (SR:462).

removeDevice

The removeDevice removes the specified reference from the sequence of devices maintained
on the devices attribute.

void removeDevice (
in Device associatedDevice
)

raises InvalidObjectReference;

The removeDevice operation will remove the Device reference specified in the
associatedDevice parameter from the devices attribute (SR:463) (see Table 5.18). If the
Device reference provided in the operation is not a member of the list of Devices stored
on the devices attribute, the call terminates without error. If the operation fails for any
reason, a FAILURE_ALARM record is written to the log (SR:464). If the associatedDevice
parameter provided contains a nil object reference, an InvalidObjectReference exception is
raised (SR:465).

5.6 DeviceManager

The Device Manager is an abstract entity intended to provide a top-level set of interfaces
and services for a logical set of devices, services and a file system. Examples of a logical
set of hardware resources include a single-board computer (SBC), a card within a rack that

136 Devices and the Device Manager

Table 5.18. AggregateDevice removeDevice requirements

Section ID Resp Requirement

3.1.3.2.7.5.2.3 SR:463 DS The removeDevice operation shall remove the
input associatedDevice parameter from the
AggregateDevice’s devices attribute.

3.1.3.2.7.5.2.3 SR:464 DS The removeDevice operation shall write a
Failure_Alarm log record, upon unsuccessful
removal of the associatedDevice from the
AggregateDevice’s devices attribute.

3.1.3.2.7.5.2.5 SR:465 DS The removeDevice operation shall raise the
CF InvalidObjectReference when the
input associatedDevice is a nil CORBA
object reference or does not exist in the
AggregateDevice’s devices attribute.

provides processing resources in the form of a FPGA, a DSP, or other type of radio system
processing component.

Although the previous example described a set of resources that were physically co-
located, there is no requirement within the SCA that mandates such an organization. In fact,
it is entirely possible to have a single Device Manager for all Devices within the system,
although it may be argued that such a coarse level of abstraction reduces the level of insight
and control of the radio system components.

Services include the implementation of an SCA FileSystem, discussed in Chapter 3, and
the Log Service. The set of SCA Devices associated with the Device Manager register
with the Device Manager as well. However, the Device Manager does not provide any
management or control functions for the set of Devices registered with it.

As Figure 5.11 shows, the Device Manager implements the PropertySet and PortSupplier
interfaces in addition to those specified for the DeviceManager.

5.6.1 Types

ServiceType

The ServiceType struct provides a mapping between a service on the system and an associated
service name. The serviceName field may be any string and currently does not have any
fixed naming convention.

struct ServiceType {
Object serviceObject;
string serviceName;

};

ServiceSequence

The ServiceSequence type defines a data structure used to maintain a set of services.

typedef sequence <ServiceType> ServiceSequence;

DeviceManager 137

cd Device Manager

«CORBAInterface»
DeviceManager

+ device Configuration Profile: string
+ file Sys: File System
+ identifier: string
+ label: string
+ registered Devices: Device Sequence
+ registered Services: Service Sequence

+ getPort(string) : Object
+ query(Properties) : void
+ registerDevice(Device) : void
+ configure(Properties*) : void
+ unregisterDevice(Device) : void
+ shutdown () : void
+ registerService(string, Object) : void
+ unregisterService (string, Object) : void
+ get Component ImplementationId(string) : string

«CORBAInterface»
PropertySet

«CORBAInterface»
Port Supplier

Resource

«CORBAInterface»
Device

«CORBA Interface»
File System

«CORBATypedef»
DeviceSequence

- sequence: Device

«CORBAException»
InvalidObjectReference

- msg: string

usesuses

Figure 5.11. Device Manager interface

5.6.2 Attributes

Primarily the attributes provide descriptive information of the Device Manager and contain
instances of Services, Devices, and File Systems. The IDLs for the DeviceManager attributes
are shown below.

deviceConfigurationProfile

The deviceConfigurationProfile attribute contains a reference to the DeviceManager’s
profile. The early versions of SCA, e.g. 2.2, specified that the deviceConfigurationProfile
attribute should contain either a file reference to the DeviceManager’s Device Configuration
Descriptor (DCD) profile or the XML for the DeviceManager’s DCD profile. Files referenced
within the profile are obtained from a FileSystem. Realistically speaking, as with other
profile attributes, the only value that makes sense operationally is the file reference.

readonly attribute string deviceConfigurationProfile;

As shown above, this attribute is readonly. It is set as part of the startup and initialization
logic of the DeviceManager.

138 Devices and the Device Manager

fileSys

If the DeviceManager has created an instant of an SCA FileSystem, then the object reference
will be stored in this attribute. If no FileSystem has been instantiated then the fileSys attribute
contains a nil CORBA object reference.

readonly attribute FileSystem fileSys;

As shown above, this attribute is readonly. It is set as part of the startup and initialization
logic performed by the DeviceManager.

identifier

The identifier attribute contains a unique identifier for the DeviceManager instance. The
value of the identifier is specified by the Id attribute for the deviceconfiguration element in
the DeviceManager’s DCD XML file.

readonly attribute string identifier;

This attribute is readonly. The value is set during the initialization of the DeviceManager.

label

The label attribute contains a descriptive name for the DeviceManager. This is typically
some name that conveys a particular interpretation or meaning to the reader/user.

readonly attribute string label;

This attribute is readonly and set as part of the initialization of the DeviceManager.

registeredDevices

As Devices register with the DeviceManager, the registeredDevices attribute is used to store
and manage the list of registered Devices. If no Devices register with the DeviceManager,
then the Device sequence is empty with a length of zero.

readonly attribute Devicesequence registereddevices;

This attribute is managed as part of the registerDevice operation and is a readonly attribute
to external operations.

registeredServices

The DeviceManager attribute requirements are shown in Table 5.19.
As the Device Manager is instantiated and initialized, it processes the DCD XML file to

obtain information about the configuration and initialization of the DeviceManager being
instantiated. Upon instantiation, a globally unique identifier is stored in the identifier attribute
(SR:466) (see Table 5.19). The identifier stored on the attribute is specified within the
DCD file (SR:467). In addition to the identifier, a human-readable label, also defined in the
DCS file is stored in the label attribute (SR:468). The deviceConfigurationProfile attribute
(SR:470) contains the string name of the DCD file for the Device Manager, although the

DeviceManager 139

Table 5.19. Device Manager attribute requirements

Section ID Resp Requirement

3.1.3.2.8.4.1 SR:466 DS The readonly identifier attribute shall contain
the instance-unique identifier for a
DeviceManager.

3.1.3.2.8.4.1 SR:467 DS The identifier shall be identical to the
deviceconfiguration element Id attribute of
the DeviceManager’s Device Configuration
Descriptor (DCD) file.

3.1.3.2.8.4.2 SR:468 DS The readonly label attribute shall contain the
DeviceManager’s label. The label attribute
is the meaningful name given to a
DeviceManager.

3.1.3.2.8.4.3 SR:469 DS The readonly fileSys attribute shall contain
the FileSystem associated with this
DeviceManager or a nil CORBA object
reference if no FileSystem is associated
with this DeviceManager.

3.1.3.2.8.4.4 SR:470 DS The readonly deviceConfigurationProfile
attribute shall contain either a profile
element with a file reference to the
DeviceManager’s DCD profile or the XML
for the DeviceManager’s DCD profile.

3.1.3.2.8.4.5 SR:471 DS The readonly registeredDevices attribute shall
contain a list of Devices that have
registered with this DeviceManager or a
sequence length of zero if no Devices have
registered with the DeviceManager.

3.1.3.2.8.4.6 SR:472 DS The readonly registeredServices attribute
shall contain a list of Services that have
registered with this DeviceManager or a
sequence length of zero if no Services have
registered with the DeviceManager.

requirement states that the attribute may contain the DCD XML instead of the file name.
However, in practical application, the XML file name is stored rather than the XML itself.

The remaining attributes provide storage for instances of services, devices, and the file
system. It is not mandatory that the Device Manager include any services or a file system. If a
File System is provided by the Device Manager, the fileSys attribute contains the instance of
the FileSystem instantiated by the Device Manager (SR:469). If no FileSystem is instantiated
for the DeviceManager then a nil CORBA reference is stored in the data member.

Any services provided by the Device Manager are instantiated and stored on the
registeredServices attribute (SR:472). This attribute is a list of zero or more services provided
through the interface as a CORBA sequence. For example, if the Device Manager instantiates
a Log Service, it is added to this list. As the attribute name implies, the service is registered.

140 Devices and the Device Manager

Each service entry is a ServiceType struct consisting of the CORBA object reference to
the service and the name of the service.

Similarly, Devices are instantiated, registered with the Device Manager and inserted
into the list of registeredDevices (SR:471). Duplicate references are not permitted in the
registeredDevices attribute.

5.6.3 Operations

Table 5.20 shows the requirements for Device Manager behavior.

registerDevice

void registerDevice (
in Device registeringDevice
)

raises (InvalidObjectReference);

Initially, the Device Manager starts as an executable process and reads the XML file to
identify the services that should be instantiated and the devices to be created (SR:474). If the
DeviceManager is to provide a FileSystem, it instantiates the file system object (SR:475) and
mounts the underlying file system provided by the operating system or other host software
to the SCA FileSystem Since the FileSystem maps to a single underlying file system on the
host platform of the DeviceManager, if there are multiple file system mount points to be
mapped into the SCA environment, the DeviceManager may instantiate multiple FileSystems
within a FileManager and the fileSys attribute will then contain the FileManager (SR:476).

The logical Devices specified within the DCD file are instantiated. Each Device within
the DCD identifies the executable file that implements the Device, through a reference to the
Software Package Descriptor (SPD), to be loaded and started. As the Device is started, i.e.
the DeviceManager starts the executable, startup parameters, also defined within the DCD
for each Device, are passed to the executable file in the form of Name/Value pairs (SR:478).
The specific parameters include:

• DEVICE_MGR_IOR – This parameter provides the Inter-ORB Reference converted to
string format.

• PROFILE_NAME – This parameter is the string that specifies the full file system path
name.

• DEVICE_ID – This is the globally unique identifier that provides a unique Id for the
Device. It is stored in the identifier attribute of the Device.

• DEVICE_LABEL – This is a human readable string providing a recognizable name for
the Device. It is stored on the label attribute of the Device.

• COMPOSITE_DEVICE_IOR – If the Device being instantiated is part of an SCA
AggregateDevice, this parameter provides the stringified IOR for the AggregateDevice
that contains the Device.

Any additional execution parameters (execparam) that are specified with values in the
properties definition for the Device (SR:479) are passed as string pairs (SR:480).

When a particular Device’s SPD includes values for the stacksize or priority elements,
those values are also passed as string pairs as part of the execution parameters (SR:481).

DeviceManager 141

Table 5.20. Device Manager behavior requirements

Section ID Resp Requirement

3.1.3.2.8.5 SR:473 DS The DeviceManager upon start up shall register
itself with a DomainManager. This requirement
allows the system to be developed where at
a minimum only the DomainManager’s
component reference needs to be known.

3.1.3.2.8.5 SR:474 DS A DeviceManager shall use the
DeviceManager’s deviceConfigurationProfile
attribute for determining:

1. services to be deployed for this
DeviceManager (for example, log(s));

2. devices to be created for this DeviceManager
(when the DCD deployondevice element is
not specified, then the DCD
componentinstantiation element is deployed
on the same hardware device as the
DeviceManager);

3. devices to be deployed on (executing on)
another Device;

4. devices to be aggregated to another Device;
5. mount point names for FileSystems;
6. the DCD’s Id attribute for the

DeviceManager’s identifier attribute value;
and

7. the DCD’s name attribute for the
DeviceManager’s label attribute value.

3.1.3.2.8.5 SR:475 DS The DeviceManager shall create FileSystem
components implementing the FileSystem
interface for each OS file system.

3.1.3.2.8.5 SR:476 DS If multiple FileSystems are to be created, the
DeviceManager shall mount created FileSystems
to a FileManager component (widened to a
FileSystem through the fileSys attribute).

3.1.3.2.8.5 SR:478 DS The DeviceManager shall supply execute
operation parameters (IDs and format values) for
a Device consisting of:

• DeviceManager IOR – The Id is
‘DEVICE_MGR_IOR’ and the value is a
string that is the DeviceManager stringified
IOR.

142 Devices and the Device Manager

Table 5.20. (Continued)

Section ID Resp Requirement

• Profile Name – The Id is ‘PROFILE_NAME’
and the value is a CORBA string that is the
full mounted file system file path name.

• Device Identifier – The Id is ‘DEVICE_ID’
and the value is a string that corresponds to
the DCD componentinstantiation Id attribute.

• Device Label – The Id is ‘DEVICE_LABEL’
and the value is a string that corresponds to
the DCD componentinstantiation usage
element. This parameter is only used when
the DCD componentinstantiation usage
element is specified.

• Composite Device IOR – The Id is
‘Composite_DEVICE_IOR’ and the
value is a string that is an AggregateDevice
stringified IOR. This parameter is only used
when the DCD componentinstantiation
element is a composite part of another
componentinstantiation element.

3.1.3.2.8.5 SR:479 DS The DeviceManager shall pass the
componentinstantiation element ‘execparam’
properties that have values as
parameters.

3.1.3.2.8.5 SR:480 DS The DeviceManager shall pass ‘execparam’
parameters’ Ids and values as string values.

3.1.3.2.8.5 SR:481 DS The DeviceManager shall use the
componentinstantiation element’s SPD
implementation code’s stacksize and priority
elements, when specified, for the execute
options parameters.

3.1.3.2.8.5 SR:482 DS The DeviceManager shall initialize and
configure logical Devices that are started by the
DeviceManager after they have registered with
the DeviceManager.

3.1.3.2.8.5 SR:483 DS The DeviceManager shall configure a DCD’s
componentinstantiation element provided the
componentinstantiation element has ‘configure’
readwrite or writeonly properties with values.
If a Service is deployed by the DeviceManager,
the DeviceManager shall supply execute
operation parameters (IDs and format values)
consisting of:

DeviceManager 143

3.1.3.2.8.5 SR:484 DS • DeviceManager IOR – The Id is
‘DEVICE_MGR_IOR’ and the value is a
string that is the DeviceManager’s
stringified IOR.

• Service Name – The Id is
‘SERVICE_NAME’ and the value is a
string that corresponds to the DCD
componentinstantiation usagename element

Once a Device has been started, it then comes back to the DeviceManager that started
the Device using the DeviceManager IOR parameter and registers with the DeviceManager
(see reference requirement SR:485 in Table 5.21 on page xxx). The DeviceManager then
performs any initialization required and performs any additional configuration of properties
for the Device (SR:482).

Any configure properties identified in the DCD for a componentinstantiation element that
are as readwrite or writeonly are set by the DeviceManager (SR:483).

As with the set of Devices identified in the DCD, the set of Services specified in the
DCD are also instantiated. As each Service is instantiated by the DeviceManager, the
DeviceManager passes startup information in the form of execution parameters (SR:484).
The two parameters provided are:

Table 5.21. Registration requirements

Section ID Resp Requirement

3.1.3.2.8.6.1.3 SR:485 DS The registerDevice operation shall add the
input registeringDevice to the
DeviceManager’s registeredDevices
attribute when the input registeringDevice
does not already exist in the
registeredDevices attribute.

3.1.3.2.8.6.1.3 SR:486 DS The registerDevice operation shall register the
registeringDevice with the DomainManager
when the DeviceManager has already
registered to the DomainManager and the
registeringDevice has been successfully
added to the DeviceManager’s
registeredDevices attribute.

3.1.3.2.8.6.1.3 SR:487 DS The registerDevice operation shall write a
FAILURE_ALARM log record to a
DomainManager’s log, upon unsuccessful
registration of a Device to the
DeviceManager’s registeredDevices.

3.1.3.2.8.6.1.5 SR:488 DS The registerDevice operation shall raise the
CF InvalidObjectReference when the input
registeringDevice is a nil CORBA object
reference.

144 Devices and the Device Manager

• DEVICE_MGR_IOR – This is the stringified IOR that provides a reference back to the
DeviceManager that started the Service.

• SERVICE_NAME – The name of the Service defined in the DCD is provided as the
second argument.

As with the instantiation of the Devices, once the Service has been successfully started
and initialized, it uses the DEVICE_MGR_IOR to register with the DeviceManager.

The DeviceManager then registers with the Domain Manager (SR:473). Whether the
DeviceManager registers with the DomainManager at the completion of its initialization
process or some other point in time is not an explicitly specified requirement in the
SCA specification. However, the UML sequence diagram illustrates the registration being
performed at the completion of the DeviceManager startup and initialization process. The
rationale for registering upon completion of the initialization process are that the system and
user processes is assured that the DeviceManager entries maintained by the DomainManager
reference instances of DomainManagers that are initialized and ready to accept requests.

The balance of this section breaks the remaining requirements into specific behavioral
categories. Figure 54 illustrates the requirements associated with the registerDevice method.

As described above, when a Device is started by the DeviceManager, it is provided
by the stringified IOR of the DeviceManager. The Device then uses the IOR provided to
notify the DeviceManager that it has started and initialized successfully. Table 5.21 lists the
requirements associated with this method.

When the DeviceManager receives a registerDevice call from a Device, the Device
reference is provided. The DeviceManager adds the Device reference to the registeredDevices
attribute (SR:485). As noted previously, duplicate Device references are not permitted in the
registeredDevices attribute. So, if the DeviceManager receives a registerDevice call from a
Device that it has already placed in the registeredDevices attribute, it does not add it again.

Also, as described earlier, as part of the DeviceManager startup every Device registered
with the DeviceManager is also registered with the DomainManager. So, in the event that a
Device registration occurs after the DeviceManager has registered with the Domain Manager,
the DeviceManager must let the DomainManager know that the set of Devices has changed.
So, the DeviceManager notifies the DomainManager by issuing the registerDevice call to
the DomainManager on behalf of the Device (SR:486).

If the Device reference received in the registerDevice call is nil, the DeviceManager raises
the InvalidObjectReference (SR:488). This exception is raised in multiple calls when a nil
object reference is provided. This is somewhat limiting in that the exception name implies
that an incorrect object reference has been provided. While nil is certainly an invalid object
reference, it does not capture the case when an object reference for something other than a
Device is provided. This can be enforced by narrowing the reference to the Device to ensure
that the object reference provided is, in fact, a proper reference.

If the registerDevice call is unsuccessful, the DeviceManager publishes a
FAILURE_ALARM log record to the DomainManager’s log (SR:487).

DeviceManager 145

registerService

This operation provides registers a Service with a DeviceManager (see Table 5.22). Part of
the functionality of the operation is to update the list of registeredServices as a new service
registers with the DeviceManager. In the event that a service registration occurs after the
DeviceManager has already registered with the DomainManager, the operation will also
register the service with the DomainManager.

void registerService (
in Object registeringService,
in string name
)

raises (InvalidObjectReference);

Similar to the registration of a Device, each Service instantiated is registered with the
DeviceManager.

When the DeviceManager receives a registerService call from a Service, the
Service reference is provided. The DeviceManager adds the Service reference to the

Table 5.22. registerService requirements

Section ID Resp Requirement

3.1.3.2.8.6.3.3 SR:493 DS The registerService operation shall add
the input registeringService to the
DeviceManager’s registeredServices
attribute when the input registeringService
does not already exist in the
registeredServices attribute.

3.1.3.2.8.6.3.3 SR:494 DS The registerService operation shall register
the registeringService with the
DomainManager when the DeviceManager
has already registered to the
DomainManager and the registeringService
has been successfully added to the
DeviceManager’s registeredServices.

3.1.3.2.8.6.3.3 SR:495 DS The registerService operation shall write a
FAILURE_ALARM log record, upon
unsuccessful registration of a Service to the
DeviceManager’s registeredServices.

3.1.3.2.8.6.3.3 SR:496 DS The registerService operation shall raise the
CF InvalidObjectReference exception when
the input registeringService is a nil
CORBA object reference.

3.1.3.2.8.6.3.5 SR:497 DS The registerService operation shall add
the input registeringService to the
DeviceManager’s registeredServices
attribute when the input registeringService
does not already exist in the
registeredServices attribute.

146 Devices and the Device Manager

registeredServices attribute (SR:497). As noted previously, duplicate Service references
are not permitted in the registeredServices attribute. So, if the DeviceManager receives
a registerService call from a Service that it has already placed in the registeredServices
attribute, it does not add it again.

Also, as described earlier, as part of the DeviceManager startup every Service registered
with the DeviceManager is also registered with the DomainManager. So, in the event that a
Service registration occurs after the DeviceManager has registered with the Domain Manager,
the DeviceManager must let the DomainManager know that the set of Services has changed.
So, the DeviceManager notifies the DomainManager by issuing the registerService call to
the DomainManager on behalf of the Service (SR:494).

If the Service reference received in the registerService call is nil, the DeviceManager
raises the InvalidObjectReference (SR:496). This exception is raised in multiple calls when
a nil object reference is provided. This is somewhat limiting in that the exception name
implies that an incorrect object reference has been provided. While nil is certainly an invalid
object reference, it does not capture the case when an object reference for something other
than a Service is provided. This can be enforced by narrowing the reference to the Service
to ensure that the object reference provided is, in fact, a proper reference.

If the registerService call is unsuccessful, the DeviceManager publishes a
FAILURE_ALARM log record to the DomainManager’s Log (SR:495).

unregisterDevice

As the inverse of the registerDevice operation, this operation unregisters a Device from a
DeviceManager (see Table 5.23). Part of the responsibility of the operation is to remove
unregistered Devices from the registeredDevices attribute.

void unregisterDevice (
in Device registeredDevice
)

raises (InvalidObjectReference);

When a Device is shutdown or removed from service for some reason, it issues
an unregisterDevice call to the DeviceManager that instantiated it. Upon receiving
an unregisterDevice call, the DeviceManager removes the Device from the list of
registeredDevices maintained by the DeviceManager (SR:489). Then, on behalf of the
Device, the DeviceManager unregisters the Device with the DomainManager by issuing the
unregisterDevice call on the DomainManager (SR:490).

If for any reason an error is encountered during the unregisterDevice call on the
DeviceManager, the DeviceManager writes a FAILURE_ALARM log record to the Log
Service (SR:491). In the event that the Device reference provided in the call is nil, the
InvalidObjectReference exception is raised (SR:492).

unregisterService

The unregisterService removes the service specified from the registeredServices attribute
(see Table 5.24). If the DeviceManager is not in the process of SHUTTING_DOWN, the
operation will also perform an unregisterService call on the DomainManager.

DeviceManager 147

Table 5.23. unregisterDevice requirements

Section ID Resp Requirement

3.1.3.2.8.6.2.3 SR:489 DS The unregisterDevice operation shall remove
the input registeredDevice from the
DeviceManager’s registeredDevices attribute.

3.1.3.2.8.6.2.3 SR:490 DS The unregisterDevice operation shall
unregister the input registeredDevice from
the DomainManager when the input
registeredDevice is registered with the
DeviceManager and the DeviceManager is not
shutting down.

3.1.3.2.8.6.2.3 SR:491 DS The unregisterDevice operation shall write a
FAILURE_ALARM log record, when it cannot
successfully remove a registeredDevice from
the DeviceManager’s registeredDevices.

3.1.3.2.8.6.2.5 SR:492 DS The unregisterDevice operation shall raise the
CF InvalidObjectReference when the
input registeredDevice is a nil CORBA
object reference or does not exist in the
DeviceManager’s registeredDevices attribute.

Table 5.24. unregisterService requirements

Section ID Resp Requirement

3.1.3.2.8.6.4.3 SR:497 DS The unregisterService operation shall
remove the input registeredService from
the DeviceManager’s registeredServices
attribute.

3.1.3.2.8.6.4.3 SR:498 DS The unregisterService operation shall
unregister the input registeredService
from the DomainManager when the input
registeredService is registered with the
DeviceManager and the DeviceManager
is not in the shutting down state.

3.1.3.2.8.6.4.3 SR:499 DS The unregisterService operation shall write
a FAILURE_ALARM log record,
when it cannot successfully remove
a registeredService from the
DeviceManager’s registeredServices.

3.1.3.2.8.6.4.5 SR:500 DS The unregisterService operation shall raise
the CF InvalidObjectReference when the
input registeredService is a nil CORBA
object reference or does not exist in the
DeviceManager’s registeredServices
attribute.

148 Devices and the Device Manager

void unregisterService (
in Object registeredService,
in string name
)

raises (InvalidObjectReference);

Similar to the unregisterDevice call, the unregisterService call performs the same function
for services provided by the DeviceManager.

When a Service is shutdown or removed from service, it issues an unregisterService call
to the DeviceManager that instantiated it. Upon receiving an unregisterService call, the
DeviceManager removes the Service from the list of registeredServices maintained by the
DeviceManager (SR:497). If the Service had been registered with the DomainManager (it
is not mandatory that all services register with the DomainManager), the DeviceManager
unregisters the Service with the DomainManager by issuing the unregisterService call on
the DomainManager (SR:498).

If for any reason an error is encountered during the unregisterService call on the
DeviceManager, the DeviceManager writes a FAILURE_ALARM log record to the Log
Service (SR:499). In the event that the object reference provided for Service in the call is
nil, the InvalidObjectReference exception is raised (SR:500).

getComponentImplementationId

When a software component is instantiated, the specific implementation is chosen at run-time
by the ApplicationFactory that instantiates the waveform Application based on the available
resources. The Id of the specific implementation chosen for instantiation is stored on the
component instance. The getComponentImplementationId provides the means to retrieve the
Id of the implementation component that was selected and loaded (see Table 5.25).

string getComponentImplementationId (
in string componentInstantiationId

);

The SCA supports multiple implementations of a given component, e.g. one
implementation might be for a Pentium processor running Linux and another might be for the
same processor running Windows. Each of the implementations has a unique implementation
Id as defined in the Software Package Descriptor (SPD) XML file. At load time, based on
the resources available, the framework will select a particular implementation that matches
the available set of resources. Because it is not necessarily known which implementation
will be selected, there needs to be a way to identify which implementation was instantiated.

The getComponentId operation will search the set of instantiated Devices for one with a
implementation Id that matches the input componentId on the call. If a match is found, the
Id string is returned (SR:504). If not, an empty string is returned (SR:505).

This function call would be more useful if it returned the Device’s object reference based
on the component Id and returned nil if no match was found. This would support the
capability to search a set of instantiated Devices and components on a DeviceManager for a
specific implementation and return a reference that could be used to interact with the Device
directly.

DeviceManager 149

Table 5.25. getComponentImplementationId requirements

Section ID Resp Requirement

3.1.3.2.8.6.6.4 SR:504 DS The getComponentImplementationId operation
shall return the SPD implementation
element’s Id attribute that matches the SPD
implementation element used to create
the component identified by the input
componentInstantiationId parameter.

3.1.3.2.8.6.6.4 SR:505 DS The getComponentImplementationId operation
shall return an empty string when the input
componentInstantiationId parameter does
not match the Id attribute of any SPD
implementation element used to create the
component.

shutdown

The shutdown operation initiates the termination process for a DeviceManager
(see Table 5.26). This includes unregistering the DeviceManager with the
DomainManager, releasing all known, i.e. registered, Devices, terminating any services
provided by the DeviceManager, and unmounting any FileSystem provided by the
DeviceManager.

void shutdown ();

A DeviceManager may be instructed to shutdown via the shutdown call. This call enables
an orderly termination of the DeviceManager and all the Devices associated with it.

When the DeviceManager is instructed to shutdown via the shutdown call, it first
unregisters itself with the DomainManager (SR:501). Then, having removed itself from the
set of registered DeviceManagers on the DomainManager, it iterates over the set of registered

Table 5.26. shutdown DeviceManager requirements

Section ID Resp Requirement

3.1.3.2.8.6.5.3 SR:501 DS The shutdown operation shall unregister the
DeviceManager from the DomainManager.

3.1.3.2.8.6.5.3 SR:502 DS The shutdown operation shall perform
releaseObject on all of the DeviceManager’s
registered Devices (DeviceManager’s
registeredDevices attribute).

3.1.3.2.8.6.5.3 SR:503 DS The shutdown operation shall cause the
DeviceManager to be unavailable (i.e.
released from the CORBA environment and
its process terminated on the OS), when all
of the DeviceManager’s registered Devices
are unregistered from the DeviceManager.

150 Devices and the Device Manager

devices and issues the releaseObject call (SR:502) (see releaseObject in Section 4.3.2. When
all of the Devices registered with the DeviceManager have been released, i.e. terminated
and removed from the list of registered devices, the DeviceManager terminates (SR:503).

6
Domain Management

6.1 DomainManager

The SCA specification organizes the DomainManager interfaces into three categories:

1. Human Computer Interface (HCI): These are identified as interfaces to configure the
radio, provide access to services, devices, and applications, and initiate maintenance
functions.

2. Registration: These are identified as operations to register or unregister DeviceManagers,
Devices, Applications, and services with the DomainManager.

3. Core Framework Administration: These are defined as those operations that provide
access to the interfaces of registered DeviceManagers, FileManagers, and Loggers in the
system.

Although the categorization of some of the interfaces is as HCI, it should be noted
that the interfaces provided may be called by another application, such as a network
management function, and are not exclusively the purview of an HCI. In the case of Core
Framework Administration operations, access to interfaces supported by DeviceManagers,
for example, is gained through the deviceManagers attribute which contains the set of
registered DeviceManagers. Therefore, this chapter follows the same pattern as previous
chapters, providing information on data types, exceptions, attributes and operations. The
DomainManager is discussed first followed by the FileManager, the ApplicationFactory, and
then the Application.

We now describe the types defined or used within the DomainManager (see Figure 6.1).

6.1.1 Types

ApplicationSequence

The ApplicationSequence defines an unbounded sequence of Application instances. An
Application is added to the applications attribute when it has been successfully instantiated

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

152 Domain Management

cd Domain Manager

«CORBAInterface»
DomainManager

+ identifier: string
+ deviceManagers: DeviceManagerSequence
+ applications: ApplicationSequence
+ applicationFactories: ApplicationFactorySequence
+ fileMgr: FileManager
+ domainManagerProfile: string

+ query(Properties) : void
+ registerDevice(DeviceManager, Device) : void
+ configure(Properties∗) : void
+ registerDeviceManager(DeviceManager) : void
+ unregisterDeviceManager(DeviceManager) : void
+ unregisterDevice(Device) : void
+ installApplication(string) : void
+ uninstallApplication(string) : void
+ registerService(string, DeviceManager, Object) : void
+ unregisterService(string, Object) : void
+ registerWithEventChannel(string, string, Object) : void
+ unregisterFromEventChannel(string, string) : void

«CORBAInterface»
PropertySet

«CORBAInterface»
ApplicationFactory

Resource
«CORBAInterface»

Device

PortSupplier
«CORBAInterface»

DeviceManager

FileSystem
«CORBAInterface»

FileManager

«CORBAException»
InvalidFileName

- errorNumber: ErrorNumberType
- msg: string

«CORBAException»
InvalidObjectReference

- msg: string

uses

raises

uses

uses

uses

uses

Figure 6.1. Domain Manager Interfaces

by the ApplicationFactory. If no Applications have been instantiated, the applications value
will be nil.

typedef sequence <Application> ApplicationSequence;

ApplicationFactorySequence

The ApplicationFactorySequence defines an unbounded sequence of ApplicationFactory
instances. An ApplicationFactory is instantiated and added to the sequence of
applicationFactories attribute as part of the installApplication operation on the
DomainManager. If no applications have been installed then the applicationFactories value
will be nil.

typedef sequence <ApplicationFactory>
ApplicationFactorySequence;

DeviceManagerSequence

The DeviceManagerSequence defines an unbounded sequence of DeviceManager instances.
A DeviceManager is added to the list of deviceManagers when it is registered with the

DomainManager 153

DomainManager. If no DeviceManager instances have registered with the DomainManager
then the value of deviceManagers will be nil.

typedef sequence <DeviceManager>
DeviceManagerSequence;

6.1.2 Exceptions

ApplicationInstallError

If the installApplication operation on the DomainManager does not successfully complete,
the ApplicationInstallError is raised. A numeric value is included as part of the exception
to identify the type of error encountered. Also, a string parameter is available to provide
additional information regarding the error encountered.

exception ApplicationInstallationError {
ErrorNumberType errorNumber;
string msg;
};

typedef sequence <DeviceManager> DeviceManagerSequence;

InvalidIdentifier

When an applicationID is provided, if the Id does not match any known applications, then
an InvalidIdentifier exception is raised.

exception InvalidIdentifier {
};

DeviceManagerNotRegistered

When registering a Device, the DeviceManager with which the Device is associated must
be registered. If the DeviceManager is not in the registeredDevices sequence, then the
DeviceManagerNotRegistered exception is raised.

exception DeviceManagerNotRegistered {
};

ApplicationUninstallationError

When the DomainManager is instructed to uninstall an application, and the uninstall-
Application operation does not complete successfully, then the ApplicationUninstallError
exception is raised.

exception ApplicationUninstallationError {
ErrorNumberType errorNumber;
string msg;

};

154 Domain Management

RegisterError

When registering with the DomainManager, if any error is encountered during the registration
process, then the RegisterError exception is raised. This exception may be raised when
attempting to register a DeviceManager, Device, or Service. An error number is provided to
indicate the type of error encountered and a string is included on the exception to provide
more specific detail regarding the error.

exception RegisterError {
ErrorNumberType errorNumber;
string msg;

};

UnregisterError

When unregistering with the DomainManager, if any error is encountered during the
unregistration process, then the UnregisterError exception is raised. This exception may be
raised when attempting to unregister a DeviceManager, Device, or Service. An error number
is provided to indicate the type of error encountered and a string is included on the exception
to provide more specific detail regarding the error.

exception UnregisterError {
ErrorNumberType errorNumber;
string msg;

};

AlreadyConnected

The AlreadyConnected exception indicates that a registering consumer is already connected
to the specified event channel.

exception AlreadyConnected {
};

InvalidEventChannel

The InvalidEventChannelName exception indicates that a DomainManager was not able to
locate the event channel.

exception InvalidEventChannelName {
};

NotConnected

The NotConnected exception indicates that the unregistering consumer was not connected
to the specified event channel.

exception NotConnected {
};

DomainManager 155

6.1.3 Attributes

The DomainManager Attribute requirements are shown in Table 6.1.

Table 6.1. DomainManager Attribute requirements

Section ID Resp Requirement

3.1.3.2.3.4.1 SR:205 CF The DomainManager shall write an
ADMINISTRATIVE_EVENT log to a
DomainManager’s log, when the deviceManagers
attribute is obtained by a client.

3.1.3.2.3.4.2 SR:206 CF The readonly applications attribute shall contain the
list of Applications that have been instantiated.

3.1.3.2.3.4.3 SR:208 CF The readonly applicationFactories attribute shall
contain a list with one ApplicationFactory per
application (Software Assembly Descriptor (SAD)
file and associated files) successfully installed (i.e.
no exception raised).

3.1.3.2.3.4.3 SR:209 CF The DomainManager shall write an
ADMINISTRATIVE_EVENT log record
to a DomainManager’s log, when the
applicationFactories attribute is obtained by a
client.

3.1.3.2.3.4.4 SR:210 CF The readonly fileMgr attribute shall contain the
DomainManager’s FileManager.

3.1.3.2.3.4.4 SR:211 CF The DomainManager shall write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log, when the fileMgr attribute
is obtained by a client.

3.1.3.2.3.4.5 SR:212 CF The readonly domainManagerProfile attribute shall
contain either a profile element with a file
reference to the DomainManager Configuration
Descriptor (DMD) profile or the XML for the
DomainManager’s (DMD) profile.

3.1.3.2.3.4.6 SR:213 CF The readonly identifier attribute shall contain a
unique identifier for a DomainManager instance.

3.1.3.2.3.4.6 SR:214 CF The identifier shall be identical to the
domainmanagerconfiguration element Id attribute
of the DomainManager’s Descriptor (DMD) file.

domainManagerProfile

The domainManagerProfile is a readonly attribute that contains a file reference to the Domain
Manager Descriptor (DMD) XML file (SR:212). Its value is set during the startup and
initialization of the DomainManager.

readonly attribute string domainManagerProfile;

156 Domain Management

deviceManagers

The deviceManagers attribute is readonly and contains a sequence of DeviceManagers that
have registered with the DomainManager. If no DeviceManagers have registered with the
DomainManager, then the value of this attribute is nil.

readonly attribute DeviceManagerSequence deviceManagers;

Whenever another application or program requests the contents of the deviceManagers
attribute, the DomainManager writes an ADMINISTRATIVE_EVENT log record (SR:205)
to the log identifying the client requesting the information and when the request
was made.

applications

The applications attribute is readonly and contains a sequence of Applications (SR:206) that
have been instantiated by the appropriate ApplicationFactory within the DomainManager. If
no applications have been instantiated, then the value of this attribute is nil.

readonly attribute ApplicationSequence applications;

Whenever another application or program requests the contents of the applications
attribute, the DomainManager writes an ADMINISTRATIVE_EVENT log record to the log
identifying the client requesting the information and when the request was made.

applicationFactories

The applicationFactories attribute is readonly and contains a sequence of ApplicationFactory
instances that have been instantiated by the DomainManager (SR:208) as part of the
installApplication operation. If no application has been installed, then the value of this
attribute is nil.

readonly attribute ApplicationFactorySequence
applicationFactories;

Whenever another application or program requests the contents of the application-
Factories attribute, the DomainManager writes an ADMINISTRATIVE_EVENT log record
(SR:209) to the log identifying the client requesting the information and when the request
was made.

fileMgr

The fileMgr attribute is readonly and contains a list of the mounted FileSystems (SR:210).
A FileSystem may be hosted by a DeviceManager. Thus, this attribute contains references
to FileSystems mounted by one or more DeviceManagers in the system.

readonly attribute FileManager fileMgr;

Whenever another application or program requests the contents of the fileMgr attribute,
the DomainManager writes an ADMINISTRATIVE_EVENT log record (SR:211) to the log
identifying the client requesting the information and when the request was made.

DomainManager 157

identifier

The identifier attribute is readonly and contains a unique identifier for the DomainManager
(SR:213). The value of the attribute is populated by the DomainManager as part of its
startup and initialization. The value of the identifier attribute is specified by the attribute
of the domainmanagerconfiguration element in the Domain Manger Descriptor (DMD) file
(SR:214).

readonly attribute string identifier;

6.1.4 DomainManager Instantiation

There are a number of actions that must be performed as part of the startup and initialization
of the DomainManager. These requirements are, effectively, levied upon the constructor or
initialization routine called upon instantiation of the DomainManager (see Table 6.2).

Table 6.2. DomainManager Startup requirements

Section ID Resp Requirement

3.1.3.2.3.5 SR:215 CF During component construction the DomainManager
shall register itself with the CORBA Naming Service.

3.1.3.2.3.5 SR:216 CF During Naming Service registration the DomainManager
shall create a ‘naming context’ using ‘/DomainName’
as its name.ID component and “” (Null string) as its
name.kind component, then create a ‘name binding’
to the ‘/DomainName’ naming context using
‘/DomainManager’ as its name.ID component.

3.1.3.2.3.5 SR:217 XML The logs utilized by the DomainManager
implementation shall be defined in the DMD.

3.1.3.2.3.5 SR:218 CF Once a service specified in the DMD is successfully
registered with the DomainManager (via
registerDeviceManager or registerService operations),
the DomainManager shall begin to use the service
(e.g. log).

3.1.3.2.3.5 SR:219 CF The DomainManager shall create its own FileManager
component that consists of all registered
DeviceManager’s FileSystems.

3.1.3.2.3.5 SR:220 CF The DomainManager shall restore ApplicationFactories
after startup for applications that were previously
installed by the DomainManager installApplication
operation.

3.1.3.2.3.5 SR:221 CF The DomainManager shall add the restored
ApplicationFactories to the DomainManager’s
applicationFactories attribute.

3.1.3.2.3.5 SR:222 CF The DomainManager shall create the Incoming Domain
Management and Outgoing Domain Management
event channels.

158 Domain Management

Any logs that are to be used by the DomainManager are identified within the DMD
file (SR:217). In addition, any services registered with the DomainManager, either via the
registerDeviceManager or registerService operations, may be used by the DomainManager
(SR:218).

The DomainManager also creates an instance of a FileManager and stores it on the
fileMgr attribute. Initially the fileMgr is empty. As DeviceManagers register with the
DomainManager, all FileSystems hosted by the DeviceManager are added to the fileMgr
attribute (SR:219).

As the DomainManager continues its initialization, any ApplicationFactories that were
present in the DomainManager at the time it was last shutdown are restored (SR:220) via
the installApplication operation. As each Application is installed, the ApplicationFactory
instance is added to the application Factories attribute (SR:221).

The Domain Manager then creates the Incoming Domain Management (IDM) and
Outgoing Domain Management (ODM) event channels (SR:222).

As the DomainManager completes its initialization, it registers with the Naming Service
(SR:215). The registration creates a naming context of /<SomeDomainName> and creates
a name binding of /DomainManager to this naming context (SR:216). This makes the
DomainManager accessible to other applications. Note that the requirements do not specify
when the DomainManager registers with the Naming Service. However, once registered, it
should be completely initialized and ready to accept calls from other components.

6.1.5 Operations

registerDeviceManager

The registerDeviceManager, as the name implies, is used to register a DeviceManager with
the DomainManager. This operation has a several responsibilities as part of its execution.

void registerDeviceManager (
in DeviceManager deviceMgr
)

raises (InvalidObjectReference, InvalidProfile,
RegisterError);

The only parameter is the DeviceManager instance to be registered with the Domain-
Manager. As shown, the possible exceptions are InvalidObjectReference, InvalidProfile, and
RegisterError. The requirements are listed in Table 6.3.

The operation first checks that the deviceMgr parameter is a valid CORBA reference for a
DeviceManager instance. If it is an invalid or nil reference then the InvalidObjectReference
exception is raised (SR:240) and the operation terminates. If the reference is valid, then the
DeviceManager is added to the deviceMgr attribute (SR:223), if the DeviceManager is not
already a member of the attribute. The operation then adds each of the DeviceManager’s
registeredDevices and the attributes for each of the registeredDevices to the DomainManager
(SR:224). There is no attribute specified in the IDL or requirement specified regarding the
processing and storage of the Device information provided by the registeredDevices attribute
on the registering DeviceManager. How the information is stored and managed within the
DomainManager is at the discretion of the Core Framework developer. Each Device must

DomainManager 159

Table 6.3. registerDeviceManager requirements

Section ID Resp Requirement

3.1.3.2.3.6.1.3 SR:223 CF The registerDeviceManager operation shall add the
input deviceMgr to the DomainManager’s
deviceManagers attribute, if it does not already
exist.

3.1.3.2.3.6.1.3 SR:224 CF The registerDeviceManager operation shall add the
input deviceMgr’s registeredDevices and each
registeredDevice’s attributes (e.g. identifier,
softwareProfile’s allocation properties, etc.) to the
DomainManager.

3.1.3.2.3.6.1.3 SR:225 CF The registerDeviceManager operation shall add the
input deviceMgr’s registeredServices and each
registeredService’s names to the DomainManager.

3.1.3.2.3.6.1.3 SR:226 CF The registerDeviceManager operation shall perform
the connections specified in the connections
element of the deviceMgr’s Device Configuration
Descriptor (DCD) file.

3.1.3.2.3.6.1.3 SR:227 CF If the DeviceManager’s DCD describes a connection
for a service that has not been registered with the
DomainManager, the registerDeviceManager
operation shall establish any pending
connection when the service registers with the
DomainManager by the registerDeviceManager
operation.

3.1.3.2.3.6.1.3 SR:228 CF For connections established for a CORBA
Event Service’s event channel, the
registerDeviceManager operation shall connect a
CosEventComm PushConsumer or PushSupplier
object to the event channel as specified in the
DCD’s domainfinder element.

3.1.3.2.3.6.1.3 SR:229 CF If the event channel does not exist, the
registerDeviceManager operation shall create the
event channel.

3.1.3.2.3.6.1.3 SR:230 CF The registerDeviceManager operation shall obtain all
the Software profiles from the registering
DeviceManager’s FileSystems.

3.1.3.2.3.6.1.3 SR:231 CF The registerDeviceManager operation shall mount
the DeviceManager’s FileSystem to the
DomainManager’s FileManager.

3.1.3.2.3.6.1.3 SR:232 CF The mounted FileSystem name shall have the format
‘/DomainName/HostName’, where DomainName
is the name of the domain and HostName is the
input deviceMgr’s label attribute.

3.1.3.2.3.6.1.3 SR:233 CF The registerDeviceManager operation shall, upon
unsuccessful DeviceManager registration,
write a FAILURE_ALARM log record to a
DomainManager’s log.

160 Domain Management

Table 6.3. Continued

Section ID Resp Requirement

3.1.3.2.3.6.1.3 SR:233 CF The registerDeviceManager operation shall,
upon unsuccessful DeviceManager
registration, write a FAILURE_ALARM log
record to a DomainManager’s log.

3.1.3.2.3.6.1.3 SR:234 CF The registerDeviceManager operation
shall, upon successful DeviceManager
registration, send an event to the Outgoing
Domain Management event channel
with event data consisting of a
DomainManagementObjectAddedEventType.

3.1.3.2.3.6.1.3 SR:235 CF The producerId shall be the identifier attribute
of the DomainManager.

3.1.3.2.3.6.1.3 SR:236 CF The sourceId shall be the identifier attribute of
the registered DeviceManager.

3.1.3.2.3.6.1.3 SR:237 CF The sourceName shall be the label attribute of
the registered DeviceManager.

3.1.3.2.3.6.1.3 SR:238 CF The sourceIOR shall be the registered
DeviceManager object reference.

3.1.3.2.3.6.1.3 SR:239 CF The sourceCategory shall be
DEVICE_MANAGER.

3.1.3.2.3.6.1.5 SR:240 CF The registerDeviceManager operation
shall raise the Core Framework
InvalidObjectReference exception when the
input parameter deviceMgr contains an
invalid reference to a DeviceManager
interface.

3.1.3.2.3.6.1.5 SR:241 CF The registerDeviceManager operation shall
raise the RegisterError exception when an
internal error exists which causes an
unsuccessful registration.

be associated with the input DeviceManager to ensure the proper cleanup of Devices as part
of the unregisterDevice Manager.

The operation then adds the Services registered with the input DeviceManager to the
DomainManager (SR:225). As with the Devices, the DomainManager associates each service
with the input DeviceManager so that the services will be cleaned up as part of the
unregisterDeviceManager operation.

Any connections specified in the deviceMgr’s Device Descriptor Definition (DCD) file
are established (SR:226). If a connection specified in the DCD specifies a service that has
not yet registered, then the connection request is put in a pending state and, when the service
registers with the DomainManager, the connection is established (SR:227). If a connection
specifies an event channel, then a PushConsumer or PushSupplier object, as specified in
the DCD’s domainfinder element, is connected to the event channel (SR:228). If the event
channel does not exist, then the event channel is created (SR:229).

DomainManager 161

The software profiles are obtained through the FileSystem hosted by the registering
DeviceManager (SR:230). The FileSystem identified is then added to the set of FileSystems
maintained by the fileMgr attribute (SR:231). Each FileSystem mounted in the FileManager
uses the name format /<DomainName>/<HostName> where <DomainName> is the
name of the domain and <HostName> is the name associated with the DeviceManager as
specified by the input DeviceManager’s label attribute (SR:232).

If the registration process does not successfully complete, a FAILURE_ALARM log record
is written to a DomainManager log (SR:233). If the registration process is successful,
then an event is sent on the ODM event channel (SR:234) containing the ProducerId set
to the DomainManager identifier (SR:235), the SourceId set to the input DeviceManager
identifier (SR:236), the SourceName set to the label attribute of the input DeviceManager
(SR:237), the sourceIOR set to the input DeviceManager’s object reference (SR:238), and
the sourceCategory set to DEVICE_MANAGER (SR:239).

If at any point in the above processing an error is encountered, then the RegisterError
exception is raised (SR:241).

registerDevice

The registerDevice operation adds the Device to the set of Devices maintained by the
DomainManager across the entire domain. The Device to be registered and the registered
DeviceManager with which the Device is associated is provided as input.

void registerDevice (
in Device registeringDevice,
in DeviceManager registeredDeviceMgr
)

raises (InvalidObjectReference, InvalidProfile,
DeviceManagerNotRegistered, RegisterError);

Exceptions that may be raised are the InvalidObjectReference if the Device reference
provided is not valid, InvalidProfile if the Device’s domain profile is not valid,
DeviceManagerNotRegistered if the DeviceManager provided is not already registered with
the DomainManager, or RegisterError if an error is encountered during the registration
process. The requirements are listed in Table 6.4.

The registerDevice operation first checks the Device and DeviceManager references
provided by the input parameters registeringDevice and registeredDeviceMgr, respectively.
If either reference is nil or does not reference a valid Device or DeviceManager
object, then the InvalidObjectReference exception is raised (SR:257) and the operation
terminates. The operation then checks that the DeviceManager reference provided has
already been registered with the DomainManager, i.e. it is already in the deviceManagers
attribute. If not, then a FAILURE_ALARM log record is written to a DomainManager log
indicating the DeviceManager is not registered with the DomainManager (SR:246) and the
DeviceManagerNotRegistered exception is raised (SR:256) and the execution terminates. In
both exception cases above, a FAILURE_ALARM log record is written to a DomainManager
log (SR:247; SR:248) prior to raising the exception and terminating execution.

The operation then associates the Device with the input DeviceManager so that proper
cleanup of the Device is supported when the DeviceManager is unregistered. The Device is

162 Domain Management

Table 6.4. registerDevice requirements

Section ID Resp Requirement

3.1.3.2.3.6.2.3 SR:242 CF The registerDevice operation shall add the
registeringDevice and the registeringDevice’s
attributes (e.g. identifier, softwareProfile’s
allocation properties, etc.) to the
DomainManager, if it does not already exist.

3.1.3.2.3.6.2.3 SR:243 CF When the registering Device’s parent
DeviceManager’s DCD describes service
connections for the registering Device, the
registerDevice operation shall establish the
connections.

3.1.3.2.3.6.2.3 SR:244 CF The registerDevice operation shall, upon
successful device registration, write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log, to indicate that the
device has successfully registered with the
DomainManager.

3.1.3.2.3.6.2.3 SR:245 CF Upon unsuccessful device registration, the
registerDevice operation shall write a
FAILURE_ALARM log record to a
DomainManager’s log, when the
InvalidProfile exception is raised to indicate
that the registeringDevice has an invalid
profile.

3.1.3.2.3.6.2.3 SR:246 CF Upon unsuccessful device registration, the
registerDevice operation shall write a
FAILURE_ALARM log record to a
DomainManager’s log, indicating that the
device could not register because the
DeviceManager is not registered with the
DomainManager.

3.1.3.2.3.6.2.3 SR:247 CF Upon unsuccessful device registration, the
registerDevice operation shall write a
FAILURE_ALARM log record to a
DomainManager’s log, because of an invalid
reference input parameter.

3.1.3.2.3.6.2.3 SR:248 CF Upon unsuccessful device registration, the
registerDevice operation shall write a
FAILURE_ALARM log record to a
DomainManager’s Log, because of an internal
registration error.

3.1.3.2.3.6.2.3 SR:249 CF The registerDevice operation shall, upon
successful Device registration, send an event
to the Outgoing Domain Management event
channel with event data consisting of a
DomainManagementObjectAddedEventType.

DomainManager 163

3.1.3.2.3.6.2.3 SR:250 CF The producerId shall be the identifier
attribute of the DomainManager.

3.1.3.2.3.6.2.3 SR:251 CF The sourceId shall be the identifier attribute
of the registered Device.

3.1.3.2.3.6.2.3 SR:252 CF The sourceName shall be the label attribute
of the registered Device.

3.1.3.2.3.6.2.3 SR:253 CF The sourceIOR shall be the registered Device
object reference.

3.1.3.2.3.6.2.3 SR:254 CF The sourceCategory shall be DEVICE.
3.1.3.2.3.6.2.5 SR:255 CF The registerDevice operation shall raise the

CF InvalidProfile exception when:
the Device’s SPD file and the SPD’s
referenced files do not exist or cannot be
processed due to the file not being
compliant with XML syntax, or the
Device’s SPD does not reference allocation
properties.

3.1.3.2.3.6.2.5 SR:256 CF The registerDevice operation shall raise a
DeviceManagerNotRegistered exception
when the input registeredDeviceMgr (not
nil reference) is not registered with the
DomainManager.

3.1.3.2.3.6.2.5 SR:257 CF The registerDevice operation shall raise the
CF InvalidObjectReference exception when
input parameters registeringDevice or
registeredDeviceMgr contains an invalid
reference.

3.1.3.2.3.6.2.5 SR:258 CF The registerDevice operation shall raise the
RegisterError exception when an internal
error exists which causes an unsuccessful
registration.

added to the set of Devices maintained by the DomainManager (SR:242), if the Device does
not already exist in the Device set. Each of the Device’s attributes are then retrieved from
the Device and stored in the DomainManager.

The Device’s Software Package Descriptor (SDP) XML file is then read and the Device’s
properties are retrieved. This step is optional if the XML file has already been processed and
has not changed since the last time the Device was registered. If the SPD file does not exist
or contains errors, then a FAILURE_ALARM log record is written to a DomainManager log
(SR:245) and the InvalidProfile exception is raised (SR:255) and execution terminates.

If any service connections are specified by the input DeviceManager for the registering
Device, then the operation will establish those connections (SR:243).

Upon successful completion of the registration process, the DomainManager writes an
event to the ODM event channel containing a DomainManagementObjectAddedEventType
(SR:249). The contents of the record include the DomainManager as the producerId (SR:250),
the identifier attribute of the registered Device as the sourceId (SR:251), the label attribute of
the registered Device as the sourceName (SR:252), the registered Device’s object reference
as the sourceIOR (SR:253), and DEVICE as the sourceCategory (SR:234).

164 Domain Management

If any other error is encountered during the registration process then the RegisterError
exception is raised (SR:258) and the execution terminates.

In all cases when an exception is raised and the operation terminates, it is expected that
the exception handler will restore the DomainManager to the state it was in prior to initiation
of the operation.

installApplication

The installApplication is used to initiate the processing of the XML files that define, the
components, dependencies, and connections of a waveform application, starting with the
Software Assembly Descriptor (SAD) file. The result of the installApplication operation is
the creation of an instance of an ApplicationFactory for the waveform application defined
in the XML files.

The only input parameter is a string value which is the name of the SAD file for the
application.

void installApplication (
in string profileFileName
)

raises (InvalidProfile, InvalidFileName,
ApplicationInstallationError);

The operation may raise an InvalidProfile exception if the profile file name provided does
not exist or contains error, an InvalidFileName if the file name provided does not adhere to the
naming conventions imposed in the general requirements, or an ApplicationInstallationError
if any error is encountered during the installApplication operation that prevents it from
completing successfully. The requirements are listed in Table 6.5.

Table 6.5. installApplication requirements

Section ID Resp Requirement

3.1.3.2.3.3.1 SR:200 CF The error number shall indicate an ErrorNumberType
value (e.g. EINVAL, ENAMETOOLONG,
ENOENT, ENOMEM, ENOSPC, ENOTDIR,
ENXIO).

3.1.3.2.3.6.3.3 SR:259 CF The installApplication operation shall verify that
the application’s SAD file exists in the
DomainManager’s FileManager and all the files on
which the application is dependent are also resident.

3.1.3.2.3.6.3.3 SR:260 CF The installApplication operation shall write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log, upon successful Application
installation.

3.1.3.2.3.6.3.3 SR:261 CF The installApplication operation shall, upon
unsuccessful application installation, write
a FAILURE_ALARM log record to a
DomainManager’s log.

DomainManager 165

3.1.3.2.3.6.3.3 SR:262 CF The installApplication operation shall, upon
successful application installation, send an
event to the Outgoing Domain Management
event channel with event data consisting of a
DomainManagementObjectAddedEventType.

3.1.3.2.3.6.3.3 SR:263 CF The producerId shall be the identifier attribute of the
DomainManager.

3.1.3.2.3.6.3.3 SR:264 CF The sourceId shall be the identifier attribute of the
installed ApplicationFactory.

3.1.3.2.3.6.3.3 SR:265 CF The sourceName shall be the name attribute of the
installed ApplicationFactory.

3.1.3.2.3.6.3.3 SR:266 CF The sourceIOR shall be the installed ApplicationFactory
object reference.

3.1.3.2.3.6.3.3 SR:267 CF The sourceCategory shall be
APPLICATION_FACTORY.

3.1.3.2.3.6.3.5 SR:268 CF The installApplication operation shall raise the
ApplicationInstallationError exception when the
installation of the Application file(s) was not
successfully completed.

3.1.3.2.3.6.3.5 SR:269 CF The installApplication operation shall raise the
InvalidFileName exception when the input SAD file
or any referenced file name does not exist in the file
system as defined in the absolute path of the input
profileFile Name.

3.1.3.2.3.6.3.5 SR:270 CF When the InvalidFileName exception occurs,
the installApplication operation shall log
a FAILURE_ALARM log record to a
DomainManager’s log with a message consisting of
‘installApplication::invalid file is xxx’, where ‘xxx’ is
the input or referenced file n.

3.1.3.2.3.6.3.5 SR:271 CF The installApplication operation shall raise the CF
InvalidProfile exception when the input SAD file or
any referenced file is not compliant with XML DTDs
defined in Appendix D of the specifications or
referenced property definitions are missing.

3.1.3.2.3.6.3.5 SR:272 CF When the CF InvalidProfile exception
occurs, the installApplication operation shall
log a FAILURE_ALARM log record to a
DomainManager’s log with a message consisting of
‘installApplication::invalid Profile is yyy,’ where
‘yyy’ is the input or referenced f.

The installApplication operation starts by validating the string input parameter that
specifies the file name for the top-level SAD file defining the application and the existence
of the file (SR:259). The file name provided must include the absolute path name, in terms
of the SCA FileSystem mount point, for the file. If the file name is invalid, i.e. it does
not adhere to the naming conventions specified in the SCA specification or does not exist
in the FileSystem specified by the absolute path of the file name parameter, then a log

166 Domain Management

record is written to a DomainManager log identifying that an InvalidFileName exception
was encountered and identifying the file name (SR:269), an InvalidFileName exception is
raised (SR:269), and execution is terminated.

The operation then starts processing the XML file specified by the file name parameter.
If a syntax error is encountered, based on the Document Type Definition (DTD) files, then
a log record is written to a DomainManager log specifying that an InvalidProfile exception
was encountered with the file name in the message (SR:272), the InvalidProfile exception
is raised (SR:271), and execution is terminated.

If any other error is encountered that prevents the installApplication from successfully
completing, a FAILURE_ALARM log record is written to a DomainManager log
(SR:260), the ApplicationInstallationError is raised (SR:268), and execution terminates. The
ApplicationInstallationError exception contains an errorNumber that indicates the type of
error encountered (SR:200). In all cases when an exception is raised and execution terminates,
the installApplication operation must return the DomainManager to the stable state prior to
initiation of the installApplication operation.

If installation of the application is successful, an event is sent on the ODM with the
event data consisting of a DomainManagementObjectAddedEventType (SR:262). The log
record data includes the producerId set to the identifier of the DomainManager (SR:263), the
sourceId set to the identifier attribute of the ApplicationFactory (SR:264), the sourceName
set to the name attribute of the installed Application Factory (SR:265), the sourceIOR set to
the new ApplicationFactory instance object reference (SR:266), and the sourceCategory set
to APPLICATION_FACTORY (SR:267).

unregisterDeviceManager

The unregisterDeviceManager unregisters the DeviceManager from the DomainManager’s
profile. This operation has a number of side effects including removal of the Device
associated with the DeviceManager from the DomainManager, disconnection from any
services used by the DeviceManager or any of the Devices associated with the
DeviceManager, removal of the services hosted by the DeviceManager, and removal of any
FileSystem hosted by the DeviceManager.

void unregisterDeviceManager (
in DeviceManager deviceMgr
)

raises (InvalidObjectReference, UnregisterError);

The requirements are listed in Table 6.6.
The unregisterDeviceManager unregisters a DeviceManager from the DomainManager

(SR:273). The first action performed is to validate that the DeviceManager object reference
provided refers to a valid DeviceManager. If not, the InvalidObjectReference exception is
raised (SR:284). As noted above, there are several side effects and processing performed as
part of the operation. Although there is no requirement, the operation should ensure that the
input DeviceManager is one of the registeredDeviceManagers in the DomainManager. If it
is not, then the operation should terminate with no error conditions raised.

All consumers and producers are disconnected from the event service to which they
are connected (SR:275). Then the operation releases all Devices associated with the
DeviceManager being unregistered (SR:274). The DomainManager unmounts, i.e. removes

DomainManager 167

Table 6.6. unregisterDeviceManager requirements

Section ID Resp Requirement

3.1.3.2.3.6.4.3 SR:273 CF The unregisterDeviceManager operation shall
unregister a DeviceManager component from
the DomainManager.

3.1.3.2.3.6.4.3 SR:274 CF The unregisterDeviceManager operation shall
release all device(s) and service(s) associated
with the DeviceManager that is being
unregistered.

3.1.3.2.3.6.4.3 SR:275 CF The unregisterDeviceManager operation shall
disconnect consumers and producers (e.g.
Devices, Log, DeviceManager, etc.) from a
CORBA Event Service event channel based
upon the software profile.

3.1.3.2.3.6.4.3 SR:276 CF The unregisterDeviceManager operation shall
unmount all DeviceManager’s FileSystems
from its File Manager.

3.1.3.2.3.6.4.3 SR:277 CF The unregisterDeviceManager operation
shall, upon the successful unregistration
of a DeviceManager, write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log.

3.1.3.2.3.6.4.3 SR:278 CF The unregisterDeviceManager operation shall,
upon unsuccessful unregistration of a
DeviceManager, write a FAILURE_ALARM
log record to a DomainManager’s log.

3.1.3.2.3.6.4.3 SR:279 CF The unregisterDeviceManager operation shall,
upon successful unregistration, send an event
to the Outgoing Domain Management event
channel with event data consisting of a
DomainManagementObjectRemovedEventType.

3.1.3.2.3.6.4.3 SR:280 CF The producerId shall be the identifier attribute of
the DomainManager.

3.1.3.2.3.6.4.3 SR:281 CF The sourceId shall be the identifier attribute of
the unregistered DeviceManager.

3.1.3.2.3.6.4.3 SR:282 CF The sourceName shall be the label attribute of
the unregistered DeviceManager.

3.1.3.2.3.6.4.3 SR:283 CF The sourceCategory shall be
DEVICE_MANAGER.

3.1.3.2.3.6.4.5 SR:284 CF The unregisterDeviceManager operation shall
raise the CF InvalidObjectReference when the
input parameter DeviceManager contains an
invalid reference to a DeviceManager
interface.

3.1.3.2.3.6.4.5 SR:285 CF The unregisterDeviceManager operation shall
raise the UnregisterError exception when
an internal error exists which causes an
unsuccessful unregistration.

168 Domain Management

from the fileMgr attribute, any FileSystem hosted by the DeviceManager (SR:276) that has
been mounted as part of the DomainManager’s federated file system.

After the DeviceManager has been unregistered and removed from the deviceManagers
attribute, a ADMINISTRATIVE_EVENT log record is written to a DomainManager log
(SR:277). In addition, a DomainManagementObjectRemovedEventType event is sent on
the ODM channel indicating that the DeviceManager has been removed (SR:279) with the
producerId set to the identifier attribute of the DomainManager (SR:280), the sourceId set
to the identifier attribute of the unregistered DeviceManager (SR:281), the sourceName set
to the label attribute of the unregistered DeviceManager (SR:282), and the sourceCategory
set to DEVICE_MANAGER (SR:283).

If the DeviceManager does not successfully, it writes a FAILURE_ALARM (SR:278).
If any other error is encountered during the unregisterDeviceManager operation, an
UnregisterException is raised (SR:285). It is expected that the exception handler for this
and any other error encountered will return the DomainManager to the stable state prior to
initiation of the operation.

unregisterDevice

The unregisterDevice operation is similar in concept to the unregisterDeviceManager
operation discussed in the previous section. The difference is that the unregisterDevice is
usually called within the context of an unregisterDevice operation. It is available as an
accessible operation because it allows the DeviceManager, for example, to remove a Device
from the DomainManager should the Device fail or need to be taken out of service.

void unregisterDevice (
in Device unregisteringDevice
)

raises (InvalidObjectReference, UnregisterError);

The only input parameter is the object reference for the device to be unregistered.
The possible exceptions are the InvalidObjectReference exception if the object reference
provided is invalid or the UnregisterError exception if some error is encountered during the
unregistration process. The requirements are listed in Table 6.7.

The unregisterDevice operation is used to remove a Device from the DomainManager
(SR:286). The operation first checks the object reference provided for the Device. If it cannot
be resolved to a Device then an InvalidObjectReference exception is raised (SR:296).

The Device’s event channel consumers and producers are disconnected (SR:288),
the Device is then released from the DomainManager (SR:287), and an
ADMINISTRATIVE_EVENT log record is written to a DomainManager log (SR:289). An
event is sent to the ODM (SR:291) indicating that the device has been unregistered with
the producerId set to the identifier attribute of the DomainManager (SR:292) the sourceID
set to the identifier attribute of the unregistered Device (SR:293), the sourceName set to the
label attribute of the unregistered Device (SR:294), and the sourceCategory set to DEVICE
(SR:295).

If any other error is encountered during the unregistration process, then an UnregisterError
exception is raised (SR:297). If this or any other error is encountered, the exception handler
should return the DomainManager to a stable state.

DomainManager 169

Table 6.7. unregisterDevice requirements

Section ID Resp Requirement

3.1.3.2.3.6.5.3 SR:286 CF The unregisterDevice operation shall remove a
device entry from the DomainManager.

3.1.3.2.3.6.5.3 SR:287 CF The unregisterDevice operation shall release
(client-side CORBA release) the
unregisteringDevice from the Domain
Manager.

3.1.3.2.3.6.5.3 SR:288 CF The unregisterDevice operation shall disconnect
the Device’s consumers and producers from a
CORBA Event Service event channel based
upon the software profile.

3.1.3.2.3.6.5.3 SR:289 CF The unregisterDevice operation shall, upon the
successful unregistration of a Device, write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log.

3.1.3.2.3.6.5.3 SR:291 CF The unregisterDevice operation shall, upon
successful Device unregistration, send an
event to the Outgoing Domain Management
event channel with event data consisting of a
DomainManagementObjectRemovedEventType.

3.1.3.2.3.6.5.3 SR:292 CF The producerId shall be the identifier attribute of
the DomainManager.

3.1.3.2.3.6.5.3 SR:293 CF The sourceId shall be the identifier attribute of
the unregistered Device.

3.1.3.2.3.6.5.3 SR:294 CF The sourceName shall be the label attribute of
the unregistered Device.

3.1.3.2.3.6.5.3 SR:295 CF The sourceCategory shall be DEVICE.
3.1.3.2.3.6.5.5 SR:296 CF The unregisterDevice operation shall raise the

CF InvalidObjectReference exception when
the input parameter contains an invalid
reference to a Device interface.

3.1.3.2.3.6.5.5 SR:297 CF The unregisterDevice operation shall raise the
UnregisterError exception when an internal
error exists which causes an unsuccessful
unregistration.

uninstallApplication

The uninstallApplication removes an installed application from the DomainManager. This
means that the ApplicationFactory associated with the application is destroyed. It does not
imply, however, that any instantiated application is destroyed or halted.

void uninstallApplication (
in string applicationId
)

raises (InvalidIdentifier, ApplicationUninstallationError);

170 Domain Management

The input parameter provided is the string name of the ApplicationFactory identifier.
This is the name provided by the identifier attribute of the ApplicationFactory. Exceptions
that may be raised are the InvalidIdentifier exception if the string name provided does not
match any instantiated Applications and the ApplicationUninstallationError exception if any
other error is encountered as part of the uninstall process. The requirements are listed in
Table 6.8.

Table 6.8. uninstallApplication requirements

Section ID Resp Requirement

3.1.3.2.3.6.6.3 SCA182 CF The error number shall indicate an ErrorNumberType
value.

3.1.3.2.3.6.6.3 SR:298 CF The uninstallApplication operation shall remove all
files associated with the Application.

3.1.3.2.3.6.6.3 SR:299 CF The uninstallApplication operation shall make
the ApplicationFactory unavailable from the
DomainManager (i.e. its services no longer provided
for the Application).

3.1.3.2.3.6.6.3 SR:300 CF The uninstallApplication operation shall, upon
successful uninstall of an Application, write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log.

3.1.3.2.3.6.6.3 SR:301 CF The uninstallApplication operation shall, upon
unsuccessful uninstall of an Application,
log a FAILURE_ALARM log record to a
DomainManager’s log.

3.1.3.2.3.6.6.3 SR:303 CF The uninstallApplication operation shall, upon
successful uninstall of an application, send an
event to the Outgoing Domain Management
event channel with event data consisting of a
DomainManagementObjectRemovedEventType.

3.1.3.2.3.6.6.3 SR:304 CF The producerId shall be the identifier attribute of the
DomainManager.

3.1.3.2.3.6.6.3 SR:305 CF The sourceId shall be the identifier attribute of the
uninstalled ApplicationFactory.

3.1.3.2.3.6.6.3 SR:306 CF The sourceName shall be the name attribute of the
uninstalled ApplicationFactory.

3.1.3.2.3.6.6.3 SR:307 CF The sourceCategory shall be
APPLICATION_FACTORY.

3.1.3.2.3.6.6.5 SR:308 CF The uninstallApplication operation shall raise the
InvalidIdentifier exception when the ApplicationId is
invalid.

3.1.3.2.3.6.6.5 SR:309 CF The uninstallApplication operation shall raise the
ApplicationUninstallationError exception when an
internal error causes unsuccessful uninstall of the
application.

DomainManager 171

The first action performed is to search the list of applicationFactories for the
ApplicationFactory with the name provided. If the name specified is not found in the
sequence of applicationFactories, then an InvalidIdentifier exception is raised (SR:308) and
the operation terminates.

The ApplicationFactory specified is made unavailable (SR:299). This means calls to
instantiate an application are no longer accepted. The XML files that comprise the Domain
Profile for the ApplicationFactory are removed (SCA2798).1

The ApplicationFactory is then removed from the DomainManager’s applicationFactories
attribute and destroyed. An ADMINISTRATIVE_EVENT log record is written to a
DomainManager log (SR:300), and an event is sent to the ODM (SR:303) indicating that
the application has been uninstalled with the producerId set to the identifier attribute of
the DomainManager (SR:304), the sourceID set to the identifier attribute of the uninstalled
ApplicationFactory (SR:305), the sourceName set to the name attribute of the uninstalled
ApplicationFactory (SR:306), and the sourceCategory set to APPLICATION_FACTORY
(SR:308).

If any other error is encountered during the unregistration process, then a
FAILURE_ALARM log record is written to a DomainManager log (SR:301) and an
ApplicationUninstallationError exception is raised (SR:309). If this or any other error is
encountered, the exception handler should return the DomainManager to a stable state.

registerService

The registerService operation registers a service with the DomainManager. The service is
hosted by a DeviceManager. The operation provides an object reference to the service to be
registered, an object reference to the DeviceManager hosting the service, and a string name
that identifies the service.

void registerService (
in Object registeringService,
in DeviceManager registeredDeviceMgr,
in string name
)

raises (InvalidObjectReference, InvalidProfile,
DeviceManagerNotRegistered, RegisterError);

Exceptions that may be raised include InvalidObjectReference if the object reference
provided for either the service or the DeviceManager are invalid, InvalidProfile if the
XML files associated with the DeviceManager cannot be found or contain syntax errors,
DeviceManagerNotRegistered if the DeviceManager specified is not already registered with
the DomainManager, and RegisterError if any other error is encountered as part of the
registration process. The requirements are listed in Table 6.9.

1 This requirement has resulted in continued debate as to whether or not the XML files should be removed. In the
event that the application is to be re-installed, the XML files no longer exist and must be re-loaded onto the system
in order to re-install the application. Most Core Framework implementations provide a means to keep the XML
files as an option. In version 2.2.2, this requirement has been amended to state that the XML files should not be
removed.

172 Domain Management

Table 6.9. registerService requirements

Section ID Resp Requirement

3.1.3.2.3.6.7.3 SR:310 CF The registerService operation shall verify the input
registeringService and registeredDeviceMgr are
valid object references.

3.1.3.2.3.6.7.3 SR:311 CF The registerService operation shall verify that the
input registeredDeviceMgr has been previously
registered with the DomainManager.

3.1.3.2.3.6.7.3 SR:312 CF The registerService operation shall add the
registeringService’s object reference and
the registeringService’s, name to the
DomainManager, if the name for the type of
service being registered does not exist within
the DomainManager.

3.1.3.2.3.6.7.3 SR:313 CF However, if the name of the registering service is
a duplicate of a registered service of the same
type, then the new service shall not be
registered with the DomainManager.

3.1.3.2.3.6.7.3 SR:314 CF The registerService operation shall associate the
input registeringService parameter with
the input registeredDeviceMgr parameter
in the DomainManager’s, when the
registeredDeviceMgr parameter indicates a
DeviceManager registered with the
DomainManager.

3.1.3.2.3.6.7.3 SR:315 CF The registerService operation shall, upon
successful service registration, establish
any pending connection requests for the
registeringService.

3.1.3.2.3.6.7.3 SR:316 CF The registerService operation shall, upon
successful service registration, write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log.

3.1.3.2.3.6.7.3 SR:317 CF The registerService operation shall, upon
unsuccessful service registration, write a
FAILURE_ALARM log record to a
DomainManager’s log.

3.1.3.2.3.6.7.3 SR:318 CF The registerService operation shall, upon
successful service registration, send an event to
the Outgoing Domain Management event
channel with event data consisting of a
DomainManagementObjectAddedEventType.
The event data will be populated as follows:

3.1.3.2.3.6.7.3 SR:319 CF The producerId shall be the identifier attribute of
the DomainManager.

3.1.3.2.3.6.7.3 SR:320 CF The sourceId shall be the identifier attribute from
the componentinstantiation element associated
with the registered service.

DomainManager 173

3.1.3.2.3.6.7.3 SR:321 CF The sourceName shall be the input name parameter
for the registering service.

3.1.3.2.3.6.7.3 SR:322 CF The sourceIOR shall be the registered service object
reference.

3.1.3.2.3.6.7.3 SR:323 CF The sourceCategory shall be SERVICE.
3.1.3.2.3.6.7.5 SR:324 CF The registerService operation shall raise a

DeviceManagerNotRegistered exception when
the input registeredDeviceMgr parameter is not a
nil reference and is not registered with the
DomainManager.

3.1.3.2.3.6.7.5 SR:325 CF The registerService operation shall raise the
CF InvalidObjectReference exception when
input parameters registeringService or
registeredDeviceMgr contains an invalid
reference.

3.1.3.2.3.6.7.5 SR:326 CF The registerService operation shall raise the
RegisterError exception when an internal error
exists which causes an unsuccessful registration.

This operation registers a service hosted by a DeviceManager with the DomainManager.
The first action performed is to verify the registeringService and registeredDeviceMMgr
object references (SR:310). If the parameters do not refer to a valid service or
DeviceManager, respectively, then an InvalidObjectReference exception is raised (SR:325)
and the operation is terminated.

If the object references are valid, then the registeredDeviceMgr value is checked against
the deviceManagers attribute sequence to validate that the DeviceManager has previously
registered with the DomainManager (SR:311). If the DeviceManager referenced has not
already registered with the DomainManager, then a DeviceManagerNotRegistered exception
is raised (SR:324) and the operation is terminated.

Once both the registeringService and registeredDeviceMgr object references have been
validated, the service name specified is checked against the set of services in the
DomainManager. If the service name specified is not found then the object reference and
name of the service is added to the DomainManager (SR:312). If the name provided is
found within the DomainManager, then the service is not added (SR:313) and the operation
terminates without error.

The service added to the DomainManager is associated with the DeviceManager (SR:314)
so that the proper cleanup can be performed for the unregisterDeviceManager operation.

Any pending requests for connections to the newly registered service are performed
(SR:315).

An ADMINISTRATIVE_EVENT log record is then written to a DomainManager log
indicating the successful registration of the service (SR:316) and an event is sent to the ODM
event channel indicating that a service has registered with the DomainManager (SR:318). The
producerId is set to the identifier attribute of the DomainManager (SR:319), the sourceId set
to the identifier attribute of the componentinstantiation element in the XML file associated
with the registered service (SR:320), the sourceName set to the input string name parameter
provided on the registerService call (SR:321), the sourceIOR set to the registered service
object reference (SR:322), and the sourceCategory set to SERVICE (SR:323).

174 Domain Management

If the registration is unsuccessful, for any reason, a FAILURE_ALARM record is written
to a DomainManager log (SR:317).

If any other error is encountered during the registerService operation that prevents
successful completion of the operation, then the RegisterError exception is raised (SR:326)
and execution terminates.

If this or any other error is encountered, it is expected that the exception handler will
return the DomainManager to a stable state prior to the initiation of the operation.

unregisterService

The unregisterService makes the service unavailable for new requests, disconnects the
service from any client components, and removes a service from the DomainManager. The
parameters provided consist of the object reference to the service and the name of the service
provided as a string value.

void unregisterService (
in Object unregisteringService,
in string name
)

raises (InvalidObjectReference, UnregisterError);

Two possible exceptions may be raised by the unregisterService operation. It may raise
an InvalidObjectReference exception if the object reference provided is nil or not a valid
service reference or an UnregisterError exception if any other error is encountered during
the unregisterService execution. The requirements are listed in Table 6.10.

Table 6.10. unregisterService requirements

Section ID Resp Requirement

3.1.3.2.3.6.8.3 SR:327 CF The unregisterService operation shall remove the
unregisteringService entry specified by the input name
parameter from the DomainManager.

3.1.3.2.3.6.8.3 SR:328 CF The unregisterService operation shall release (client-side
CORBA release) the unregisteringService from the
DomainManager.

3.1.3.2.3.6.8.3 SR:329 CF The unregisterService operation shall, upon the
successful unregistration of a Service, write an
ADMINISTRATIVE_EVENT log record to a
DomainManager’s log.

3.1.3.2.3.6.8.3 SR:330 CF The unregisterService operation shall, upon unsuccessful
unregistration of a Service, write a FAILURE_ALARM
log record to a DomainManager’s log.

3.1.3.2.3.6.8.3 SR:331 CF The unregisterService operation shall, upon
successful service unregistration, send an
event to the Outgoing Domain Management
event channel with event data consisting of a
DomainManagementObjectRemovedEventType. The
event data will be populated as follows:

DomainManager 175

3.1.3.2.3.6.8.3 SR:332 CF The producerId shall be the identifier attribute of the
DomainManager.

3.1.3.2.3.6.8.3 SR:333 CF The sourceId shall be the Id attribute from the
componentinstantiation element associated with the
unregistered service.

3.1.3.2.3.6.8.3 SR:334 CF The sourceName shall be the input name parameter for
the unregistering service.

3.1.3.2.3.6.8.3 SR:335 CF The sourceCategory shall be SERVICE.
3.1.3.2.3.6.8.5 SR:336 CF The unregisterService operation shall raise the CF

InvalidObjectReference exception when the input
parameter contains an invalid reference to a Service
interface.

3.1.3.2.3.6.8.5 SR:337 CF The unregisterService operation shall raise the
UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

The operation first validates the object reference provided as part of the call. If it is nil
or not a valid reference to a service, then the InvalidObjectReference is raised (SR:336) and
execution terminates. If the object reference refers to a valid, registered service then the
service name is located within the set of registered services within the DomainManager. If
the service identified is not found, then execution terminates without error.2

If the service is found, it is removed from the DomainManager (SR:327). The service is
then released from the CORBA environment by the DomainManager (SR:328).

An ADMINISTRATIVE_EVENT log record is then written to a DomainManager log
indicating the successful unregistration of the service (SR:329), and an event is sent to the
ODM event channel indicating that a service has unregistered with the DomainManager
(SR:331). The producerId is set to the identifier attribute of the DomainManager (SR:332),
the sourceId set to the identifier attribute of the componentinstantiation element in the XML
file associated with the registered service (SR:333), the sourceName set to the input string
name parameter provided on the unregisterService call (SR:334), and the sourceCategory
set to SERVICE (SR:335).

If any other error is encountered during the registerService operation that prevents
successful completion of the operation, then a FAILURE_ALARM record is written to a
DomainManager log (SR:330) and the UnregisterError exception is raised (SR:337) and
execution terminates.

If this or any other error is encountered, it is expected that the exception handler will
return the DomainManager to a stable state prior to the initiation of the operation.

registerWithEventChannel

The registerWithEventChannel operation connects a consumer to an event channel. The
input parameters are an object reference for the object to be connected to the event channel,

2 There is no requirement specifying the above behavior. The assumption is that, if an unregistering service is not
found, then it has already been unregistered or never registered. In either case, no further action is required.

176 Domain Management

a string value specifying the registering Id, and a string value specifying the name of the
event channel.

void registerWithEventChannel (
in Object registeringObject,
in string registeringId,
in string eventChannelName
)

raises (InvalidObjectReference, InvalidEventChannelName,
AlreadyConnected);

Exceptions that may be raised include InvalidObjectReference if the object reference
provided is nil or does not resolve to a valid instance, InvalidEventChannelName if the string
specifying the event channel is not defined by the event service, or AlreadyConnected if the
object requesting connection is already connected to the channel specified. The requirements
are listed in Table 6.11.

Table 6.11. registerWithEventChannel requirements

Section ID Resp Requirement

3.1.3.2.3.6.9.3 SR:338 CF The registerWithEventChannel operation shall
connect the input registeringObject to an
event channel as specified by the input
eventChannelName.

3.1.3.2.3.6.9.5 SR:339 CF The registerWithEventChannel operation
shall raise the CF InvalidObjectReference
exception when the input registeringObject
parameter contains an invalid reference to a
CosEventComm PushConsumer interface.

3.1.3.2.3.6.9.5 SR:340 CF The registerWithEventChannel operation shall
raise the InvalidEventChannelName exception
when the input eventChannelName parameter
contains an invalid event channel name (e.g.
‘ODM_Channel’).

3.1.3.2.3.6.9.5 SR:341 CF The registerWithEventChannel operation shall
raise the AlreadyConnected exception when
the input parameter contains a connection to
the event channel for the input registeringId
parameter.

This operation connects a consumer to an event channel (SR:338). The object reference
is validated. If the object reference in nil or does not resolve to a valid object, then the
InvalidObjectReference exception is raised (SR:339).

If the event channel name specified does not specify a valid event channel, then the
InvalidEventChannelName exception is raised (SR:340).

DomainManager 177

If the object requesting the connection is already connected to the named event channel,
then the AlreadyConnected exception is raised (SR:341).

unregisterWithEventChannel

The unregisterWithEventChannel disconnects a consumer from an event channel. Two
parameters are provided: a string identifying the Id to unregister and a string identifying the
channel name to disconnect.

void unregisterFromEventChannel (
in string unregisteringId,
in string eventChannelName
)

raises (InvalidEventChannelName, NotConnected);

Two exceptions may be raised by this operation: the InvalidEventChannelName exception
if the channel name specified by the input parameter is not recognized and the NotConnected
exception if the consumer requesting the disconnect is not currently connected to the event
channel. The requirements are listed in Table 6.12.

Table 6.12. unregisterWithEventChannel requirements

Section ID Resp Requirement

3.1.3.2.3.6.10.3 SR:342 CF The unregisterFromEventChannel operation
shall disconnect a registered component
from the event channel as identified by
the input parameters.

3.1.3.2.3.6.10.5 SR:343 CF The unregisterFromEventChannel operation
shall raise the InvalidEventChannelName
exception when the input
eventChannelName parameter contains an
invalid reference to an event channel (e.g.
‘ODM_Channel’).

3.1.3.2.3.6.10.5 SR:344 CF The unregisterFromEventChannel operation
shall raise the NotConnected exception
when the input parameter unregisteringId
parameter is not connected to specified
input event channel.

The operation checks that the event channel name provided is a valid event channel. If
not, the InvalidEventChannelName is raised (SR:343).

If the event channel name is valid but the consumer is not currently connected to the
event channel, then the NotConnected exception is raised (SR:344).

If the event channel name is valid and the consumer is currently connected, then the
consumer is disconnected from the event channel (SR:342).

178 Domain Management

6.2 FileManager

The FileManager, implemented by the DomainManager, provides mechanism for managing
multiple file systems across multiple hardware as a single entity (See Figure 6.2). Also,
because it inherits the FileSystem interface, it is also a FileSystem. Thus, the File Manager
can be thought of as the top-level or initial FileSystem for the SCA Core Framework. The
FileManager requirements one listed in Table 6.13.

cd FileManager

«CORBAInterface»
FileManager

+ mount(string, FileSystem) : void
+ unmount(string) : void
+ getMounts() : MountSequence

«CORBAInterface»
FileSystem

«CORBAException»
InvalidFileName

- errorNumber: ErrorNumberType
- msg: string

«CORBAStruct»
MountType

+ mountPoint: string
+ fs: FileSystem

«CORBATypedef»
MountSequence

«CORBAException»
NonExistentMount

«CORBAException»
InvalidFileSystem

«CORBAException»
MountPointAlreadyExists

Figure 6.2. FileManager interfaces

The primary function of the FileManager of the DomainManager is to provide a distributed
file system that functions as a single file system across the FileSystem instances hosted by
multiple DeviceManagers (SR:581). In addition, the FileManager inherits the FileSystem
interface thereby providing access to the multiple FileSystems as a single, federated
FileSystem (SR:582).3

The FileManager delegates the actual FileSystem operations to the FileSystem hosted
by the respective DeviceManager for that FileSystem. For example, if a DeviceManager
has hosted a FileSystem that is mounted within the FileManager as /DevMgr1, then any

3 Since the FileManager inherits the FileSystem interface, all FileSystem operations may be called on the
FileManager. Only the query operation is explicitly referenced in the requirements as it provides additional
behavior beyond the standard FileSystem query.

FileManager 179

Table 6.13. FileManager requirements

Section ID Resp Requirement

3.1.3.3.3.5.4 SR:581 CF The FileManager interface shall support a federated,
or distributed, file system that may span multiple
FileSystem components.

3.1.3.3.3.5.4 SR:582 CF The FileManager’s inherited FileSystem operations
behavior shall implement the requirements of the
FileSystem operations against the mounted file
systems.

3.1.3.3.3.5.4 SR:583 CF The FileManager’s FileSystem operations shall
remove the FileSystem mounted name from the
input fileName before passing the fileName to an
operation on a mounted FileSystem.

3.1.3.3.3.5.4 SR:584 CF The FileManager shall use the mounted FileSystem
for FileSystem operations based upon the mounted
FileSystem name that exactly matches the input
fileName to the lowest matching subdirectory.

3.1.3.3.3.5.5.3 SR:585 CF The query operation shall return the combined
mounted file systems information to the
calling client based upon the given input
fileSystemProperties’ Ids.

3.1.3.3.3.5.5.3 SR:586 CF As a minimum, the query operation shall support the
following input fileSystemProperties Ids:

1. SIZE – a property item Id value of ‘SIZE’ will
cause the query operation to return the combined
total size of all the mounted file systems as an
unsigned long long property value.

2. AVAILABLE_SPACE – a property item Id value
of ‘AVAILABLE_SPACE’ will cause the query
operation to return the combined total available
space (in octets) of all mounted file systems as an
unsigned long long property value.

3.1.3.3.3.5.5.3 SR:587 CF The query operation shall raise the
UnknownFileSystemProperties exception when the
input fileSystemProperties parameter contains an
invalid property Id.

FileSystem operation received by the FileManager would be delegated to the FileSystem
instance for the DeviceManager that hosted the FileSystem for /DevMgr1. When delegating
the FileSystem operation to the DeviceManager’s FileSystem, the mount name is removed
(SR:583). Thus, a FileSystem operation on the directory /DevMgr1/SCAstuff would have
the /DevMgr1 removed and only the /SCAstuff would be forwarded to the FileSystem on
that DeviceManager.

Any operation is matched to the lowest matching subdirectory prior to delegation to the
FileSystem on the DeviceManager (SR:584).

180 Domain Management

Any query operation on the FileSystem returns the combined mounted file systems
information (SR:585). Two properties are supported in this operation: SIZE and
AVAILABLE_SPACE. The SIZE property name refers to the current size (in octets) used by
all FileSystems in the FileManager. The AVAILABLE_SPACE refers to the space available
for storage across all FileSystems in the FileManager (SR:586). If an unknown property
name is provided to the query operation, then the UnknownFileSystemProperties exception
is raised (SR:587).

6.2.1 Types

MountType

The MountType defines a data structure that maps the string name of the mount point to the
FileSystem instance hosted by the DeviceManager (See Table 6.14).

Table 6.14. FileManager MountType requirements

Section ID Resp Requirement

3.1.3.3.3.3.1 SR:570 CF The MountType structure shall
identify the FileSystems mounted
within the FileManager.

The MountType defines the data structure that maintains the set of FileSystems mounted
within a FileManager (SR:570).

struct MountType {
string mountPoint;
FileSystem fs;

};

MountSequence

The MountSequence is a sequence of MountTypes that is used by the FileManager to
maintain the set of FileSystems mounted within the federated file system.

typedef sequence <MountType> MountSequence;

6.2.2 Exceptions

NonExistentMount

This exception is raised when the mount point specified in a function call does not exist.

exception NonExistentMount {
};

FileManager 181

InvalidFileSystem

This exception is raised when a FileSystem reference does not refer to a valid FileSystem.

exception InvalidFileSystem {
};

MountPointAlreadyExists

This exception is raised when a mount operation is called for a FileSystem that has already
been mounted to the named mount point.

exception MountPointAlreadyExists {
};

6.2.3 Operations

mount

The mount operation mounts a FileSystem by creating an association within the FileManager
between the string specifying the mount point and the FileSystem instance provided (See
Table 6.15).

void mount (
in string mountPoint,
in FileSystem file_System
)

raises (InvalidFileName, InvalidFileSystem,
MountPointAlreadyExists);

Exceptions that may be raised include InvalidFileName if the mount point specified does
not adhere to the file naming conventions, InvalidFileSystem if the object reference provided

Table 6.15. FileManager mount requirements

Section ID Resp Requirement

3.1.3.3.3.5.1.3 SR:573 CF The mount operation shall associate the specified
FileSystem with the given mountPoint.

3.1.3.3.3.5.1.3 SR:574 CF A mountPoint name shall begin with a ‘/’. A
mountPoint name is a logical directory name
for a FileSystem.

3.1.3.3.3.5.1.5 SR:575 CF The mount operation shall raise the
InvalidFileName exception when the input file
name is invalid.

3.1.3.3.3.5.1.5 SR:576 CF The mount operation shall raise the
MountPointAlreadyExists exception when the
mountPoint already exists in the file manager.

3.1.3.3.3.5.1.5 SR:577 CF The mount operation shall raise the
InvalidFileSystem exception when the input
FileSystem is a null object reference.

182 Domain Management

does not resolve to a valid FileSystem, and MountPointAlreadyExists if the mount point
specified has already been used to mount a FileSystem.

The primary function of the mount operation is to associate a FileSystem with a string name
representing the mount point (SR:573). If the FileSystem reference is a null object reference,
then the InvalidFileSystem exception is raised and the operation terminates (SR:577).

The mount point specified must begin with a slash,‘/’ (SR:574). If the input name of
the mount point is invalid, then the InvalidFileName exception is raised (SR:575) and the
operation terminates. If the mount point name specified has already been used then the
MountPointAlreadyExists exception is raised (SR:576) and the operation terminates.

unmount

The unmount operation removes (unmounts) a mounted FileSystem from the FileManager
(see Table 6.16). The input parameter consists of the mount point name to be unmounted.

void unmount (
in string mountPoint
)

raises (NonExistentMount);

If the mount point specified does not exist then a NonExistentMount exception is raised.

Table 6.16. FileManager unmount requirements

Section ID Resp Requirement

3.1.3.3.3.5.2.3 SR:578 CF The unmount operation shall remove a mounted
FileSystem from the FileManager whose mounted
name matches the input mountPoint name.

3.1.3.3.3.5.2.5 SR:579 CF The unmount operation shall raise the
NonExistentMount exception when the mountPoint
does not exist.

The unmount operation checks that the mount point provided is a valid mount point within
the FileManager. If not, a NonExistentMount exception is raised (SR:579) and the operation
terminates. If the mount point provided is valid, then the FileSystem associated with the
mount point name is removed from the FileManager (SR:578) and is no longer available as
part of the federated file system. It is, however, still available to the DeviceManager hosting
the FileSystem.

getMounts

The getMounts call returns the current set of mount points in the FileManager (see
Table 6.17). No input parameters are provided.

MountSequence getMounts ();

The operation does not raise any exceptions.

The ApplicationFactory 183

Table 6.17. FileManager getMounts requirements

Section ID Resp Requirement

3.1.3.3.3.5.3.3 SR:580 CF The getMounts operation shall return a
sequence of mount structures that describe
the mounted FileSystems.

The only function performed by this operation is to return a sequence of FileSystem
mounts (SR:580). If no FileSystems have been mounted then a null sequence is returned.

6.3 The ApplicationFactory

Even though the ApplicationFactory has only a single operation, it is, in some respect,
the most complex component of an SCA Core Framework (see Figure 6.3). The
ApplicationFactory is responsible for taking the information in the waveform SAD,
identifying the resources required, dependencies, and component connections, matching
those against the available hardware components and physical resources available, loading
the waveform components, establishing the connections, and resulting in an instantiated
waveform application.

Furthermore, if some error is encountered during the waveform instantiation process, the
ApplicationFactory must release any resource allocations, unload any software components
loaded up to that point, and return the radio system to the stable state prior to the request to
create an application instance.

cd ApplicationFactory

Resource
«CORBAInterface»

Application

«CORBAInterface»
ApplicationFactory

+ name: string
+ identifier: string
+ softwareProfile: string

+ create(DeviceAssignmentsSequence, Properties, string) : Application

uses

Figure 6.3. ApplicationFactory interface

184 Domain Management

6.3.1 Exceptions

CreateApplicationRequestError

This exception is raised when one or more invalid component assignments to devices are
encountered.

exception CreateApplicationRequestError {
DeviceAssignmentSequence invalidAssignments;

};

CreateApplicationError

This exception is raised when an internal error is encountered that prevents the create
operation from completing successfully (see Table 6.18).

Table 6.18. ApplicationFactory CreateApplicationError requirements

Section ID Resp Requirement

3.1.3.2.2.3.2 SR:152 CF The error number shall indicate an
ErrorNumberType value (e.g. E2BIG,
ENAMETOOLONG, ENFILE, ENODEV,
ENOENT, ENOEXEC, ENOMEM,
ENOTDIR, ENXIO, EPERM).

The errorNumber value (SR:152) in the exception provides an indication of the type
of error encountered. The msg parameter provides additional detail regarding the error
encountered.

exception CreateApplicationError {
ErrorNumberType errorNumber;
string msg;

};

InvalidInitConfiguration

If an invalid initConfiguration parameter is encountered, then the InvalidInitConfiguration
is raised. An invalid initConfiguration refers to an error on one or more of the properties
specified as part of the initialization process for the Application component.

exception InvalidInitConfiguration {
Properties invalidProperties;

};

6.3.2 Attributes

The ApplicationFactory Attribute requirements are listed in Table 6.19.

The ApplicationFactory 185

Table 6.19. ApplicationFactory Attribute requirements

Section ID Resp Requirement

3.1.3.2.2.4.1 SR:153 CF The readonly name attribute shall contain the
type of Application that can be instantiated
by the ApplicationFactory.

3.1.3.2.2.4.2 SR:154 CF The readonly softwareProfile attribute shall
contain either a profile element with a file
reference to the SAD profile or the XML
for the SAD profile.

3.1.3.2.2.4.3 SR:155 CF The readonly identifier attribute shall
contain the unique identifier for an
ApplicationFactory instance.

3.1.3.2.2.4.3 SR:156 CF The identifier shall be identical to the
softwareassembly element Id attribute of
the ApplicationFactory’s Software
Assembly Descriptor file.

name

The readonly name attribute is a user-readable name for the Application that may be
instantiated by the ApplicationFactory, e.g. SINCGARS, Havequick, etc. (SR:153).

readonly attribute string name;

identifier

The readonly identifier attribute provides a unique identifier for the Application Factory
(SR:155). The value is specified by the Id attribute of the softwareassembly element in the
ApplicationFactory’s Software Assembly Descriptor (SAD) file (SR:156).4

readonly attribute string identifier;

softwareProfile

This readonly attribute contains the reference to the SAD file that specifies the domain
profile information associated with the waveform application (SR:154).

readonly attribute string softwareProfile;

6.3.3 Operations

create

The create operation instructs the ApplicationFactory instance to take the information
regarding the waveform components, dependencies, and connections defined by the

4 This is the XML file specified on the installApplication operation.

186 Domain Management

associated SAD file that was processed when the application was installed (see
installApplication) on page 164 instantiating the associated ApplicationFactory and create
an instance of the waveform (See Table 6.20).

Table 6.20. ApplicationFactory Create operations requirements

Section ID Resp Requirement

3.1.3.2.2.5.1.3 SR:157 CF The create operation shall use the SAD SPD
implementation element to locate candidate
devices capable of loading and executing
Application components.

3.1.3.2.2.5.1.3 SR:158 CF The create operation shall allocate (Device
allocateCapacity) component capacity
requirements against candidate devices to
determine which candidate devices satisfy all
SPD implementation criteria requirements
and SAD partitioning requirements (e.g.
components host co-location, etc.)

3.1.3.2.2.5.1.3 SR:159 CF The create operation shall only use Devices
that have been granted successful capacity
allocations for loading and executing
Application components, or used for data
processing.

3.1.3.2.2.5.1.3 SR:160 CF The create operation shall load the Application
components (including all of the
Application-dependent components) to the
chosen device(s).

3.1.3.2.2.5.1.3 SR:161 CF The create operation shall execute the
application components (including all of the
application-dependent components) as specified
in the application’s SAD file.

3.1.3.2.2.5.1.3 SR:162 CF The create operation shall use each component’s
SPD implementation code’s stack size and
priority elements, when specified, for the
execute options parameters.

3.1.3.2.2.5.1.3 SR:163 CF The create operation shall pass the mandatory
execute parameters of a Naming Context IOR,
Name Binding, and the identifier for the
component in the form of CF Properties to the
entry points of Resource components to be
executed via a Device’s execute operation.

3.1.3.2.2.5.1.3 SR:164 CF The execute parameter for the Naming Context
IOR shall be inserted into a CF Properties type.

3.1.3.2.2.5.1.3 SR:165 CF The CF Properties Id element shall be set to
‘NAMING_CONTEXT_IOR’ and the CF
Properties value element set to the stringified
IOR of a naming context to which the
component will bind.

The ApplicationFactory 187

3.1.3.2.2.5.1.3 SR:166 CF The create operation shall create any naming contexts
that do not exist, to which the component will bind
the Naming Context IOR.

3.1.3.2.2.5.1.3 SR:167 CF The structure of the naming context path shall be
‘/ DomainName / [optional naming context
sequences]’.

3.1.3.2.2.5.1.3 SR:168 CF The execute parameter of Name Binding shall be
inserted into a CF Properties type.

3.1.3.2.2.5.1.3 SR:169 CF The CF Properties Id element shall be set to
‘NAME_BINDING’ and CF Properties value
element set to a string in the format of
‘ComponentName_UniqueIdentifier’.

3.1.3.2.2.5.1.3 SR:170 CF For the component identifier execute parameter, the
create operation shall be inserted in a CF Properties
type.

3.1.3.2.2.5.1.3 SR:171 CF The CF Properties Id element shall be set to
‘COMPONENT_IDENTIFIER’ and the CF
Properties value element to the string format
of Component_Instantiation_Identifier:
Application_Name.

3.1.3.2.2.5.1.3 SR:172 CF The Application_Name field shall be identical to the
create operation’s input name parameter.

3.1.3.2.2.5.1.3 SR:173 CF The create operation shall pass the
componentinstantiation element ‘execparam’
properties that have values as parameters to execute
operation.

3.1.3.2.2.5.1.3 SR:174 CF The create operation shall, in order, initialize
Resources, then establish connections for Resources,
and finally configure the Resources.

3.1.3.2.2.5.1.3 SR:175 CF The create operation shall initialize an Application
component provided that the component implements
the LifeCycle interface.

3.1.3.2.2.5.1.3 SR:176 CF The create operation shall configure an application’s
assemblycontroller component provided the
assemblycontroller has configured readwrite or
writeonly properties with values.

3.1.3.2.2.5.1.3 SR:177 CF The create operation shall use the union of the input
initConfiguration properties of the create operation
and the assemblycontroller’s componentinstantiation
writeable ‘configure’ properties that have values.

3.1.3.2.2.5.1.3 SR:178 CF The input initConfiguration parameter shall have
precedence over the assemblycontroller’s writeable
‘configure’ property values.

3.1.3.2.2.5.1.3 SR:179 CF The create operation, when creating a component
from a ResourceFactory, shall pass the
componentinstantiation componentresoursefactoryref
element ‘factoryparam’ properties that have
values as qualifiers parameters to the referenced
ResourceFactory component.

188 Domain Management

Table 6.20. Continued

Section ID Resp Requirement

3.1.3.2.2.5.1.3 SR:180 CF The create operation shall pass, with invocation of each
ResourceFactory createResource operation, the
ResourceFactory configuration properties associated
with that Resource as dictated by the SAD.

3.1.3.2.2.5.1.3 SR:181 CF For connections established for a log, the create
operation shall create a unique producer log Id for
each log producer.

3.1.3.2.2.5.1.3 SR:182 CF The create operation shall invoke the PropertySet
configure operation once, and only once, per log
producer (as described by the SAD usesport element)
in order to set its unique PRODUCER_LOG_ID (see
specifications section 3.1.3.3.5.5.1.2 for details).

3.1.3.2.2.5.1.3 SR:183 CF For connections established for a CORBA Event
Service’s event channel, the create operation shall
connect a COSEventComm PushConsumer or
PushSupplier object to the event channel as specified
in the SAD’s domainfinder element.

3.1.3.2.2.5.1.3 SR:184 CF If the event channel does not exist, the create operation
shall create the event channel.

3.1.3.2.2.5.1.3 SR:185 CF If the Application is successfully created, the create
operation shall return an Application component
reference for the created Application.

3.1.3.2.2.5.1.3 SR:186 CF The create operation shall, upon successful Application
creation, write an ADMINISTRATIVE_EVENT log
record.

3.1.3.2.2.5.1.3 SR:187 CF The create operation shall, upon unsuccessful
Application creation, write a FAILURE_ALARM log
record.

3.1.3.2.2.5.1.3 SR:188 CF For connections established for a log, the create
operation shall create a unique producer log Id one
time for each log producer.

3.1.3.2.2.5.1.3 SR:189 CF The create operation shall invoke the PropertySet
configure operation one time per log producer
(as described by the SAD usesport element) in
order to set its unique PRODUCER_LOG_ID (see
specifications section 3.1.2.3.1 for details).

3.1.3.2.2.5.1.3 SR:190 CF The create operation shall, upon successful Application
creation, send an event to the Outgoing Domain
Management event channel with event data consisting
of a DomainManagementObjectAddedEventType.

3.1.3.2.2.5.1.3 SR:191 CF The producerId shall be the identifier attribute of the
ApplicationFactory.

3.1.3.2.2.5.1.3 SR:192 CF The sourceId shall be the identifier attribute of the
created Application.

3.1.3.2.2.5.1.3 SR:193 CF The sourceName shall be the name attribute of the
created Application.

The ApplicationFactory 189

3.1.3.2.2.5.1.3 SR:194 CF The sourceIOR shall be the Application
component reference for the created
Application.

3.1.3.2.2.5.1.5 SR:195 CF The sourceCategory shall be APPLICATION.
3.1.3.2.2.5.1.5 SR:196 CF The create operation shall raise the

CreateApplicationRequestError
exception when the parameter CF
DeviceAssignmentSequence contains one or
more invalid Application component to device
assignment(s).

3.1.3.2.2.5.1.5 SR:197 CF The create operation shall raise the
CreateApplicationError exception when the
create request is valid but the Application
cannot be successfully instantiated due to
internal processing error(s).

3.1.3.2.2.5.1.5 SR:198 CF The create operation shall raise the
InvalidInitConfiguration exception when the
input initConfiguration parameter is invalid.

3.1.3.2.2.5.1.5 SR:199 CF The InvalidInitConfiguration invalidProperties
shall identify the property that is invalid.

The input parameters are a string name of the Application instance, a set of Properties
specifying initial configuration parameters, and a DeviceAssignmentSequence that specifies
specific device assignments for the waveform.

Application create (
in string name,
in Properties initConfiguration,
in DeviceAssignmentSequence deviceAssignments
)

raises (CreateApplicationError,
CreateApplicationRequestError, InvalidInitConfiguration);

Exceptions that may be raised include CreateApplicationError if an error is encountered
during the execution of the create operation, CreateApplicationRequestError if the
DeviceAssignmentSequence contains invalid Device assignment requests for the waveform,
and InvalidInitConfiguration if the set of Properties specifying the initial configuration
contains invalid values or properties.

The create operation instantiates an Application, as defined by the domain profile
information specified when the ApplicationFactory was instantiated. The ApplicationFactory
may be directed to use specific devices on which to instantiate the Application or it may use
requirements specified in the domain profile to identify the devices required for hosting the
Application.

If specific devices are specified by the deviceAssignments parameter, then the
ApplicationFactor loads the components to the specified devices (SR:160). If the domain
profile information is used, then the ApplicationFactory identifies candidate devices that are
capable of loading and/or executing the software components as defined in the Software
Package Descriptor (SPD) associated with the component of the SAD file (SR:157). If

190 Domain Management

the device specified in the deviceAssignments parameter does not represent the full set of
components within the SAD file, then components specified within the deviceAssignments
parameter are loaded to the specified devices and the remainder of the components are
allocated based on the domain profile information.

Whether specified by the deviceAssignments parameter or by using the domain profile
information, the create operation will use the allocateCapacity method on the device to
verify if a particular device has the capacity available to satisfy the need of the component
(SR:158). As each device is allocated, the ApplicationFactory maintains a list of devices
that have been allocated (SR:159).

Once the devices have been allocated, the create operation loads the components on the
selected devices (SR:160), if the component has not already been loaded on the device. This
involves accessing the image to be loaded, e.g. library, executable, FGPA bit image, using
the file as specified by the implementation within the SPD. For those components that are
executable programs, the create operation executes the components as specified in the SAD
file (SR:161).5

The STACK_SIZE and PRIORITY elements, if specified in the SPD for the component,
are applied to the execution of the component (SR:162).

The component’s Resource or ResourceFactory reference, as specified in the SAD file,
is then obtained from the domain profile information and the Resource defined for the
component is instantiated. If a ResourceFactory is defined, then the Resources defined
by the ResourceFactory are instantiated through the ResourceFactory using the Resource
interface.

The create operation passes three mandatory execute parameters to the entry points of
Resource components using the execute operation. These are the Naming ContextIOR,
the Name Binding, and the identifier for the component as Properties (SR:163). The
NamingContextIOR is inserted into a Properties data type (SR:164) with the Id element set
to ‘NAMING_CONTEXT_IOR’ (SR:165) and the value set to the stringified IOR to which
the component will bind. If the naming context does not exist in the Naming Service,
then the create operation creates the naming context in the Naming Service (SR:166).
The naming context follows the pattern of ‘/<DomainName>/<optional naming
contexts>’ (SR:167) where the <DomainName> is the overall domain name defined when
the DomainManager was instantiated. The Name Binding parameter is also inserted into a
Properties datatype (SR:168) with the Id element of the property set to ‘NAME_BINDING’
and the value is a string in the form of ‘<ComponentName>_<UniqueIdentifier>’
(SR:169) where the unique identifier is determined by the implementation of the
ApplicationFactory. Finally, the component identifier is inserted into a Properties data type
(SR:170). The Id element is set to ‘COMPONENT_IDENTIFIER’ and the value is a string in
the format, ‘Component_Instantiation_Identifier:<Application_Name>’
(SR:171). <Application_Name> is set to the value of the name parameter provided with
the create operation (SR:172). Additionally, any ‘execparam’ properties specified by the

5 For an ExecutableDevice, e.g. a GPP hosting an operating system, the executable is typically ‘loaded’ via a
‘fork and exec’ process (it may vary slightly from one operating system to the next). The user is referred to the
issues mentioned in the ExecutableDevice section regarding the need for an ExecutableDevice hosting an operating
system to provide a file descriptor (FD) mapped to the operating system’s native file system.

The ApplicationFactory 191

componentinstantiation element in the domain profile XML files are passed to the component
by the create operation (SR:173).

Resources instantiated by the create operations are initialized, connections are established,
and the Resources are configured (SR:174). Application components are instantiated by the
create operation if the component implements the LifeCycle interface (SR:175).6

The create operation also configures the AssemblyController for the Application instance
(SR:176) using the union of the initConfiguration properties of the create operation and the
assemblycontroller’s componentinstantiation writeable configure properties that have values
(SR:177). In the event that the same property is specified in both the initConfiguration
properties on the create call and in the componentinstantitation, the initConfiguration
properties take precedence, i.e. the initConfiguration properties will be used instead of the
componentinstantiation properties (SR:178).

When a component is created using a ResourceFactory, the create operation passes the
componentinstantiation componentresourcefactoryref element factoryparam properties as a
parameter to the ResourceFactory component (SR:179). For each createResource call on a
ResourceFactory, the configuration properties associated with the Resource as specified in
the SAD is passed to the Resource (SR:180).

Connection is established to a log as part of the create operation, and a unique producer log
Id is created for each log producer (SR:181). As the unique Id is created for the LogProducer,
the create operation also calls the configure operation once to set the PRODUCER_LOG_ID
(SR:182).

If Event Service connections are specified in the SAD, the create operation connects a
PushConsumer or PushSupplier to the event channel specified in the SAD (SR:183). If the
channel specified does not exist, the create operation creates the event channel (SR:184).

If the Application is successfully instantiated, the create operation writes an
ADMINISTRATIVE_EVENT log record (SR:186) identifying the Application created. It also
sends an event to the Outgoing Domain Management (ODM) event channel consisting of
the DomainManagementObjectAddedEventType (SR:190). The producerID is the identifier
attribute of the ApplicationFactory (SR:191), the sourceId is the identified attribute of the
created Application (SR:192), the sourceName is the name attribute of the created Application
(SR:193), the sourceIOR is the Application component reference of the created Application
(SR:194), and the sourceCategory is set to APPLICATION (SR:195). The create operation
then returns an Application component reference for the newly instantiated Application
(SR:185).7

If there are invalid Device assignments specified in the DeviceAssignmentSequence,
then the CreateApplicationRequestError exception is raised (SR:196). If the input
initConfiguration parameter is invalid, the InvalidInitConfiguration exception is raised
(SR:198). If one or more properties are invalid, the InvalidProperties of the
InvalidInitConfiguration exception identifies the properties (SR:199) If the Application
instantiation fails due to some other internal processing error, the CreateApplicationError
exception is raised (SR:197).

6 Since the LifeCycle interface is inherited by the Resource and the application components are typically defined
as Resources, the interface will be available. However, the component may or may not implement the behavior for
the function call. Thus, the call is made but the initialize call may be simply a stub.
7 The Application component reference is the reference used to access the Application by subsequent function calls.
The reference is added to the list of Applications managed by the DomainManager.

192 Domain Management

If the Application is not successfully instantiated, the create operation writes a
FAILURE_ALARM log record identifying the Application (SR:187).

For log connections that are established, the create operation generates a unique producer
log Id (SR:188) and invokes the PropertySet configure operation (SR:189) once per log
producer.

6.4 Application

The Application interface specifies the top-level interface for the waveform (see Figure 6.4).
It is interesting to note that the Application interface does not add additional behavior. All
the basic interface functions are inherited from Resource. The Application interface does
define some additional attributes used in the management of the Application.

6.4.1 Types

ComponentProcessIdType

The ComponentProcessIdType provides a structure used to associate a component with its
process Id. This type can be used to retrieve a process Id for a specific component.8 The
componentId is the value specified by the Id attribute value of the componentinstantiation
in the XML file.

struct ComponentProcessIdType {
string componentId;
unsigned long processId;

};

ComponentProcessIdSequence

This type is defined to manage the set of processes that map to managed components of an
application. This is an unbounded sequence of ComponentProcessIdType entries.

typedef sequence <ComponentProcessIdType>

ComponentElementType

A component is associated with an implementation using the ComponentElementType. The
componentId of the structure is the componentinstantiation Id attribute value in the SAD file.

struct ComponentElementType {
string componentId;
string elementId;

};

8 This processID applies to an executable component only; that is, a component that is loaded on an
ExecutableDevice.

Application 193

cd Application
LifeCycle

PortSupplier
PropertySet

TestableObject

«CORBAInterface»
Resource

«CORBAInterface»
Application

- profile: string
- name: string
- componentNamingContexts: ComponentElementSequence
- componentProcessIds: ComponentProcessIdSequence
- componentDevices: DeviceAssignmentSequence
- componentImplementations: ComponentElementSequence

+ getPort(string) : Object
+ initialize() : void
+ query(Properties) : void
+ runTest(Properties∗, unsigned long) : void
+ start() : void
+ configure(Properties*) : void
+ releaseObject() : void
+ stop() : void

«CORBAStruct»
ComponentProcessIdType

+ componentId: string
+ processId: unsigned long

«CORBAStruct»
ComponentElementType

+ componentId: string
+ elementId: string

Figure 6.4. Application interface

ComponentElementSequence

The mapping of components to elements via the ComponentElementType is managed using the
ComponentElementSequence. This is an unbounded sequence of ComponentElementType.

typedef sequence <ComponentElementType>
ComponentElementSequence;

6.4.2 Attributes

The Application attribute requirements are listed in Table 6.21.

194 Domain Management

Table 6.21. Application attribute requirements

Section ID Resp Requirement

3.1.3.2.1.4.1 SR:121 CF The readonly profile attribute shall contain
either a profile element with a file
reference to the SAD profile file or the
XML for the SAD profile.

3.1.3.2.1.4.2 SR:122 CF This readonly name attribute shall contain the
name of the created Application.

3.1.3.2.1.4.3 SR:123 CF The componentNamingContexts attribute
shall contain the list of components’
Naming Service Context within the
Application for those components using
CORBA Naming Service.

3.1.3.2.1.4.4 SR:124 CF The componentProcessIds attribute shall
contain the list of components’ process Ids
within the Application for components that
are executing on a device.

3.1.3.2.1.4.5 SR:125 CF The componentDevices attribute shall contain
a list of devices, which each component
uses, is loaded on, or is executed on.

3.1.3.2.1.4.6 SR:126 CF The componentImplementations attribute
shall contain the list of components’ SPD
implementation Ids within the Application
for those components created.

ComponentElementSequence

The componentNamingContexts attribute contains the list of components’ Naming Service
Context within the Application for those components using CORBA Naming Service
(SR:123). These are specified using a set of ComponentElementType structures as defined
by the ComponentElementSequence definition.

readonly attribute ComponentElementSequence
componentNamingContexts

componentProcessIds

The componentProcessIds attribute is used to maintain a master list of processes that are
executing on an ExecutableDevice (SR:124).

readonly attribute ComponentProcessIdSequence
componentProcessIds;

componentDevices

The componentDevices attribute is used to maintain a list of devices to component
associations for each component that uses, is loaded on, or is executed on a Device (SR:125).

Application 195

The association is performed using the component’s componentinstantiation element in the
Application’s software profile.

readonly attribute DeviceAssignmentSequence componentDevices;

componentImplementations

The componentImplementations attribute contains the list of components’ SPD
implementation Ids within the Application for those components created (SR:126).

readonly attribute ComponentElementSequence
componentImplementations;

profile

This attribute contains the XML profile information for the application. The string value
contains a file reference to the SAD profile file (SR:121).9

Files referenced within a profile will have to be obtained via a FileManager. The
Application will have to be queried for profile information for Component files that are
referenced by an Id instead of a file name.

readonly attribute string profile;

name

The name attribute contains the name of the created Application. The name context of the
applications was provided by the ApplicationFactory create operation name (SR:122).

readonly attribute string name;

6.4.3 Operations

runTest, start, stop, configure, and query

The Application provides a standard implementation within the Core Framework. All the
waveform-specific logic and processing is performed by the lower-level components and the
AssemblyController (see Table 6.22).

Since the Application does not directly implement these calls, they are delegated to the
AssemblyController (SR:137). Any exceptions that are raised by the AssemblyController
are propagated by the Application to the caller (SR:128).

9 The original SCA 2.2. requirement specified that the profile attribute may contain the actual XML. Because of
file names embedded within the SAD XML, there is no practical way to ascertain the relative path of the SAD
file in order to obtain the path to the referenced files when the profile attribute contains only the SAD XML.
Consequently, the only usable implementation uses the attribute to store the file name.

196 Domain Management

Table 6.22. Application operation propagation requirements

Section ID Resp Requirement

3.1.3.2.1.5 SR:127 CF The Application shall delegate the implementation of
the inherited Resource operations (runTest, start,
stop, configure, and query) to the Application’s
Resource component (AssemblyController)
identified by the Application’s SAD
assemblycontroller element.

3.1.3.2.1.5 SR:128 CF The Application shall propagate exceptions raised by
the Application’s AssemblyController’s operations.

initialize

Although the initialize operation is inherited by the Application from the Resource, there
is no action that is performed by any lower level components of the Application (see
Table 6.23).

Table 6.23. Application initialize requirements

Section ID Resp Requirement

3.1.3.2.1.5 SR:129 CF The initialize operation shall not
be propagated to the Application’s
components or its AssemblyController.

3.1.3.2.1.5 SR:130 CF The initialize operation shall cause no action
within an Application.

The initialize operation does not perform any actions within the Application (SR:130) nor
is it propagated to the Application’s components or AssemblyController (SR:129).

releaseObject

The releaseObject operation is used to terminate and remove the Application from the
environment (see Table 6.24). This includes tearing down all of the component connections,
terminating execution of any components that may be running on an ExecutableDevice,
removing the components, releasing the computing resources.

Next to the create operation on the ApplicationFactory, the releaseObject is the second-
most complicated operation. Each of the components that form the Application must be
terminated and the resources used by that components returned to the pool of available
resources. Each component that was not created using a ResourceFactory is released
by calling the releaseObject operation directly on the component (SR:131). For those
components that were created using a ResourceFactory, the releaseObject operation is called
on the ResourceFactory (SR:132). The ResourceFactory initiated the releaseObject operation
on each of the resources created by the ResourceFactory. When all the resources associated

Application 197

Table 6.24. Application releaseObject requirements

Section ID Resp Requirement

3.1.3.2.1.6.1.3 SR:131 CF For each Application component not created by a
ResourceFactory, the releaseObject operation
shall release the component by utilizing the
Resource’s releaseObject operation.

3.1.3.2.1.6.1.3 SR:132 CF If the component was created by a
ResourceFactory, the releaseObject operation
shall release the component by the
ResourceFactory releaseResource operation.

3.1.3.2.1.6.1.3 SR:133 CF The releaseObject operation shall shutdown a
ResourceFactory when no more Resources are
managed by the ResourceFactory.

3.1.3.2.1.6.1.3 SR:134 CF For each allocated device capable of operation
execution, the releaseObject operation
shall terminate all processes/tasks of the
Application’s components utilizing the
Device’s terminate operation.

3.1.3.2.1.6.1.3 SCA114 CF For each allocated device capable of memory
function, the releaseObject operation shall
de-allocate the memory associated with the
Application’s component instances utilizing
the Device’s unload operation.

3.1.3.2.1.6.1.3 SR:136 CF The releaseObject operation shall deallocate
the Devices that are associated with the
Application being released, based on the
Application’s Software Profile.

3.1.3.2.1.6.1.3 SR:137 CF The Application shall release all client
component references to the Application
components.

3.1.3.2.1.6.1.3 SR:138 CF The releaseObject operation shall disconnect
Ports from other Ports that have been
connected based upon the software profile.

3.1.3.2.1.6.1.3 SR:139 CF The releaseObject operation shall disconnect
consumers and producers from a CORBA
Event Service’s event channel based upon the
software profile.

3.1.3.2.1.6.1.3 SR:140 CF For components (e.g. Resource,
ResourceFactory) that are registered with
Naming Service, the releaseObject operation
shall unbind those components and destroy the
associated naming contexts as necessary from
the Naming Service.

3.1.3.2.1.6.1.3 SR:141 CF The releaseObject operation for an application
shall disconnect Ports first, then release the
Resources and ResourceFactories, call the
terminate operation, and lastly call the unload
operation on the devices.

198 Domain Management

Table 6.24. Continued

Section ID Resp Requirement

3.1.3.2.1.6.1.3 SR:142 CF The releaseObject operation shall, upon successful
Application release, write an ADMINISTRATIVE_EVENT
log record.

3.1.3.2.1.6.1.3 SR:143 CF The releaseObject operation shall, upon unsuccessful
Application release, write a FAILURE_ALARM log record.

3.1.3.2.1.6.1.3 SR:144 CF The releaseObject operation shall, upon successful
Application release, send an event to the Outgoing Domain
Management event channel with event data consisting of a
DomainManagementObjectRemovedEventType.

3.1.3.2.1.6.1.3 SR:145 CF The producerId shall be the identifier attribute of the released
Application.

3.1.3.2.1.6.1.3 SR:146 CF The sourceId shall be the identifier attribute of the released
Application.

3.1.3.2.1.6.1.3 SR:147 CF The sourceName shall be the name attribute of the released
Application.

3.1.3.2.1.6.1.3 SR:148 CF The sourceCategory shall be APPLICATION.
3.1.3.2.1.6.1.5 SR:149 CF The releaseObject operation shall raise a ReleaseError

exception when the releaseObject operation unsuccessfully
releases the Application components due to internal
processing errors.

with a ResourceFactory are removed, the ResourceFactory is shutdown (SR:133). For those
components that are running on an executable device, the releaseObject operation terminates
the processes/tasks using the native terminate call for the particular device and operating
system (SR:134). For devices that have an image loaded into their memory, the releaseObject
operation releases the memory associated with the load using the unload operation (SR:114).

The releaseObject operation then deallocates the device capacities associated with the
components being released (SR:136). Then the client component references are released
(SR:137), the ports are disconnected (SR:138), and event consumers and producers are
disconnected from the Event Service (SR:139).

If a component has registered with the Naming Service, the releaseObject unbinds the
component from the entry in the naming service and removes (destroys) the entry in the
Naming Service (SR:140).

For an Application, the releaseObject disconnects the ports prior to releasing the Resources
and ResourceFactories, calls the terminate operation on any processes, and then unloads the
components from the devices (SR:141).

The releaseObject writes an ADMINISTRATIVE_EVENT to the log upon successful
release of an Application (SR:142) and sends an event to the Outgoing Domain Management
event channel with an event type of DomainManagementObjectRemovedEventType
(SR:144). The ProducerId is the identifier attribute of the released Application (SR:145), the
sourceId is the identifier attribute of the released Application (SR:146), the sourceName is
the name attribute of the released Application (SR:147), and the sourceCategory is
APPLICATION (SR:148).

Application 199

If the releaseObject is not successful, then a FAILURE_ALARM is written (SR:143). If the
error is due to internal processing errors, then a ReleaseError exception is raised (SR:149).

getPort

In addition to those discussed in Section 4.2, there are two requirements levied on the get
Port operation for an Application (Table 6.25).

Table 6.25. Application getPort requirements

Section ID Resp Requirement

3.1.3.2.1.6.2.4 SR:150 CF The getPort operation shall return object
references only for input port names that
match the port names that are in the
Application SAD externalports element.

3.1.3.2.1.6.2.5 SR:151 CF The getPort operation shall raise an
UnknownPort exception if the port is invalid.

When returning an object reference, the references are limited to the port names that match
those specified in the SAD file externalports element (SR:150). Thus, the getPort operation on
the Application may not return internal ports used to connect components of the waveform.
If the requested port is invalid, then an UnknownPort exception is raised (SR:151).

6.4.4 General Requirements

In addition to the specific requirements noted above, there are several general requirements
associated with the Application (Table 6.26).

Table 6.26. Application Requirements

Section ID Resp Requirement

3.2.1.1 SR:603 WS Applications shall be limited to using the OS services that
are designated as mandatory in the SCA AEP as specified
in section 3.1.1 of the specifications.

3.2.1.1 SR:604 WS Applications shall perform file access through the CF File
interfaces.

3.2.1.1 SR:605 WS Application file names shall not exceed 40 characters.
3.2.1.1 SR:606 WS To ensure controlled termination, applications shall have a

signal handler installed for the POSIX-defined SIGQUIT
signal.

3.2.1.2 SR:607 WS Applications shall be limited to using CORBA and CORBA
services as specified in section 3.1.2.

3.2.1.3 SR:608 WS Applications shall implement the CF interfaces as specified
in section 3.1.3.1 using the corresponding IDL in
Appendix C.

200 Domain Management

Table 6.26. (Continued)

Section ID Resp Requirement

3.2.1.3 SR:609 WS Each application process that uses Naming Service shall
support the Naming Context IOR, Name Binding, and
the identifier execute parameters as described in
3.1.3.2.2.5.1.3 in addition to their user-defined
execute properties in the component’s SPD.

3.2.1.3 SR:610 WS The application shall bind its components’ object
reference to the Naming Context IOR using the Name
Binding parameter as described in section 3.1.2.2.1.

3.2.1.3 SR:611 WS Each executable component of an application shall set
its identifier attribute using the component identifier
execute parameter.

3.2.1.3 SR:612 WS Each executable component of an application shall
accept arguments of the form described in section
3.1.3.2.6.5.1.3.

3.2.1.3 SR:613 WS Applications’ components and DeviceManagers shall be
provided with Domain Profile files as per section
3.1.3.4.

The application may only use those operating system calls or services that are defined
in the Application Environment Profile (AEP) (SR:603). The objective of this requirement
is to promote portability by limiting the O/S calls by an Application to a well-defined set.
Any file access by the Application must be performed using the FileManager, FileSystem,
and File interfaces as defined in the IDL (SR:604). The name of an Application may not
exceed 40 characters (SR:605). The Application must have a handler to the POSIX SIGQUIT
signal to ensure termination (SR:606). The Application is limited to using CORBA and
the CORBA Services specified (SR:607). Those interfaces specified in the IDL (actually
those that are inherited by the Application from Resource) are to be implemented using
the IDL specified in Appendix C of the specification (SR:608). If an Application process
uses the Naming Service, then it must support the Naming Context IOR, Name Binding,
and identifier parameters specified (SR:609) in the component’s SPD and must bind the
component’s object reference to the Naming Context IOR using the Name Binding parameter
(SR:610). Each executable component must set its identifier attribute using the component
identifier execute parameter (SR:611). The executable components must accept arguments
(SR:612), and all components and DeviceManagers must be defined in the Domain Profile
files (SR:613).

7
Operating Environment Security

The security requirements in this section refer to the security of the Core Framework and
do not refer to encryption or other type 1 security functions, e.g. COMSEC, TRANSEC,
INFOSEC, related to secure communications.

7.1 Core Framework Security Requirements

In a software radio, care must be taken that the critical operations, i.e. providing assured
communications, are not compromised through malicious code, corrupted files, process
spoofing, inadvertent corruption, or other similar problems.

The security requirements levied on the Core Framework are organized into three
groups: the Application, the ApplicationFactory, and the DomainManager. Protecting the
DomainManager is important because, once access is gained to the DomainManager, virtually
all hardware and software within the system is accessible. The ApplicationFactory must
validate that the components being loaded and insered into a waveform are valid components
and have not been tampered with or modified. Finally, the Application must ensure that any
port connections are authenticated prior to disconnecting.

7.1.1 Application

In addition to the Applications requirements discussed previously, there are several security
requirements levied in the operation of the Application (Table 7.1).

When disconnecting ports, only those component ports authorized by an authentication
service are to be disconnected (SR:639). The releaseObject requests that the Application
Ports access setup are removed from the access control database (SR:640).

If authorization is not received to disconnect component ports, then the releaseObject
operation logs a Security_Alarm event (SR:641).

As part of the SPD implementation dependency information, the propertyref elements
must indicate a dependency to a Red or Black device (SR:642).

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

202 Operating Environment Security

Table 7.1. Application security requirements

Section ID Resp Requirement

5.1.1 SR:639 WS The Application releaseObject operation shall only
disconnect components’ ports that are authorized
by an authentication service.

5.1.1 SR:640 WS The Application releaseObject operation shall
request removal of the Application’s Ports’
access setups from the access control database.

5.1.1 SR:641 WS The Application releaseObject operation shall log a
Security_Alarm event when unable
to disconnect components’ ports because
authorization was not granted by an
authentication service.

5.1.1 SR:642 WS Application components’ SPD implementation
dependency propertyref elements shall indicate a
dependency to a red or black device (directly or
indirectly).

7.1.2 ApplicationFactory

The ApplicationFactory must also perform some verification prior the instaniating a
waveform Application (Table 7.2).

Table 7.2. ApplicationFactory security requirements

Section ID Resp Requirement

5.1.2 SR:643 CF The ApplicationFactory create operation shall only
create components that are authorized by an
authentication service.

5.1.2 SR:644 CF The ApplicationFactory create operation shall only
connect components’ ports together that are
authorized by an authentication service.

5.1.2 SR:645 CF ApplicationFactory create operation shall provide an
update to the access control database.

5.1.2 SR:646 CF The ApplicationFactory create operation shall provide
updates to an access control database for all
components’ ports connections as stated in the
application’s SAD file.

5.1.2 SR:647 CF The ApplicationFactory shall log a
SECURITY_ALARM event when unable to connect
ports or create components because authorization
was not granted by an authentication service.

Core Framework Security Requirements 203

Instantiation of a waveform requires that the ApplicationFactory verify the creation request
with the authentication service (SR:643) and only connect those ports authorized (SR:644).
Any necessary updates to the access control database are performed for the create operation
(SR:645) and connection of the ports (SR:646). If any exception was encountered due to
authorization not being granted, then the ApplicationFactory logs a SECURITY_ALARM
event (SR:647).

7.1.3 DomainManager

The DomainManager also has security requirements levied on it at the system level
(Table 7.3).

The DomainManager provides information specified in the Security Supplement to enable
the control/bypass between red and black side components (SR:648). Upon uninstallation
of an application, the DomainManager removes the control/bypass information (SR:649).
The Device requires the Domain Profile XML files to indicate whether it is a black or red
side device (SR:650). When a Device has sub-Devices or child Devices, the parent send
the control/bypass information to the child devices (SR:651). If the device has no parent, it
sends its information directly to the control/bypass mechanism (SR:652).

Table 7.3. DomainManager security requirements

Section ID Resp Requirement

5.1.3 SR:648 CF The DomainManager installApplication operation
shall send the information specified in the
Security Supplement to the control/bypass
mechanism Resource for the black-side
components being accessed by red-side
components and for red-side components being
accessed by black-side components.

5.1.3 SR:649 CF The DomainManager uninstallApplication operation
shall request removal of the application’s
information specified in the Security Supplement
from the control/status bypass mechanism.

5.1.3 SR:650 CF Devices SPD properties shall have an allocation
property that indicates a red or black device.

5.1.3 SR:651 CF Parent Devices shall send their child Devices
information specified in the Security Supplement
to the control/status bypass mechanism.

5.1.3 SR:652 CF A parentless Device shall send its information
specified in the Security Supplement to the
control/status bypass mechanism.

8
Certification

8.1 Certification Process

The process of certifying an SCA-compliant system was originally managed by the JTRS
JPO through the JTRS Technical Lab (JTeL). The JTeL had offices in San Diego, California
and Charleston, North Carolina. Recent organization changes have re-allocated functional
responsibilities as well as changed organizational names and alignments. This has changed
the certification to a certain degree and there will likely be changes after this book is released.
However, regardless of organizational and process changes that may occur, the necessity
remains of ensuring that an SCA-compliant radio system adheres to the specification and
meets certain compatibility requirements.

This chapter will provide some basic background information on the certification process.
There are two essential certification and assessment processes for an SCA-compliant radio
system and the waveforms hosted on the radio system. These are: i) Operational Environment
(OE) certification and ii) Waveform Assessment. The balance of this chapter provides an
overview of the certification process in these two areas.

It should be noted that prior to the deployment of any radio by the US military, all radio
systems, SCA-compliant included, must undergo interoperability testing at the Joint Test
and Interoperability Command (JTIC). The JTIC performs operational testing of the radio
system in concert with existing radio systems. JTIC testing ensures the radio performs as
expected in realistic scenarios and environments. Interoperability with existing waveforms
and radios is thoroughly tested prior to acceptance and deployment.

OE certification focuses on the integration of the radio system hardware, Core Framework,
CORBA ORB, and operating system. Essentially each of the testable requirements discussed
in Part I of this book is verified. An automated test tool has been developed to perform the
testing process for an OE. The JTRS Test Application (JTAP) was developed to perform
the OE testing. The JTAP covers the defined requirements as well as a number of derived
requirements. The JTAP is a comprehensive tool that provides a well-designed test harness

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

206 Certification

for the SCA OE certification. It has become the ‘gold standard’ by which the compliance of
an SCA system is evaluated.1

Waveform Assessment addresses the design, documentation, modularity, and other aspects
of the waveform. As such, it is less of a quantitative test than the JTAP. The waveform
assessment includes porting the waveform to a representative hardware set. The objective of
this exercise is to gauge the modularity and portability of the waveform, not necessarily to
obtain a ported version that operates in real time.

8.2 Operating Environment Certification

There are three process flows for OE certification:

• OE-1 – The Radio system supplier obtains the JTAP tool and executes the test procedures.
• OE-2 – The radio system supplier executes his or her own suite of test procedures.
• OE-3 – The JPEO executes the JTAP tool.

Practically speaking, OE-1 tends to be the path most often followed. With OE-2, the supplier
must show that their test procedures verify all the requirements in the specification. For those
that have already invested the time to develop the set of procedures, this may be a cost effective
path. For those who have not built a comprehensive test suite, it is more cost effective to use
the JTAP tool. OE-3 is applied infrequently. This is due, in part, to the level of support required
to configure, run, and analyze the tests. Additional support from the radio supplier is typically
required as well. So, it usually becomes more efficient to follow the OE-1 path.

The certification process was originally developed to work in concert with the SCA radio
procurement programs, called Cluster 1 through Cluster 5. Thus the process flows show
the participation of a representative from the Cluster Program Management Office (PMO).
While these programs have undergone some transformation recently, in scope, organization,
and name, the essential process remains the same.

8.2.1 OE-1

As previously mentioned, OE-1 is frequently used as the process of choice to obtain
certification of the OE. For OE-1, as illustrated in Figure 8.1, the JTeL provides a copy of
the JTAP tool to the JTRS Tactical Radio (JTR) manufacturer. The manufacturer then ports
the JTAP tool to their system.2

The JTAP is then run against the system. The test may be witnessed by a representative
from the JTeL and typically is for formal certification. Usually the test is run internally by
the manufacturer, defects are corrected, the test is rerun, and a copy of the results may be
provided informally to the JTeL for review prior to a formal certification run.

1 Although the JTAP is a well-designed and implemented tool, there are a number of deficiencies that require
changes to the test harness. In addition, the JTAP has not been brought up to date with the current release of the
SCA specification. So, additional funding and work is required to maintain currency with the SCA specification
and address some discrepancies in the program implementation. Nonetheless, it provides a significant and valuable
automated test harness for a complex set of requirements.
2 This is not a complete port of the JTAP tool. However, there are several components that need to be compiled
and built for the specific target system that is to be tested. The JTAP includes the baseline implementation of these
components and the JTR manufacturer adapts and builds them for their specific hardware and software configuration.

Operating Environment Certification 207

od OE-1

JTeL JTR Manufacturer Cluster PMO JTRS/JPO

JTAP Software
and User

Documentation

Provides
JTAP

JTeL Rep

Receives
JTAP

Port JTAP
Components

to JTR Set

JTR Rep

Run JTAP

Prepare Report

Submit
Report

Receive
Report

Test Report

Cluster PMO

Review
Report

Determine
and

Document Cause

Submit
Compliance

Recommendation

Receive
Recommendation

Certify Compliance

witnesses

output

No

Yes

Acceptable

Figure 8.1. OE-1 certification process

After the formal certification run, a complete test report is prepared and submitted to
the JTeL for formal review. If the JTeL decides that there are significant problems with
the report results, the problems are documented and forwarded to the JTR manufacturer for
correction, and the system is not recommended for certification.

If the test is completed successfully, the JTeL issues a recommendation for a compliance
certification to the Joint Program Office, which then issues a certification letter to the
manufacturer. The case may also arise where the JTAP run was predominantly successful
and yet certain tests failed that were deemed to require correction; however, these were not
critical enough to prevent certification. In this case, the JTeL may recommend and the Joint
Program Office may grant certification with waivers.

208 Certification

8.2.2 OE-2

For OE-2, as illustrated in Figure 8.2, the manufacturer has developed its own test harness.
The manufacturer prepares an OE test plan and submits it to the JTeL for review and
approval.

Once the test plan has been approved by the JTeL, the remainder of the process essentially
follows the same path as OE-1. Although there may have been several manufacturers that

od OE-2

JTeL JTR Manufacturer Cluster PMO JTRS/JPO

JTeL Rep

Review and Approve
Manufacturer's OE

Test Plan

JTR Rep

Develop OE
Test Plan

Receive
Plan

Conduct
OE Test

Prepare
Test

Report

Test Report

Submit
 Report

Receive
Report

Review
Test

Report
Cluster PMO

Acceptable

Determine
Cause

and
Document

Submit
Recommendation

for Compliance

Receive
Recomendation

Certify Compliance

witness

No

Yes

OE Test
Plan

Submit
Plan

Figure 8.2. OE-2 certification process

Operating Environment Certification 209

initiated this process prior to release of the JTAP tool, few if any manufacturers continue
to use the OE-2 process for certification due to the cost in time and effort on the part of
the manufacturer to maintain the test code and processes, and the time required by the JTeL
personnel to review the test process thoroughly and plan for approval. Once the JTAP tool
was released it quickly became the standard for SCA OE testing.

8.2.3 OE-3

In OE-3, shown in Figure 8.3, the basic flow is similar to OE-1. However, the difference is
that instead of the JTeL providing the JTAP tool to the manufacturer and the manufacturer

od OE-3

JTeL JTR Manufacturer Cluster PMO JPO

JTeL Rep

JTR Rep

Cluster PMO

Provide
JTR Set

Receive
JTR Set

Port JTAP
components
to JTR Set

Test
Report

Review
Test

Report

Acceptable?

Determine
Cause and
Document

Submit
Recommendation

for SCA
Compliance

Receive
Recommendation

Certify
Compliance

witness

reviews

witness

reviews

No

Yes

Prepare
Test

Report

Conduct
SCA

OE Test

Figure 8.3. OE-3 certification process

210 Certification

performing the testing, the manufacturer provides the radio system to the JTeL and the JTeL
performs the testing.

This process places a significant burden on the JTeL organization and personnel. In
addition to the time and effort to port the JTAP components for the radio set to be tested,
personnel from the manufacturer were required to provide domain knowledge and expertise
to interpret test results and identify problem locations in the system or software.

As with OE-2, the OE-3 process is not a viable process because of the additional cost and
diversion of personnel at the JTeL to support the testing process. Thus, OE-1 has become
the defacto process for performing SCA certification.

8.3 Waveform Assessment and Certification

Although the interoperability of the radio system and the waveforms that it hosts are tested
by the JTIC, the JTeL does perform an assessment of the waveforms delivered to the
government to run on an SCA system.

od Waveform

WF Developer

JTeL

JTRS/JPO

JR Set Integrator

Cluster PMO

WF Spec
Develop-

ment

SRS

WF
Architecture

and
Decomposition

Waveform
Design

WF Code

WF Test &
Integrate

SDP,
WDS

SDD
WPP,
FQT

Waveform
Check

Report

Review
Report

Port
to Rep

JTR Set

WF Port
Report

Review
Report

SCA Test
& IA

Assessment

Quicklook
Performance
Assessment

Recommend-
ation

to JPO

Waveform Repository

SCATest and IA
Report PA Report

Waveform Acceptance

WF Integration &
Test

Security Verification
Test

JITC Standards
Conformance

WDS [PDR] SDD [CDR] FQT/WPP [PRR]SRS [SRR]

Figure 8.4. Waveform assessment process

Figure 8.4 illustrates the waveform assessment process. In general, the process involves
the review and analysis of each of the work products associated with a waveform design
and implementation. This includes Software Requirements Specification (SRS), Software
Development Plan (SDP), Software Design Document (SDD), and other deliverables.

Waveform Assessment and Certification 211

Between each phase of the waveform development process, key reviews and analyses are
performed to assess the viability of the waveform design and implementation.3

In addition to performing an analysis of the deliverables, a waveform port is also
performed. The objective of this effort is not necessarily to obtain a fully functional
implementation of the waveform on another processing platform, although that would be
preferred. The objective is to gather some empirical data on the modularity of design and
portability aspect of the waveform.

Once the work products and design artifacts have been reviewed, the gathered porting
data has been evaluated, and the implementation has been determined to meet the general
criteria identified for portability, the JTeL issues a recommendation that the waveform be
accepted into the JTRS library.

3 The functional aspect of the waveform is not under scrutiny in this process: rather, the focus is on traditional
aspects of good software design, e.g. modularity, information hiding, encapsulation, etc. The objective is to ensure
that the waveform delivered has been designed in such a way that, together with the documentation, it can be ported
to another platform without undue effort. There is, of course, no guarantee that a subsequent porting activity will
be cost effective or even feasible because there are certain aspects of the I/O, control, and processing architecture
that can significantly increase the porting effort and cost.

PART II

The Domain Profile
Vincent J. Kovarik Jr.

In Part I, the SCA specification, requirements, and general functional behavior were
discussed. Background was also presented on the certification process for the Operating
Environment and the Waveform. One of the key capabilities of an SCA radio system is its
ability to deploy a waveform on a set of hardware without having any a priori knowledge
about the waveform or radio system hardware. This is possible through the use of XML
files that describe the Domain Profile for the radio system. The Domain Profile provides
the essential description of the radio platform and hardware devices, and the waveform, its
components, dependencies, and connections. Part II presents the format and content of the
XML files that form the Domain Profile.

9
The Domain Profile

9.1 Overview

This chapter describes the use of XML as the specification language for defining components
of the software radio and how these assemblies are organized. A waveform application
is described within the context of the SCA using a collection of XML files. The root or
origination point for describing a software waveform is the Software Assembly Descriptor
(SAD) file. The SAD file provides the starting point for instantiating a waveform within
an SCA-compliant radio. This is performed through inclusion of additional XML files that
define waveform components, properties associated with components, interfaces, and other
details of the waveform.

In addition, a set of XML files describes the radio system hardware. These files provide
a specification of the Devices within the SCA radio system and the capabilities of the
hardware. Mapping the requirements of the waveform, as specified in the SAD file and
included files, to the available hardware resources is the fundamental process performed by
the create operation on the ApplicationFactory discussed in Chapter 6. The balance of this
chapter presents the organizational elements and content of the Domain Profile XML files.

9.2 SCA Domain Profile XML

The organization of the XML files is illustrated in Figure 9.1. Within any SCA-compliant
radio, there is a domain. The domain can be thought of as the collection of devices, physical
and logical, software components, and applications (i.e. waveforms) that all reside within
the system. Thus, within a single domain, there may be multiple Device Configuration
Descriptors that describe physical hardware assemblies and the software that resides on the
assemblies. There may also be multiple SADs within a domain. Each SAD describes the set
of logical components that comprise an application and the logical and physical resources
that are required to support the application.

Together, the collection of XML files comprise the Domain Profile of the system. It
should be noted, however, that a Domain Profile is not necessarily a static state; the Domain
Profile can and does change over time. The Domain Profile changes when a new hardware
component is installed, when a software implementation changes for a device interface, or

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

216 The Domain Profile

cd Domain Profile

DomainProfile

«DTDElement»
DeviceConfigurationDescriptor

«DTDElement»
DomainManagerConfigurationDescriptor

«DTDElement»
SoftwareAssemblyDescriptor

«DTDElement»
SoftwarePackageDescriptor

«DTDElement»
SoftwareComponentDescriptor

«DTDElement»
PropertiesDescriptor

«DTDElement»
ProfileDescriptor

«DTDElement»
DevicePackageDescriptor

0 . .∗

1

111

0 . .∗

0 . .∗0 . .∗

1. .∗

0 . .∗

1

1

0 . .∗

1. .∗

0 . .∗

Figure 9.1. Domain Profile XML file relationships

when a new waveform is installed. Thus, the Domain Profile is an information set that
describes the overall hardware, software, and applications available to the system at a given
point in time. Similarly, the Domain Profile can also change as hardware, software, and
applications are removed from the system.

It should also be noted that the Domain Profile, as represented by the set of XML files,
is simply that: an external representation form. In order to perform any computational
processing with the information contained within the XML files, they must first be ingested
into the system through an XML parser. The XML parser reads each of the constituent
XML files for a Domain profile, validates each file against an XML Document Type
Definition (DTD) file, and builds a hierarchical tree or Document Object Model (DOM).
Although the DOM is a data structure that is traversable programmatically and can be
used as the internal representation mechanism, it is not computationally efficient to perform
the tree traversal. Consequently, most implementations utilize an internal set of classes
or data structures that provide the domain profile representation in a much more efficient
manner.

A Domain Profile contains at least a Domain Manager Descriptor (DMD) file and a Device
Configuration Descriptor (DCD) file (see Table 9.1). The DMD contains the information
necessary to start the Domain Manager, the top-level control entity for the SCA Core
Framework. The DCD contains the information describing at least one Device, usually a
GPP, on which the Domain Manager is hosted. Thus, the initial DCD identifies the startup
or boot node processor and the DMD provides the information necessary to start and run the

SCA Domain Profile XML 217

Domain Manager. The SAD file, however, because it is not necessary to have a waveform
application specified and installed when the system first boots up, is not necessary for system
startup.

Table 9.1. Domain Profile requirements

Section ID Resp Requirement

3.1.3.4 SR:588 SI, WS Domain Profile files shall use the format of the
Document Type Definitions (DTDs) provided in
Appendix D of the specifications.

3.1.3.4 SR:589 SI, WS DTD files are installed in the domain and shall have
‘.dtd’ as their filename extension.

3.1.3.4 SR:590 SI, WS All XML files shall have as the first two lines an
XML declaration (?xml) and a document type
declaration (!DOCTYPE).

3.1.3.4.1 SR:591 SI, WS A Software Package Descriptor file shall have a
‘.spd.xml’ extension.

3.1.3.4.2 SR:592 SI, WS A Software Component Descriptor file shall have a
‘.scd.xml’ extension.

3.1.3.4.3 SR:593 WS A Software Assembly Descriptor file shall have a
‘.sad.xml’ extension.

3.1.3.4.4 SR:594 SI, WS A Properties File shall have a ‘.prf.xml’ extension.
3.1.3.4.5 SR:595 SI, DS A Device Package Descriptor File shall have a

‘.dpd.xml’ extension.
3.1.3.4.6 SR:596 SI, DS A Device Configuration Descriptor file shall have a

‘.dcd.xml’ extension.
3.1.3.4.8 SR:597 SI, CF A DomainManager Configuration Descriptor file

shall have a ‘.dmd.xml’ extension.

The structure and syntax of the Domain Profile XML files are defined by a DTD file
(SR:588). The DTD file can be thought of as a grammar specification, similar to the Backus-
Naur Form (BNF) commonly used to describe the syntaxtic structure of programming
languages. The DTD files are required to have the three-letter extension ‘.dtd’ in the file
name (SR:589) and an XML declaration and document type declaration as the first two lines
(SR:590).

The XML files for each of the different types of domain profile files have specific
extensions for each type. These extensions and the associated file type are as shown in Table 9.2.

Rather than follow the approach used in Appendix D of the SCA specification, the structure
defined by the DTD files has been represented using UML diagrams. The objective is to
provide a visual representation of the grammar specified in the DTD files that is easier to
follow than the textual DTD while still maintaining the syntax defined by the DTD file.1

1 In Appendix D, there are also UML diagrams. The following sections provide a logical discussion of the XML
file syntax, as specified by the DTDs, using UML containment diagrams. The syntax is presented in a graphical
format using UML. The key difference between the UML presented in Appendix D and as represented here is that
the element relationships are modeled as containment aggregation links rather than simple associations.

218 The Domain Profile

Table 9.2. XML file name requirements

File Name Extension File Type Requirement

‘.spd.xml’ Software Package Descriptor SR:591
‘.scd.xml’ Software Component Descriptor SR:592
‘.sad.xml’ Software Assembly Descriptor SR:593
‘.prf.xml’ Profile Descriptor SR:594
‘.dpd.xml’ Device Package Descriptor SR:595
‘.dcd.xml’ Device Configuration Descriptor SR:596
‘.dmd.xml’ Domain Manager Descriptor SR:597

The next chapter presents common descriptor files that are referenced in multiple high-
level descriptors. The descriptor files discussed are the Properties Descriptor File, the
Software Package Descriptor File, the Software Component Descriptor, and the Device
Package Descriptor.

9.3 Domain Profile Data Types

The Domain Profile data types are illustrated in Figure 9.2.

cd Domain Profile Types

«enumeration»
COMPLIANCETYPE

- sca_compliant: int = 0
- sca_non_compliant: int = 1

This diagram shows the
standard XML data
types and the types
defined in the SCA
DTDs

CDATA
Allows the use of characters within the text
that would normally be interpreted by the
XML parser as escape characters, e.g. \, &.

PCDATA

Denotes Parsed Character Data. This
denotes a mixed type of data in which
character data may be interspersed with
child elements.

«enumeration»
AEPCOMPLIANCETYPE

- aep_compliant: int = 0
- aep_non_compliant: int = 1

propertyref

- refid: CDATA
- value: CDATA

«enumeration»
SIMPLETYPEDEF

- boolean: int
- char: int
- double: int
- float: int
- short: int
- long: int
- objref: int
- octet: int
- string: int
- ulong: int
- ushort: int

«enumeration»
ACCESSMODE

- readonly: int
- readwrite: int
- writeonly: int

«enumeration»
KINDTYPEDEF

- allocation: int
- configure: int
- test: int
- execparam: int
- factoryparam: int

«enumeration»
ACTIONTYPEDEF

- eq: int
- ne: int
- gt: int
- lt: int
- ge: int
- le: int
- external: int

«enumeration»
PORTTYPEDEF

- data: int
- control: int
- responses: int
- test: int

«enumeration»
DOMAINFINDERTYPEDEF

- filemanager: int = 0
- log: int
- eventchannel: int
- namingservice: int

#REQUIRED

Figure 9.2. Domain Profile Data Types

10
Base Descriptor Files

10.1 Properties Descriptor

The Properties Descriptor describes the property definitions (see the Property Set IDL
interface) for Software Package Descriptor (SPD), the Software Component Descriptor
(SCD), and the Device Package Descriptor (DPD). The SPD, SCD, and DPD are incorporated
multiple times across each of the top-level descriptors.

Properties use a name-value pair representation. One way to envision the PropertySet is
as an instantiation of a hash table where the property name is the key and the value can
be set or retrieved based on the key value. There is additional information associated with
the property definition, e.g. access mode, data type, description, which defines access to the
property.

The functions configure and query are used to set or get the value of a property. The
PropertySet interface is inherited by the Resource, DomainManager, and DeviceManager
interfaces.

The Property file consists of one or more property definitions and an optional description
for each property (see Figure 10.1). There are two basic property types, simple and struct,
and two additional types, simple sequence and struct sequence, that provide a mechanism
for sequences of simple and struct property types. In addition, a test type identifies that the
property is used with the runTest() operation.

10.1.1 Simple

The simple property type is, as the name implies, a simple data type. The data types,
SIMPLETYPEDEF, are roughly equivalent to the simple data types provided in a
programming language such as C. The access mode of the property is defined by the mode
attribute and is only applicable if the kind element is configure. Three types of access are
supported: readonly, readwrite, and writeonly. The Id attribute contains a unique Id for the
property. If the property is an allocation type, then the Id must be a DCE UUID. The name
attribute contains a string name for the attribute.

As shown in Figure 10.2, all of the subelements of the simple element are optional. The
only mandatory information required to define a simple property are the Id, type, and mode

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

220 Base Descriptor Files

cd Properties Descriptor

«DTDElement»
PropertiesDescriptor

properties

«#PCDATA»
description

«Group»
PropertyType

simple

simplesequence

test

- id: ID

struct

structsequenceOne or more of the
following property
types are specified.

1..∗

1..∗

0 . . 1

0 . . 1 1

0 . . 1

0 . . 1

0 . . 1

«realize»

- mode: ACCESSMODE = readwrite

- id: ID
- type: SIMPLETYPEDEF

- name: CDATA

#REQUIRED

#IMPLIED

- mode: ACCESSMODE = readwrite

- id: ID
- type: SIMPLETYPEDEF

- name: CDATA

#REQUIRED

#IMPLIED

- mode: ACCESSMODE = readwrite

- id: ID

- name: CDATA

#REQUIRED

#IMPLIED

- mode: ACCESSMODE = readwrite

- id: ID
- structrefid: CDATA

- name: CDATA

#REQUIRED

#IMPLIED

#REQUIRED

Figure 10.1. Property File Descriptor contents

attributes defined above. The name attribute, which defines a string name for the property,
is optional.

The description subelement provides an optional block for text describing the property.
The optional value subelement is used to specify a value for the property. This value may
be subsequently changed within the running system if the mode attribute is set to readwrite
or writeonly.1

The units’ subelement provides a method for defining the interpretation of the value, i.e.
the value might be 44.1 and the units might be ‘KHz’ signifying the standard sampling rate
for an audio Compact Disc (CD). The range subelement, if specified, defines a high and low

1 If an initial value is not specified, then the property may not be used for input values on the runTest() interface
or as an initial configuration or an execute parameter to a component.

Properties Descriptor 221

cd Simple

simple

«#PCDATA»
description

«#PCDATA»
value

«#PCDATA»
units

«EMPTY»
range

enumerations

«EMPTY»
kind

- kindtype: KINDTYPEDEF = configure
«EMPTY»

action

- type: ACTIONTYPEDEF = external

«EMPTY»
enumeration

«enumeration»
SIMPLETYPEDEF

+ boolean:
+ char:
+ double:
+ float:
+ long:
+ short:
+ objref:
+ octet:
+ string:
+ ulong:
+ ushort:

«enumeration»
ACCESSMODE

+ readonly:
+ readwrite:
+ writeonly:

1..∗

0 . . 1

0..∗

0..1

0 . . 1

0 . . 1

0 . . 1

0 . . 1

+type

+mode

- mode: ACCESSMODE = readwrite

- id: ID
- type: SIMPLETYPEDEF

- name: CDATA

#REQUIRED

#IMPLIED

- max: CDATA
- min: CDATA

#REQUIRED

- label: CDATA

~ value: CDATA

#REQUIRED

#IMPLIED

Figure 10.2. Simple element

range for the property. This element is not utilized by the ApplicationFactory or Application
components.2

The enumeration subelement supports the ability to define a set of label/value pairs for a
property. If values are not provided with the labels then the values associated with the labels
are ordinal numbers starting with zero for the first enumeration element and incrementing
by one for each of the subsequent enumeration elements.

The kind element is used to describe the attribute’s purpose and use. The type is defined
by setting the kindtype attribute on the kind subelement. There are five types:

1. configure – This type identifies that the property may be used in the query() and
configure() operations. If the mode is defined as readonly, then the query() operation is
supported. If the mode is writeonly, then the configure() operation is supported. If the
mode is readwrite, then both operations are supported. During the creation of a Resource
component by the ApplicationFactory, the ResourceFactory, or the DeviceManager, those
properties defined as configure for a component are provided as input parameters to the
Resource being created.

2 There is no requirement identified that the high and low ranges, if specified for a property, are enforced by the
configure() call on a Property.

222 Base Descriptor Files

2. test – A value of test in the kindtype property is used by the runTest() operation. Since the
runTest() operation specifies a sequence of unsigned long values as input, any property
with a kindtype of test must have a type attribute of ulong.

3. allocation – A property with a kind value of allocation is typically used within
the allocateCapacity() and deallocateCapacity() operations within the create() operation
on the ApplicationFactory. If the property also has an action type of external
(discussed below), then the property may also be retrieved through the query()
operation.3

4. execparam – The execparam kind value identifies that the property is used
within the execute() operation on the ExecutableDevice. The ApplicationFactory and
DeviceManager builds a sequence of the execparam properties to pass to the execute()
call on the creation of a process on an ExecutableDevice.

5. factoryparam – The factoryparam kind value identifies that the property is to be used
as part of the createResource() operation on the ResourceFactory.

The action subelement identifies how a SPD property value should be compared to a property
associated with a Device when checking SPD dependencies. The action value defines the
type of boolean comparison to be made, e.g. equal, greater than, etc. The convention is that
the allocation property is on the left side of the comparison operator and the dependency
value is on the right.

10.1.2 Simple Sequence

The simplesequence property is essentially the same as the simple property. The difference
is that the simplesequence supports a sequence of values instead of a single value (see
Figure 10.3).

Each of the elements in the sequence of values must be the same type and must be one
of the defined simple types. The remainder of the subelement definitions remain the same
as the simple property.

10.1.3 Struct

The struct subelement supports the definition of a property that is made up of a set of two
or more discrete values and types (Figure 10.4). This is essentially analogous to the struct
definition within the C language.

3 Although a value of allocation on the kind identifies that the property is used for the allocateCapacity and
deallocateCapacity operations on the Device, the syntax defined states that the kind definition is optional. This is
because properties are used across virtually all Domain Profile components and not all parts of the Domain Profile
require an allocation kind. One might also think that there are devices that may have an API but do not require
allocation to a particular application, e.g. Power System. One could make the argument that the partial allocation
of power consumed based on the load imposed by the application running could be performed. However, the state
of the art is not yet at that level of sophistication. The catch comes in when a Device attempts to register with
the DomainManager. One of the actions performed by the DomainManager on Device registration is to obtain the
allocation property of the Device that is registering. If no allocation property is provided, then an exception is
thrown. This is an example of how a Device may be implemented correctly, the XML may pass the syntax validation,
and yet, when the system starts, an error is encountered.

Properties Descriptor 223

cd Simple Sequence

simplesequence

«#PCDATA»
description

values

«#PCDATA»
units

«EMPTY»
range

#REQUIRED
- max: CDATA
- min: CDATA

«EMPTY»
kind

- kindtype: KINDTYPEDEF = configure «EMPTY»
action

- type: ACTIONTYPEDEF = external

«#PCDATA»
value1..∗

0 . . 1

0..∗

0 . . 1

0 . . 1

0 . . 1

0 . . 1

- mode: ACCESSMODE = readwrite
#REQUIRED
- id: ID
- type: SIMPLETYPEDEF

- name: CDATA
#IMPLIED

Figure 10.3. Simple Sequence element

cd Struct

struct

- mode: ACCESSMODE = readwrite

#REQUIRED
- id: ID
#IMPLIED

- name: CDATA

«#PCDATA»
description

simple

- mode: ACCESSMODE = readwrite

#REQUIRED
- id: ID
- type: SIMPLETYPEDEF

#IMPLIED
- name: CDATA

«EMPTY»
configurationkind

- kindtype: KINDTYPEDEF = configure

0 . . 1

1..∗

0 . . 1

0 . . 1

Figure 10.4. Struct element

The struct element identifies the access mode to apply, which defaults to readwrite, and
has a mandatory Id and optional name attributes. The one or more entries of the simple
subelement are used to define the structure and organization of the struct. Both the struct
element and the simple subelement may have a description subelement.

224 Base Descriptor Files

A single configurationkind value is defined for the struct by the configurationkind element.
However, only two values are allowed for the struct type instead of the five values allowed
on the simple property type. The legal values are:

1. configure – This type identifies that the property may be used in the query() and
configure() operations. If the mode is defined as readonly, then the query() operation is
supported. If the mode is writeonly, then the configure() operation is supported. If the
mode is readwrite, then both operations are supported. During the creation of a Resource
component by the ApplicationFactory, the ResourceFactory, or the DeviceManager, those
properties defined as configure for a component are provided as input parameters to
the Resource being created.

2. factoryparam – The factoryparam kind value identifies that the property is to be used
as part of the createResource() operation on the ResourceFactory.

10.1.4 Struct Sequence

The structsequence element is analogous to the simplesequence element. It defines a type
that allows a sequence of struct values (Figure 10.5). As with the simplesequence, each of
the values of a structsequence must be the same.

cd Struct Sequence

structsequence

- mode: ACCESSMODE = readwrite
#REQUIRED
- id: ID
- structrefid: CDATA
#IMPLIED
- name: CDATA

«#PCDATA»
description

structvalue

«EMPTY»
simpleref

#REQUIRED

- refid: CDATA
- value: CDATA

«EMPTY»
configurationkind

- kindtype: KINDTYPEDEF = configure

0..1

1..∗1..∗

0 . . 1

Figure 10.5. Struct Sequence element

The configurationkind and description subelements are the same as on the simplesequence.
One or more structvalue entries form the sequence. Each struct value is composed of a sequence
of one or more simpref entries. The simpleref has two attributes, a refid referring to the data
element within the struct and the value attribute that contains the data for that element.

10.1.5 Test

The test element of the properties definition is used to define a set of properties for the
runTest() operation. It has an Id attribute, which is mandatory, that provides a unique Id
for the test entry. There are three subelements: description, inputvalue, and resultvalue
(Figure 10.6).

On most elements the description element is optional. However, it is mandatory on the
test element. This is to require some descriptive information about the test that is initiated,
what the test performs, and results provided.

softpkg 225

cd Test

test

#REQUIRED
- id: ID

«#PCDATA»
description

inputvalue

resultvalue

simple

- mode: ACCESSMODE = readwrite
#REQUIRED
- id: ID
- type: SIMPLETYPEDEF
#IMPLIED
- name: CDATA

1..∗

1..∗

1

0 . . 1

1
0 . . 1

Figure 10.6. Test element

The inputvalue is optional and, if specified, is a simple property. The resultvalue properties
contain the result of the test upon completion.

10.2 softpkg

The Software Package Descriptor (SPD) provides the information necessary to manage
the software component (see Figure 10.7). For a waveform component, the SPD specifies

cd Software Package Descriptor

«DTDElement»
SoftwarePackageDescriptor

«#PCDATA»
title

softpkg

- type: COMPLIANCETYPE = sca_compliant
#REQUIRED
- id: ID
- name: CDATA
#IMPLIED
- version: CDATA

author

«#PCDATA»
description

propertyfile

#IMPLIED
- type: CDATA

descriptor

#IMPLIED
- name: CDATA

implementation

- aepcompliance: AEPCOMPLIANCETYPE = aep_compliant
#REQUIRED
- id: ID usesdevice

#REQUIRED
- id: ID
- type: CDATA

0..∗

0..∗ 1..∗

0 . . 1

0 . . 1

0 . . 1

0 . . 1

0 . . 1

1..∗
«realize»

0 . . 1

Figure 10.7. Software Package Descriptor elements

226 Base Descriptor Files

implementation choices available to the DomainManager and ApplicationFactory. The SPD
may have a property file that defines general properties for the component and each
implementation may have an associated property file. All files referenced by a Software
Package are located in the same directory as the SPD file or a directory that is relative to
the directory where the SPD file is located.

The SPD Id attribute contains a unique Id for the component in the form of a DCE UUID.
The name attribute contains a readable name for the component. These two attributes are
mandatory.

The SPD also has a type attribute identifying whether the component is SCA-compliant
or not. The default value is sca_compliant. In addition, the version attribute may be
provided to identify the particular version of the component.

10.2.1 title

The optional title element provides descriptive information about the software package
described by the SPD.

10.2.2 author

One or more author elements are required by the softpkg definition. The author element
contains information about the author’s name, affiliation, and web page link

10.2.3 description

The optional description element provides readable information about the software package.

10.2.4 propertyfile

The propertyfile element identifies the local filename of the Property Descriptor file for the
Software Package (Figure 10.8). At the SPD level, the propertyfile is used to define property
elements common to all component implementations referenced within the SPD.

cd Property File

propertyfile

#IMPLIED

- type: CDATA

«EMPTY»
localfile

1

- name: CDATA

#REQUIRED

Figure 10.8. PropertyFile element

If the propertyfile element is present then is must have a localfile element defined. The
name attribute of the localfile element provides the reference to a file in the same directory
as the SPD file or a directory that is relative to the directory where the SPD file is located.

softpkg 227

10.2.5 descriptor

The optional descriptor element provides a reference to the Software Component Descriptor
(SCD) file that provides information on the interface for the SPD (Figure 10.9).

cd Descriptor

descriptor

#IMPLIED
- name: CDATA

«EMPTY»
localfile

#REQUIRED
- name: CDATA

1

Figure 10.9. Descriptor element

If the descriptor element is provided, it must contain a localfile element. The name
attribute of the localfile element provides the reference to a file in the same directory as
the SPD or a directory relative to the SPD directory. The SCD provides information about
the component type, message ports, and IDL interfaces. The SCD is optional because some
components may not be SCA compliant.

10.2.6 implementation

The software package must contain one or more instance of the implementation element.
The implementation element provides information regarding a specific implementation of
the software package (Figure 10.10).

The aepcompliance attribute identifies whether the component adheres to the Application
Environment Profile or not. The mandatory Id attribute provides a unique identifier for the
implementation being described.

code

The code element is mandatory and has a single mandatory subelement, localfile (see
Figure 10.11). The localfile element defines the name of the file that implements the
component. The type attribute of the code element has four possible values:

• Executable – This corresponds to a program that executes as a process within an operating
system.

• Driver – This corresponds to a load module that may be incorporated or linked into some
other component.

• Kernel – This is similar to Driver but refers to load modules that are incorporated as part
of the operating system routines.

• SharedLibrary – A shared library may be either an executable element or a load only
element depending on whether the entrypoint value is set or not.

228 Base Descriptor Files

cd Implementation

implementation

- aepcompliance: AEPCOMPLIANCETYPE = aep_compliant
#REQUIRED
- id: ID

«#PCDATA»
description

propertyfile

#IMPLIED
- type: CDATA

code

#IMPLIED
- type: CDATA

«EMPTY»
compiler

#REQUIRED
- name: CDATA
- version: CDATA

«EMPTY»
programminglanguage

#REQUIRED
- name: CDATA
#IMPLIED
- version: CDATA

«EMPTY»
humanlanguage

#REQUIRED
- name: CDATA

OSGroup

usesdevice

#REQUIRED
- id: ID
- type: CDATA

«EMPTY»
runtime

#REQUIRED
- name: CDATA
#IMPLIED
- version: CDATA

propertyref

#REQUIRED
- refid: CDATA
- value: CDATA

1..*

0 . . 1

0..*

1..*

0 . . 1

0 . . 1

0 . . 1

1

0 . . 1

0 . . 1

Figure 10.10. Implementation element

cd Code

«#PCDATA»
entrypoint «#PCDATA»

stacksize

«#PCDATA»
priority

«EMPTY»
localfile

#REQUIRED
- name: CDATA

code

#IMPLIED
- type: CDATA

1

0 . . 1

0 . . 1

0 . . 1

Figure 10.11. Implementation code element

softpkg 229

The stacksize and priority are optional parameters used in the execute() operation. Data
types for the values of these options are unsigned long. The entrypoint element specifies the
name of the entry point of the component.

The compiler, runtime, programminglanguage, humanlanguage, os, and processor
elements are optional dependency elements The first four are described below (os and
processor are described in the next section):

• compiler – This element specifies the compiler used to build the software component. The
required name attribute provides the name of the compiler used, and the version attribute
identifies the compiler version.

• runtime – This element specifies a runtime required by a component implementation.
• programminglanguage – This element identifies the programming language used to build

the component. The name attribute defines the language, e.g. C, C++, Java, etc.
• humanlanguage – This element defines the human readable language for which the

component was developed. The name attribute provides the language name, e.g. English,
French, etc.

OSGroup

The OSGroup identifies several mandatory elements that describe dependencies of the
software implementation (Figure 10.12).

cd OS Group

OSGroup

«EMPTY»
os

#REQUIRED
- name: CDATA
#IMPLIED
- version: CDATA

«EMPTY»
processor

#REQUIRED
- name: CDATA

dependency

#REQUIRED
- type: CDATA

softpkgref

propertyref

#REQUIRED
- refid: CDATA
- value: CDATA

«EMPTY»
localfile

#REQUIRED
- name: CDATA

«EMPTY»
implref

#REQUIRED
- refid: CDATA

0 . . 1

1
1

1

1

1

1

Figure 10.12. OSGroup element

The elements defined include:

• os – This element specifies the operating system required by the software component.
The name attribute specifies the name of the operating system and the version attribute
defines the operating system version. The os attributes are defined in a property file as an

230 Base Descriptor Files

allocation property of string type and with names os_name and os_version and with
an action element value other than ‘external’. The os element is automatically interpreted
as a dependency and compared against allocation properties with names os_name and
os_version. Legal os_name attribute values are listed in Attachment 2 of Appendix
D of the specification.

• processor – This element specifies the processor and/or processor family required by
the software component. The name attribute is defined in a property file as an allocation
property of string type with a name of processor_name and an action element value
other than ‘external’. The processor element is automatically interpreted as a dependency
and compared against an allocation property with a name processor_name. Legal
processor_name attribute values are listed in Attachment 2 of Appendix D of the
specification.

• dependency – This element specifies dependency relationships between the components
being delivered and other components and devices. The propertyref references a specific
allocation property, using a unique identifier, and specifies the value used by a Device
to satisfy an allocateCapacity operation. The DomainManager uses the dependencies to
assure that components and devices necessary for proper operation of the implementation
are present and available. The type attribute is descriptive information indicating the type
of dependency.

• softpkgref – This element refers to a softpkg element contained in another Software
Package Descriptor file and indicates a file-load dependency on that file. The file that the
component is dependent on is specified by the name attribute of the localfile element. An
optional implref element refers to a particular implementation-unique identifier, within
the Software Package Descriptor of the other file.

The usesdevice element describes any ‘uses’ relationships this component has with a
device in the system. The propertyref element references allocation properties, which indicate
the Device to be used, and/or the capacity needed from the Device to be used.

10.3 Software Component Descriptor

The Software Component Descriptor (SCD) file describes the ports and interfaces of the
software packages that reference the SCD.

The softwarecomponent element has several mandatory subelements and an optional
propertyfile element (Figure 10.13).

The mandatory elements include:

• corbaversion – This element specifies the version of CORBA that the delivered component
supports.

• componentrepid – This element uniquely identifies the interface that the component is
implementing. The componentrepid may be referred to by the componentfeatures element.

• componenttype – This element describes properties of the component. For
SCA components, the component types include resource, device, resourcefactory,
domainmanager, log, filesystem, filemanager, devicemanager, namingservice, and
eventservice.

Software Component Descriptor 231

cd Software Component Descriptor

«DTDElement»
SoftwareComponentDescriptor

softwarecomponent

«#PCDATA»
corbaversion

«EMPTY»
componentrepid

#REQUIRED
- repid: CDATA

«#PCDATA»
componenttype

componentfeatures

interfaces
propertyfile

#IMPLIED
- type: CDATA0 . . 1

1

1

1

1

1

«realize»

Figure 10.13. Software Component Descriptor elements

• componentfeatures – This element defines a component with respect to the components
from which it inherits, the interfaces the component supports, and its provided and used
ports.

The componentfeatures element is further decomposed as shown in Figure 10.14.

cd Component Features

componentfeatures

«EMPTY»
supports interface

#REQUIRED
- repid: CDATA
- supportsname: CDATA

ports

provides

#REQUIRED
- providesname: CDATA
- repid: CDATA

uses

#REQUIRED
- repid: CDATA
- usesname: CDATA

«EMPTY»
porttype

#REQUIRED
- type: PORTTYPEDEF

0..∗

0..∗

0..∗

0..∗

1

0..∗

Figure 10.14. Component Features element

The optional supportsinterface element identifies an IDL interface that the component
supports. These interfaces are distinct interfaces that were inherited by the component’s
specific interface. The repid is used to refer to the interface element.

232 Base Descriptor Files

The mandatory ports element defines the interfaces provided and used by a component.
The provides elements are interfaces that are not part of a component’s interface but are
independent interfaces. The uses element is a Port interface type that is connected to a
provides or supportsinterface. Any number of uses and provides elements can be given in any
order. Each ports element has a name and references an interface by repid. The port names
are used in the Software Assembly Descriptor to connect ports together. A ports element
also has an optional porttype element that allows for identification of port classification.
Values for porttype include ‘data’, ‘control’, ‘responses’, and ‘test’. If a porttype is not given
then ‘control’ is assumed.

cd Interfaces

interfaces

interface «EMPTY»
inherits interface

0..∗1..∗ - name: CDATA
- repid: CDATA

#REQUIRED

- repid: CDATA
#REQUIRED

Figure 10.15. Domain Profile XML file relationships

The interfaces element contains one or more interface elements (see Figure 10.15).
The name and repid attributes of the interface element are mandatory. Optionally, the
inheritsinterface element may be defined to specify the interfaces that are inherited by the
interface element.

10.4 Device Package Descriptor

The Device Package Descriptor (DPD) contains hardware device registration attributes,
which are typically used by a Human Computer Interface application to display information
about the device(s) resident in an SCA-compliant radio system. DPD information is intended
to provide hardware configuration and revision information to a radio operator or to radio
maintenance personnel. A DPD may be used to describe a single hardware element residing
in a radio or it may be used to describe the complete hardware structure of a radio (see
Figure 10.16).

The devicepkg is the top-level element of the physical radio system description. It has a
unique identifier stored on the id attribute, a descriptive name stored on the name attribute,
and an optional attribute, version, which provides version information regarding the device.
The devicepkg may also provide descriptive information through the title element, the author
element, and the description element.

The key element is the hardware device registration, hwdeviceregistration, element (see
Figure 10.17). This element provides device-specific information and has id, name, and
version attributes as well. The key information is provided through the sub-elements of
the hwdeviceregistration. Basic descriptive information is provided through the description,
manufacturer, modelnumber, and deviceclass elements which provide the information
indicated by the element names. The hwdeviceregistration may have its own propertyfile to
provide additional property definitions and values unique to the specific device.

Device Package Descriptor 233

«DTDElement»
DevicePackageDescriptor

devicepkg

#REQUIRED
- id: ID
- name: CDATA
#IMPLIED
- version: CDATA

«#PCDATA»
title

author

«#PCDATA»
description

hw deviceregistration

#REQUIRED
- id: ID
- name: CDATA
#IMPLIED
- version: CDATA

1
{4}

1
{2}

0..1
{3}

1..∗
{2}

0 . . 1

{1}«realize»

cd Device Package Descriptor

Figure 10.16. Device Package Descriptor elements

cd Hardware Device Registration

hwdeviceregistration

#REQUIRED
- id: ID
- name: CDATA
#IMPLIED
- version: CDATA

propertyfile

#IMPLIED
- type: CDATA

«#PCDATA»
description

«#PCDATA»
manufacturer

«#PCDATA»
modelnumber

deviceclass

«Group»
childhwdevice

devicepkgref

#IMPLIED
- type: CDATA

«EMPTY»
localfile

#REQUIRED
- name: CDATA

The childhwdevice group
consists of either a hwdevice
registration or a devicepkgref.

1

1

1

1

0..*
{6}

1
{2}

1
{3}

1
{4}

1
{5}

0..1
{1}

Figure 10.17. Hardware Device Registration element

234 Base Descriptor Files

If the hwdeviceregistration is comprised of multiple sub-devices or child devices, then
there may be one or more childhwdevice elements defined. Each childhwdevice element
consists of either a hwdeviceregistration element or a devicepkgref that provides the
specific information for the child device. If the childhwdevice element consists of a
hwdeviceregistration, then it may also contain childhwdevice elements. Thus, a hierarchical
decomposition of the set of devices in a system may be represented.

11
Device Configuration Descriptor

11.1 Overview

The Device Configuration Descriptor contains the information necessary to start-up one or
more devices that comprise a node. There is at least one Device Manager within an SCA
system associated with the initial startup or boot node. Other devices that are not part of the
boot node may also be started.1

Figure 11.1 shows the top level components of the DCD file. The mandatory
components of the DCD are the devicemanagersoftpkg and domainmanager elements. The
devicemanagersoftpkg element provides the information necessary to load and execute the
SCA DeviceManager implementation. The domainmanager element provides the information
necessary to load and execute the DomainManager implementation.

The remainder of the elements are optional but, in most implementations, typically contain
entries providing additional information regarding the configuration and execution of the
DeviceManager. Elements that are usually included are the filesystemnames, connections,
and componentfiles.

11.2 deviceconfiguration

The top-level element is the deviceconfiguration and it contains two attributes: Id and
name. The Id attribute is mandatory and provides a unique identifier (UUID) for the
DeviceManager. The name attribute is optional and provides a human readable name for the
DeviceManager.

1 Only one Device Manager is necessary. However, depending on the complexity of the system, additional
DeviceManagers can help to manage the complexity of the system providing logical subsets of the Devices that
comprise the system. Having more than one DeviceManager is suited for SCA systems consisting of multiple
hardware components such as a bank of signal processing components within a VME or other backplane. Having
a DeviceManager associated with a card or Line Replaceable Unit (LRU) is advisable.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

236 Device Configuration Descriptor

cd Device Configuration Descriptor

«DTDElement»
DeviceConfigurationDescriptor

deviceconfiguration

«#PCDATA»
description

devicemanagersoftpkg

componentfiles

partitioning

connections

domainmanager

filesystemnames

«EMPTY»
localfile

«EMPTY»
namingservice

«EMPTY»
filesystemname

#REQUIRED
- deviceid: CDATA
- mountname: CDATA

componentplacement

componentfile

0 . .∗

1 . .∗

1

1

1

0 . .1
{7}

1
{6}

0 . .1
{5}

0 . .1
{4}

0 . .1
{3}

«realize»

1

- id: ID

- name: CDATA

#REQUIRED

#IMPLIED

0 . .1
{1}

1
{2} - name: CDATA

#REQUIRED

- name: CDATA
#REQUIRED

- id: ID

- type: CDATA

#REQUIRED

#IMPLIED

Figure 11.1. Device Configuration Descriptor components

11.2.1 description

The description element is optional and is used to provide a documentation, background, or
other useful information useful to the developer or integrator of an SCA system using the
DevicementManager implementation.

11.2.2 devicemanagersoftpkg

The devicemanagersoftpkg element specifies the SPD file that identifies the software to be
loaded and run that implements the DeviceManager. The SPD information is specified within
a localfile element. The name attribute of the localfile element contains the full pathname
information to the SPD.

11.2.3 componentfiles

The componentfiles element is a construct to provide the ability to specify a set of one or
more componentfile elements. If no componentfile elements are to be specified, then the
componentfiles element may be omitted.2

2 In practice, the componentfiles element will typically be present because some Device or Service will be started
as part of the DeviceManager.

deviceconfiguration 237

componentfile

Each componentfile element has a required Id attribute providing a unique identifier for the
element (Figure 11.2). The type attribute on the componentfile element provides information
about the component.

cd Component Files

componentfiles
componentfile

#REQUIRED
- id: ID
#IMPLIED
- type: CDATA

«EMPTY»
localfile

#REQUIRED
- name: CDATA

1
1

Figure 11.2. componentfiles element

Each componentfile element contains one localfile element that references a SPD file that
describes the software to be started as part of the DeviceManager startup.

The SPD file may refer to a Device, DeviceManager, DomainManager, Naming Service,
FileSystem, or other software component to be started as part of the DeviceManager.

11.2.4 partitioning

The partitioning element is simply used as a construct to describe a set of one or more
componentplacement elements. If no componentplacement elements are required, then the
partitioning element may be omitted.

componentplacement

The componentplacement element specifies deployment information and constraints for a
component (Figure 11.3). There are two mandatory elements of the componentplacement:
the componentfileref and componentinstantiation elements. The deployondevice,
compositepartofdevice, and devicepkgfile elements are optional.

cd Component Placement

componentplacement

«EMPTY»
componentfileref

- refid: CDATA

componentinstantiation

- id: ID

«EMPTY»
deployondevice

- refid: CDATA «EMPTY»
compositepartofdevice

- refid: CDATA
devicepkgfile

- type: CDATA 0 . .1

0 . .1

0 . .1

1 . .∗

1
#REQUIRED

#REQUIRED

#REQUIRED

#REQUIRED

#IMPLIED

Figure 11.3. componentplacement element

238 Device Configuration Descriptor

componentfileref
The componentfileref element has a single, mandatory attribute, refid, that specifies the Id
attribute of a componentfile element. This provides the reference to the component file that
is to be deployed.

deployondevice
The optional deployondevice element indicates the Device on which the
componentinstantiation element is deployed. The refid attribute refers to the Id of a Device.

compositepartofdevice
The optional compositepartofdevice element indicates that the component is part of an
AggregateDevice. If present, the refid attribute references the Id of the AggregateDevice of
which the component is a part. The refid attribute is mandatory.

devicepkgfile
If the component is a Device, the devicepkgfile element identifies the Device Package
Descriptor (DPD) of the Device.

componentinstantiation
The componentinstantiation element identifies the component to be instantiated (Figure 11.4).
The Id attribute is mandatory and provides a unique Id for the component instantiation. There
must be at least one componentinstantiation element within the componentplacement element
and there may be more than one.

cd Component Instantiation

componentinstantiation

#REQUIRED
- id: ID

«#PCDATA»
usagename

componentproperties

findcomponent

«Group»
properties_group

componentresourcefactoryref

#REQUIRED
- refid: CDATA

«EMPTY»
namingservice

#REQUIRED
- name: CDATA

Either one or the
other child element
must be provided.

resourcefactoryproperties
0 . .1

1

1

1 . .∗

1 . .∗

0 . .1

0 . .1

0 . .1

Figure 11.4. componentinstantiation element

The componentinstantiation provides information on the usage, properties, and method
for locating a reference to the componentinstantiation by other components.

deviceconfiguration 239

The usagename element provides an descriptive name for the component. If the component
is a service type then the usagename element must be unique for each service type. The
optional componentproperties element defines a list of property values used to configure the
component upon instantiation.

The findcomponent element specifies how the component may be located by other
components within the system and must contain either a componentresourcefactoryref or
a namingservice element. If the componentresourcefactoryref element is specified then the
component may be located through a ResourceFactory. If the namingservice element is
specified, then the component may be located through the CORBA Name Service. The
componentresourcefactoryref attribute refid identifies the Id of the ResourceFactory that
created the component. The componentresourcefactoryref may have a set of properties
defined using the resourcefactoryproperties element. The namingservice name attribute
contains the name entered into the Name Service for the componentinstantiation.

11.2.5 connections

The connections element in the DCD specifies the services used by the DeviceManager
and Device components within the DCD. The Core Framework DomainManager uses the
information in the connections element, obtained when the DeviceManager registers with
the DomainManager, to establish the connections specified.

11.2.6 domainmanager

The domainmanager element has a single, required subelement, namingservice, that specifies
how to obtain the DomainManager object reference. The namingservice element has a single,
required attribute, name, that specifies the lookup name within the Name Service.

11.2.7 filesystemnames

If the DeviceManager hosts a FileSystem, then the filesystemnames element specifies the
mounted file system names. The FileSystem names specified are provided to the FileManager
on the DomainManager as FileSystems to be mounted within the FileManager.

12
The Domain Manager Descriptor

12.1 Overview

The DomainManager Configuration Descriptor (DMD) XML file provides information
regarding the startup, configuration, and operation of the DomainManager within the SCA
radio system (Figure 12.1). The domainmanagerconfiguration element Id attribute is a
uniqueidentifier for the DomainManager and the name attribute provides a descriptive name.

cd Domain Manager Configuration Descriptor

«DTDElement»
DomainManagerConfigurationDescriptor

devicemanagersoftpkgdomainmanagerconfiguration

REQUIRED
- id: ID
- name: CDATA

services

«#PCDATA»
description

service

«EMPTY»
localfile

#REQUIRED
- name: CDATA

findby

«#PCDATA»
usesidentifier1. .

1

1

1. .∗

0 . .1
{1}

0 . .1
{3}

«realize»

1
{2}

Figure 12.1. Domain Manager Descriptor elements

The optional description element provides information about the DomainManager
implementation. The implementation information is provided in the domainmanagersoftpkg
which is located via the information in the localfile element. The domainmanagesoftpkg may
provide information about ports used by the DomainManager. These are used to connect to
services used by the DomainManager and described in the services element. The services
element contains one or more service elements.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

242 The Domain Manager Descriptor

For each service, the method by which the DomainManager will locate the service is
specified through the findby element. There are two basic methods for locating the service
specified. It may be located via the CORBA Name Service, in which case a namingservice
element will be specified, or is may be located through the DomainManager itself, which is
specified through the domainfinder element.

The usesidentifier element identifies the port that is provided by the service that the
DomainManager will use. Each port referenced by a usesidentifier element for a service
should be defined as a provides port by the service specified.

13
The Software Assembly Descriptor

13.1 Overview

The software assembly XML file is the top-level that describes an SCA application,
commonly known as a waveform. The Software Assembly Descriptor (SAD) XML file
describes the set of application components, their interconnection, and deployment of the
components within the application. The component assembly provides four basic types
of information processed by the DomainManager during installation (Figure 13.1). The
first is partitioning information that indicates special requirements for the collocation of
components, the second is the assembly controller for the software assembly, the third is
connection information for the various components that make up the application assembly,
and the fourth is the visible ports for the application assembly.

The softwareassembly has a unique ID stored on the id attribute and a readable name
stored on the name attribute. In addition, the optional description element provides a multi-
line explanation of the waveform assembly and objectives. The set of components that
form the application are specified within the componentfiles element. The partitioning
element provides information regarding any constraints or requirements regarding where
components must be loaded, e.g. some components may utilize another component that is a
library and therefore must be collocated on the same processor. The top-level routine that
implements the control and assembly logic for the waveform is the AssemblyController and
is specified in the assemblycontroller element. The AssemblyController is defined as one of
the components in componentfiles element. It is identified as the AssemblyController through
the componentinstantiationref which has a refid attribute containing the instantiation id of
the component. In order to instantiate the waveform, the application factory must know what
connections need to be established between the components defined in the componentfiles
element. The connections element provides this information. Finally, the set of visible ports
provided by the waveform are specified in the externalports element.

The set of components are specified within the componentfiles element as a set of one or
more componentfile elements (Figure 13.2). Each componentfile element has a unique ID
stored on the id attribute. The type attribute is set to “Software Package Descriptor.” The
localfile element of the componentfile contains the reference to an SCA File containing the
Software Package Descriptor for the component.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

244 The Software Assembly Descriptor

cd Software Assembly Descriptor

«DTDElement»
SoftwareAssemblyDescriptor

componentfiles

softwareassembly

#REQUIRED
- id: ID
#IMPLIED
- name: CDATA

«#PCDATA»
description

partitioning

assemblycontroller

connections

externalports

«EMPTY»
componentinstantiationref

#REQUIRED
- refid: CDATA

0 . . 1
{6}

0 . . 1
{5}

1
{4}

1
{3}

0 . . 1
{1}

«realize» 1
{2}

1

Figure 13.1. Software Assembly Descriptor

cd Component Files

componentfiles
componentfile

#REQUIRED
- id: ID
#IMPLIED
- type: CDATA

«EMPTY»
localfile

#REQUIRED
- name: CDATA

1
1

Figure 13.2. componentfiles element

The partitioning element (Figure 13.3) contains the set of constraints that guide where
components are to be placed. There are two type of placement constraints. These are specified
by the componentplacement and hostcollocation elements. The hostcollacation element is
used to identify a set of components that must be deployed on the same host processor. It has
a unique ID stored on the id attribute and a readable name stored on the name attribute. It
contains a set of componentplacement elements that identify the components to be deployed
on the same processor.

The componentplacement element identifies a component that may be deployed directly
or by a ResourceFactory. The componentfileref element references a specific Software
Package Descriptor file and the id attribute of the componentfileref matches the id attribute
of the componentfile element. The componentinstantiation element of the componentfileref
provides specific information regarding the instantiation of the component. The id attribute
of the component may be referenced by the usesport and providesport elements within the
SAD file.

The componentinstantiation element is composed of several sub-elements that describe the
instantiation constraints of the component (Figure 13.4). The usagename element provides a
descriptive name for the components. The findcompnent element describe how the CORBA
reference to the component instance will be located. There are two basic methods for locating
the reference and either one or the other is used but not both. The namingservice element

Overview 245

cd Partitioning

partitioning

componentplacement

hostcollocation

#IMPLIED
- id: ID
- name: CDATA

The child elements
may appear in any
order.

«EMPTY»
componentfileref

#REQUIRED
- refid: CDATA

componentinstantiation

#REQUIRED
- id: ID

1 . .
∗

1

0 . .
∗

1 . .
∗0 . .

∗

Figure 13.3. Partitioning element

class Component Instantiation

componentinstantiation

«#REQUIRED»
- id: ID

«#PCDATA»
usagename

componentproperties

findcomponent

«Group»
properties_group

componentresourcefactoryref

«#REQUIRED»
- refid: CDATA

«EMPTY»
namingservice

«#REQUIRED»
- name: CDATA

Either one or the
other child element
must be provided.

resourcefactoryproperties

0 . . 1
1 1

1 . .
∗

1 . .
∗

0..1

0 . . 1

0 . . 1

Figure 13.4. Component Instantiation element

provides a string name that is used by the ApplicationFactory to complete and find the
component’s CORBA reference. The componentresourcefactoryref specifies a reference to
the id of the ResourceFactory defined in within the SAD which instantiates the component.

Both the componentinstantiation and componentresourcefactoryref elements may have
properties associated with them. The componentproperties element defines the properties
associated with the componentinstantiation element and the resourcefactoryproperties
element defines the properties associated with the componentresourcefactoryref element.

246 The Software Assembly Descriptor

class Component Properties

«EMPTY»
simpleref

«#REQUIRED»
- refid: CDATA
- value: CDATA

simplesequenceref

«#REQUIRED»
- refid: CDATA

structref

«#REQUIRED»
- refid: CDATA

structsequenceref

«#REQUIRED»

- refid: CDATA

values

«#PCDATA»
value

structvalue

«Group»
properties_group

One or more of
the child elements
must be provided
in any order.

1 . .
∗

1 . .
∗

1

0 . .
∗

0 . .
∗

0 . .
∗

1 . .
∗1 . .

∗

0 . .
∗

Figure 13.5. Component Properties elements

The properties_group contains the set of properties definitions for the component (Figure
13.5). The properties specify the factory, configuration, and execution parameters for the
component.

The property type definitions correspond to the property types discussed in Chapter 10.
What is important at this point is the precedence given to the search and assignment of values
for these properties. For those attributes that are configure or execution, i.e. execparam,
and the property may be modified, i.e. the mode is readwrite or writeonly, then the SAD
is searched first for the property value to apply. Within the SAD, the precedence is the
componentinstantiation element within the partitioning and componentplacement element
hierarchy. If no value is found then the value or default value specified in the SPD is used,
if available. If no property value is specified, then the property is ignored.

If the property is a factory parameter, i.e. factoryparam, then the the resourcefactory-
properties element within the partitioning, componentplacement, componentinstantiation,
findcomponent, componentresroucefactoryref element hierarchy. If no value is found then the
componentproperties element will be searched within the partitioning, componentplacement,
componentinstantiation element hierarchy. If no value is found within the componentproperties
element, then the value provided in the SPD will be used. Finally, if no value is available, the
property will be ignored.

The connections element, are noted earlier, identified the component connections that
must be made to successfully deploy the application (Figure 13.6). The connections element
contains zero or more connectinterface elements that specify individual connections provided
or used by the component. The usesport element defines the port used by the component and
is discussed in more detail below. The connectinterface_grp contains three possible elements,
providesport, componentsupportedinterface, and findby of which one must be provided.

The providesport element describes a port provided by the component. The
componentsupportedinterface describes another component which has a corresponding
supportsinterface element defined in the Software Component Descriptor, see section 10.3.
The findby element describes how the interface reference may be located. The interface may
either be found in the CORBA Name Service using the value provided on the name attribute

Overview 247

cd Connections

connections

connectinterface

#IMPLIED
- id: ID

usesport providesport

componentsupportedinterface

findby

«Group»
connectinterface_grp Exactly one of the

child elements
must be provided.

«EMPTY»
namingservice

#REQUIRED
- name: CDATA

«EMPTY»
domainfinder

#IMPLIED
- name: CDATA
#REQUIRED
- type: DOMAINFINDERTYPEDEF

0 . . 10 . . 1

1

0 . . 1

0 . . 1

0 . . 11

0 . . ∗

Figure 13.6. Connections element

of the namingservice element or may be found within the DomainManager using the values
of the name and type attributes on the domainfinder element.

The usesport element (Figure 13.7) contains several sub-elements. The usesidentifier
element specifies the specific uses port that to be used in the connection to a provides
port defined and available on another component. The usesport_grp contains four methods
for referencing the port. Only one of the element in the group may be used. The

cd Uses Port

usesport «#PCDATA»
usesidentifier

«Group»
usesport_grp

«EMPTY»
componentinstantiationref

#REQUIRED
- refid: CDATA «EMPTY»

dev icethatloadedthiscomponentref

#REQUIRED
- refid: CDATA «EMPTY»

dev iceusedbythiscomponentref

#REQUIRED
- refid: CDATA
- usesrefid: CDATA

findby

«EMPTY»
namingserv ice

#REQUIRED

- name: CDATA «EMPTY»
domainfinder

#IMPLIED
- name: CDATA
#REQUIRED
- type: DOMAINFINDERTYPEDEF

One and only
one of the
child elements
must be
provided.

0 . . 1
0 . . 1

0 . . 1

0 . . 1

0 . . 1

0 . . 1

1

1

Figure 13.7. usesport element

248 The Software Assembly Descriptor

componentinstantiationref identifies a component instantiation within the assembly using
the refid attribute which corresponds to the instantiation id of the other component. The
findby element, as described previously, specifies a method for locating the component either
through the naming service or DomainManager. The devicethatloadedthiscomponentref
element identifies a specific component in the assembly using the refid attribute. The
device that loaded the component referenced is then associated with this component. The
deviceusedbythiscomponent identifies a component within the assembly that is used to obtain
the Device used by the component referenced.

The providesport element (Figure 13.8) is similar to the usesport element in content. The
difference is the intent of the port. It has a providesidentifier element that is used to identify
and locate the port. The providesport_grp has four elements, componentinstantiationref,
findby, devicethatloadedthiscomponent, and deviceusedbythiscomponent. These elements
function as described above for the usesport element.

cd Provides Port

providesport «#PCDATA»
providesidentifier «EMPTY»

componentinstantiationref

- refid: CDATA

providesport_grp

«EMPTY»
devicethatloadedthiscomponentref

- refid: CDATA «EMPTY»
deviceusedbythiscomponentref

- refid: CDATA
- usesrefid: CDATA

findby
Exactly one
of the child
elements
must be
provided.

«EMPTY»
namingservice

- name: CDATA «EMPTY»
domainfinder

- name: CDATA

- type: DOMAINFINDERTYPEDEF

0 . . 1

0 . . 1
0 . . 1

0 . . 1

0 . . 1

1
0 . . 1

1

#REQUIRED

#REQUIRED

#REQUIRED

#REQUIRED

#IMPLIED

#REQUIRED

Figure 13.8. providesport element

cd Component Supported Interface

componentsupportedinterface «#PCDATA»
supportedidentifier

«Group»
componentsupportedinterface_grp

«EMPTY»
componentinstantiationref

- refid: CDATA

findby

«EMPTY»
domainfinder

- name: CDATA

- type: DOMAINFINDERTYPEDEF

«EMPTY»
namingservice

- name: CDATA

Exactly one of
the child
elements must
be provided.

0 . . 1

0 . . 1

0 . . 1

0 . . 1
1

1

#REQUIRED

#IMPLIED

#REQUIRED

#REQUIRED

Figure 13.9. componentsupportedinterface element

Overview 249

The componentsupportedinterface element (Figure 13.9) identifies a component interface
that can be used by a uses port, i.e. it can be connect as a provides port. The
supportedidentifier element identifies the port. The componentsupportedinterface_grp
contains two sub-elements, componentinstantiationref and findby. These elements function
as described above for the usesport element.

Finally, the externalports element (Figure 13.10) is used to identify port that are externally
visible, i.e. may be accessed and connected to by external software. The port element is used
to identify each externally visible port. The refid attribute of the componentinstantiationref
element provides the reference for connecting to the port by an external software application.
The optional description element contains textual description of the port, it’s intent,
and purpose. The port_grp has three sub-elements, usesidentifer, providesdentifier, and
supportedidentifier elements. Each is a port identifier corresponding to the type of port that
is being defined. Only one of these elements must be provided.

cd External Ports

externalports «#PCDATA»
description

port

«#PCDATA»
usesidentifier

«#PCDATA»
prov idesidentifier

«#PCDATA»
supportedidentifier

«Group»
port_grp

«EMPTY»
componentinstantiationref

#REQUIRED
- refid: CDATA

Exactly one of the
child elements must
be provided.

1

1

0 . . 1

0 . . 1

0 . . 1
1..∗

0 . . 1

#REQUIRED

Figure 13.10. externalports element

This concludes the discussion on the Domain Profile. In Part III, immediately following,
examples will be provided to help visualize the application and use of these XML files.

PART III

Building an SCA-Compliant
System
John Bard

Several open source implementations of an SCA Core Framework are available for use as
a learning tool in conjunction with this book. The examples provided in Part III use the
SCARI Core Framework, a Java open source implementation. This does not represent a
blanket endorsement of SCARI for any particular application or project. There are a number
of available open source and commercial implementations of the SCA. The implementation
that is appropriate for your project must be chosen based on the project requirements.

14
The POSIX Operating System

In Part III we build up a series of examples that provide the reader with tangible evidence as
to the capabilities offered by an SCA Operating Environment (OE). Recall that an SCA OE
consists of a POSIX operating system, a minimum CORBA ORB, a Core Framework, and
certain CORBA-based Services. Since SCA-compliant software radios that are capable of
interfacing the ether are not widely available, we shall make use of the abstractions offered by
the SCA. An SCA Device does not need to be a modem or an RF power amplifier. It could be
an Internet appliance, a serial port, or a sound card. The sound card is particularly attractive
because it has Analog-to-Digital and Digital-to-Analog converters just like a software radio.
No matter what physical device is overlaid by an SCA Device the concept remains the same.
If anything the reader should understand by now that the SCA really has nothing to do with
software radios at all. It is a generic construct that can be applied to any distributed system
that has applications contending for limited resources. Subsequent chapters will explore, by
code example, features of each OE element available to the applications programmer.

14.1 An Operating Environment

From Chapter 1, Figure 1.6, the applications programmers must follow a few rules in
accessing the layers of middleware upon which the application resides. Briefly, an application
or a Core Framework’s Base Application Interface is allowed to access the Operating System
(OS) only through POSIX interfaces denoted as mandatory in the SCA Appendix B. An
applications programmer is allowed to access the ORB only through interfaces described
in the minimum CORBA specification [1]. An example of a disallowed ORB interface
would be anything from the Dynamic Invocation Interface (DII) vocabulary. The applications
programmer is allowed to access the IDL interfaces of the Naming Service, Event Service,
and Log Service. Finally the applications programmer is allowed to access and inherit from
any of the Core Framework interfaces identified in the SCA Appendix C. As a footnote,
in SCA 3.2.1.1, the applications programmer ‘shall perform file access through the CF File
interfaces’. The list of mandatory POSIX interfaces (SCA Appendix B) provides all the
means necessary to open, read, write, and close files but the applications programmer is
disallowed the use of these interfaces. In many places in the SCA we see the escape clause

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

254 The POSIX Operating System

‘if there are program performance requirements � � �’. This unfortunately does not apply to
the use of POSIX file access versus its Core Framework counterpart.

We offer a view of SCA access constraints (Figure 14.1) that includes the definition of
Radio Services. These are a concatenation of Logical Devices that compose and offer a
portable means of accessing a radio system. Separate from that we identify device drivers.
SCA allows access to devices at this most primitive level, ‘if there are program performance
requirements � � �’. It is recognized that such accesses are not portable and should be avoided.
They are included in the SCA as means of propagating legacy. Without a doubt propagation
of legacy and promotion of portability are somewhat in conflict.

Application(1) Application(2) . . . Application(n)

Core Framework

ORB & Services

Radio
Services

Logical
Devices

POSIX Layer

Native OS

Device Drivers and Protocol Stacks

Board Support Package

Hardware

Allowed B
Not Portable

ut

Figure 14.1. Access constraints, alternate view

Beyond the POSIX layer, application programmers who wish to be guided by the
requirements of the SCA must have proficiency in CORBA. In this exploration of the SCA
code, examples will be loaded with CORBA and that, as they say, is the nature of the beast.
Many fine texts exist on CORBA and in applying CORBA to the SCA and software radio
the developer is forced to have much more than just a passing acquaintance with CORBA.
Subsequent chapters provide a view of CORBA sufficient to gain access to and utilize the
power of the SCA Core Framework and Services.

The code examples are intended to illuminate aspects of the SCA that every applications
programmer needs to understand. Great care has been taken to ensure that every code
example compiles and executes properly. Readers are invited to code up the examples within
their own environments and thus complete the hands-on experience. In providing these code
examples three caveats are offered.

First, the SCA allows the developer a great deal of freedom in authoring SCA-compliant
applications. Great care was taken by the authors of the SCA to use the architecture to
sufficiently constrain the developer so as to foster portability and reuse of the developed
product. However, the authors of the SCA wisely did not want to end up telling developers

An Operating Environment 255

how to do their jobs; nor did they want overly to constrain the architecture so as to invalidate
hundreds of thousands of lines of legacy radio software that predates the SCA. As many
students of the SCA have found out, it is possible to write one or two CORBA wrappers
around an existing application, drop it onto a compliant Operating Environment, and satisfy
completely the requirements of the SCA. Whether the resultant implementation is portable
or whether the implementation satisfies the spirit of the SCA is inconsequential. The fact
is that the SCA fosters reuse and this is a legitimate example of reuse. The SCA grants
significant latitude to developers by not specifying exactly how to go about their business.
To look at this from the other direction, there is more that one way to use the SCA to skin
your cat. This book offers just one approach, an approach selected for its educational merit
and simplicity. This segues in to the second caveat.

The code segments offered are not bullet-proofed for the real world. Of note is the fact
that the Core Framework defines 45 different exception types and in some cases identifies
corrective actions that should be taken. A real world software radio implementation is
required to survive and recover gracefully from these events should they occur. Because of
the asynchronous nature of distributed computing systems, exceptions are not necessarily
fatal. Perhaps a remote component was just not ready at a particular instant to perform
a particular function. The client software might re-attempt the invocation of the remote
interface just a few hundred milli-seconds later and everything is then OK. Therein lies some
of the code complexity typical of these kinds of real-time distributed deployments. For the
sake of clarity the real-time constructs necessary to support graceful exception handling are
not employed in the code examples. This is not to say that exception handling, or at least
exception detection, is ignored in the code examples. As a matter of fact most invocations
of remote interfaces in the code examples are checked for the occurrence of an exception.
What’s missing is the graceful recovery software that allows the run-time to stay alive in
order to react appropriately. In the code examples detection of an exception is promptly
reported on the standard error output stream and then the program is aborted without grace.

The final caveat offered in consideration of the code examples is that they were written
to address the requirements of this book. The SCA’s incorporation of CORBA allows the
applications programmer freedom from such concerns as collocation, transport methods,
security, operating system, or native language types. At the source code level the CORBA
application programmer need not worry about whether a component is local or remote. The
component might be in the same compilation space, same thread – just a function call. The
component might be in a separate process on the same processor or executing in another
language on a remote processor. A well-written CORBA application will execute successfully
without modification in all these scenarios. These degrees of independence exist at the source
code level only. When one considers the software at the system level a programmer cannot
ignore the laws of physics. For example two components within a WiMax application are
required to complete a transaction within so many tens of micro-seconds. This requirement
has direct implications regarding collocation, operating system, etc. Most importantly the
source code implementation must meet this transactional requirement 100 % of the time.

Once it’s understood that CORBA allows an implementation to exist in a run-time
neverland, it follows that the successful developer must craft the implementation so as
to abide by the laws of physics as it applies to the task at hand. These overarching
system requirements begin to curb the degrees of freedom offered by CORBA. When
all aspects of a project are considered, selection of operating systems, transport methods,

256 The POSIX Operating System

ORBs, and Core Frameworks might be reduced to a small subset within the overall
distributed computing universe. Developers and development houses tend to remain loyal
to certain products for a bunch of good reasons. For some the choice of a native language
or a particular ORB is akin to religion and not to be discussed. In respect of these
mores we choose not to enter into discussions on the relative merits of one ORB versus
another or the strong type checking of C++ versus the platform independence of Java.
The third caveat is just this. The ORB, operating system, Core Framework, and native
language selected for this book are based two requirements – low cost and wide spread
availability.

The code examples presented in the following chapters are based on the elements shown
in Table 14.1. Collectively these elements compose the Operating Environment.

Table 14.1. Baseline Operating Environment

Operating Environment Element Identification

Operating System Linux 2.6.9
Object Request Broker Orbit2 2.13.3 (latest is 2.14)
Transport Glib 2.10.1 (latest is 2.12)
Native Language ‘C’ gcc 3.4.4, glibc 2.3.4
Core Framework SCARI2

The selected OE allows the motivated reader to acquire freely the elements needed to
experientially follow the examples. A good question to ask at this time is: ‘is our Operating
Environment SCA-compliant?’

14.2 Linux 2.6 Kernel

The Linux 2.6.9 operating system is perhaps the most substantive overhaul to the Linux
kernel since its widespread adoption. A focus of the overhaul was to improve run-time
performance. Linux had its genesis as a conventional non real-time, non pre-emptive version
of Unix. In the last couple of years the focus, especially in the embedded community,
has been on performance in the run-time. The 2.6 kernel dramatically improves run-time
performance over its predecessors. The kernel was re-designed to minimize absolutely code
sequences that lock out pre-emption. Most importantly the scheduler was re-designed to
allow true pre-emption by privileged users. No more being ‘nice’ to all those other processes.
We will briefly examine the 2.6 kernel, the pthreads and glibc libraries for compliance
with the Appendix B of the SCA – the SCA Application Environment Profile (AEP) of
the POSIX.1 standards. One of the difficulties in self-examination for SCA compliance is
acquiring the commercial specifications that have become obsolete in the few short years
since the SCA 2.2 was published in November 2001.

The SCA Appendix B cites the IEEE standards listed in Table 14.2 regarding the SCA’s
mandatory use of POSIX.

The problem is that these standards are no longer available from the IEEE or ISO/IEC.
Maintenance of the POSIX standards has passed to the Open Group which has made two
major upgrades and a few minor updates to the 9945 standard in the last several years.

Linux 2.6 Kernel 257

Table 14.2. SCA Appendix B POSIX citations

Standard SCA AEP

C Standard (ISO/IEC 9899:1990 Partial
POSIX.1 (ISO/IEC 9945 -1):1997 Partial
POSIX.1b (ISO/IEC 9945 -1):1997 Partial
POSIX.1c (ISO/IEC 9945 -1):1997 Partial
POSIX.5b (IEEE 1003.5 - 1992) Optional

Reference [2] is dated February 1997, the same year as the IEEE standards referenced within
the SCA. This should be close enough to satisfy the intent of the SCA Appendix B.

A short word is necessary to describe the rather confusing relationship between the IEEE,
the ISO/IEC, and the Open Group. A paper published in 2003 entitled ‘The Single UNIX
Specification’ [3], clarifies this relationship. About a year after the publication of the Open
Group’s System Interfaces and Headers, Issue 5 [2], the three organizations began discussions
to coordinate their standardization efforts. The culmination of their labors was the publication
of nearly identical documents entitled Open Group Issue 6, IEEE 1003.1-2002, and ISO/IEC
9945:2002. The technical content of these documents is additionally coordinated with the
authoritative 1999 work on ISO-C [4]. Though the works are coordinated, each organization
maintains separate publications. As of early 2006 the three organizations are still working
in coordination as the Austin Group [5]. It is likely that future versions of the SCA will
reference these more universally supported and modernized standards.

There are about 300 functions or groups of functions listed in Appendix B of the SCA.
Some are noted as ‘mandatory’, some as ‘not required’. Recall that the basic purpose of
specifying a certain set of mandatory POSIX system calls is to provide the applications
programmer with a set of system functions guaranteed to be present on all SCA-compliant
systems. There are two corollaries to this requirement. One, of course applies to Operating
Environment suppliers. Despite the choice of native operating system – Windows, QNX,
etc. – an additional POSIX layer will likely need to be developed to provide all of the
mandatory POSIX interfaces. Many real-time operating systems attempt to reduce memory
footprint and maximize run-time performance. It is understood that POSIX is not optimal for
these factors. Many OS vendors offer POSIX as an option that can be added, if required, with
the usual disclaimers about loss of run-time performance and increase in memory footprint.
For an OS to be SCA-compliant, at least the mandatory functions must be present. The
whole footprint issue is not nearly as critical now as it was 10 years ago. Then we had
40 MHz processors with 8 Mbytes of memory unarguably constrained by today’s standard
of GHz processors with Gigabytes of memory.

The second corollary applies to the applications programmer. For the application to be
SCA-compliant all system calls are restricted to the set of mandatory POSIX calls. An
application that uses native OS calls or even optional POSIX calls is considered not to be
SCA-compliant. The reason, of course, is portability. Porting of an application from one
OS to another is facilitated when system calls of both are restricted to a certain guaranteed
subset.

All the mandatory POSIX function calls are to be found in the header files listed in
Table 14.3.

258 The POSIX Operating System

Table 14.3. Required POSIX Header Files

1. aio.h 11. setjmp.h
2. ctype.h 12. signal.h
3. dirent.h 13. stdio.h
4. fcntl.h 14. stdlib.h
5. locale.h 15. string.h
6. math.h 16. sys/mman.h
7. mqueue.h 17. sys/stat.h
8. posix_opt.h 18. time.h
9. pthread.h 19. unistd.h

10. semaphore.h 20. utime.h

A top level check for SCA compliance is simply the presence of these header files
somewhere in the include path. There might be some variation on the names of the header
files but since POSIX has been around for some 20 years – an eternity for a computer
technology – these names are pretty standardized. If you are developing a Core Framework
then the mandatory POSIX requirement also applies to Base Application Interfaces – Port,
LifeCycle, TestableObject, PortSupplier, PropertySet, Resource and ResourceFactory. Device
software and device implementations are exempt from the requirement. Native OS calls are
fair game. If you can take the performance ‘hit’, use of the mandatory POSIX calls is advised
for two reasons: they are guaranteed to be there and it enhances the portability and re-use.

A more definitive test for POSIX compliance is offered in the code sequence of
Figure 14.2.

/* testThread.c */
#include <pthread.h>
#include <bits/posix_opt.h>

int main()
{

pthread_mutexattr_t myMutexAttr;
int retVal;

printf("_POSIX_ASYNCHRONOUS_IO %d\n",_POSIX_ASYNCHRONOUS_IO);
printf("_POSIX_MAPPED_FILES %d\n",_POSIX_MAPPED_FILES);
printf("_POSIX_MEMLOCK %d\n",_POSIX_MEMLOCK);
printf("_POSIX_MEMLOCK_RANGE %d\n",_POSIX_MEMLOCK_RANGE);
printf("_POSIX_MEMORY_PROTECTION %d\n",_POSIX_MEMORY_PROTECTION);
printf("_POSIX_MESSAGE_PASSING %d\n",_POSIX_MESSAGE_PASSING);
printf("_POSIX_PRIORITIZED_IO %d\n",_POSIX_PRIORITIZED_IO);
printf("_POSIX_PRIORITY_SCHEDULING %d\n",_POSIX_PRIORITY_SCHEDULING);
printf("_POSIX_REALTIME_SIGNALS %d\n",_POSIX_REALTIME_SIGNALS);
printf("_POSIX_SEMAPHORES %d\n",_POSIX_SEMAPHORES);
printf("_POSIX_SHARED_MEMORY_OBJECTS %d\n",_POSIX_SHARED_MEMORY_
OBJECTS);

printf("_POSIX_SYNCHRONIZED_IO %d\n",_POSIX_SYNCHRONIZED_IO);
printf("_POSIX_TIMERS %d\n",_POSIX_TIMERS);
printf("_POSIX_FSYNC %d\n\n",_POSIX_FSYNC);
printf("_POSIX_THREADS %d\n",_POSIX_THREADS);
printf("_POSIX_THREAD_SAFE_FUNCTIONS %d\n",_POSIX_THREAD_SAFE_
FUNCTIONS);

Linux 2.6 Kernel 259

printf("_POSIX_THREAD_PRIORITY_SCHEDULING
%d\n",_POSIX_THREAD_PRIORITY_

SCHEDULING);
printf("_POSIX_THREAD_ATTR_STACKSIZE %d\n",_POSIX_THREAD_ATTR_
STACKSIZE);

printf("_POSIX_THREAD_ATTR_STACKADDR %d\n",_POSIX_THREAD_ATTR_
STACKADDR);

printf("_POSIX_THREAD_PROCESS_SHARED %d\n",_POSIX_THREAD_PROCESS_
SHARED);

printf("_POSIX_THREAD_PRIO_INHERIT %d\n",_POSIX_THREAD_PRIO_
INHERIT);

printf("_POSIX_THREAD_PRIO_PROTECT %d\n",_POSIX_THREAD_PRIO_
PROTECT);

return 0L;
}

Figure 14.2. Code sequence: test for supported POSIX features

It shouldn’t be necessary to add in any special libraries at link time: everything should be
in the standard path for glibc. Compile and execute the code as follows:

gcc testThread.c
./a.out

Depending on your system the output in Table 14.4 is produced. We’ve added a column
for ‘MANdatory’ versus ‘Not ReQuired’ straight from Appendix B of the SCA.

The output produced by the code segment in Table 14.4 includes all of the POSIX.1b
and POSIX.1c options listed in the SCA Appendix B. There are several features supported
by Linux that are not required by the SCA. Supported but unnecessary functions include
mapped files, memory protection (actually protection of mapped files), prioritized IO, priority
scheduling, and shared memory objects.

Table 14.4. POSIX support for Linux 2.6.9 (RedHat Enterprise Edition)

POSIX Feature Version SCA Appendix B

_POSIX_ASYNCHRONOUS_IO 200112 MAN
_POSIX_MAPPED_FILES 200112 NRQ
_POSIX_MEMLOCK 200112 MAN
_POSIX_MEMLOCK_RANGE 200112 MAN
_POSIX_MEMORY_PROTECTION 200112 NRQ
_POSIX_MESSAGE_PASSING 200112 MAN
_POSIX_PRIORITIZED_IO 200112 NRQ
_POSIX_PRIORITY_SCHEDULING 200112 NRQ
_POSIX_REALTIME_SIGNALS 200112 MAN
_POSIX_SEMAPHORES 200112 MAN
_POSIX_SHARED_MEMORY_OBJECTS 200112 NRQ
_POSIX_SYNCHRONIZED_IO 200112 PRT
_POSIX_TIMERS 200112 MAN
_POSIX_FSYNC 200112 PRT

260 The POSIX Operating System

Table 14.4. Continued

POSIX Feature Version SCA Appendix B

_POSIX_THREADS 200112 MAN
_POSIX_THREAD_ATTR_STACKADDR 200112 MAN
_POSIX_THREAD_ATTR_STACKSIZE 200112 MAN
_POSIX_THREAD_PRIO_INHERIT -1 MAN
_POSIX_THREAD_PRIO_PROTECT -1 MAN
_POSIX_THREAD_PRIORITY_SCHEDULING 200112 MAN
_POSIX_THREAD_PROCESS_SHARED -1 NRQ
_POSIX_THREAD_SAFE_FUNCTIONS 200112 PRT

Though priority scheduling is not required at the process level, i.e. _POSIX_
PRIORITY_SCHEDULING not required, it is required for threads – _POSIX_
THREAD_PRIORITY_SCHEDULING is mandatory. No mandatory support for priority
scheduling eliminates the following eight system calls:

1� sched_setparam() 5� sched_getparam()
2� sched_setscheduler() 6� sched_getscheduler()
3� sched_yield() 7� sched_get_priority_max()
4� sched_get_priority_min 8� sched_rr_get_interval()

Since mapped files, memory protection, and shared memory are not required, according
to the following eight system calls are also not required [6]:

9� mmap() 13� munmap()
10� shm_open() 14� shm_close()
11� shm_unlink() 15� ftruncate()
12� mprotect() 16� msync()

This leaves the following features also not required: PRIORITIZED_IO
and THREAD_PROCESS_SHARED. There is no system call associated with
PRIORITIZED_IO. Whether PRIORITIZED_IO is defined or not affects only the
behavior of asynchronous IO, which is mandatory. With PRIORITIZED_IO and
PRIORITY_SCHEDULING not required, prioritized asynchronous IO also cannot be
expected to be supported on SCA-compliant systems.

It is understood that threads are independently executing sequences within the same
process space. A process space is an independently executing sequence that is isolated from
other processes. Say, for instance, you write a program to overwrite memory with zeros. In
a process-oriented operating system like Linux the only one you can hurt is yourself. If you
attempt to overwrite memory that doesn’t belong to you the operating system steps in and
prevents the attempt. Your process is then terminated by the operating system with a message
describing some kind of memory access error. With an OS that doesn’t support processes –
like VxWorks – there is nothing to prevent an errant task from wiping out all memory. Now
if two processes are completely isolated from each other how do they communicate? The
answer, of course, is through special operating system calls – take your pick, message queues,
semaphores, etc. Of course, in an SCA-compliant system SHARED_MEMORY is not required

Linux 2.6 Kernel 261

so that method is disallowed to the applications programmer. Now back to discussion of the
not-required THREAD_PROCESS_SHARED functions. If you have threads in two separate
processes they can’t ‘see’ each other. In a system that is THREAD_PROCESS_SHARED-
enabled, threads from two separate processes could share a conditional variable or mutex
and thus be able to synchronize. This capability is not supported by Linux and also not
required by the SCA. As a consequence the following four system calls are eliminated:

17� pthread_condattr_getpshared()

18� pthread_condattr_setpshared()

19� pthread_mutexattr_getpshared()

20� pthread_mutexattr_setpshared()

From Table 14.4 there is a capability required of SCA-compliant systems not supported by
glibc 2.3.4 and that is THREAD_PRIO inheritance and protection. The 2.3.4 version of glibc
uses the Native POSIX Thread Library (NPTL) for Linux. In terms of POSIX compliance,
NPTL is a huge improvement over the previously used linuxThreads. So what capability is
lost without the THREAD_PRIO support? In a supported system a mutex can be initialized
with THREAD_PRIO_INHERIT or THREAD_PRIO_PROTECT. What’s implemented on
that mutex is a priority inheritance mechanism. Priority inheritance is a mechanism used to
avoid priority inversions.

A priority inversion is a potentially fatal event that occurs when a resource is locked by
a low priority thread and a high priority thread requires access to that resource. The high
priority thread will block until the low priority thread releases the resource. In and of itself
this is not much of a problem, it happens all the time. Suppose however a medium priority
thread becomes run-able. It will pre-empt the low priority thread and that resource can then
stay locked for a long time. With the high priority thread blocked high priority things don’t
get done in time and the system dies. There are a couple of means of addressing the priority
inversion problem. One, design your system so that low and high priority threads never
contend for the same resource. The definition of low and high priority in this context is to be
sure that threads that contend for a resource cannot be pre-empted by someone with priority
that lies in-between the low and the high priority levels. This design action is something the
applications programmer can exercise to make the whole priority inversion problem go away.

However for the un-motivated applications programmer certain operating systems offer
a solution – priority inheritance. There is a school of thought [7] that indicates that
‘priority inheritance is incompatible with reliable real-time system design’, and that ‘priority
inheritance is neither efficient nor reliable’. If priority inheritance is offered by the operating
system here is how it works. Essentially, the low priority thread is set to run temporarily
at the priority level of the highest priority thread blocked on that resource. Suppose that
while the low priority thread has locked a resource (mutex) a high priority thread becomes
run-able and attempts to gain access to the resource. The priority-inheritance enabled OS
will see this contention and upgrade the priority level of the low thread so that it runs at
high priority. With the temporary priority upgrade in place no mid-level thread can get
in the way. When the resource is released the OS will downgrade the low thread back
to its original priority level. Although conceptually very simple, the actual mechanism to
implement priority inheritance is quite complex. This complexity has to do with threads that
have more than one mutex that can potentially be nested.

262 The POSIX Operating System

14.2.1 Unavailable POSIX Calls

Before examining what’s available, let’s finish figuring out what’s missing, i.e. not required.
Including the 20 not required functions discussed so far there are a total of 97 POSIX system
calls not required. We will explore the capabilities that are lost, starting with the system
calls normally associated with process creation and control:

21� fork() 31� getenv ()
22� execl () 32� getpid ()
23� execv () 33� getppid ()
24� execle () 34� uname()
25� execve () 35� sysconf ()
26� execlp () 36� sleep ()
27� execvp () 37� wait()
28� times () 38� waitpid ()
29� exit () 39� assert ()
30� _exit ()

The calls not required, 21–27, are at the heart of the traditional UNIX system. The fork()
system call creates a new process called the child process that is a clone of the process that
initiated the fork() – the parent process. There are only small differences between the
parent and child. The child has a unique process Id and returns a zero from the fork()
system call. When the parent returns from the fork() system call the return value is the
process identification (PID) of the child. The various flavors of exec() are typically used
by the child process. A call to exec reloads the executable image of the caller with the image
pointed to by a filename passed as a parameter in the exec system call. The entry point of re-
loaded image is the standard ‘C’ entry point main(argc,argv). With these commands a child
process sheds the identity of its parent and establishes its own path of execution. Admittedly
this sequence of events is a little more contrived than taskSpawn() – the VxWorks
means of creating tasks – but there are benefits, notably inheritance and independence.
But alas in an SCA-compliant system such methods of initiating new independent paths of
execution cannot be counted on as being mandatorily present on all platforms. This is despite
a comment made in the Core Framework IDL for the ExecutableDevice interface, execute
operation that ‘The execute operation converts the input parameters (id/value string pairs)
parameter to the standard argv of the POSIX exec family of functions’. This mandatory
requirement applies to the form of parameter passing, i.e., argv style, and not to mandatory
support for exec. The same argv requirement is also extended to application components in
SCA 3.2.1.3.

Simply put the SCA shows no support for the process-oriented operating system model.
Most likely this is due to the dominance of the VxWorks operating system during the 1990s
for any sort of real-time embedded or distributed military system. VxWorks’ claim to fame
was its small footprint and speed. VxWorks, however, uses a flat memory model. Everyone
has access to every memory location. Without having to deal with a memory management
unit (MMU) or keeping track of complete environments for each task in the system VxWorks
was a hit for single board computers of the time. The blessings of VxWorks during the 1990s
became a scourge during the 2000s when the government customer started asking for high
reliability, high security systems capable of certifications required for safety of flight – DO

Linux 2.6 Kernel 263

178 [8] – and secure networking – High Assurance Internet Protocol Encryption (HAIPE).
The flat memory model did not serve as reliably as a process-oriented system with isolated
memory spaces.

The genesis of the SCA is to be found in the task-oriented, flat memory model of VxWorks.
So what is available to the applications programmer in place of these calls? In the list of
SCA-mandatory system calls, the only call capable of creating independent, distinct paths
of execution is pthread_create(). Reference [9] shows that pthread_create()
is as easy to use as taskSpawn(). (We will cover threads in more detail later.) Threads
are subject to the limitations of the flat-memory model. Though the created thread has its
own stack and independence of execution it is in the same process space as the creator.
For a system with a flat-memory model that process space is the entire memory map. For
operating systems that support multiple processes, fork() is off-limits but there is nothing
to say that multiple processes can’t be launched from a script and run in the background. The
applications programmer can then establish lines of communications between the processes
with semaphores, message queues, or signals all of which are mandatory.

The code snippets in Figures 14.3 and 14.4 illustrate the power of inter-process
communication with processes launched from the shell. The example consists of two
processes: the first launched to run in the background (Figure 14.3) and the second in
the foreground (Figure 14.4). A POSIX message queue is used to provide communication
between the two. The foreground process will send a sequence of numbers one at a time to
the background task. The background task will add five to the number and send them back
to the foreground task. The foreground task will then output the before and after versions of
the numbers to the standard output.

1. /* back1.c */
2.
3. #include <mqueue.h>
4. #include <sys/stat.h> /* for mode_t flags */
5. #include <time.h>
6. #include <stdio.h>
7. #include <stdlib.h>
8.
9. static const struct timespec tenthSecond = {0,100000000};
10.
11. #define msgSize 4 /* 4 bytes = an int */
12.
13. int main()
14. {
15. mqd_t myQueue;
16. const char queueName[]="/myQueueName";
17.
18. mode_t allowOwner = S_IRUSR � S_IWUSR� S_IXUSR;
19. struct mq_attr someAttributes;
20. int putDataHere;
21.
22. someAttributes.mq_flags = 0;

Figure 14.3. Bi-directional blocking message queues – background

264 The POSIX Operating System

23. someAttributes.mq_maxmsg = 1; /* nice bi-directional blocking */
24. someAttributes.mq_msgsize = msgSize;
25.
26. /* housekeeping: clean up queues from previous crashes, etc */
27. mq_unlink(queueName);
28.
29. /* Exclusively create a read/write, blocking queue */
30. myQueue = mq_open(queueName,O_RDWR�O_CREAT�O_EXCL,
31. allowOwner,&someAttributes);
32. if (myQueue == -1)
33. {
34. perror("mq_open() problem");
35. abort();
36. }
37. else
38. fprintf(stderr,"Queue is open for business\n");
39.
40. while (1)
41. {
42. if (mq_receive(myQueue,(char *)&putDataHere,
43. msgSize,(unsigned int *)NULL) != -1)
44. {
45. if (putDataHere==0) break;
46. putDataHere += 5;
47. if (mq_send(myQueue,(const char *)&putDataHere,4,0) == 0)
48. nanosleep(&tenthSecond,NULL); /* let someone else run */
49. else
50. {
51. perror("mq_send() problem");
52. abort();
53. }
54. }
55. else
56. {
57. perror("mq_receive() problem");
58. abort();
59. }
60. }
61.
62. if (mq_unlink(queueName) == 0)
63. fprintf(stderr,"Queue unlinked shutting down\n");
64. else
65. perror("mq_unlink() problem");
66.
67. return 0;
68.
69. }

Figure 14.3. (Continued)

Linux 2.6 Kernel 265

The name of the message queue, line 16, is how the other task will locate the queue. The
queue is setup to hold one message that is four bytes long, lines 23 and 24. Queue names are
persistent as long as the OS is running. This could lead to a problem with pollution of the
namespace. Line 27 ensures that any queue of the same name is wiped out. This way line 30
creates a clean queue with the specific attributes we desire. We want a bi-directional queue
that is blocking. Once in the while forever loop the background process will be blocked
waiting for someone to put something into the queue – line 42. Once pulled from the
queue the process will add five and write it back to the queue. With no further intervention
the program will loop around and read from the queue the message just written. So in
order to force a context switch and allow other programs to run – namely the foreground
process – a nanosleep is inserted immediately after the modified integer is written back to
the queue. Nanosleep is not the best choice, sched_yield() is somewhat better. The
SCA Appendix B does not specifically call out sched_yield() as either mandatory
or not required. It is considered part the POSIX real-time extensions like semaphores and
timers. It is also considered part of POSIX threads. Finally, it has a VxWorks equivalent so
it is likely to be found on most SCA-based systems. Now consider the foreground program
(Figure 14.4).

1. /* fore1.c */
2.
3. #include <mqueue.h>
4. #include <sys/stat.h> /* for mode_t flags */
5. #include <time.h>
6. #include <stdio.h>
7. #include <stdlib.h>
8. #include <string.h>
9. #include <errno.h>
10.
11. static const struct timespec tenthSecond = {0,100000000};
12.
13. #define msgSize 4 /* 4 bytes = an int */
14.
15. int main()
16. {
17. mqd_t myQueue;
18. const char queueName[]="/myQueueName";
19.
20. int putDataHere, i;
21. int testData[]={12,2,7,0};
22.
23. /* Attach to the queue */
24. myQueue = mq_open(queueName,O_RDWR);
25. if (myQueue == -1)
26. {
27. printf("mq_open() problem %s\n",strerror(errno));

Figure 14.4. Bi-directional blocking message queues – foreground

266 The POSIX Operating System

28. abort();
29. }
30.
31. for (i=0; i<3; ++i)
32.{
33. if (mq_send(myQueue,(const char *)(testData+i),4,0) == 0)
34. {
35. nanosleep(&tenthSecond,NULL); /* let someone else run */
36. if (mq_receive(myQueue,(char *)&putDataHere,
37. msgSize,(unsigned int *)NULL) != -1)
38. printf("Sent %d Received %d\n",*(testData+i),putDataHere);
39. else
40. {
41. printf("mq_receive() problem %s\n",strerror(errno));
42. abort();
43. }
44. }
45. else
46. {
47. printf("mq_send() problem %s\n",strerror(errno));
48. abort();
49. }
50. }
51.
52. /* send shutdown message to background */
53. mq_send(myQueue,(const char *)(testData+3),4,0);
54. nanosleep(&tenthSecond,NULL); /* let queue shutdown */
55.
56. return 0;
57. }

Figure 14.4. (Continued)

Notice that when the queue is opened it is not necessary to specify its attributes. Line
24 shows the command necessary to attach to an existing queue. Full error handling for all
queue commands is shown for both foreground and background programs. For clarity’s sake,
subsequent examples will leave out the error handling. Again the foreground program uses
nanosleep to force context switches. The following commands will compile and execute the
code snippets.

gcc --lrt --o backProcess back1.c
gcc --lrt --o foreProcess fore1.c
./backProcess 2>errLog &
./foreProcess

The standard error stream on the background process is re-directed to a file named errLog.
When the foreground sends a zero, this is used to tell the background to shutdown. No
attempt is made to apologize for the use of nanosleep() in forcing a context switch. However
this is very, very bad real-time programming practice for a variety of reasons. First, it’s
not real-time. As a matter of fact it takes somewhat more than 0.3 seconds to execute this

Linux 2.6 Kernel 267

program to completion. Second, although the nanosleep forces a context switch it does not
guarantee that the other process runs. The two processes must ping-pong for this program
to work. Nanosleep() cannot force that behavior. Finally, suppose the foreground uses a one
second sleep but the background a tenth of a second. The user will be quite surprised to
see that instead of adding five, the background ran ten times and added 50! A more precise
real-time construct is required.

Sticking with the SCA mandatory interfaces we see that POSIX semaphores are required to
be supported in all SCA-compliant systems. The next code examples (Figures 14.5 and 14.6)
use semaphores to signal each end of the bi-directional message queue. Two semaphores
are required, one for the foreground to tell the background task to pickup a message and the
other for the background to tell the foreground to pickup a message. First the background
process, shown in Figure 14.5.

1. /* back2.c */
2.
3. #include <mqueue.h>
4. #include <sys/stat.h> /* for mode_t flags */
5. #include <time.h>
6. #include <stdio.h>
7. #include <semaphore.h>
8.
9. static const struct timespec tenthSecond = {0,100000000};
10.
11. #define msgSize 4 /* 4 bytes = an int */
12.
13. int main()
14. {
15. mqd_t myQueue;
16. const char queueName[]="/myQueueName";
17.
18. sem_t *p_myRSem=NULL, *p_mySSem=NULL, *p_myXSem=NULL;
19. const char semRName[]="/myRSemName";
20. const char semSName[]="/mySSemName";
21. const char semXName[]="/myXSemName";
22.
23. mode_t allowOwner = S_IRUSR � S_IWUSR � S_IXUSR;
24. struct mq_attr someAttributes;
25. int semCreated=0L;
26. int putDataHere;
27.
28. someAttributes.mq_flags = 0;
29. someAttributes.mq_maxmsg = 1;
30. someAttributes.mq_msgsize = msgSize;
31.
32. /* housekeeping: get rid of any queues from previous crashes, etc */
33. mq_unlink(queueName); sem_unlink(semRName);

Figure 14.5. Named semaphores – background

268 The POSIX Operating System

34. sem_unlink(semSName); sem_unlink(semXName);
35.
36. /* Exclusively create a read/write, non-blocking queue */
37. /* Blocking will be handled by the semaphores */
38. myQueue = mq_open(queueName,O_RDWR�O_CREAT�O_EXCL�O_NONBLOCK,
39. allowOwner,&someAttributes);
40. fprintf(stderr,"Queue is open for business\n");
41.
42. /* Wait for the foreground to create the semaphores */
43. while (!semCreated)
44. {
45. p_myXSem = sem_open(semXName,0L);
46. if (p_myXSem == SEM_FAILED)
47. nanosleep(&tenthSecond,NULL); /* let someone else run */
48. else
49. semCreated = 1;
50. }
51. p_myRSem = sem_open(semRName,0L);
52. p_mySSem = sem_open(semSName,0L);
53. fprintf(stderr,"Have accessed the semaphores\n");
54. sem_post(p_myXSem); /* Let foreground know we’re ready */
55.
56. while (1)
57. {
58. sem_wait(p_myRSem);
59. mq_receive(myQueue,(char *)&putDataHere,
60. msgSize,(unsigned int *)NULL);
61. if (putDataHere==0) break;
62. putDataHere += 5;
63. mq_send(myQueue,(const char *)&putDataHere,4,0);
64. sem_post(p_mySSem);
65. }
66.
67. sem_post(p_myXSem); /* let foreground know we’re done */
68. if ((mq_unlink(queueName) == 0)&&(sem_unlink(semRName)==0)&&
69. (sem_unlink(semSName) == 0)&&(sem_unlink(semXName)==0))
70. fprintf(stderr,"Unlink complete shutting down\n");
71. else
72. perror("unlink() problem");
73.
74. return 0;
75.
76. }

Figure 14.5. (Continued)

Similar to our first attempt, the background task is responsible for creating the message
queue. This time however the queue is non-blocking – line 38, O_NONBLOCK. The
semaphores will provide the blocking function. The foreground process (Figure 14.6) will be
responsible for creating the semaphores. The background process tries to open the semaphore

Linux 2.6 Kernel 269

in line 45. This open call does not specify the O_CREAT flag and if the semaphore does not
already exist, the call will fail. The background will check every tenth of a second for the
existence of the semaphore. The program has three semaphores: two to control access to the
message queue and one to synchronize the foreground and background.

1. /* fore2.c */
2.
3. #include <mqueue.h>
4. #include <sys/stat.h> /* for mode_t flags */
5. #include <stdio.h>
6. #include <stdlib.h>
7. #include <semaphore.h>
8.
9. #define msgSize 4 /* 4 bytes = an int */
10.
11. int main()
12. {
13. mqd_t myQueue;
14. const char queueName[]="/myQueueName";
15.
16. sem_t *p_myRSem=NULL, *p_mySSem=NULL, *p_myXSem=NULL;
17. const char semRName[]="/myRSemName";
18. const char semSName[]="/mySSemName";
19. const char semXName[]="/myXSemName";
20.
21. mode_t allowOwner = S_IRUSR � S_IWUSR � S_IXUSR;
22.
23. int putDataHere, i;
24. int testData[]={12,2,7,0};
25.
26. /* create semaphores */
27. p_myRSem = sem_open(semRName,O_CREAT�O_EXCL,allowOwner,0L);
28. p_mySSem = sem_open(semSName,O_CREAT�O_EXCL,allowOwner,0L);
29. p_myXSem = sem_open(semXName,O_CREAT�O_EXCL,allowOwner,0L);
30. if ((p_myRSem == SEM_FAILED)� �
31. (p_mySSem == SEM_FAILED)� � (p_myXSem == SEM_FAILED))
32. {
33. perror("sem_open() problem");
34. abort();
35. }
36.
37. /* Attach to the queue */
38. myQueue = mq_open(queueName,O_RDWR�O_NONBLOCK);
39.
40. /* wait for background to acquire the semaphores */
41. sem_wait(p_myXSem);
42.

Figure 14.6. Named semaphores – foreground

270 The POSIX Operating System

43. for (i=0; i<3; ++i)
44. {
45. mq_send(myQueue,(const char *)(testData+i),4,0);
46. sem_post(p_myRSem);
47. sem_wait(p_mySSem);
48. mq_receive(myQueue,(char *)&putDataHere,
49. msgSize,(unsigned int *)NULL);
50. printf("Sent %d Received %d\n",*(testData+i),putDataHere);
51. }
52.
53. /* send shutdown message to backEnd */
54. mq_send(myQueue,(const char *)(testData+3),4,0);
55. sem_post(p_myRSem);
56. sem_wait(p_myXSem); /* let the background shutdown */
57.
58. return 0;
59. }

Figure 14.6. (Continued)

So the foreground program will execute up to and block at line 41. Once the background
has acknowledged acquiring the semaphores the background will then post the ‘X’ semaphore
to fire-up the blocked the foreground. The same ‘X’ semaphore is used again at the end of
the program for the background process to tell the foreground task it is done using the queue
and that it is OK to shutdown. Not only does this program run significantly faster than the
nanosleep version, but also its architecture guarantees the ping-pong behavior required for a
successful execution.

The final code examples (Figures 14.7 and 14.8) use two uni-directional blocking queues
instead of a single bi-directional queue.

1. /* back3.c */
2.
3. #include <mqueue.h>
4. #include <sys/stat.h> /* for mode_t flags */
5. #include <stdio.h>
6. #include <semaphore.h>
7.
8. #define msgSize 4 /* 4 bytes = an int */
9.
10. int main()
11. {
12. mqd_t myRQueue,mySQueue;
13. const char rcvrName[]="/myRcvrQueue";
14. const char sendName[]="/mySendQueue";

Figure 14.7. Uni-directional message queues – background

Linux 2.6 Kernel 271

15.
16. mode_t allowOwner = S_IRUSR � S_IWUSR �S_IXUSR;
17. struct mq_attr someAttributes;
18. int putDataHere;
19.
20. someAttributes.mq_flags = 0;
21. someAttributes.mq_maxmsg = 1; /* nice bi-directional blocking */
22. someAttributes.mq_msgsize = msgSize;
23.
24. /* housekeeping: get rid of queues from previous crashes, etc */
25. mq_unlink(rcvrName);
26. mq_unlink(sendName);
27.
28. /* Exclusively create a read only blocking queue */
29. myRQueue = mq_open(rcvrName,O_RDONLY�O_CREAT�O_EXCL,
30. allowOwner,&someAttributes);
31.
32. /* Exclusively create a write only blocking queue */
33. mySQueue = mq_open(sendName,O_WRONLY�O_CREAT�O_EXCL,
34. allowOwner,&someAttributes);
35. fprintf(stderr,"Queues are open for business\n");
36.
37. while (1)
38. {
39. mq_receive(myRQueue,(char *)&putDataHere,
40. msgSize,(unsigned int *)NULL); /* blocking */
41. if (putDataHere==0) break;
42. putDataHere += 5;
43. mq_send(mySQueue,(const char *)&putDataHere,4,0); /* blocking */
44. }
45.
46. if ((mq_unlink(rcvrName) == 0)&&(mq_unlink(sendName)==0))
47. fprintf(stderr,"Unlink complete shutting down\n");
48. else
49. perror("unlink() problem");
50.
51. return 0;
52.
53. }

Figure 14.7. (Continued)

The background process (Figure 14.7) establishes the polarity for the message queue
names. The ‘R’ queue is used by the background as read-only. It will be opened by the
foreground as write-only.

Similarly the ‘S’ queue is opened by the background as write-only but will be the receive-
only queue from the perspective of the foreground process – line 21 in (Figure 14.8). Of each
of the versions presented this version executes the quickest. Because the write-side of the
queue fills up and blocks after just one message is written to it, there is an immediate context

272 The POSIX Operating System

1. /* fore3.c */
2.
3. #include <mqueue.h>
4. #include <time.h>
5. #include <stdio.h>
6.
7. static const struct timespec tenthSecond = {0,100000000};
8.
9. #define msgSize 4 /* 4 bytes = an int */
10.
11. int main()
12. {
13. mqd_t myRQueue,mySQueue;
14. const char sendName[]="/myRcvrQueue"; /* swap names relative to */
15. const char rcvrName[]="/mySendQueue"; /* background process */
16.
17. int putDataHere, i;
18. int testData[]={12,2,7,0};
19.
20. /* Attach read only blocking queue */
21. myRQueue = mq_open(rcvrName,O_RDONLY);
22.
23. /* Attach write only blocking queue */
24. mySQueue = mq_open(sendName,O_WRONLY);
25. fprintf(stderr,"Queues are open for business\n");
26.
27. for (i=0; i<3; ++i)
28. {
29. mq_send(mySQueue,(const char *)(testData+i),4,0);
30. mq_receive(myRQueue,(char *)&putDataHere,
31. msgSize,(unsigned int *)NULL);
32. printf("Sent %d Received %d\n",* (testData+i),putDataHere);
33. }
34.
35. /* send shutdown message to backEnd */
36. mq_send(mySQueue,(const char *)(testData+3),4,0);
37. nanosleep(&tenthSecond,NULL); /* let queue shutdown */
38.
39. return 0;
40. }

Figure 14.8. Uni-directional message queues – foreground

switch to the reader of that queue. Instead of semaphores performing the blocking operation,
the queue itself optimally blocks and un-blocks in ping-pong fashion. So even without
the fork() and exec() commands the applications programmer is quite unrestricted in
process-oriented programming through the shell. The SCA ExecutableDevice can be used to
create true processes in operating systems that support that capability.

Linux 2.6 Kernel 273

14.2.2 More Unavailable POSIX Calls

_POSIX _JOB _CONTROL is not required in SCA-compliant systems. This puts the SCA
somewhat at odds with the Federal Information Processing Standard 151-2 [10], which
specifies job control as mandatory. So what is it and will we miss this capability in our
software radio? Job control harkens back to the earliest days of POSIX. Job control allows
sufficiently privileged users the ability to control who gets access to a terminal device
[11]. Processes launched from shell scripts can run in the foreground or the background.
Foreground tasks have access to terminal IO whereas background processes do not. The
following terminal control calls are not expected to be found on an SCA-compliant system:

40� tcdrain() 45� tcsetpgrp()
41� tcflush() 46� tcgetpgrp()
42� tcgetsid() 47� tcsendbreak()
43� tcgetattr() 48� tcsetattr()
44� tcflow()

We can conceive of scenarios in which an applications programmer might want to change
the attributes of a terminal. We consider this example in Section 19.5.1 on Devices. The
SCA specification, Appendix B, also excludes other system administration-type calls from
the SCA POSIX vocabulary. All of these fall under the context of file access control, group
access, login control, and privileges, etc.

49� getegid() 60� geteuid()
50� getgid() 61� getgroups()
51� getlogin() 62� getpgrp()
52� getuid() 63� setsid()
53� chmod() 64� umask()
54� getgrgid() 65� getgrgid_r()
55� getgrnam() 66� getgrnam_r()
56� getpwnam() 67� getpwnam_r()
57� getpwuid() 68� getpwuid_r()
58� setgid() 69� setuid()
59� chown() 70� getlogin_r()

The applications programmer is unlikely to miss these system calls. If an applications
programmer finds a need to access these calls, there is probably some bad functional
allocation going on at the system design level. These calls are most closely associated with
systems and security administration.

A few more batches of calls are not required in SCA-compliant systems. This next set
provides device specific support for terminals:

71� cfgetispeed() 76� cfgetospeed()
72� cfsetispeed() 77� cfsetospeed()
73� ctermid() 78� isatty()
74� ttyname() 79� ttyname_r()
75� tzset()

274 The POSIX Operating System

These clearly are functions more appropriately accessed from Logical Device or device
drivers. Remember though an application is prohibited the use of these system calls; a
Device or device driver is not.

The next batch of unsupported calls concern advanced controls applied to streams and
files. The applications programmer is discouraged the use of these calls because they are
highly non-portable. The applications programmer is required to use the SCA-mandatory
Core Framework File and FileSystem interfaces instead of their low-level POSIX equivalents.
The following system calls are not to be used by the applications programmer.

80� dup() 88� dup2()
81� fcntl() 89� pipe()
82� mkfifo() 90� getc_unlocked()
83� getchar_unlocked() 91� flockfile()
84� ftrylockfile() 92� funlockfile()
85� putc_unlocked() 93� putchar_unlocked()
86� fsync() 94� fdatasync()
87� readdir_r()

The only system call in this not-required list that is somewhat perplexing is the
readdir_r() call. This is the re-entrant version of the readdir() call which is
mandatory. Each of the constructs excluded here, for example, pipes and fifos, can easily
be replaced by the mandatory message queues. There is a tacit requirement to be found in
the partially required SYNCHRONOUS_IO. The elements of SYNC_IO that are excluded are
fsync(), fdatasync(), and fnctl().

The only system calls remaining are the various flavors of open. There are five ‘open’
system calls required, besides message queues and semaphores: opendir(), open(),
fopen(), fdopen(), and freopen(). SYNC_IO requires that the following flags be
supported in the open calls: O_DSYNC, O_SYNC, and O_RSYNC. These flags provide the
same effect as fsync() and fdatasync() but are applied when the file is first opened.

Three remaining system calls are not to be used by the applications programmer.

95� siglongjmp() 96� sigsetjmp()
97� alarm()

The set jump call (96) specified as not required is a version of setjmp that also saves
the signal mask of the caller. The mandatory version of setjmp() saves the environment
only. The alarm() call is easily superseded by the mandatory POSIX timers. Here is
one final note on what is not expected to be available to the applications programmer.
The #define_POSIX_VDISABLE is not mandatory. In systems that do support this, the
#define is used to identify the character that disables special control characters used by
the terminal. Reference [10] provides another means of accomplishing the same feat using
the mandatory fpathconf() system call. So it is possible to retrieve the terminal’s disable
character but the applications programmer is not allowed to change it. The tcsetattr()
system call is not required by the SCA. A device level programmer does not have the same
restriction.
This chapter introduced the Operating Environment including the one we will be using
throughout the remainder of this book. The chapter also focused on the first layer of OE-
required functionality, the mandatory POSIX system calls. Our approach was to highlight

Linux 2.6 Kernel 275

those system calls which are not required with the intent to identify certain functions that
the applications programmer just cannot use.

After examining the 97 system calls not guaranteed to be present on an SCA-compliant
system we see that in each case there are other mandatory calls that can be used instead.
The SCA identifies 256 mandatory POSIX system calls – see Appendix A of this book.
This is more than enough to satisfy the needs of the applications programmer. Recall that
even the mandatory POSIX file system calls are not supposed to be used by the applications
programmer but rather their Core Framework equivalents. In the thirty or so not required calls
that concern system administration, file-locking, and terminal control we question whether,
in a properly designed system, an applications programmer would ever require access to
these commands. In Chapter 19, we examine how a logical Device might want to access the
terminal, but device software is not subject to the same constraints as applications software.
Finally there is some concern on the lack of support for fork()/exec() and most
importantly _POSIX_PRIORITY_SCHEDULING. If you have an application designed to
utilize priority scheduling you must either encapsulate prioritized tasks as ExecutableDevices
or use POSIX threads. Each method will be explored in Chapters 15 and 19.

15
POSIX Threads

The SCA mandates 58 POSIX thread systems calls (out of 80 possible) [2]. This chapter
introduces the POSIX thread system calls that are both mandatory and the most commonly
used. POSIX threads are composed of five primary functional ‘objects’ – historically they
are called variables. Since POSIX threads somewhat pre-date the object-oriented paradigm
of C++ or CORBA, the term ‘object’ is used allegorically. First, the system calls are
implemented in straight ‘C’ – structs instead of classes. Second, without the implicit C++
‘this’ pointer, the POSIX thread structs must be passed to routines referenced by pointers.
The five objects are:

• the thread object – pthread_t
• the mutex variable – pthread_mutex_t
• the conditional variable – phtread_cond_t
• the key variable – pthread_key_t
• the read-write lock – pthread_rwlock_t

With the exception of the key variable, each functional object has a
corresponding attribute structure: i) pthread_attr_t; ii) pthread_mutexattr_t;
iii) pthread_condattr_t; and iv) pthread_rwlockattr_t. Read-write locks were
introduced after the IEEE 1995 standard and are not mandatory for SCA-compliant systems.
There are a total of 11 system calls associated with read-write locks that we don’t discuss
further. Incidentally there is nothing that can be done with read-write locks that cannot
otherwise be accomplished with conditional and mutex variables.

As discussed in the previous chapter POSIX threads offer a means of supporting
independent execution paths without the overhead of full-fledged process-oriented context
switching. Threads can be implemented on hardware that doesn’t have a memory-
management unit (MMU) or on a operating system that doesn’t support the notion of
virtual address spaces. Most importantly for the applications programmer who desires
portability across SCA-compliant platforms, POSIX threads offer the only way to
implement i) priority-based scheduling and ii) shared memory constructs such as unnamed
semaphores. From Chapter 14 we are reminded that _POSIX_PRIORITY_SCHEDULING
and _POSIX_SHARED_MEMORY_OBJECTS are not required on SCA-compliant systems.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

278 POSIX Threads

Threads provide a convenient and portable way to implement both of these powerful
constructs vital to the real-time software designer.

15.1 The Thread Object

A typical hierarchy for a threaded program involves a main program – int main() in ‘C’– that
launches one or more threads and then merely goes to sleep until the threads terminate.
In some cases the main program might run in a loop providing thread status to a user or
perhaps receiving user input and passing it down to the threads for processing. More complex
programs could involve multiple threads running within multiple processes. For SCA-based
applications this is not advisable because _POSIX_THREAD_PROCESS_SHARED is not
mandatory on SCA-compliant systems. This lack makes it impossible for mutex and
conditional variables to be shared across processes. Inter-process synchronization could
certainly be done with POSIX.1b semaphores or message queues, but that takes away the
advantage of the lightweight context switching offered by threads. And, of course, prioritized
inter-process synchronization is also not mandatorily supported by the SCA. If prioritized
synchronization is to be used in an SCA-compliant application the only fully supported
means of implementation is with POSIX thread mutex and conditional variables.

Figure 15.1 provides an overview of the primary data types used to construct POSIX
threads. The pthread_t parameter is required on the six commonly used calls shown in
the figure. Separately listed are two calls to manipulate scheduling parameters – this will
be discussed later. pthread_t is a transparent type in that the user need not worry about
its internal details. Its attributes should only be manipulated through set/get operations on
pthread_attr_t.

Figure 15.1 shows that pthread_t has a ‘create’ method. This is not the corollary to the
object-oriented constructor. The reader will notice that there is no corresponding destructor.
Rather the user is required to allocate storage for the thread structure and then pass a pointer
to the create function which then fills in the structure. The full prototype for the create
function is as follows:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*),void *arg);

The actual contents of thread are implementation-dependent. There is nothing in thread
that is directly accessible to the user. The user has the ability to establish attributes of the
thread upon its creation by passing a pointer to an attributes structure, phtread_attr_t.
With a single exception once these attributes are set they cannot be read back, i.e. thread
attributes are write-only. If the attribute pointer points to NULL the thread is created with default
attributes. The POSIX standard does not mandate default attributes; they are implementation
dependent. Two other parameters fill out the parameter list. One is the entry point to the
thread routine. This is a pointer to a function, start_troutine, that accepts a pointer to
a single argument – arg, and returns a single value also cast as a void pointer. A simple code
example is warranted. The code segment in Figure 15.2 creates a thread with default attributes.

The code example in Figure 15.2 makes use of a function printAttributes which is
found in Section 15.4 on thread attributes. The command used to compile and link executable
is as follows:

gcc − I/usr/include/nptl − L/usr/lib/nptl attr1.c printAttributes.c −
lpthread

The Thread Object 279

cd Logical Model

pthread_t

- attributes: pthread_attr_t = WRITE ONLY
- currentSched: struct schedparam

+ pthread_create () : int
+ pthread_equal () : int
+ pthread_detach () : int
+ «property get» getschedparam(struct schedparam∗) : int
+ «property set» setschedparam(struct schedparam) : int
+ pthread_kill() : int
+ pthread_join() : int
+ pthread_exit() : int

pthread_attr_t

- initializer: pthread_attr_t = PTHREAD_ATTR_IN . . .
- detachstate: int = PTHREAD_CREATE_. . .
- inheritsched: int = PTHREAD_INHERIT. . .
- schedpolicy: int = SCHED_OTHER
- schedparam: struct schedparam
- scope: int = PTHREAD_SCOPE_SYSTEM
- stackaddr: int
- stacksize: int
- guardsize: int

+ pthread_attr_init () : void
+ pthread_attr_destroy() : void

struct schedparam

- __sched_priority: int

default values for
Properties are
implementation-
dependent

«has»

«has» «has»

Figure 15.1. pthread_t component diagram

1. /* attr1.c */
2.
3. #include <stdio.h>
4. #include <pthread.h>
5.
6. void printAttributes(const pthread_attr_t*);
7.
8. int sampleThread(int*);
9.
10. int main()
11. {

Figure 15.2. pthread attributes test code

280 POSIX Threads

12. int start=12, finish=0;
13. pthread_attr_t myPthreadAttr;
14. pthread_t myFirstThread;
15.
16. pthread_attr_init(&myPthreadAttr); /*default˜attributes */
17. printAttributes((const pthread_attr_t*)&myPthreadAttr);
18.
19. pthread_create(&myFirstThread,

(const pthread_attr_t *)&myPthreadAttr,
(void *)sampleThread,(void *)&start);

20.
21. pthread_attr_destroy(&myPthreadAttr); /* not needed anymore */
22.
23. /* wait for thread to exit */
24. pthread_join(myFirstThread,(void **)&finish);
25. printf("Value returned from thread %d\n",finish);
26.
27. return 0;
28. }
29.
30. int sampleThread(int *pInt)
31. {
32. int localCopy = *pInt;
33. localCopy += 5;
34. return localCopy;
35. }

Figure 15.2. (Continued)

This command creates the default executable a.out. The reader is advised that the path to the
‘pthread.h’ header file and corresponding library might be different than that cited above in
their own system. In the case of the 2.6 kernel with glibc 2.3.4 the old LinuxThreads and the
new NPTL threads exist side-by-side. For backwards compatibility reasons the default path
to pthread.h points to the old LinuxThreads version. The NPTL and LinuxThread prototypes
are identical. However, what’s under the covers – most importantly, the behaviors – is
different. At this time, support for the old LinuxThreads is slated to be discontinued in future
releases of glibc so the user should be particularly careful to pickup the NPTL prototypes
and library.

The program creates a thread with default attributes. The thread will accept a single integer
argument, add five, and return the result – lines 30 through 35. Line 16 in the main program
initializes a thread attributes structure to its default values. Line 17 calls the routine to print
out those default values – this routine is used again later and is found in Figure 15.7. Line
19 actually creates the thread. Another technique for creating a thread with default attributes
is to specify a NULL for argument 2 of pthread_create(). This technique would not
work in this example because there is no way to query a thread directly for its attributes.
The attributes structure itself can be ‘queried’ before or after the thread is actually created.
Finally, Line 24 shows a very important means of keeping the main program synchronized

The Thread Object 281

with the threads. The pthread_join() function blocks the caller – in this case the main
program – until the indicated thread exits. Better yet a return code from the terminating
thread can be retrieved and processed. Table 15.1 provides the output from a successful run
of the sample program.

Table 15.1. Default POSIX thread attributes

PTHREAD_CREATE_JOINABLE
PTHREAD_ INHERIT_SCHED
PTHREAD_SCOPE_SYSTEM
SCHED_OTHER
Sched param 0
Value returned from thread 17

Use of the pthread_create() function requires that both the input parameter and
the return parameter must be cast as void pointers. Anytime void pointers are used in ‘C’
code there is bound to be abuse of the void pointer type cast for the purpose of surviving
parameter checks performed by the compiler. Line 8 of the code example in Figure 15.2
shows the prototype for our simple thread. The function prototype indicates that the user
will pass a pointer to an integer and the function will return an integer. When the thread is
created, line 19, both the argument and function return value are re-cast as void pointers.
For the thread argument, re-casting a pointer to an int as a pointer to void is allowed and
portable. The user is equally enabled to perform the same cast on a pointer to a struct. Thus
complex data types can be passed in to the thread via this mechanism. The abuse being
performed in this example is on the return value. The thread returns an integer result which
is then re-cast as a void pointer. This is not portable and quite risky. In this case an int type
and a void pointer type happen to be the same size (in bytes). So what if the user wants
to pass back a more complex result? Simply put, don’t think about using the thread return
value for this purpose. The return value should be treated the same as an exit value from
the main program. Typical usage is for a return value of zero to indicate normal execution
and non-zero to indicate some kind of error.

An even more heinous abuse of the return code would be to make it point to a local
variable. Of course as the system cleans up the thread’s stack upon exit that pointer ends up
essentially pointing to garbage. The clever programmer might allocate storage on the heap
while inside the thread and pass that pointer back to the pthread_join(). While this
indeed would work brilliantly it might lead to memory leaks as the caller of the _join
function would be responsible for freeing the memory. Ultimately the return code should be
used only for that and nothing else. If the user wants to return more complex results, then
space should be allocated for those results in the user’s own context and a pointer passed to
the results holding area as part of the input argument. If the user is passing both complex
data types IN to the thread and pulling complex data types OUT of the thread, then a single
structure should be created that holds both.

282 POSIX Threads

15.2 Un-named Semaphores

Since the SCA does not mandate support for inter-process shared memory it is not possible to
implement un-named semaphores between processes. It is however quite easy to implement in
POSIX threads because all threads exist within the same process space. Un-named threads are
considered part of the real-time extensions to the POSIX.1b family. They are advantaged over
their named cousins because of less system overhead and thus faster switching. All POSIX
semaphores are counting semaphores. That is every sem_post() operation will increase its
count by one. When the count is non-zero a sem_wait() will decrement the count and
return immediately. If the caller of sem_wait() desires to be blocked that blocking will only
occur when the value of the semaphore is zero. If posting the semaphore and blocking on
the semaphore somehow become un-synchronized bad things could happen. Figure 15.3
shows a code example that is a threaded version of the Chapter 14’s fore2.c and back2.c.
A server thread will add five to what ever number is passed to it and return the result to
‘caller’.

1. /* thread1.c */
2.
3. #include <stdio.h>
4. #include <semaphore.h>
5. #include <pthread.h>
6.
7. typedef struct {
8. sem_t myRSem, mySSem;
9. volatile int putDataHere;
10. } sharedMem;
11.
12. void client(sharedMem*);
13. void server(sharedMem*);
14.
15. int main()
16. {
17. pthread_t clientT,serverT;
18. sharedMem msgQ;
19.
20. /* create unnamed semaphores */
21. sem_init(&(msgQ.myRSem),0,0);
22. sem_init(&(msgQ.mySSem),0,0);
23.
24. /* create threads, pass address of msgQ */
25. pthread_create(&serverT,
26. (const pthread_attr_t *)NULL,(void *)server,(void *)&msgQ);
27. pthread_create(&clientT,
28. (const pthread_attr_t *)NULL,(void *)client,(void *)&msgQ);
29.
30. /* wait for threads to terminate */

Figure 15.3. Un-named semaphores – main

Un-named Semaphores 283

31. pthread_join(clientT,(void **)NULL);
32. pthread_join(serverT,(void **)NULL);
33.
34. sem_destroy(&(msgQ.myRSem));
35. sem_destroy(&(msgQ.mySSem));
36.
37. printf("Threads have exited, shutting down\n");
38.
39. return 0;
40. }

Figure 15.3. (Continued)

A single structured variable is setup to share between the server and client threads – lines
7 through 10. In the structure are two unnamed semaphores: one to signal a read to the server
and the other to signal a read to the client. Instead of a message queue, the common data
structure includes a single integer field called putDataHere. Server and client will read and
write this common field as a means of passing data back and forth. The reason for the volatile
qualifier in line 9 will be made evident shortly. Lines 12 and 13 contain the prototypes for the
client and server entry points. A pointer to the common structured variable is passed to each
routine. Lines 21 and 22 initialize the send/receive semaphores with sem_init(). This is
quite different to initialization of a named semaphore, which requires use of sem_open().
The life cycle of named semaphores, is handled with calls to sem_open(), sem_close(),
and sem_unlink(), whereas the named semaphores are handled with sem_init()
and sem_destroy(). The two means of life cycle management are never to be mixed
without serious consequences. For use on an SCA-compliant system the second argument
to sem_init() should always be zero. This flag indicates an inter-process semaphore
which is not mandatorily supported in SCA-compliant systems. The final parameter in
sem_init() is the initial state of the semaphore. In this case zero indicates that the
semaphore is locked – i.e. the first sem_wait() will block until someone performs a
sem_post().

The threads are actually created in lines 25–28. The pointer to the attributes parameter is
NULL thus invoking the creation of threads with default attributes. A pointer to the common
msqQ variable is cast as a void pointer and passed as arguments to each of the threads.
Finally the main program goes to sleep on a pthread_join() waiting for the threads
to exit.

Now let’s see what’s going on in the code for the client and server threads. Figure 15.4
shows a code segment that is a continuation of the source file containing the main program.

We examine the server thread first since it is created first. It enters a while forever loop
and then blocks on the sem_wait – line 63. So at some point the client thread gets created
and runs. The client writes an integer to the common data area – line 47 – and then posts
the semaphore upon which the server has been waiting. The client then hits his or her own
sem_wait – line 49 – and blocks waiting for a response from the server. Very neat, very
clean. But let’s start obscuring things a bit. First off, consider the work of an optimizing
compiler. It’s always looking for ways to simplify and save clock cycles. The putDataHere
variable gets written in line 47 and then gets printed out in line 50. From the optimizing

284 POSIX Threads

41. void client(sharedMem* mQ_p)
42. {
43. int i,testData[]={12,2,7,0};
44.
45. for (i=0; i<3; ++i)
46. {
47. mQ_p->putDataHere = testData[i];
48. sem_post(&(mQ_p->myRSem));
49. sem_wait(&(mQ_p->mySSem));
50. printf("Sent %d Received %d\n",*(testData+i),mQ_p->

putDataHere);
51. }
52.
53. /* send shutdown */
54. mQ_p->putDataHere = testData[3];
55. sem_post(&(mQ_p->myRSem));
56.
57. }
58.
59. void server(sharedMem* mQ_p)
60. {
61. while (1)
62. {
63. sem_wait(&(mQ_p->myRSem));
64. if (mQ_p->putDataHere==0) break;
65. mQ_p->putDataHere += 5;
66. sem_post(&(mQ_p->mySSem));
67. }
68. }

Figure 15.4. Un-named semaphores – client/server

compiler’s perspective nothing happens to the variable between the time it gets written till
the time it gets output. Why not save a few clock cycles and eliminate the middle man? In
this case instead of putDataHere getting written, the variable testData[i] would be
written. This would be disastrous for our demo program. This simple thought experiment
illustrates the necessity for the volatile qualifier on the putDataHere variable. It instructs
the optimizing compiler to make no assumptions about the variable: Simply that it can be
changed by forces beyond its ken and should be distinctly read from memory each and every
time it needs to be accessed – no caching, no register variables. Many of our multi-threaded
examples would not even work without the volatile qualifier.

Another obscuration comes from the fact that there are no guarantees as to who runs
when. We assume the server thread runs first because it’s created first. This is an invalid
assumption. Let’s pretend the client thread runs first. It will write the value to the common
memory and post the semaphore before the server even runs. Fortunately for us when it hits
the sem_wait – line 49 – it will block waiting for a response from the server instead of
looping out of control. So in this case our design somewhat protects us from disaster.

Mutex Variables 285

So now the deterministic execution of our design is predicated upon the assumption that
sem_wait is impervious to all the corrupting forces of nature. Nothing could be further
from the truth because a sem_wait can return in response to a signal ([2], p. 757). Other
more insane scenarios can happen within a real system. An unnamed semaphore is in fact a
chunk of shared, unprotected memory. What’s to say a thread couldn’t attempt to wait on a
semaphore that doesn’t even exist? The reader is encouraged to perform an experiment on the
code example in Figure 15.3. 1) Move initialization of the R semaphore – line 21 – to just after
creation of the server thread, i.e. insert before line 27. 2) After creating the server thread but
before initializing the R semaphore, insert a one second nanosleep. This will delay initialization
of the semaphore and creation of the client thread thus allowing the server to run wild for
awhile. 3) Finally, in the main program, say line 19, initialize msgQ.putDataHere to
some non-zero, positive number. Re-compile and execute the code in order to witness the
incorrect and undesirable results. How can we bullet-proof our code against wayward counting
semaphores? POSIX threads offers such a method, which we discuss in the next section.

15.3 Mutex Variables

The mutex variable is used to guarantee that only one thread at a time can access a particular
resource. In our previous example this resource is the variable putDataHere. As we
ended the previous section we came to understand that breaking out of a sem_wait is not
always due to the presence of valid data in the common area. Ultimately – and every text
on semaphores says the same thing – it is necessary to check some kind of pre-condition or
predicate to ascertain the validity of the release from the sem_wait. So in addition to the
actual data being passed we’d also like to examine some kind of condition code that verifies
the validity of the data. The problem is this: On the client side one operation writes the
integer parameter and a following operation sets the validity code. What if the two operations
were interrupted by a context switch? Our database would be in an intermediate state and the
server thread would be more confused than ever. There must be a way to atomically update
both the integer field and the validity code. Enter the POSIX threads mutex variable, which
provides a means to lock the database so that only one thread can have access at a time. The
code segment in Figure 15.5 adds the necessary features to our shared memory structure.

1. /* thread2.c */
2.
3. #include <stdio.h>
4. #include <semaphore.h>
5. #include <pthread.h>
6.
7. #define DC_NO_VALUE 0x00000000
8. #define DC_TOSERV_OK 0x00000001
9. #define DC_TOCLNT_OK 0x00000002
10. #define DC_QUIT 0x00000003
11.

Figure 15.5. Mutex variables

286 POSIX Threads

12. pthread_mutex_t Sprotect = PTHREAD_MUTEX_INITIALIZER;
13.
14. typedef struct {
15. sem_t myRSem, mySSem;
16. volatile int putDataHere; /* <-- this field AND */
17. volatile int ctrlCode; /* <-- this field protected by a mutex */
18. /* they are read/modified atomically */
19. pthread_mutex_t *protect;
20. } sharedMem;
21.
22. void client(sharedMem*);
23. void server(sharedMem*);
24.
25. int main()
26. {
27. pthread_t clientT,serverT;
28. sharedMem msgQ;
29.
30. msgQ.protect = &Sprotect; /* already initialized */
31.
32. /* initialize semaphores */
33. sem_init(&(msgQ.myRSem),0,0);
34. sem_init(&(msgQ.mySSem),0,0);
35. msgQ.ctrlCode=DC_NO_VALUE; /* initialize data invalid */
36.
37. /* create threads, pass address of msgQ */
38. pthread_create(&serverT,
39. (const pthread_attr_t *)NULL,(void *)server,(void *)&msgQ);
40. pthread_create(&clientT,
41. (const pthread_attr_t *)NULL,(void *)client,(void *)&msgQ);
42.
43. /* wait for threads to terminate */
44. pthread_join(clientT,(void **)NULL);
45. pthread_join(serverT,(void **)NULL);
46.
47. sem_destroy(&(msgQ.myRSem));
48. sem_destroy(&(msgQ.mySSem));
49. pthread_mutex_destroy(msgQ.protect);
50.
51. printf("Threads have exited, shutting down\n");
52.
53. return 0;
54. }
55.
56. void client(sharedMem* mQ_p)
57. {
58. int i,testData[]={12,2,7,0};
59. volatile int localCopy;
60.

Figure 15.5. (Continued)

Mutex Variables 287

61. for (i=0; i<4; ++i)
62. {
63. pthread_mutex_lock(mQ_p->protect);
64. mQs_p->putDataHere = testData[i];
65. mQ_p->ctrlCode = DC_TOSERV_OK;
66. pthread_mutex_unlock(mQ_p->protect);
67. sem_post(&(mQ_p->myRSem));
68. while (1)
69. {
70. sem_wait(&(mQ_p->mySSem));
71. pthread_mutex_lock(mQ_p->protect);
72. if (mQ_p->ctrlCode==DC_TOCLNT_OK) break;
73. pthread_mutex_unlock(mQ_p->protect);
74. }
75. localCopy=mQ_p->putDataHere;
76. pthread_mutex_unlock(mQ_p->protect); /* unlock before performing
77. time consuming IO */
78. printf("Sent %d Received %d\n",*(testData+i),localCopy);
79. }
80.
81. /* send shutdown */
82. pthread_mutex_lock(mQ_p->protect);
83. mQ_p->ctrlCode = DC_QUIT;
84. pthread_mutex_unlock(mQ_p->protect);
85. sem_post(&(mQ_p->myRSem)); /* "send" the message */
86.
87. }
88.
89. void server(sharedMem* mQ_p)
90. {
91. while (1)
92. {
93. while (1)
94. {
95. sem_wait(&(mQ_p->myRSem));
96. pthread_mutex_lock(mQ_p->protect);
97. if ((mQ_p->ctrlCode==DC_TOSERV_OK)� �
98. (mQ_p->ctrlCode==DC_QUIT)) break;
99. pthread_mutex_unlock(mQ_p->protect);
100. }
101. if (mQ_p->ctrlCode==DC_QUIT) break;
102. mQ_p->putDataHere += 5;
103. mQ_p->ctrlCode = DC_TOCLNT_OK; /* mark as valid msg to client
*/
104. pthread_mutex_unlock(mQ_p->protect);
105. sem_post(&(mQ_p->mySSem));
106. }
107. pthread_mutex_unlock(mQ_p->protect);
108.
109. }

Figure 15.5. (Continued)

288 POSIX Threads

Lines 17 and 19 add the new fields to the common memory area. One is a control code
and the other the mutex itself. Similar to the data field, the control code is qualified as
volatile in order to notify the optimizing compiler that the fields are modifiable in a manner
unknown to the compiler. Line 12 initializes the mutex to its default settings (more about
mutex attributes later). Line 35 initializes the control code to indicate that the data field is
not valid. The threads are launched and everything proceeds as before. In the server and
client threads we see that each thread locks the data structure before reading or writing
the data and control fields lines 63, 71, 82, and 96. A mutex is different than a counting
semaphore. Repeated posts to a counting semaphore increment the value of the semaphore.
A thread will block on a counting semaphore only when its count is zero. A mutex on the
other hand can only be locked or unlocked. The thread that holds the lock is the thread that
has access to the data structure.

In both threads we see that upon coming out of the sem_wait state the structure is
locked and the threads use the control code to determine the validity of the data field – lines
72 and 97. DC_TOCLNT_OK marks a valid message to the client and DC_TOSERV_OK
marks a valid message to the server. Of course, the mutex is locked to ensure that while
reading the control code it doesn’t change from underneath the thread that is doing the
reading. This implementation also solves a problem we had in the prior examples where
the numerical value of zero was interpreted as a shutdown command. Our adding machine
could not operate on zero. In the new implementation zero is included in the range of valid
integers and the separate control code is used to pass the quit command.

Lines 68–74 and 93–100 bullet-proof the sem_wait in that data validity is checked after
becoming unblocked from the semaphore for whatever reason. The ping-pong dynamic of the
software is ensured despite outside influences. Lines 75 and 76 warrant further observation.
Upon entry to line 75 the resource – in this case the shared memory – is still locked. We want
to output the data to the terminal but realize that the printf system call might take many,
many clock cycles – perhaps even more than the entire example program itself. We are wise
to copy the data out of the shared memory into a localCopy so that the mutex can be
unlocked as quickly as possible. IO to the terminal can then happen without disrupting the
timely flow of our executable. In general a good real-time design will absolutely minimize
the time that a mutex is locked.

Now let’s intentionally disrupt the program as prescribed in the previous example. 1) Move
the sem_init in line 33 to just after the pthread_create for the server – line 38/39.
2) Put a one second nanosleep just after the pthread_create but before the sem_init.
This delays the initialization of the semaphore and the creation of the client thread. Before we
bullet-proofed the code the server thread ran amok by repeatedly posting the ‘S’ semaphore.
Once the client thread started it was no longer synchronized with the server so the ping-
pong relationship needed for this program to work was violated and incorrect results were
generated. In the current implementation the server thread will test the validity of the data
before performing the add operation and before posting the ‘S’ semaphore. Although the
client thread startup is delayed the ping-pong relationship is preserved. This implementation
will resist the many bullets a real-time system can throw our way.

In line 12 we used the default initializer, PTHREAD_MUTEX_INITIALIZER, to
initialize the mutex variable. This default initializer only works for mutex variables that are
statically allocated. It cannot be used to initialize a dynamically allocated mutex. In line 30
the address of the statically allocated mutex is used to initialize the mutex pointer variable in

Mutex Variables 289

our common data structure. The following code sequence shows how to initialize the mutex
variable dynamically:

msgQ.protect=(pthread_mutex_t*)malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(msgQ.protect,(const pthread_mutexattr_t *)NULL);

By specifying the mutex attributes pointer to NULL, the default attributes are used. The
POSIX98 standard provides static initialization capability for three other mutex types. These
are not mandatory in a SCA-compliant system and for portability reasons should not be used.

Figure 15.6 shows the relationship between the mutex and its attributes. This diagram
shows only the mandatory methods and attributes supported in an SCA-compliant system.

The figure excludes a couple of additional attributes that are not universally supported by
the SCA: mutex type and mutex pshared. The pshared attribute allows a mutex to be
shared with threads in other processes. It requires _POSIX_SHARED_MEMORY_OBJECTS,
which is only optional in SCA-compliant systems. The type attribute controls

cd Logical Model

pthread_mutex_t

- prioceil ing: int
- Init: pthread_mutex_t = PTHREAD_MUTEX_I...

+ pthread_mutex_lock () : int
+ pthread_mutex_trylock () : int
+ pthread_mutex_init () : int
+ «property get» getprioceil ing (int∗) : int
+ pthread_mutex_destroy() : int
+ «property set» setprioceil ing(int, int*) : int

pthread_mutexattr_t

- prioceiling: int
- protocol: int

+ pthread_mutexattr_init() : int
+ pthread_mutexattr_destroy() : int
+ «property get» getprioceil ing(int∗) : int
+ «property set» setprioceil ing(int) : int
+ «property get» getprotocol(int∗) : int
+ «property set» setprotocol(int) : int

«has»

Figure 15.6. pthread_mutex_t component diagram

290 POSIX Threads

error and deadlock detection and should not be used in SCA-compliant applications.
Some discussion of priority ceiling and protocol is warranted. SCA systems support
the three following protocols PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, or
PTHREAD_PRIO_PROTECT. If a mutex is initialized with PRIO_NONE there is no
relationship between locking and unlocking a mutex and thread priority. If the mutex is
created with the protocol PRIO_INHERIT priority inheritance is enforced. If a low priority
thread owns the mutex and a higher priority thread attempts to lock the same mutex, the OS
will raise the priority of the low thread to that of the thread attempting the lock. This will
ensure that the low thread will not be pre-empted by any threads having priority between
that of the low and high threads. Timely execution of the low thread is assured, and its
ability to complete its task and release the mutex is also assured. Once the mutex is released
the OS will lower the low thread priority back to its original level.

Also supported in SCA systems is PRIO_PROTECT. The behavior of a mutex initialized
with this protocol behaves exactly like that of a mutex with PRIO_INHERIT with one
notable exception: An additional parameter prioceiling establishes the maximum priority to
which the low priority thread can be elevated. When the mutex is contended. This protocol
protects or preserves threads of priority higher than prioceiling from not being able to execute
immediately.

In SCA operating environments four additional system calls are supported: pthread_
mutexattr_ getprioceling and pthread_mutexattr_ setprioceling
which allow the user to set and get the priority ceiling value before the mutex is created and
pthread_mutex_getprioceiling and pthread_ mutex_setprioceiling
which allow the user to query and configure the prioceiling of an already instantiated mutex.

A final mutex system call is the pthread_mutex_trylock. This call will either lock
the mutex or return immediately if the mutex is owned by somebody else. The return value
from the pthread_mutex_trylock() call will be zero if the lock was acquired and
non-zero, i.e. EBUSY, if the thread is locked by someone else.

15.4 Thread Attributes

Given the previous discussion of priorities, how is a thread created with a particular priority?
There are a series of operations that allow attributes to be configured on a thread as it
is created. All of these operations on the pthread_attr_t structure are referenced in
Figure 15.1 and explicitly listed in Table 15.2.

Earlier in Table 15.1 we allowed the system to initialize the thread with default attribute
values. Valid values for each attribute are as follows:

detachstate = PTHREAD_CREATE_JOINABLE, PTHREAD_CREATE_DETACHED

schedpolicy = SCHED_OTHER, SCHED_FIFO, SCHED_RR

scope = PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS

inheritsched = PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED

The code segment in Figure 15.7 is that used by the program in Section 15.1 to print out
the thread attributes structure.

Thread Attributes 291

Table 15.2. Set and get pthread attributes

pthread_attr_getdetachstate() pthread_attr_setdetachstate()
pthread_attr_getguardsize() pthread_attr_setguardsize()
pthread_attr_getinheritsched() pthread_attr_setinheritsched()
pthread_attr_getschedparam() pthread_attr_setschedparam()
pthread_attr_getschedpolicy() pthread_attr_setschedpolicy()
pthread_attr_getscope() pthread_attr_setscope()
pthread_attr_getstackaddr() pthread_attr_setstackaddr()
pthread_attr_getstacksize() pthread_attr_setstacksize()

1. /* printAttributes.c */
2.
3. #include <stdio.h>
4. #include <pthread.h>
5.
6. #define printAttr(x) if (detS==(x))printf(#x"\n");
7.
8. void printAttributes(const pthread_attr_t *myPthreadAttr_p)
9. {
10. struct sched_param mySchedParam;
11. int detS;
12.
13. pthread_attr_getdetachstate(myPthreadAttr_p,&detS);
14. printAttr(PTHREAD_CREATE_JOINABLE)
15. printAttr(PTHREAD_CREATE_DETACHED)
16.
17. pthread_attr_getinheritsched(myPthreadAttr_p,&detS);
18. printAttr(PTHREAD_INHERIT_SCHED)
19. printAttr(PTHREAD_EXPLICIT_SCHED)
20.
21. pthread_attr_getscope(myPthreadAttr_p,&detS);
22. printAttr(PTHREAD_SCOPE_SYSTEM)
23. printAttr(PTHREAD_SCOPE_PROCESS)
24.
25. pthread_attr_getschedpolicy(myPthreadAttr_p,&detS);
26. printAttr(SCHED_OTHER)
27. printAttr(SCHED_FIFO)
28. printAttr(SCHED_RR)
29.
30. pthread_attr_getschedparam(myPthreadAttr_p,&mySchedParam);
31. printf("Sched param%d\n",mySchedParam.__sched_priority);
32.
33. }

Figure 15.7. pthread attributes – print function

292 POSIX Threads

This routine will be used again shortly as we modify thread attributes. There are three
attributes associated with establishing a customized stack for a thread. These parameters are
stackaddr, stacksize, and guardsize. These calls are mandatorily supported by SCA-compliant
systems but the user is cautioned that their use could create portability problems because
stack management schemes are different from platform to platform.

The detachstate attribute allows the user to create a thread that is joinable or detached.
A detached thread is a thread with memory storage that can be reclaimed by the system after
the thread terminates. A detached thread cannot be ‘join’ed. A joinable thread can be detached
after it’s created by calling the pthread_detach system call. The only requirement from
the POSIX standard is that _POSIX_THREAD_PRIORITY_SCHEDULING be defined,
which is mandatory on SCA systems.

The priority scheduling of threads is a powerful mechanism that allows the
applications programmer precise contol over how components react to events within
the system. There are three attributes that affect priority scheduling: scope,
inherit sched, and sched policy. The first, scope, has meaning only if
_POSIX_PRIORITY_SCHEDULING is supported. An SCA application cannot make
such an assumption. The second, inheritsched, establishes whether or not a created
thread inherits its policy and priority from the caller of pthread_create or whether
it must be set explicitly. In the Linux system the default is to inherit scheduling
policy and priority from the caller. In accordance with the POSIX standard a thread
created with the INHERIT attribute will ignore the fields schedpolicy and schedparam
(priority) set by the user. Thus in our Linux system the user must setinheritsched
to PTHREAD_EXPLICIT_SCHED in order to be able to change the schedpolicy and
schedparam setting.

The default scheduling policy for Linux is SCHED_OTHER. Prior to the release of
the 2.6 kernel this was the only policy supported. The OTHER policy is implementation
dependent and in the case of the old Linux threads were set up as standalone processes
and ran along with all the other processes in the system. There was nothing the
programmer could do to assert the importance of his or her thread/process over that
of all the other processes. The Linux scheduler gives everyone a chance to run and
you have no control over when. Threads responding to events had to wait their turn –
somewhat of a laissez faire scheduling policy. Our software radio system benefits from
real-time responsiveness, thus we leave SCHED_OTHER to spreadsheet programs and
the like.

Linux 2.6 and glibc/NPTL 2.4.3 support two real-time scheduling policies – SCHED_RR
(round robin) and SCHED_FIFO (first in first out). Both are pre-emptive and priority-
based. Any thread having either of these policies specified must be run with super-
user privileges, and any such thread will pre-empt and out-prioritize any thread
created with the policy SCHED_OTHER. POSIX does not specify if priorities of higher
numerical value have higher priority or vice-versa. It does provide two system calls
sched_get_priority_max() and _min for the user to determine what the minimum
and maximum priorities are for each priority policy. Table 15.3 shows these priority limits for
Linux 2.6.

The pre-emptive real-time scheduler operates with very few rules. Envision lists numbered
99 (high priority) down to 1 (low priority) for SCHED_FIFO and lists numbered 99 down
to 1 for SCHED_RR. (Remember that other implementations might reverse the numerical
meaning of priority.) At each priority level the list is composed of a sequence of threads

Thread Attributes 293

Table 15.3. Default min and max priorities

Policy Min priority Max priority

SCHED_OTHER 0 0
SCHED_FIFO 1 99
SCHED_RR 1 99

with a head and a tail. The head thread at a particular priority is the thread that’s been sitting
in that list the longest. The tail is the newcomer to that list. This construct – call it the
execution queue – represents all threads able to run. If a thread is blocked it is not run-able
and does not appear on this execution queue. Here are the six rules:

1. The head thread having the highest priority – both lists considered – is granted access to
the CPU.

2. If the running thread is pre-empted by a higher priority thread it will be returned to the
head of the list from which it came.

3. If the running thread performs a sched_yield it will return to the tail of the list from
which it came.

4. If a running thread becomes blocked it will not be returned to the queue.
5. When a blocked thread becomes run-able it will be returned to the tail of the appropriate

list.
6. A thread whose policy or priority is modified is moved to the tail of the new list.

The real trick in real-time design is to keep the execution queue empty. When a thread
becomes run-able it should go straight to the CPU. The following POSIX artifacts can
generate a blocking condition: message queues, semaphores, mutex, and condition variables.
When an event on one of these artifacts cause a thread to become run-able, that thread is
added at the tail of the correct priority list. Despite the fact that the SCA does not mandate
_POSIX_PRIORITY_SCHEDULING once we understand that the prioritization mechanism
is built in to the fabric of the operating system we can conclude that if priority scheduling
is there for threads it is also there for processes.

The following example (Figure 15.8) shows how to invoke the real-time pre-emptive
scheduler on Linux 2.6.

In this simple code example a thread is created under the SCHED_FIFO policy having
a priority of 5. Once compiled and run as a user the following output is expected – the
pthread_create fails with the following message – line 36:

1. /* attr2.c */
2.
3. #include <stdio.h>
4. #include <pthread.h>
5. #include <string.h>
6. #include <stdlib.h>
7.
8. void client();

Figure 15.8. Priority scheduling

294 POSIX Threads

9. void printAttributes(const pthread_attr_t*);
10.
11. static const struct timespec tenthSecond = {0,100000000};
12.
13. int main()
14. {
15. pthread_t privledgedThread;
16. pthread_attr_t myPthreadAttr;
17. struct sched_param mySchedParam;
18. int retVal, detS;
19.
20. pthread_attr_init(&myPthreadAttr);
21.
22. detS = PTHREAD_EXPLICIT_SCHED;
23. pthread_attr_setinheritsched(&myPthreadAttr,detS);
24.
25. detS = SCHED_FIFO;
26. pthread_attr_setschedpolicy(&myPthreadAttr,detS);
27.
28. mySchedParam.__sched_priority = 5;
29. pthread_attr_setschedparam(&myPthreadAttr,
30. (const struct sched_param *)&mySchedParam);
31.
32. retVal = pthread_create(&privledgedThread,
33. (constpthread_attr_t*)&myPthreadAttr,(void*)client,

(void*)NULL);
34. if (retVal!=0)
35. {
36. fprintf(stderr,"pthread_create() error: %s\n",

strerror(retVal));
37. abort();
38. }
39.
40. /* At this point the other thread is running at a high priority */
41.
42. printAttributes((const pthread_attr_t *)&myPthreadAttr);
43. pthread_attr_destroy(&myPthreadAttr); /* done with

pthread_attr */
44.
45. /* directly query the thread for its priority */
46. pthread_getschedparam(privledgedThread,&detS,&mySchedParam);
47. printf("Query priority %d\n",mySchedParam.__sched_priority);
48.
49. pthread_join(privledgedThread,(void **)NULL);
50.
51. return retVal;
52. }

Figure 15.8. (Continued)

Conditional Variables 295

53.
54. void client()
55. {int i,j;
56.
57. for (i=0; i<100; ++i)
58. {
59. for (j=0; j<3000000; ++j) ; /* burn up some CPU */
60. nanosleep(&tenthSecond,NULL);
61. }
62. }

Figure 15.8. (Continued)

pthread_create() error: Operation not permitted

The executable – say a.out – must be modified to run with superuser privileges. Log in as
super-user and type:

root# chown root:root a.out

root# chmod u+s a.out

root# exit

Now the executable will run to completion. The user can call up all the running processes
in order of CPU usage by using the top command and see our task running at the top of
the list at some xth% CPU Utilization. Note the nanosleep in line 60. With the exception
of the kernel our thread is running at higher priority than everything else on our Linux box.
For instance we must give X windows a chance to run otherwise no keyboard input, etc.
Without the nanosleep (a sched_yield will not work) your system will most likely
crash – no keyboard, no ctrl-alt-delete – you’ll probably have to unplug it to get it to reboot.
Wouldn’t it be nice if we could get the kernel to perform a timeout operation for us just
enough to keep the system alive?

The SCHED_RR policy works exactly like the FIFO policy with one exception.
A round-robin thread is only allowed to run for a certain period of time before it
is moved from the CPU to the tail of its priority list. This interval can be queried
with the sched_rr_get_interval system call. In the Linux 2.6 kernel this number
is 99.9848 milli-seconds. The operating system runs on a 1/100th of a second tic
timer. Thus a round-robin thread will be pre-empted in order to keep the system
alive. In the previous code example change line 25 to SCHED_RR and get rid of the
nanosleep in line 60. Under FIFO scheduling this would lock up your machine but
under round-robin scheduling the system stays alive and the thread executes optimally to
completion.

15.5 Conditional Variables

The final POSIX thread synchronization method to be considered is the thread conditional
variable. A conditional variable is used in conjunction with a mutex. The combined effect
of the conditional variable and associated mutex is the same as that of a semaphore. The

296 POSIX Threads

difference is that a semaphore counts sem_post operations so it is possible for the thread
on one side of the semaphore to get out of sync with the thread doing the sem_wait.
However in conjunction with the mutex a conditional variable is atomic and non-counting.
A thread signaling the condition variable can do so all day without getting out of sync
with the thread doing the pthread_cond_wait. Figure 15.9 shows the operations and
attributes on the conditional variable.

cd Logical Model

pthread_cond_t

+ pthread_cond_broadcast() : int

+ pthread_cond_signal() : int

+ pthread_cond_wait(pthread_mutex_t∗) : int

+ pthread_cond_timedwait(pthread_mutex_t∗, struct timespec∗) : int

+ pthread_cond_init() : int

+ pthread_cond_destroy() : int

pthread_condattr_t

- pshared: int NOT MANDATORY

+ «property get» getpshared(int∗) : int

+ «property set» setpshared(int) : int

+ init() : int

+ destroy() : int

«has»

Figure 15.9. pthread_cond_t component diagram

Since POSIX_THREAD_PROCESS_SHARED is not required in SCA-compliant systems
the entire need for the attributes structure and its four system calls goes away. Default cond
variable attributes can be specified for a statically declared cond variable with the following
initializer:

pthread_cond_t myCondVar = PTHREAD_COND_INITIALIZER;

Conditional Variables 297

Equivalently, in the call to pthread_cond_init the user can pass a NULL pointer for
attributes field. In the prototype for pthread_cond_wait the user is required to specify
a corresponding mutex. The code segment in Figure 15.10 shows the use of the POSIX
thread conditional variables in our client-server adding machine program.

1. /* thread3.c */
2.
3. #include <stdio.h>
4. #include <pthread.h>
5.
6. #define DC_NO_VALUE 0x00000000
7. #define DC_TOSERV_OK 0x00000001
8. #define DC_TOCLNT_OK 0x00000002
9. #define DC_QUIT 0x00000003
10.
11. typedef struct {
12. pthread_cond_t forMsg;
13. volatile int putDataHere; /* <-- this field AND */
14. volatile int ctrlCode; /* <-- this field protected by a mutex */
15. pthread_mutex_t protect;
16. } sharedMem;
17.
18. void client(sharedMem*);
19. void server(sharedMem*);
20.
21. int main()
22. {
23. pthread_t clientT,serverT;
24. sharedMem msgQ = {
25. PTHREAD_COND_INITIALIZER,
26. 0, DC_NO_VALUE,
27. PTHREAD_MUTEX_INITIALIZER };
28.
29. /* create threads, pass address of msgQ */
30. pthread_create(&serverT,
31. (const pthread_attr_t *)NULL,(void *)server,(void *)&msgQ);
32. pthread_create(&clientT,
33. (const pthread_attr_t *)NULL,(void *)client,(void *)&msgQ);
34.
35. /* wait for threads to terminate */
36. pthread_join(clientT,(void **)NULL);
37. pthread_join(serverT,(void **)NULL);
38.
39. return 0;
40. }
41.
42. void client(sharedMem* mQ_p)

Figure 15.10. Condition variables

298 POSIX Threads

43. {
44. int i,testData[]={12,2,7,0};
45. volatile int localCopy;
46.
47. for (i=0; i<4; ++i)
48. {
49. pthread_mutex_lock(&(mQ_p->protect));
50. mQ_p->putDataHere = testData[i];
51. mQ_p->ctrlCode = DC_TOSERV_OK;
52. pthread_mutex_unlock(&(mQ_p->protect));
53. pthread_cond_signal(&(mQ_p->forMsg)); /* send */
54.
55. pthread_mutex_lock(&(mQ_p->protect));
56. while (mQ_p->ctrlCode!=DC_TOCLNT_OK)
57. pthread_cond_wait(&(mQ_p->forMsg),&(mQ_p->protect));
58. localCopy=mQ_p->putDataHere;
59. pthread_mutex_unlock(&(mQ_p->protect));
60.
61. printf("Sent %d Received %d\n",*(testData+i),localCopy);
62. }
63.
64. /* send shutdown */
65. pthread_mutex_lock(&(mQ_p->protect));
66. mQ_p->ctrlCode = DC_QUIT;
67. pthread_mutex_unlock(&(mQ_p->protect));
68. pthread_cond_broadcast(&(mQ_p->forMsg));
69.
70. }
71.
72. void server(sharedMem* mQ_p)
73. {
74. while (1)
75. {
76. pthread_mutex_lock(&(mQ_p->protect));
77. while ((mQ_p->ctrlCode!=DC_TOSERV_OK) &&
78. (mQ_p->ctrlCode!=DC_QUIT))
79. pthread_cond_wait(&(mQ_p->forMsg),&(mQ_p->protect));
80. if (mQ_p->ctrlCode==DC_QUIT) break;
81. mQ_p->putDataHere += 5;
82. mQ_p->ctrlCode = DC_TOCLNT_OK; /* valid msg to client */
83. pthread_mutex_unlock(&(mQ_p->protect));
84. pthread_cond_signal(&(mQ_p->forMsg));
85. }
86. pthread_mutex_unlock(&(mQ_p->protect));
87.
88. }

Figure 15.10. (Continued)

Less Interesting Thread Calls 299

There are a few very important items to note in the program in Figure 15.10. Our common
memory is protected by a mutex – that’s the same as before. However, the semaphores have
been replaced by a single conditional variable – line 12. Default static initializers are used
to initialize the conditional and mutex variables as well as the message code – lines 24–27.
The threads are created and the main program waits for the threads to terminate.

The client code puts a lock on the mutex in order to write data and message code to
the common area. The mutex lock is released and the data is ‘sent’ to the server via the
pthread_cond_signal command. Now suppose that at this instant no one is waiting
for data. Even if someone were blocked waiting on the condition variable, unless they are
of a higher priority (and real-time scheduling is enabled) there is likely to be no context
switch upon execution of line 53. So the client code continues in line 55 and again locks
the data structure. The client checks the message code to see if there is a message there
for it. This is the pre-condition or predicate. The only message present is the one the client
just put there and that is destined for the server. So the client calls pthread_cond_wait
which atomically executes the following actions. It unlocks the mutex, registers its reason
for blocking – condition and associated mutex – and then blocks. With the mutex unlocked,
another thread is free to access the common data area. In this case the server thread is free
to run whether or not it was waiting for the mutex. As a thought experiment the reader
should also mentally walk through the execution case where the server runs first – before
the client. As a matter of course any thread should always proceed with all due haste to
the point where the mutex guarding the common area is unlocked. Subsequently any thread
should then proceed without impediment to the point where it blocks or acquiesces with
sched_yield. The condition wait function does both safely and atomically – it unlocks
the mutex and announces its desire to take a nap until a particular condition occurs. Never,
ever, ever should any thread lock a resource and then take a nap.

On the server side, line 76, the server attempts to lock the mutex. Upon acquiring the
mutex the server checks the message code to see if this message is for it. A good way to
interpret the Boolean expression in lines 77 and 78 is to consider what constitutes a valid
message and negate it using DeMorgan’s theorem.

message for me: if ((msg==TOSERV) OR (msg==QUIT))

message NOT for me: if ((msg!=TOSERV) AND (msg!=QUIT))

If it is not any of the messages the server is looking for, the server uses
pthread_cond_wait() to relinquish the mutex and block for someone to signal the
presence of a message – line 79. What’s similar to the semaphore method is the need to
check the predicate before entering the wait and after coming out of it – line 77-79. What’s
different is the fact that because the condition variable and mutex are atomically coupled
the directionality of the message is handled by the message code and not by having to post
a send semaphore versus a receive semaphore. In this final example – two semaphores –
an artifact that has been with us from the beginning is replaced with a single condition
variable.

15.6 Less Interesting Thread Calls

As much fun as we’re having with POSIX threads, a main stay of SCA-compliant operating
environments, it’s time to put a wrap on it. The focus of the examples in Chapters 14 and 15

300 POSIX Threads

has been the movement of data and control between independently executing code sequences.
This need for timely response to asynchronously occurring events and data is the hallmark
of an SCA-class software radio design. This is in almost complete contradiction with our
legacy radio designs where the system was synchronous from the modem all the way to the
data port. The reader might be motivated to explore POSIX threads as it relates to other
architectural constructs often found in software radios. This includes multiplexing multiple
data streams into a single stream (fan-in), de-multiplexing a single stream to numerous output
streams (fan-out), simulcasting a single stream to multiple sinks (broadcast), and finally
synchronizing commands and data when they originate from different elements within the
system.

The several remaining POSIX thread calls that we now consider are:

pthread_setcancelstate() pthread_testcancel()
pthread_setcanceltype() pthread_once()
pthread_cancel() pthread_sigmask()
pthread_cleanup_pop() pthread_kill()
pthread_cleanup_push() pthread_exit()
pthread_equal() pthread_self()
pthread_key_create() pthread_key_delete()
pthread_getspecific() pthread_setspecific()

There are several ways to terminate a thread. In our examples we embraced the notion
of a QUIT command to tell threads to exit gracefully. The main program waited –
pthread_join – for the threads to exit and the entire process then exited. Our expectation
of real world scenarios is that there can be many different kinds of shutdown and restart
events and that they can originate from many different places within the system. The
normal means of exiting a thread is to just run out the context, using a conventional
return (with return code) or by calling pthread_exit – also with return code. The
other method pthread_cancel allows one thread to wipeout another. First of all a
thread must choose to be cancellable by calling pthread_cancelstate with a value of
PTHREAD_CANCEL_ENABLE. A thread can also use pthread_canceltype to establish
deferred or asynchronous cancellation. An important aspect of both types of cancellation is
that they don’t occur instantaneously but more or less when the system gets around to it.
Finally a thread can test for pending cancel requests by calling pthread_testcancel.
If a cancellation request is pending this call will not return.

If a thread is being cancelled, the odds are that it’s not going to be leaving the context
via the normal path. Normally a thread will release all its resources and signal any other
threads it needs to as part of exiting gracefully. A user is allowed to specify cancellation
handlers. These are functions that are called as part of exiting or cancelling. Handlers are
pushed and popped with the pthread_cleanup_push and pthread_cleanup_pop
commands. As a thread is leaving its context the handler stack is traversed in reverse order.
Like normally exited threads cancelled threads are joinable.

The specific implementation of the thread type, pthread_t, is unknown to the user.
POSIX provides two functions for retrieving and comparing thread types: pthread_self
and pthread_equal.

We close with discussion of the variable pthread_key_t. Code examples are provided
in reference [12]. The usual use of the key variable is to provide a thread-friendly approach

Less Interesting Thread Calls 301

to global variables. Users understand that global variables allow separate compilation units
to access a variable without having to pass that variable as a parameter in the function call.
Legacy usage of global variables assumes one thread of execution per process. As before,
in a multi-threaded program, a global variable is accessible, via extern, to all compilation
units but now it is additionally accessible across all threads. Now the single global variable
is being acted upon by forces essentially unknown to the single-threaded legacy software.
What’s needed is a global variable – visible across all compilation units – wherein each
thread has its own private copy: that is the function performed by keys.

The user initializes a key which has been declared at global scope using the command
pthread_key_create. Subsequently each thread of execution binds the key to a
particular thread-specific value using the call pthread_setspecific. Although all
threads see the same key declaration, the value the key is pointing to is specific to each
thread. Threads access that thread-specific value with the call pthread_getspecific.
Essentially each thread now has its own private version of the global variable.

Many components of the SCA-compliant software radio application live on the
same general purpose processor. Portable applications will confine interactions of those
components to the set of POSIX system calls identified as mandatory in Appendix B of
the SCA. The next chapter explores application-level compliance of components that must
interact from processor to processor.

16
All ORBS are not Created Equal

The language of the SCA is the Common Object Request Broker Architecture or CORBA.
Prior to its incorporation in software radio CORBA was, and still is, the language of
international commerce. Airline reservation systems, as well as banking and business
systems, have long enjoyed the magic of CORBA even before the moniker ‘Enterprise’
was descriptively attached to this kind of technology. It is this genesis that we must bear
in mind: CORBA was not invented for software radio. It was a marriage of convenience
that allowed SCA to achieve its portability and platform independence goals while building
on a well established commercial technology. Like most marriages, software radio and
CORBA is not without its share of challenges. A principal reason for these difficulties is
the fact that CORBA was developed for distributed systems consisting of hundreds if not
thousands of nodes. In fact, nodes might be joining or retiring from the domain at any time.
An underlying principle in the development of CORBA is the ability for any client to talk to
any server – anywhere. A CORBA application might be an inventory program that connects
to thousands of remote sites and then generates shipping manifests. This application runs
over the course of many minutes – even hours – to completion. CORBA provides for an
underlying design of asynchronous, loosely-coupled timeless communications.

Now if we map this model unto the software radio domain we begin to see some
disconnects. First, a software radio typically has a limited number of computational nodes.
Until recently nodes such as DSPs and FPGAs are not even CORBA-capable. In a software
radio computational nodes are statically defined within and across power cycles. It can be
argued that for portability reasons CORBA is required to allow applications to run on a five
processor system versus a two processor system. In the world of tactical radios such a use
case is rare. Furthermore, waveform porting experiences are now considered with respect to
a very limited number of platforms. Whereas the SCA originally was pitched as enabling
any application to run anywhere on anything, a more sober view of application portability
now prevails. It is hard – in fact, impossible – to write an application that runs on anything
anywhere. Consider this even from the standpoint of selling the software. There will be a
finite number of tests conducted on a finite number of platforms. To then conclude that the
software is portable to any form factor or target hardware is sheer marketing.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

304 All ORBS are not Created Equal

Much of this has to do with the relationship between the application and its devices.
A commercial enterprise application might have a relationship with an output device, say
a printer, that is very de-coupled. You can batch print anything. Now compare this to a
software radio application that needs to multiplex messages unto a 40 milli-second TDMA
frame – there is a huge difference.

A second disconnect comes from the need for information assurance and isolation. Because
of security concerns in the software radio one might specifically desire that objects not be
able to talk to each other. Consider the black-side of the radio which is traditionally the part
of the radio that is ‘in the clear’. What’s to prevent a networked black-side component –
even a ‘friendly’ component – from telling a channel to stop transmitting? No protocol
intrinsically exists within POSIX, CORBA, or the SCA to provide authentication or enforce
the concept of privileged access. (We do not consider age-old implementations of message
queues over the top of a traditional Unix file system. In the interest of execution speed,
modern day real-time operating systems, though claiming POSIX-compliance, dispense with
the file system and the notion of privileged access. The reader should keep separate the
concept of privilege of execution, i.e. priority, from the concept of privilege of access, i.e.
root, group, user. The reader is also encouraged to understand that operating systems that
do support the notion of partitioned memory are required by SCA POSIX to support inter-
process communication mechanisms that are meant specifically to allow these partitions to
share data with each other.)

The final disconnect is the timelessness of CORBA. Typical software radio applications –
especially legacy applications which evolved from single purpose hard-wired radios – are
required to complete certain transactions in mill-seconds or fractions thereof. CORBA, even
real-time CORBA, is just not set up for this.

Despite these inconveniences it is possible to develop portable applications that meet real-
time requirements. Part of this is art-form, for instance, allocating functional requirements
properly across sub-systems. Another part is not expecting CORBA to do what it was not
designed to do. A final part is trial and error: literally, ‘well that didn’t work, let’s try this’.
Unfortunately the need to make an application work on platform X might undermine its
ability to work on platform Y.

In order to write truly portable applications, they must be specified that way from the onset
of the development. One can indeed specify that an application run on anything anywhere
but owing to the impossibility of testing such a scenario it is a foolish requirement. At the
end of the day a vendor is paid to make waveform X work on platform Y or in the case
of a portable waveform, Y, Z, and �. The early validation work on the SCA demonstrated
successful porting by identically specifying operating environments and target platforms. The
entire executable image, ORB, Core Framework, and application was ‘ported’ to identical
OS/hardware. In reality target radio systems will utilize different hardware. One radio might
be a 4-channel radio at a Tactical Operations Center (TOC), the other a radio controlled
munition, hundreds of which can be dropped from an aircraft.

The approach used by a waveform developer to accommodate differences in platform
hardware is a key element missing from the JTRS program. It has proved very difficult to
define a generic radio API that overlays the many different radio topologies. Part of that
difficulty is that porting has been considered as an afterthought, i.e. something you do at
the end of development. If portability is to become a reality, specific language defining
portability must be written in to the RFP. CORBA is to be considered nothing less than

CORBA Basics 305

a portability enabler. What must be understood by the applications programmer is that an
ORB must be used with cognizance and care. It is not a magic pill that will make all your
portability problems disappear. In fact misappropriation of CORBA, or even utilization of
CORBA in the software radio in a manner appropriate to other domains, can exacerbate
application portability.

16.1 CORBA Basics

An object publishes its services via the Interface Definition Language (IDL). IDL is a
canonical language used in CORBA to define remote interfaces. It is independent of any
other language. IDL defines an interface – not who, what, where, or how it is implemented.
IDL’s syntax is declarative for types and interfaces only. Even attributes are mapped to
_set() and _get() interfaces. IDL supports user-defined types: that is, the user can
define data structures of arbitrary complexity. IDL’s strength is that it can be mapped to
many languages including non-OO and scripting languages. IDL can not only be encoded
to operate over different transports via the General Inter-ORB Protocol (GIOP), but also
via specialized protocols or Environment-Specific Inter-ORB Protocols (ESIOP). IDL code
generators are supplied by vendors and map IDL into various implementation languages. At
the lowest level IDL is a definition between a client and a server of some ‘binding contract’
to which they must adhere in order to accomplish a message exchange. Once the IDL
is defined and successfully compiled by a language specific code generator, the resulting
code contains stubs and skeleton entities. The definition of these structures comes from the
CORBA language mapping for that language. An applications programmer is encouraged
to examine, but not edit, these machine-generated entities. The complexity of these files
is somewhat intimidating but rest assured they contain all that is necessary for clients and
servers to communicate through the CORBA machinery.

Figure 16.1 provides a top-level view of the components involved in a CORBA message
exchange.

Transport Protocols (e.g., IIOP, GIOP)

Object Request Broker

Client
Instance

POA

Client Server

Servant

skeletonsproxy/stub

object

objref ->

Figure 16.1. CORBA constituents

306 All ORBS are not Created Equal

An object with an interface published in IDL runs with the help of a servant. For an
example our object will be a radio. Figure 16.2 shows the IDL for our radio object.

1. module anExample {
2.
3. interface radio {
4.
5. readonly attribute float frequency;
6.
7. };
8. };

Figure 16.2. Radio IDL

This example consists of a single object, radio in line 3, and a single attribute,
frequency in line 5. We are informed that a user cannot modify the frequency: it is
readonly. This implies that the object has some private, non-CORBA, means of initializing
the frequency. This example is then compiled with an IDL compiler into, let’s say, the C
language with the simple command.

orbit-idl-2 radio.idl

Several files are produced: a header, stubs, common, and skeleton (radio.h,
radio-stubs.c, radio-common.c and radio-skels.c). These stub and skeleton
components are visible in Figure 16.1. A small sampling of the header file shows the ‘C’
function prototype that is generated by the IDL compiler.

CORBA_float
anExample_radio__get_frequency(

anExample_radio _obj, CORBA_Environment *ev);

In accordance with the ‘C’ Language Mapping [13], the IDL compiler automatically
generates __set() and __get() functions for all attributes defined in the IDL. Since
a CORBA object is likely to be running on a different processor (as well as different OS
and native language implementation), it is meaningless to have an attribute declared like a
variable – recall that a normal ‘C’ variable is essentially a memory address. Such a memory
reference would be useless because the machine hosting our radio object is likely to have
different endianness than our own machine. Since frequency was declared as read only,
a __set() function is not generated. Examination of the function prototype reveals a few
key aspects of the ‘C’ Language Mapping. First is the name of the function. It is the module
name followed an underscore followed by the interface name and two underscores then ‘get’
underscore and finishing with the name of the IDL attribute. Declarations can be nested
and interfaces can be inherited. Unique function names are formed by concatenating module
and interface names with underscores and finishing up with the name of the operation or
attribute.

Second we see that the function call requires a reference to the object, more properly, the
interface itself. Again the object name is formed by the concatenation of the module name,
underscore, and interface name. In the ‘C’ language mapping all uniquely named objects are

CORBA Basics 307

typedef’d as CORBA_Objects. This is one of the down-sides of the ‘C’ language map.
There is no type safety. We could easily pass an object of the wrong type on the parameter
list and the compiler would not be able to catch it because everything is a CORBA_Object.
The type CORBA_Object is referred to as an opaque type because there is nothing in it
that the user would want to know or even care about. It contains information useful only to
the particular CORBA product being used.

The remaining item of interest in the function prototype is the parameter ev which
is a pointer to a CORBA_Environment variable and the return value. We see that the
attribute type ‘float’ maps to a ‘C’ type of CORBA_float. If one is motivated to go
back through the vendor’s ORB header files one will eventually find that CORBA_float
is a typedef of the ‘C’ native type float. So underneath the covers the call simply
returns a float which happens to be the frequency of the radio object. Finally the pointer
to the CORBA_Environment variable is a pointer to a structure that will get filled
in by the implementation should an error occur. For instance if an exception is thrown
in processing the __get() request, then the value of ev->_major will be set to
CORBA_SYSTEM_EXCEPTION or CORBA_USER_EXCEPTION.

Without describing the detail of how an object comes into existence, we’ll just assume
that it is running on the server. Our radio object might be written in Java running on an x86
Windows machine. Also, without describing how the client gets the radio object’s object
reference, we’ll just assume that the client has access to the object reference. Recall the
object reference is required as a parameter to the __get_frequency() call. So our
client software is written in ‘C’ running on a PPC Linux machine. The two machines are
connected via Ethernet. This transport layer could be anything; the client and radio server
object don’t care. The client makes the call to __get_frequency() in accordance with
the prototype found in radio.h. From the client’s perspective this is just a local function
call that returns a float. Now the magic begins. Through code in the stub a connection is
made to the ORB which uses information in the object reference to locate the servant hosting
the radio object. Certain data is sent over the Ethernet through the skeleton software to the
servant. This data might be what method to run and where to send the results of the call.
The servant orders the object to run the __get_frequency() function (or the specific
Java naming convention). Remember that this __get_frequency() function is written
in Java by the radio vendor. The vendor kindly supplied the IDL file that we compiled in to
‘C’. As a client we are really only interested in the stub code. The vendor software executes
by reading the frequency register inside the radio hardware and returning the result back
through the servant software, back over the Ethernet to the client software. All of the details
of this rather significant transaction are completely hidden from the client-side. From the
client’s perspective __get_frequency() was just a local function call. CORBA took
care of everything else.

16.1.1 Starting the Servant Object

So now we go back and answer some of the details that had been accepted earlier as
assumptions. Let’s address how the servant object comes into existence. The vendor creates
the object implementation by writing code that implements the IDL. An empty function
template for this implementation is generated by the IDL compiler. In our example the
servant software would simply read the frequency register and return the result. Next

308 All ORBS are not Created Equal

the server-side ORB is initialized. A request is made of the ORB to provide a pointer to the
RootPOA. Every ORB has one. POA stands for Portable Object Adaptor and it provides for
a uniform means of addressing servant objects. Users are allowed to create as many POAs
as they want but for our example the RootPOA is sufficient. Next the RootPOA is requested
to create and activate a server. After that the impl_anExample_radio__create()
function is called on the RootPOA to install the radio object on the servant. The return value
from this call is the object reference for the radio interface. We’ll figure out separately how
to get this info to the client. Finally call the CORBA_ORB_run() interface so that the local
ORB starts to listen for requests that it can then forward to the servant in the desired POA.

16.1.2 Accessing the Object Reference

As discussed, the software responsible for bringing up the server-side of the radio already has
access to the radio’s object reference as a return value to the __create() operation. Now,
let’s convey that information to the client software. Every ORB offers a function to create
a human readable, text-based, version of the object reference call a stringified Interoperable
Object Reference (IOR). This stringified IOR can be transmitted to the client via an email,
a disk file, or it can printed out and typed in as part of the client software’s command line.
Once the client software has the stringified IOR it can be converted back to the opaque
CORBA_Object type and then passed in the parameter list to the __get_frequency()
call. The IDL prototypes for these easy-to-use IOR conversion routines are as follows:

interface ORB {
string object_to_string (in Object obj);
Object string_to_object (in string str);

};

Stringified IORs are universal in that they can be published by one ORB and read and
interpreted by a completely different ORB. The exception to this rule is in the use of
proprietary GIOP or Environment Specific IOPs. Vendors are allowed to extend or specialize
Inter-ORB protocols and this would be likely to result in IORs that are not universal.
However, every ORB is required to implement Internet Inter-ORB Protocol (IIOP) whether
it’s enabled by default or not. IIOP-based IORs are universal.

16.2 The Object Management Group

CORBA is the flagship product for the Object Management Group (OMG) which was
founded in 1989 by 11 companies including Hewlett-Packard and American Airlines. The
purpose of the OMG was to create a standard governing the deployment of distributed
objects using all types of development environments on all types of platforms (see Wikipedia
at http://en.wikipedia.org/wiki/Object Management Group). The first CORBA standard was
released in 1991. The CORBA specification currently stands at revision 3.0.3. In the last
several years the OMG product line has grown to include the Unified Modelling Language
(UML) and Model Driven Architecture (MDA).

The OMG’s pursuit of the MDA was well underway when the SCA was written but
it is safe to say that SCA predates MDA. The JTRS program office continued to fund
commercialization of the SCA through the OMG with large contributions from Raytheon,
MITRE, Mercury Computer, and several other Technical Advisory Group (TAG) members.

The Object Management Group 309

This effort resulted in the formation of the Software Based Communication Domain Task
Force (SBC DTF). The primary output of this group was the publication of the ‘PIM and
PSM for Software Radio Components’ [14]. This new form of OMG specification, the
Platform Independent Model (PIM), and the Platform Specific Model (PSM), are part of the
MDA. The three primary goals of the MDA are portability, interoperability, and reusability
through architectural separation of concerns.

The MDA intends to accomplish these goals by de-coupling a design from the platform.
Two specifications – PIM and PSM – support this notion. The PIM describes a canonical
detailed target system independent of any assumptions with respect to supporting platform
and environment in which this system will exist. This model describes the conceptual
‘grammars’ without actually specifying any implementation detail or capability. The PSM is
the mapping of a PIM into a particular technology domain with a view ultimately to building
an implementation from it. It is a model of the target system specified by the PIM but in the
context of how to use the underlying support platform such as, say, .NET, J2EE, CORBA
or some other host middleware. A PIM can be mapped/transformed into any number of
multitude of PSMs.

Around the time the SCA was being written, the OMG inherited the UML. The MDA
essentially supports the marriage of the OMG’s two flagship products – CORBA and UML –
as well as leaving plenty of room to overlay other formerly competing technologies. If
you can’t beat them then abstract them. Figure 16.3 provides a notional flow of a design
from PIM to implementation. The new UML 2.0 specification was authored with a view to
supporting implementation of automatic code generation directly from the UML diagrams.

PIM

PS
M
PS
M
PS
M
PSPSM

Chosen PSM

C C++ ADA

map

mappings

IDL

PSM

UML
model

Figure 16.3. PIM to implementation design flow

Figure 16.3 shows the final ‘mappings’ step. In SDR usage CORBA IDL typically maps
to C, C++, Ada, or Java. In fact language mappings exist for many other languages
including COBOL, LISP, Python, Smalltalk, and XML. It is the function of the CORBA IDL
compiler to generate language-specific files. This is how CORBA IDL achieves language
independence. IDL cannot be executed: it must be compiled to native source code with can
then be compiled to an executable.

310 All ORBS are not Created Equal

16.3 ‘C’ ORB versus C++ ORBs

Since language choice is like a religion for most programmers we will not play the fool and
descend into petty comparisons. It is sufficient to say that language choice should be based
on the requirements of the job and the skill set of the talent base. That being said, one of the
biggest problem areas in CORBA programming is memory leaks. This is true independent
of language choice. The key thing to learn in CORBA is who is responsible for cleaning
up object references and variables that are no longer used. Unfortunately in CORBA these
lines of responsibility, caller versus callee, are drawn on an almost case-by-case basis and
are unique for every language mapping. It is beyond the scope of this book to engage in an
in-depth study of memory management in CORBA. For SCA-compliant radios, mastery of
CORBA’s dynamic memory management policy is a must for every program. Experience
has indicated that new programmers have more problems with CORBA itself than with the
Core Framework.

Because of CORBA’s need to allocate and de-allocate buffers dynamically, another set
of problems begins to appear. These are memory fragmentation and run-time jitter. In Java
the fragmentation issue is addressed through the use of garbage collectors. However this
method somewhat compounds the jitter problem. Another method used is to pre-allocate
buffer pools where the ORB itself takes on the role of pool manager [15]. The software radio
applications programmer should take note of this technique in that ‘C’ or C++ code making
heavy use of dynamic memory can also suffer the same ill effects. One must bear in mind
that the software radio client base is used in radios that operate forever without crashing.
For instance a radio that performs as a satellite uplink or an air traffic control operation is
required to have 99.9999 % up-time over the course of a year. This equates to 30 seconds of
down-time over that same year. The smallest memory leak will likely cause a system failure
rate in excess of that requirement. With C++ dynamic memory management is often hidden
beneath the covers. Depending on one’s coding technique or even the compiler itself the
mere invocation of a constructor can result in the heavy use of dynamic memory. We always
advocate that whenever possible variables and buffers should be pre-allocated before entry
into the run-time loop. This coding style is consistent with the SCA concept of instantiate,
initialize, run, and clean-up.

There are a couple of features native to the C++ language that are not present in ‘C’.
For instance, when CORBA exceptions are mapped into ‘C’, a language that has no native
support for exception handling, the result is somewhat of a hack. True exception handling
makes provision for stack un-winding. This allows a low level exception to be ‘handled’ by
the calling routine. There is a performance penalty that C++ incurs to offer this service but
it is helpful in real-time systems to be able to implement a recovery strategy when bad things
happen. In ‘C’ a low level routine must detect an exception before it occurs and then return
to the calling routine the presence of the exception through the CORBA_environment
variable. Without this pre-emptive action the machine exception will be handled by the
operating system at the process level. Without a user-defined handler in place the process
will just be terminated with some sort of nasty message.

As previously mentioned ‘C’ offers no type safety: that is, all objects are identical in the
eyes of the compiler. There is no way for type violations to be caught at compile time. Should
the ORB support it, and minimum CORBA does not, it is possible for ‘C’ code to access the
Interface Repository to verify the identity of a particular object using the is_a() operation.
This action however occurs in the run-time and not at compile time. Failure to detect an

Initial Services 311

object type mismatch typically results in invoking an operation on an object that implements
no such operation and will likely result in a BAD_OPERATION exception. In this chapter we
make reference to minimum CORBA. This specification, maintained by the OMG, is called
out as mandatory in SCA-compliant operating environments. The specification defines a
subset of full CORBA 2.2 that supports implementation of ORBs in footprint constrained
environments. A summary of minimum CORBA requirements can be found in Section 16.6.

Finally the C++ language offers the ability to perform late binding. This feature
allows the designer to use polymorphism as a design technique. The concept of late
binding is illustrated with this simple example: Say you have a parent quadrilateral
CORBA object. There are child objects, square and parallelogram, that extend quadrilateral.
Now, quadrilateral has a compute_area() operation that is overloaded by each of its
children. So there exist specialized implementations of square::compute_area()
and parallelogram::compute_area(). Now, C++ supports the ability to call
compute_area() without specifically knowing whether it’s a square or parallelogram.
The run-time will figure that out and invoke the proper operation. Because all CORBA
objects in ‘C’ are the same type it would be up to the user to figure out which function to
call based on information extracted in the run-time from the Interface Repository. So C++
offers language features that allow certain CORBA constructs to be implemented naturally.
In ‘C’ it is still possible to emulate these behaviors but it is up to the applications software
to do so.

16.4 Initial Services

A call to resolve_initial_references() made with the string name of a particular
service will return the object reference of that service object. As of CORBA 2.2,
the basis for SCA’s minimum CORBA specification, the following service names are
reserved: RootPOA, POACurrent, and InterfaceRepository; and for CORBA Services, they
are NameService, TradingService, SecurityCurrent, and TransactionCurrent. Of course in
a minimum CORBA implementation InterfaceRepository will not exist. Rarely does a
particular ORB implementation offer all of these services. IORs to the services must be
provided on the command line when client or server code is started. The standardized
naming convention for specifying these services on the command line is -ORBInitRef
serviceName = IOR. For the ORBit2 orb the available initial services are RootPOA,
POACurrent, and DynAnyFactory. Of course DynAnyFactory was added after the CORBA
2.2 and is not to be used by SCA-compliant application software. The string names of
available services are returned by a call to list_initial_services().

16.4.1 Starting a Client

The only call necessary to initialize a client with the ORB is a call to ORB_init().
This call returns a object reference to the ORB itself. A client can initialize into multiple
ORBs but each must be uniquely identified. The object reference returned is a specialized
object reference and cannot be stringified. The ORB interface itself is defined in IDL
but is not subject to the same rules as user-defined IDL. It is called Pseudo Interface
Definition Language or PIDL. Typical operations available to regular IDL, for example,
duplicate() or object_to_string(), are not available on interfaces generated

312 All ORBS are not Created Equal

from PIDL. The code actually generated from PIDL is however subject to the same language
mapping semantics as regular IDL. Other examples of PIDL pseudo-objects are RootPOA,
Policy, and POACurrent.

16.5 The Interface Repository

The Interface Repository (IR) is that part of the ORB that maintains persistent storage
of interface definitions. The IR allows the user to perform various type checking and
inheritance graph tracing that might not be naturally supported by the language mapping.
The IR not only manages these interfaces but also allows them to be accessed by distributed
components – clients and servants alike. Unfortunately the IR is not guaranteed to be
accessible in minimum CORBA ORBs. This is not to say that it doesn’t exist within a
particular ORB implementation; it’s just not accessible from SCA-compliant code. To the
applications programmer this means that the operations shown in Table 16.1 should not be
used by SCA-compliant software.

Table 16.1. ORB/IR operations not supported in
minimum CORBA

get_interface()
is_a()
non_existent()

16.5.1 Type Codes

Type codes are values that represent an argument or attribute of arbitrary complexity. Type
codes are generated by the IDL compiler and can be found in the header file that is output.
In the run-time the Interface Repository keeps track of type codes that can be put on the
wire to support the Dynamic Invocation Interface (DII) or the CORBA any type. Because
of its required use in the SCA Core Framework, the any type and therefore type codes must
be (and are supported) by minimum CORBA ORBs.

Client re-construction of an extravagantly structured any type in a minimum CORBA
system will, however, be limited. A client is expected to know, a priori, the details of
complex structures, sequences, unions, or enumerations. The run-time operations used to
re-construct complex user-defined structures dynamically are not available in a minimum
ORB, e.g. member_count(), member_type(), etc. As far as the Core Framework is
concerned, use of the any type is constrained and a client does, in fact, know through the
Core Framework IDL just what to expect. The same is not true of the PropertySet interface.
The SCA Appendix D, Domain Profile (XML) specification provides the ability to describe
rather elaborate Properties constructs. To ‘de-bounce’ these structures, which are passed
as anys, an application component’s configure() or query() implementation would
have to be privy to these structures for they will not be de-cipherable in the run-time. Before
discussing object servants and Portable Object Adaptors (POA) it’s good to examine all
aspects of the minimum CORBA.

Minimum CORBA 313

16.6 Minimum CORBA

Minimum CORBA is a subset of the full IIOP CORBA specification designed for systems
with limited computational or memory resources. The writers of the minimum CORBA
specification wanted to create a lightweight CORBA that could still interoperate ‘on the
wire’ with other full-service ORBs. As a result minimum CORBA provides full support for
the entire IDL including the any type and inheritance. A minimum ORB must be able to
deal with TypeCodes including exception handling. De-ciphering complex data structures
however becomes the compile-time responsibility of the client software. Minimum CORBA
removes all aspects of the DII. In addition minimum CORBA removes the ability to access
the Interface Repository. Table 16.2 summarizes all the features removed from the full
CORBA specification in the creation of minimum CORBA.

Table 16.2. Features omitted in minimum CORBA

Dynamic Invocation Interface
Access to the Interface Repository
Dynamic Skeleton Interface
Dynamic Anys
POA Manager
Adapter Activator
Servant Manager
ThreadPolicy
ServantRetentionPolicy
RequestProcessingPolicy
ImplicitActivationPolicy
DCE Interoperability
COM Interworking
Interceptors
work_pending()
void perform_work()
void shutdown()

Table 16.2 implies that the only way of executing a servant object is run(). There is
actually an error in the minimum CORBA specification called out by the SCA. The text of the
document says to omit the work_pending(), perform_work(), and shutdown()
commands. Then later in the same text the PIDL for minimum CORBA is given with
these operations still available. A subsequent release of the minimum CORBA specification
[16] fixes the problem and indeed these operations are not expected to be available in a
minimum CORBA ORB. These missing commands are used when it is desired that the main
program or thread hosting a servant object should be able to perform other tasks. The call to
ORB::run() is a blocking call and will not return until a termination signal is received.
Chapter 17 shows how to install a signal handler and cleanly shutdown the ORB under these
circumstances. With an SCA-compliant ORB it is not possible for the thread of execution
hosting a servant object to do anything else like hit a watchdog reset. Neither is it possible

314 All ORBS are not Created Equal

for a process to shutdown() an ORB cleanly and then perform other tasks. Shutting down
an ORB in an SCA-compliant system will take the whole process down.

This is not to say that an ORB thread can host only a single servant object. The next
section on POAs covers the role of object adapters and multi-threaded ORBs that give the
ability to service an unlimited number of servant objects on a single process. Before that,
a short word is in order with regards to Interceptors. Interceptors are an optional extension to
the ORB to allow implementation of the Replaceable Security option defined in the Security
Service specification. This is important because security has recently become somewhat of
a concern for SCA-compliant ORBs. Under the current SCA definition minimum ORBs
interceptors are not supported.

In SCA-compliant radios the purpose of a component’s SCD is to provide that same
Interface Repository information through the XML that is no longer available via a
minimum CORBA ORB. Minimum CORBA also eliminates the notion of a CORBA
abstract type though this feature was added to CORBA after the 2.2 specification. Minimum
CORBA supports a reduced set of language mappings keeping the all-important ‘C’ and
C++ mappings. Although the SCA 2.2.1 references an obsolete OMG minimum CORBA
specification [1], it is likely that newer versions of the SCA will reference the more current
version of minimum CORBA [16].

16.7 The Portable Object Adapter (POA)

The following discussion focuses on the servant side of a CORBA transaction. Although
described in a client-server context, CORBA supports the ability to connect objects
in a manner so as to support objects that are both servants and clients. Furthermore,
CORBA supports objects that have different persistence and threading models. This flexible
framework is supported through the POA. Though the minimum CORBA POA is somewhat
constrained over its fully-featured CORBA 2.2 counterpart, it is still quite flexible in
supporting different servant characteristics. Using the previous section on minimum CORBA
as a guide we will step through the capabilities of the minimum POA.

Initially, we wish to understand the relationship between a POA, a servant, and an
object implementation. Figure 16.4 shows this relationship – the shortened version of an
implementation is called ‘impl’.

Figure 16.4 shows multiple POAs. An ORB provides a single initial POA called a
RootPOA other POAs can be created on the RootPOA – more on that later. A POA can host
numerous servants, which on the same POA share a common trait called Policy.

Figure 16.4 shows the notion of an object as a collection of operation implementations.
Each operation on an active object is mapped to a servant. A servant can be mapped to
support more than one operation on an object or operations on different objects. Consider the
right half of the figure. Here numerous clients are mapped to a single servant. Additionally
there exist servants that are mapped to no operations. When a server is mapped to an object
implementation an entry called an ObjectId is made into a table called the Active Object
Map. An Object Id is a value used by the POA and by the user-supplied implementation to
identify a particular abstract CORBA object. Object Id values may be assigned and managed
by the POA, or they may be assigned and managed by the implementation. Object Id values
are hidden from clients.

The Portable Object Adapter (POA) 315

servants

language
specific
implementations

active object map

POA POA

active object map

requests requests

conceptual
CORBA
objects

Figure 16.4. POA–servant–impl relationship

16.7.1 Policy

For the simplest applications, servants can be assigned to the universally available
RootPOA. The RootPOA pseudo-object reference is available via the call
resolve_initial_references(“RootPOA”). The pseudo-reference returned
cannot be stringified and has no meaning outside of the process space that invoked the call,
i.e. the server process space. The only restriction on using the RootPOA is the fact that its
run-time characteristics, as defined by Policy objects, are immutable. The user can create
one or more new POAs on the RootPOA. Here the user is allowed to specify, at the time of
creation, new Policys for the created POA. Because of limitations of minimum CORBA certain
Policys remain immutable even for newly created POAs. Table 16.3 lists all POA Policy types,
the default value for the RootPOA, and whether the Policy is mutable for new POAs.

Table 16.3. POA policies

Policy type RootPOA value Mutable under
minimum ORB?

IdAssignmentPolicy SYSTEM_ID Yes
IdUniquenessPolicy UNIQUE_ID Yes
ImplicitActivationPolicy IMPLICIT_ACTIVATION No
LifespanPolicy TRANSIENT Yes
RequestProcessingPolicy USE_ACTIVE_OBJECT_MAP_ONLY No
ServantRetentionPolicy RETAIN No
ThreadPolicy ORB_CTRL_MODEL No

316 All ORBS are not Created Equal

Now that we know the default policies and whether they’re mutable or not, let’s consider
the resulting run-time behavior, starting with policies that describe the RootPOA that are
immutable under minimum CORBA. ThreadPolicy dictates the threading mechanism that
the POA will use to service a call. The default ORB_CTRL_MODEL indicates that servant(s)
are serviced in single or multi-threaded fashion by the POA at the discretion of the ORB.
ImplicitActivationPolicy is used to indicate whether servant activation is a separate user-
defined action or whether the POA will automatically perform activation when a client
invokes a request. The default IMPLICIT_ACTIVATION indicates that the POA will
manage activation as required. RequestProcessingPolicy is used to tell the POA how to
look up target objects for a request. Minimum ORBs support only the use of an Active
Object Map (AOM). ServantRetentionPolicy is used to indicate to a POA whether or not
to use an AOM. IdAssignmentPolicy is used to indicate whether keys to identify objects
(ObjectIds) are to be assigned by the application developer (USER_ID) or by the POA
(SYSTEM_ID). Because of IMPLICT_ACTIVATION, it is also required that RETAIN
and SYSTEM_ID be in effect. In other words the POA automatically generates and manages
Object Ids. Table 16.3 indicates that the user can take control of the generation of Object
Ids. That would actually get implemented by back-end servants being activated, managed,
and known only to a single POA-generated servant.

The mutable policies include IdUniquenessPolicy and LifespanPolicy. A POA’s
IdUniquenessPolicy dictates whether servants activated on the POA can be associated
with only one (UNIQUE_ID) or one or more (MULTIPLE_ID) Object Ids. Finally,
LifespanPolicy is used to identify if the POA’s servants are persistent or transient.
Persistent objects live beyond the life of the POA and server in which they were activated.
Implementation of persistence is specific to an ORB’s implementation and is not defined in
the CORBA 2.2 specification. Policies other than the defaults can only be specified in the
call to POA::create_POA().

16.7.2 Run-time Performance

Invariably the tall pole in the tent is the transport layer with TCP-IP sockets usually
representing the worst case. ORB vendors are sensitive to the needs of the real-time
programmer and offer various optimizations. The most common optimization is for objects
that are co-located: that is, objects that are within the same process space. An optimizing
ORB will detect this condition and skip the marshaling/de-marshaling step and reduce the
operation on co-located objects to little more than a function call. Some ORBs support the
concept of pre-connect or bind. Although such optimizations are outside the standard they
allow an ORB to locate objects ahead of time and create an optimal transport path between
client and servant. Strict SCA-compliance would forbid the exercise of these optimizing calls
in that it would make for a portability problem. Of course the best way to optimize CORBA
run-time performance is to select a native transport mechanism and put GIOPs directly
on the wire. This approach skips the whole TCP-IP stack which is universally supported.
The result is a dedicated transport that would need to be replaced as the ORB was moved
from system to system. The purchase of an ORB is then tied to a particular system. Some
ORBs support the notion of a plugable transport. This allows the user to create his or her
own custom transport underneath the ORB. Further discussion on optimization of run-time
performance leads into the next topic which is discussion of concurrency models.

The Portable Object Adapter (POA) 317

16.7.3 ORB Concurrency Models

As far as CORBA 2.2 and SCA minimum CORBA is concerned this section discusses
optimizations that are ‘under the hood’. For ORBs circa 2.2 these features are likely to
be available through compile or run-time switches. Subsequent versions of the CORBA
specification actually provide PIDL for these optimizations and offer the user some degree
of control. More recently these optimizations were further refined and ended up in the
Real-Time CORBA specification. The concepts involved affect run-time behaviors and are
a must for the SDR developer to understand.

The simplest ORB is a single threaded ORB where client and server live as part of the
same thread. The client makes a call into the ORB which makes a call into the servant. Such
an ORB, though fast, would not have much of a market because everything is required to be
deployed within the same process. Furthermore client and server are locked into a strictly
synchronous relationship, a construct not very useful for real world applications. Besides
one CORBA transaction has to work its way completely through the system before the next
transaction can take place. This single-threaded ORB concept can be easily extended to
the case where client and server are deployed on different platforms. Marshaling, GIOP,
and transport are now involved but essentially our ORB is still single threaded. An entire
transaction is required to be completed before the next transaction can take place. This is
referred to as a blocking ORB. Now even if multiple client threads attach to this blocking
ORB each of them will have to wait their turn for access. Again for real-time, real-world
applications this is not a useful ORB model.

Let’s move forward a few years in ORB design and take advantage of multiple threads.
A common approach is use of the Thread-Per-Client model. These architectural models are
called concurrency models [17]. In the Thread-Per-Client approach a new thread is created
every time a new client makes a connection. This thread, called a receiver thread, either
spins or does a blocking call to select(), which listens for calls from his client. When
the client makes a call the receiver is there to pick it up off the wire – this is termed an
upcall. The receiver thread invokes the appropriate POA/servant and remains blocked until
the POA/servant completes the transaction by sending a response to the client. Figure 16.5
shows a transaction diagram of this entire process.

With just a few clients this is a good approach because each client gets their own receiver
thread. The problem is the blocking that occurs while the POA/servant is performing its
processing. If the client makes back-to-back calls the second call will be blocked. Although
the client side could also be threaded, this is not helpful if the client’s processing requires
a response before proceeding. Another different approach, called the Thread-Pool approach,
offers a solution to the blocking problem. In Thread-Pool concurrency the receiver thread
drops the request into a queue. The system has pre-spawned a bunch of threads attached to
the queue. When a request gets dropped into the queue a thread will awaken and dispatch
the request to the POA/servant. Just after dropping the request into the queue the receiver
thread goes right back to listening for additional client requests. Figure 16.6 shows a typical
Thread Pool transaction.

With the design given in Figure 16.6, the server could handle three back-to-back requests
without blocking the client. These two particular concurrency models work well when run-
time performance is critical but they don’t scale well to thousands of clients. It is likely that
the operating system has some limit on the number of threads that can be spawned.

318 All ORBS are not Created Equal

Client

Receiver
Thread

POA/Servant

New

Connect

Listen

ORB
Server

Spawn

Upcall

Request

Response

Unblock

Listen

Figure 16.5. Thread-Per-Client transaction diagram

Client

Receiver
Thread

POA/Servant

New

Connect

Listen

ORB
Server

Spawn

Upcall Request

Response

Listen

queue

Thread Pool

Request

Figure 16.6. Thread Pool transaction diagram

There are other models that sacrifice run-time performance for scalability, including the
reactive and leader-follower models. Instead of spawning threads for every client or even
for every request these ORBs use a combination of thread pools and a limited number of
receiver threads that will block clients as needed. Now consider the instance where the client
does not expect a response. Why block at all?

Real-time CORBA 319

16.7.4 One-ways, Two-ways, and Blocking

The IDL offers a means of indicating to the implementation that an object offers no return
values. For an operation to be declared oneway all of the following must be true: 1) there
can be no out or inout parameters; 2) the operation must return a void; 3) the operation
cannot have raises exceptions defined. The CORBA specification offers the invocation
semantics of a oneway call as ‘best effort’. That is, there is no guarantee that the operation
will be performed and the implementation offers no means of testing for the success of the
operation. The beauty of the oneway is that it instructs the ORB to perform an operation
and not wait around for a response. For most implementations this means that a oneway
call will not block the client. The call is made and the request gets dumped into a queue and
the client keeps chugging along.

Suppose the client comes back around through his processing loop and sends another
request. Odds are his original request hasn’t even left the processor yet. It’s still sitting in
an outgoing queue waiting for the ORB or client downcall thread to run. Now depending
on the design of the ORB this second call will block despite the fact that it’s a oneway
call. Even though oneways don’t support user-defined exceptions, it is still quite possible
for a system exception to get thrown – consider an outgoing buffer that is full. In order
for the client thread to survive, the user should check for a system exception on oneway
calls. Without checking for a system exception the client process will most likely crash. The
program counter will have moved and the traceback will contain bogus information.

16.8 Real-time CORBA

Real-time (RT) CORBA adds features to allow designers more control over the run-time
behaviors of objects. We advocate designs that do not rely on the timeliness of ORB calls.
Our view is that real-time CORBA offers the illusion of more precise control when in fact
the native operating system is what’s really doing the work. A portable design will be one in
which CORBA objects are loosely coupled and have little or no real-time constraints. If one
has objects that must be tightly coupled then use a non-CORBA inter-process mechanism
to bind these objects. It is no less instructive to examine briefly what RT CORBA has to
offer – if anything just to pick up on techniques that can be applied in our own designs
without having the native ORB support.

There are a few goals that RT CORBA tries to address: 1) the means to do performance
optimization; 2) a standardized approach to specifying and enforcing Quality of Service
(QoS); 3) specification of a real-time programming paradigm to provide determinism over
distributed applications; and 4) management of shared resources.

So a real-time ORB exists alongside a regular ORB. A pseudo-object reference to the
real-time ORB is accessible with a call to get_initial_references(“RTORB”).
POAs created on this ORB come from a special module called RTPortableServer.
Let’s start by covering some of the more obvious extensions. RT CORBA has an attribute
called Priority and a native element called PriorityMapping. A CORBA priority is then
mappable to all the different kinds on priority schemes that are used in RT OSs today. This
includes the sign of the monotonicity of the scheme. In some RT OSs a higher number means
more privilege whereas in others a lower number implies more privilege. RT CORBA also
specifies operations to transform back and forth from the native priority to CORBA priority.

320 All ORBS are not Created Equal

Finally RT CORBA offers two different means of controlling how Priority is propagated
through the distributed system. In the Client Propagated model a priority is passed on the
wire as part of the request. If a contradicting policy is not in force the servant will run at
the priority expressed by the client. The contradicting policy is the Server Declared policy.
In this policy the server decides what priority a particular object will run at and will encode
that information in the IOR.

RT CORBA provides a wrapper to the mutex functions. These operations are nearly
identical to their POSIX counterparts. Of course, underneath the Mutex PIDL is, for many
systems, POSIX mutexes. The Mutex interface is local and cannot be accessed remotely. Its
function is, of course, to arbitrate access to a shared resource. RT CORBA mandates that
these mutexes be supported by a priority inheritance mechanism. It does not mandate the
type of mechanism but only that the system supports it. We saw in Chapter 14 on POSIX
that priority inheritance is for the system that is not, or cannot be, subject to analysis that
would preclude the priority inversion problem from ever occurring. RT CORBA mandates
the priority inheritance solution despite the obvious performance hit that occurs for RT OSs
that implement priority inheritance. There is really no way around this because RT CORBA
is built to support generalized systems that might or might not ever be subject to static
analysis. So RT CORBA mandates the problem to be solved dynamically.

RT CORBA provides several new Policies and controls on POAs. The user can specify
thread pools on a POA that are set to run at a particular priority. Even better than that, a user
can specify lanes of thread pools with each lane at a different priority. Finally, and perhaps,
most importantly, RT CORBA makes provision for the implementation of prioritized private
connections between client and server.

16.9 Overview of Available ORBs

We briefly attempt to summarize a few of the ORBs available as of early 2006. This list
does not attempt to be exhaustive but rather hits a few of the more well known ORBs. The
bottom line is that compared to just a few years ago when the SCA was being developed
there are many more choices of ORBs available to apply to the software radio domain.
The reader is encouraged to understand the differences between ORBs and requirements of
the task at hand. If one’s design is predicated upon having a state-of-the-art ORB then one
might revisit functional allocations and find out what aspect of the design is driving this
requirement. Do not impose requirements on the ORB that it is not suited to address.

16.9.1 TAO ORB

TAO is a freely available ORB produced by the Distributed Object Computing (DOC) group
at the Washington University and Vanderbilt under Professor Doug Schmidt [18]. The only
supported language mapping is C++. It has grown over the years to be quite extensive
and detailed. TAO has been around since at least 1998. It provides version 3.x CORBA
functionality as well as real-time 1.0 functionality. It has been used in a few JTRS SCA
projects as well as dozens of other Defense-related programs over the years. Structurally it is
built atop the ADAPTIVE Communication Engine (ACE), a C++ framework that performs
common communication software tasks over the top of a variety of operating systems.
ACE provides abstractions for tasks such as event dispatching, signal handling, interprocess

Overview of Available ORBs 321

communication, shared memory management, concurrent execution and synchronization.
ACE-TAO has been built for an impressive number of systems including commercial
embedded real-time systems. It has a large following, an extensive mailing list for developers,
and at least half a dozen companies that offer commercial support packages. The ORB can
be used in the non-real-time mode or real-time mode. This ORB can be built to support
minimum CORBA or full CORBA complete with Dynamic Invocation Interface (DII),
Dynamic Skeleton Interface (DSI), and the Dynamic Any Type and Value Types. TAO is
supplemented by an extensive set of ORB services including Naming, Event, Notifications,
and CosLifeCycle to name but a few.

16.9.2 ORBexpress

ORBexpress is produced by Objective Interface Systems (OIS) [19]. ORBexpress has
language mappings to Ada, C++, and Java. This ORB is used by many vendors in the
telecom, datacom, and defense industries. It is a small footprint, fast ORB, having won
several highly publicized CORBA benchmark contests. ORBexpress offers plug-in transports
that allow the consumer to specify an underlying media such as shared memory or PCI.
This allows messages to go straight on the wire without the need for a TCP-IP stack. It
is used on several SDR radio projects including Boeing’s Ground Mobile Radio (GMR)
formerly Cluster 1. It loosely provides 2.x CORBA as well as the 1.x Real-Time CORBA
functionality. The over-arching principle of the OIS design is high-speed and small footprint,
not specification compliance. If ACE/TAO is at one end of the scale in terms of the richness
of CORBA specification features, ORBexpress is at the other end. It is available for many
compilers and operating systems including embedded RTOSs. OIS has been very proactive
in working with the US government on the implementation of Multiple Independent Levels
of Security (MILS) and DO-178B (FAA) middleware.

16.9.3 ORBit2

This is the ORB used by the Gnome desktop [20]. It is CORBA 2.4 compliant and has
C, C++, and Python mappings. The ORB is freely available in source form. It is built on
top of glib2 – the gnome library. Glib provides the same kinds of platform independent
operating system services as ACE. Because of its extensive use in the development of the
Gnome desktop, it is a very stable implementation. It is actively maintained by RedHat and
Ximian – now part of Novell. ORBit comes with its own Naming Service but does not
support the Event or Lightweight Logging Service. Normally these services are provided
by an Operating Environment vendor. This ORB is not available for embedded real-time
systems nor does it support custom extensible transports. ORBit provides a POA interface
and DII/DSI for the server side mapping in both language implementations.

16.9.4 MICO

MICO is an open source CORBA 2.3 implementation [21]. It offers only a C++ mapping
yet is fully featured with DII, DSI, a graphical access tool to the Interface Repository,
interceptors, Type Codes, and Naming and Event services. MICO was built on the principle
that it is not dependent on any other middleware products or libraries. MICO sticks to the

322 All ORBS are not Created Equal

basic requirements of CORBA compliance and does not offer optional features such as
CORBAservices. MICO has been successfully built and executed on a variety of UNIX-style
and Windows/Cygwin platforms. It also has a company that offers commercial support.

16.9.5 OMNI

This ORB was developed by Oracle Olivetti laboratories in Cambridge, UK. It is an open
source freely available ORB that has been tested as CORBA 2.1 compliant by the Open
Group [22]. Since that time it has been continually upgraded and currently implements
most of CORBA 2.6. Its design was unique and for a long time was the fastest C + +
ORB implementation available. In addition the ORB has mappings that support the Python
language. This ORB is used by a few JTRS SCA radio developers owing to its maturity and
stability. It has profiles for both minimum and Full Servant managed enterprise CORBA.
OmniORB supplies Naming and Event services. Several practitioners have implemented
their own proprietary custom extensible transports under this ORB. The ORB supports
Secure Socket Layer (SSL) as an additional transport out of the box. The ORB is built to
the CORBA 2.4 specification. OmniORB is no longer in active development having passed
through various labs until getting shut down by AT&T.

There are many, many other ORBs and just because they are not listed in this book does
not diminish their capability or capacities to perform a particular work. Similar to operating
systems, there are a couple of guiding principles when it comes to ORB selection. However
for an SCA-compliant system there is a reduced number of degrees of freedom. This is
because an SCA-compliant Operating Environment has an operating system, ORB, and
Core Framework that come tightly bundled. Operating Environments are meant to enable
waveform portability but themselves are not portable. Commercial ORBs are typically
licensed to a particular operating system/host platform pair. This economic consideration
couples an ORB to an operating system and target platform. Commercial ORBs are likely to
be build for high speed and small footprint and hence are customized to a particular operating
system and target platform. Furthermore, commercial ORB vendors typically extend the
CORBA specification – which is allowed, even encouraged, by the OMG. The problem is
that it is never really made clear to the user what is standard and what is extension. The
applications programmer following examples in the documentation is quite likely to end up
with code that would never port to another ORB. The SCA-compliant applications must
restrict themselves to the interfaces of minimum CORBA and the SCA-defined services. An
unfortunate side effect of this requirement is that being forced to use standard interfaces as
opposed to the faster, optimized proprietary extensions might lead to run-time performance
issues. Incidentally the same is true of the requirement to use only POSIX interfaces.
Commercial RTOSs typically add POSIX on top of their own much faster interfaces. This
is bad for two reasons: one, of course, is the performance hit, but the other is the fact that
the POSIX behavior is, at best, emulated. Such faked out POSIX interfaces are unlikely to
behave the same from RTOS to RTOS. It is likely that application for SCA waivers in the
interest of performance will become the rule rather that the exception.

The free ORBs – available as source code – can be compiled for almost any target. This
is opposed to a commercial ORB that is tied to one target. But the reader should not be
fooled into thinking that a free ORB is really free. Even the process of building an ORB

Overview of Available ORBs 323

can be painful depending on the target. Customizing someone else’s source code in order to
eliminate unnecessary features or perhaps to optimize performance is also very expensive in
terms of development and test labor. This does not take into account the effect of introducing
instabilities into the runtime. Middleware bugs affect all the application development teams
and can be particularly hard to find – this author not so fondly remembers single-stepping
through someone else’s ORB software. There have been many CORBA success stories
but there have also been many cases of an incorrect choice in middleware undermining a
program, leading to its untimely demise.

17
The Services

The SCA mandates three CORBA-based services, all of which are OMG standards. The
first is the Interoperable Naming Service. The Naming Service allows users to locate objects
within a distributed system by human readable names. The SCA interface Application
contains a list of Naming Contexts used by its components.

The next mandatory service is the Event Service [23]. This service is not only available
to the applications programmer but is also required for use within the Core Framework
on the Domain Manager object. There are a total of three event types required by the
SCA: ObjectAdded, ObjectRemoved, and StateChange. This is not to be confused with the
OMG’s TypedEvent specification. The SCA requires only the traditional CosEventComm
Push model using CORBA’s any type.

A new addition to the OMG family of services came about directly as a result of the
efforts of the international defense community in finalizing SCA version 2.2. This service
is the Lightweight Log Service. Request for Comment for the Lightweight Log Service was
published in June 2002 [24]. Senior OMG staff was exposed to the SCA Log Service at the
SDR Forum meeting in Edinburgh, Scotland, in September 2002. Intrigued by the usefulness
of the SCA Log Service, its level of maturity, and the buy-in of the Software Defined
Radio community, the SCA Log Service was published by the OMG as the Lightweight Log
Service Specification [25], in November 2003.

17.1 Interoperable Naming Service

Although a little dated, Reference [26] is a must have for the CORBA programmer working
in C++. It also provides a pretty thorough discussion of naming graphs. Our approach to
understanding the Naming Service will be to connect with an actual Name Server running as
part of our SCARI Core Framework. This is particularly illustrative because it emphasizes
the language independence of CORBA. The SCARI name server is running as part of the
Java run-time – see the UNIX man page for tnamserver. Our ‘C’ program will use
a stringified IOR to locate the SCARI name server in order to make invocations on its
interfaces.

The Naming Service is used to construct a directory-like structure called a naming graph.
The naming graph allows servers to publish their object references and ‘bind’ them to

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

326 The Services

easy-to-remember names. Similar to a UNIX or DOS file system the naming graph has a
hierarchical architecture. A directory within a file system is likened to a Naming Context
within the naming graph. A filename within a file system is likened to a node or leaf within
a Naming Context. Each non-empty node within the naming graph has a ‘name’ and ‘kind’.
As seen in Chapter 6, the SCA requires ‘kind’ to always be set to the null string. An object
or node is uniquely named in each context just as a file must be uniquely named within
a sub-directory. With just a node ‘name’ the applications programmer can use the Naming
Service to ‘resolve’ the object reference of an item of interest.

Figure 17.1 shows the structure of the Naming Service module. Methods exist for creating
contexts and adding Name/Object reference pairs to the tree using the bind interface.
For a given name an object reference can be recovered using the resolve or resolve_str
interface.

cd NamingService

«CORBAModule»
CosNaming

- «CORBATypedef» Istring: string
- «CORBATypedef» Name: sequence <NameComponent>
- «CORBAEnum» BindingType: {nobject, ncontext}
- «CORBATypedef» BindingList: sequence <Binding>

«CORBAInterface»
NameContext

- «CORBAEnum» NotFoundReason: {missing_node, not_context, not_object}

+ bind(Name, Object) : void
+ rebind(Name, Object) : void
+ bind_context(Name, NamingContext) : void
+ rebind_context(Name, NamingContext) : void
+ resolve(Name) : Object
+ unbind(Name) : void
+ new_context() : NamingContext
+ bind_new_context(Name) : NamingContext
+ list(unsigned long, out BindingList, out BindingIterator) : void
+ destroy() : void

«CORBAStruct»
NameComponent

- id: Istring
- kind: Istring

«CORBAStruct»
Binding

- binding_name: Name
- binding_type: BindingType

«CORBAInterface»
BindingIterator

+ next_one(out Binding) : boolean
+ next_n(unsigned long, out BindingList) : boolean
+ destroy() : void

«CORBAInterface»
NamingContextExt

+ to_string(Name) : StringName
+ to_name(StringName) : Name
+ to_url(Address, StringName) : URLString
+ resolve_str(StringName) : Object

«defines»

«defines»

«defines»

«defines»

Figure 17.1. Naming Service component diagram

Our code example in this chapter is a simple spider program that will walk the name
graph and print out a hierarchical view. We will actually start an instance of the SCARI
Core Framework and launch some Devices. The SCA requires certain elements to be
registered with the Naming Service. Our code example will locate the Java-based name

Interoperable Naming Service 327

server and retrieve the contents of the naming graph. By following the directions enclosed
with the SCARI Core Framework, start the Naming Service by issuing the following
command:

./startNamingService

The output from the Java name service includes its stringified IOR – that is ‘IOR:’
followed by many lines of hexadecimal digits. Though stringified IORs are universally
understood by ORBs, they are also allowed to contain data fields that are ORB-specific.
Thus stringified IORs are of different lengths from ORB to ORB. We will need this long
IOR string when we start our browseTree program. The user can cut and paste it between
terminal windows or the output can be re-directed to a file. If re-directed to a file, the user
must clean up the file contents so that only the IOR string is left. The file containing the
isolated IOR can then be re-directed to the standard input when we start the browseTree
program. Next start the Domain Manger, Device Manger, Log Service, and the Devices by
issuing the following command:

./DemoPlatformNode1Bootup

Use the makefile in Figure 17.2 to build our sample program. This makefile will link in
the libraries needed for the ORBit orb and Naming Service. Since ORBit has become part of
the GNOME project, those include files – glib 2.0 – are also needed. They are dynamically
loaded at run-time. Because ORBit is used by the GNOME project it has got a lot of mileage
on it and is fully featured and stable. This is critical to the overall success of our software
radio in that SCA depends on CORBA and a stable ORB is a prerequisite.

1. SOURCES = browseTree.c
2. OBJECTS = $(SOURCES:.c=.o)
3. CFLAGS += -x c -Wall -g
4. CC = gcc
5. INCL = -I /usr/include/orbit-2.0 \
6. -I /usr/include/glib-2.0 \
7. -I /usr/lib/glib-2.0/include
8.
9. LIBS = -lORBit-2 -lORBitCosNaming-2
10.
11. bT: $(OBJECTS)
12. $(CC) -o $@ ${OBJECTS} $(LIBS)
13.
14. #Compile
15. %.o: %.c
16. $(CC) ${CFLAGS} $(INCL) -c $<

Figure 17.2. Makefile for use with ORBit2

Our program – bT – is now ready to run. Don’t forget to cut and paste the naming service
IOR unto the command line. Or if saved in a file simply re-direct the file to the standard
input. Given a successful run, the output of Figure 17.3 should be produced.

328 The Services

context INITIAL
context SCARI_DM

object[1] DomainManager
object[1] node1Logger1
object[2] node1DeviceManager_DCE:18dd6458-494e-43cd-b823-07778bb9ca51
object[3] node1RFDeviceImpl_DCE:B6C3F70D-A069-47B5-BCEA-708E51C08888
object[4] node1AudioDevice_DCE:A68A5812-6BE7-4920-9A29-A7C013734FAB

total number of objects 5

Figure 17.3. SCARI Node1 via Name Service

We see that five objects from the SCARI demo are running: notably the Domain Manager,
a logger, a device manager, and RF and Audio devices. The Name Service name is the
concatenation of two strings taken from the Node1 Device Component Descriptor (DCD)
file. The SCA specifies a naming convention for Application components but not Devices.
For a Device within the SCARI Core Framework the name is formed by the usagename sub-
element of componentinstantiation followed by an underscore followed by the Id attribute
of componentinstantiation. The UUIDs in this case are attached to the component instance.
There are also UUIDs that uniquely identify component implementations.

These component instantiation UUIDs are also used to identify these components in
case they have ports that need to be connected. There is no application running at this
time. The user can install, instantiate, and start an application on the domain with the
application manager GUI:

./startApplicationManager

By starting up the Audio Effect application additional objects are launched in the Domain
Manager’s context. Run the browseTree application again to get the result shown in Figure 17.4.

context INITIAL
context SCARI_DM

object[1] DomainManager
context AudioApp1

object[1] AudioEffectController_DCE:7F19A71E-DE41-4BEF-A619-
9EE5ECCD832C

object[2] EchoResource_DCE:916B1F9F-25BA-43A6-896E-5B078D12B727
object[3]ChorusResource_DCE:8FC4B3CF-5203-4874-98D6-0FF6E4F2ED5C

object[1] node1Logger1
object[2] node1DeviceManager_DCE:18dd6458-494e-43cd-b823-07778bb9ca51
object[3] node1RFDeviceImpl_DCE:B6C3F70D-A069-47B5-BCEA-708E51C08888
object[4] node1AudioDevice_DCE:A68A5812-6BE7-4920-9A29-A7C013734FAB

total number of objects 8

Figure 17.4. SCARI Audio Effect Application via Name Service

Within the SCARI_DM context an additional context is created – AudioApp1. This
is actually the name provided by the user when the application was started. Within the
AudioApp1 context there are three components: AudioEffect controller, and the Echo and

Interoperable Naming Service 329

Chorus resources. As required in the SCA the string name of the Application components
are registered with the Naming Service along with their UUIDs. These UUIDs are found
in the AudioEffectApplication Software Assembly Descriptor (SAD) file. The name is
formed by the name attribute of the namingservice sub-element of componentinstantiation
followed by an underscore followed by a unique name. The SCA says only that the unique
name is provided by the implementation. In the SCARI Core Framework, an application
component unique name is taken from the Id attribute of the componentinstantiation
element.

Now let’s take a look at the software itself. We introduce two functions – Figures 17.5
and 17.6 – that are used to start the orb and then to connect to the Naming Service.

1. /* browseTree.c */
2.
3. #include <stdio.h>
4. #include <stdlib.h>
5. #include <string.h>
6. #include <time.h>
7.
8. #include <orbit/orbit.h>
9. #include <ORBitservices/CosNaming.h>
10.
11. void startOrb(char** local_argv,
12. CORBA_ORB *orb, CORBA_Environment *ev)
13. {
14. int local_argc=1;
15.
16. CORBA_exception_init(ev);
17. *orb=CORBA_ORB_init(&local_argc,local_argv,"orbit-local-orb", ev);
18. if (ev->_major != CORBA_NO_EXCEPTION) {
19. fprintf(stderr,"CORBA_ORB_init (Exception %d)\n", ev->_major);
20. fprintf(stderr," Id %s\n",CORBA_exception_id(ev));
21. CORBA_exception_free(ev);
22. abort();
23. }
24. printf("ORB initialized\n");
25. }
26.

Figure 17.5. ORB client-side initialization

Lines 16 and 17 are the heart of the function. Line 16 initializes an exception handler and
line 17 starts the orb itself. The exception handler initialized in this case is a handler defined
by the caller. Exception handlers can be defined and initialized in any context. To avoid a
memory leak they should also be released when they have outlived their usefulness. Lines
18 through 23 check for and print out an error message in the event that the orb throws
an exception. For brevity our subsequent code example will not test for exceptions but the
reader is encouraged to follow good programming practice and always test for exceptions

330 The Services

after every CORBA call. It’s not hard to define macros that can describe the exception
handler: They can be turned on during the development and integration phases and then
turned off for production.

Here’s the function to connect to the Naming Service.

27. void getNamingService(char** local_argv,
28. CosNaming_NamingContext* myNC,
29. CORBA_ORB *orb, CORBA_Environment *ev)
30. {
31. *myNC = CORBA_ORB_string_to_object(*orb,local_argv[1], ev);
32. if (CORBA_Object_is_nil(*myNC,ev)) {
33. fprintf(stderr,"Cannot find Naming Service, Nil returned!\n");
34. abort();
35. }
36. printf("Resolved NameService\n");
37. }

Figure 17.6. CORBA Name Service via stringified IOR

Line 31 takes the stringified object reference of the Name Service as passed from the
command line and returns the object reference of the initial naming context. This is the
starting point of our naming graph. We call the naming context ‘INITIAL’ though technically
it doesn’t have a name. The code segment in Figure 17.7 is the main program.

38. typedef struct {
39. int objCount; /* running count of object references */
40. int nesting; /* keeps track of nested Name Contexts */
41. } nestedTreeStruct;
42.
43.
44. int main(int argc, char * argv[])
45. {
46. CORBA_Environment ev;
47. CORBA_ORB orb;
48. CosNaming_NamingContext myNC;
49. nestedTreeStruct myNT;
50. char* dummy_argv[2];
51.
52. dummy_argv[0] = argv[0];
53. dummy_argv[1] = 0;
54.
55. myNT.nesting = myNT.objCount = 0;
56.
57. startOrb(dummy_argv,&orb,&ev);

Figure 17.7. Name Service browser – main

Interoperable Naming Service 331

58. if (argc > 1)
59. getNamingService(argv, /* IOR from the command line */
60. &myNC, &orb, &ev);
61. else {
62. fprintf(stderr,"Usage: ./bT nameServiceIOR\n");
63. abort();
64. }
65.
66. /* Browse Naming Tree */
67. printf("\ncontext INITIAL\n");
68. myNT.nesting += 1;
69. traverseNamingContext(&myNC,&myNT,&ev);
70. printf("\ntotal number of objects %d\n",myNT.objCount);
71.
72. CORBA_Object_release(myNC, &ev);
73. return 0;
74. }

Figure 17.7. (Continued)

After initializing the ORB and retrieving the initial naming context, the heart of the main
program is found in line 69. This call to traverseNamingContext takes a pointer to a context
and a pointer to a data structure that is used to keep track of the nesting depth and a running
count of objects encountered. This data structure is found in lines 38–41. The traverse
function can be used to traverse any context and hence it can be called recursively.

As the main program is cleaning up and in order to exit one might be tempted to call the
destroymethodon theNamingContextobject–CosNaming_NamingContext_destroy.
Unfortunately this not only gets rid of the client-side of the naming context but also destroys
the server-side. The heart of the main program – traverseNamingContext – is shown in
Figure 17.8.

1. void traverseNamingContext(CosNaming_NamingContext* myNC,
2. nestedTreeStruct* myNT, CORBA_Environment* ev)
3. {
4. CosNaming_NamingContext newContext;
5. CosNaming_BindingList* seqBinding;
6. CosNaming_BindingIterator myIter=CORBA_OBJECT_NIL;
7. CosNaming_Binding myBinding, *CNB_p;
8. CosNaming_Name myBindingName;
9. CORBA_string myString;
10. int j,localCount=0;
11. CORBA_boolean retVal;
12.
13. CosNaming_NamingContext_list(*myNC,

Figure 17.8. Recursive context function with iterators

332 The Services

14. 0,
15. &seqBinding,
16. &myIter,
17. ev);
18. if (CORBA_Object_is_nil(myIter,ev)) {
19. return;
20. }
21.
22. /* Descend into other contexts */
23. retVal = CosNaming_BindingIterator_next_one(myIter,&CNB_p,ev);
24.
25. while (retVal==CORBA_TRUE)
26. {
27.
28. myBinding = *CNB_p;
29. for (j=0; j< myNT->nesting; j++) printf(" ");
30. if (myBinding.binding_type==CosNaming_ncontext)
31. {
32. printf("context ");
33. myBindingName = myBinding.binding_name;
34.
35. /* print out name */
36. myString = CosNaming_NamingContextExt_to_string(*myNC,
37. (const CosNaming_Name *)&myBindingName,ev);
38. printf("%s\n",myString);
39. CORBA_free(myString);
40.
41. myNT->nesting += 1;
42. newContext =
43. CosNaming_NamingContext_resolve(*myNC,(const

CosNaming_Name*)&myBindingName,ev);
44.
45. traverseNamingContext(&newContext,myNT,ev);
46. CORBA_Object_release(newContext, ev);
47. }
48. else
49. {
50. /* printout leaf */
51. myNT->objCount += 1;
52. localCount += 1;
53. printf("object[%1d] ",localCount);
54. myBindingName = myBinding.binding_name;
55.
56. /* print out name */
57. myString = CosNaming_NamingContextExt_to_string(*myNC,
58. (const CosNaming_Name *)&myBindingName,ev);

Figure 17.8. (Continued)

Interoperable Naming Service 333

59. printf("%s\n",myString);
60. CORBA_free(myString);
61. }
62.
63. retVal = CosNaming_BindingIterator_next_one(myIter,&CNB_p,ev);
64.
65. } /* end while */
66.
67. /* have iterated all objects in this context */
68. /* back out one level */
69. myNT->nesting -= 1;
70. CosNaming_BindingIterator_destroy(myIter,ev);
71.
72. }

Figure 17.8. (Continued)

The first operation performed on a context is to retrieve a list of its elements. The call
to CosNaming_NamingContext_list in line 13 instructs the context to return up to
0 elements because what we’re interested in right now is the BindingIterator not a
list of bindings. The iterator will let us walk the Name Context without knowing how many
entries there are. If you did specify the number of entries to return, how would you know
how many to ask for? At best it would just be a guess. In reality one does not know how
many objects are in a context – there might be tens of thousands of nodes.

The call in line 13 asks the context to return zero binding elements so seqBinding
is empty. Line 18 checks BindingIterator to see if is nil. This would indicate an
empty context. Methods exist on the BindingIterator object that behave somewhat
like a linked list. Instead of requesting a certain number of bindings, zero bindings are
requested and a ‘pointer’ to the first binding is returned. It is then possible to walk
through the naming graph one element at a time. Line 23 operates on the BindingIterator –
CosNaming_BindingIterator_next_one. This call returns a pointer to a binding.
Subsequent calls will return the next binding and so on until there are no bindings
left to return. After there are no more bindings left within the context, the call to
CosNaming_BindingIterator_next_one will return CORBA_FALSE.

Line 25 starts a code block that will iterate the context until there are no more bindings
left. The pointer to the next binding is de-referenced in line 28. The binding is tested to
determine whether it is another context or an object in line 30. In lines 33 and 54 the
CosNaming_Name is extracted from the binding. Finally the string name is extracted –
lines 36 and 57 – with a call to CosNaming_NamingContextExt_to_string. This is
somewhat simpler to use than trying to access the string _buffer directly. This technique
is universal because it can traverse a name tree of arbitrary complexity.

The calls CosNaming_BindingIterator_next_one and CosNaming_
NamingContextExt_to_string allocate memory as needed in order to return
bindings and strings. To avoid a memory leak the user is required to free up the allocated
memory. The strings are freed in lines 39 and 60. The BindingIterator is destroyed
in line 70.

334 The Services

When a binding is returned, line 30 checks to see if it is a context. If the name of the
context is printed out, the indentation level on the printf is increased and a recursive call
to traverseNamingContext is made. If the binding is just an object the name – a simple
CORBA string – is printed out in line 59.

In order to get the nested contexts to print out with proper indentation, the variable
myNT->nesting is used to keep track of how deeply descended is the recursion.
Line 53 prints out three spaces of white space for each level of depth in the naming
graph. Before entering a new context the nesting count is incremented; (line 41).
After all the bindings within a context have been iterated and it’s time to back out
to the calling level, the nesting is decremented (line 69). Whatever method is used to
traverse the naming graph, list or iterator, the purpose is invariably to gain access to an
object. Once a name is isolated the user can retrieve the object’s reference by a call to
CosNaming_NamingContext_resolve using the object’s CosNaming_Name or
by a call to CosNaming_NamingContextExt_resolve_str using the object’s
CORBA_string name within the correct context. In later examples we will use the Name
Service to gain access to Core Framework, Device, and Application components.

The Naming Service Extension supports the ability to specify a name in a couple of
different formats as well as the ability to transform between the formats. If one considers
the Naming Service _resolve operation as just another transformation, then the Naming
Service can be considered a universal translator. Figure 17.9 shows the various formats and
the actions used to transform between them.

sm NameState

«CORBAStruct»
CosNaming_Name

«CORBAobject»
objectReference

«CORBA_string»
StringName

«CORBA_string»
URLString

«CORBA_string»
stringifiedIOR

_resolve_str

_to_string

_to_url
_to_name

_resolve

string_to_object

string_to_object

object_to_string

_bind

Figure 17.9. Naming Service – Name State Diagram

Interoperable Naming Service 335

17.1.1 Universal Unique Identifiers

The SCA allows certain instances and interfaces identified within the Domain Profile to be
tagged with a Universal Unique Identifier (UUID) [27]. Note in SCA specifications section
3.1.3.5.1, this usage is optional. Furthermore, SCA section 7.4 alludes to the creation of a
Registration Body to be established for a yet to be defined purpose. To date no such body
has been established. In the world at large UUIDs were invented to support the Distributed
Computing Environment’s Remote Procedure Calls (DCE RPC). The concept of DCE is
exactly the same as CORBA and UUIDs can be likened to IORs. DCE supports client/server
relationships over global networks. The principal difference between DCE and CORBA is
that DCE is rooted in the procedural world of ‘C’ whereas CORBA extends the object-
oriented paradigm to a variety of languages. Generating a UUID is easy. The web link
http://www.itu.int/ITU-T/asn1/uuid.html can provide a UUID.

A ‘C’ programmer can also generate and manipulate using the very common UUID library
as accessed through the header file ‘uuid.h’. This makes available the following function calls:

1� uuid_clear() 5� uuid_is_null()
2� uuid_compare() 6� uuid_parse()
3� uuid_copy() 7� uuid_time()
4� uuid_generate() 8� uuid_unparse()

A user can also generate a UUID from the command line on most UNIX machines with
uuidgen. The formula for generating UUIDs is quite exacting and involves a mixture of
time tags and a hardware-unique tag like an Ethernet MAC address. At 128-bits the UUID
is guaranteed unique over the space of all UUIDs.

Whether a Domain Profile uses UUIDs or not is inconsequential to the fact that the SCA
requires certain artifacts to be uniquely identified:

1. all instances of a software package as identified in the component’s Software Package
Descriptor (SPD);

2. every resource as specified in the createResource operation;
3. all ports used in the getPort operation as specified in a component’s Software Component

Descriptor (SCD);
4. all testIds as specified in a Resource’s Property File;
5. all Applications as specified in an ApplicationFactory’s Software Assembly Descriptor

(SAD);
6. Services as specified in the call to registerService;
7. all PushConsumers that register with an event channel.

In most cases the Core Framework will generate an exception if artifacts being created or
registered are not uniquely named.

17.1.2 Core Framework Usage of the Naming Service

First and most important, the Domain Manager is expected to make a unique Name Context
under the initial context. This then supports the notion of having multiple domains using
the same Name Service. After creating the unique Name Context, the Domain Manager
shall register (bind) itself under this uniquely named context with a name binding equal to
‘DomainManager’.

336 The Services

The next primary user of the Name Service is an Application Factory. When executing
the create() operation, the Core Framework forms a string that will be passed to the
application as an execute parameter. According to SCA, this string is of the form
‘ComponentName_UniqueIdentifier’. Where the component name comes from
the application’s SAD file – specifically, the componentinstantiation findcomponent
namingservice element, name attribute – the unique identifier is said to be implementation
dependent. In SCARI, this unique identifier is the object instantiation’s UUID. The
Application Factory extracts the two strings from the SAD file and concatenates them with
an intervening underscore.

There is another piece of information passed as an execute parameter to the application
component. This is the stringified object reference of the application’s Name Context. The
application factory will create this context under the Domain Name but the SCA does not
mandate separate contexts for each application. The SCARI Core Framework however uses
the name of the application given in the run-time as a sub-heading under the Domain Name.
This approach would allow multiple instances of the same application to live in the same
domain namespace. This is the name provided as a parameter to the create() operation.
When the application factory forms the execute command it will provide as parameters
the string ‘NAMING_CONTEXT_IOR’ followed by the stringified object reference of the
newly created context. It will also pass the string ‘NAME_BINDING’ followed by the
‘ComponentName_UniqueIdentifier’.

After starting the component, the application factory needs to check with the Name Service
in order to retrieve the components IOR. Since the component might take some time coming
into existence, the application factory might have to loop a few times before the application
component completes registration with the Name Service. Once the application factory has
retrieved the object reference of the component it can complete the create() processing by
running getPort() operations on the newly created component.

Device Managers, Devices and Services are not required to register with the Name Service.

17.1.3 Application Usage of the Naming Service

When an application component begins execution it must extract the name context IOR and
name binding from its argv or parameter list. The application component then creates all of
its Port objects. The application component will need to keep track of the object references
for each of the Port objects it creates. The application component then creates an object
reference for itself. Finally the application component binds its object reference with the
Naming Service and enters an ORB_run loop waiting for clients to invoke methods.

Similar to application components, ResourceFactory objects are also required to register
with the Name Service.

17.2 Event Service

The Event Service is somewhat of a new addition to the SCA, making its first appearance in
the 2.2 version of the specification. It is based on the OMG Event Service [23]. The Event

Event Service 337

Service functionality considered mandatory by the SCA is that of the ‘push’ model. The SCA
does not require the presence of the Event Service ‘pull’ interfaces. Figure 17.10 shows the
Event Service class diagram as required by the SCA. At first glance the CosEventComm and
CosEventChannelAdmin modules appear daunting, but there is a symmetry to the interfaces
and the Core Framework does half of the work for you via the registerWithEventChannel
interface on the Domain Manager object.

The Event Service provides a means of implementing asynchronous communications
between suppliers and consumers. As previously mentioned the SCA requires implementation
only of the ‘push’ interfaces; so suppliers push event data to consumers. The connection
between suppliers and consumers is provided by an object called an EventChannel. Event
data from the perspective of the OMG is of CORBA type any. The applications programmer
is free to use this service for his or her own purposes as it’s guaranteed to be present on
every SCA-compliant system.

cd CosEventComm

«CORBAModule»
CosEventComm

«CORBAInterface»
PushConsumer

+ push(any) : void

+ disconnect_push_consumer() : void

«CORBAInterface»
PushSupplier

+ disconnect_push_supplier() : void

«CORBAModule»
CosEventChannelAdmin

«CORBAInterface»
ProxyPushConsumer

+ connect_push_supplier(PushSupplier) : void

«CORBAInterface»
ProxyPushSupplier

+ connect_push_consumer(PushConsumer) : void

«CORBAInterface»
EventChannel

+ for_consumers() : ConsumerAdmin

+ for_suppliers() : SupplierAdmin

+ destroy() : void

«CORBAInterface»
ConsumerAdmin

+ obtain_push_supplier() : ProxyPushSupplier

«CORBAInterface»
SupplierAdmin

+ obtain_push_consumer() : ProxyPushConsumer

«defines»

«defines»

«defines»«defines»

«defines»«defines»

«defines»

Figure 17.10. Event Service class diagram

The EventChannel object supports the ability to have multiple producers sending event
data to multiple consumers. This is done through the use of proxies. Figure 17.11 shows
the relationship between event producers, the event channel, and event consumers. The
exact mapping relationship between suppliers and consumers is implementation-dependent
but typically every event supplied is sent to every consumer. The process for establishing a
PushConsumer object involves a few steps but is pretty straightforward.

338 The Services

1. Implement a PushConsumer object with a push() interface – this is a server object so it
is launched and permanently pends waiting for someone to invoke the push() interface.

2. Invoke the for_consumers() interface on an EventChannel object – this returns an
object of type ConsumerAdmin.

3. Invoke the obtain_push_supplier() interface of the ConsumerAdmin object –
this returns an object of type ProxyPushSupplier.

4. Invoke the connect_push_consumer() interface on the ProxyPushSupplier object –
this interface requires the object reference of the PushConsumer object created in Step 1.

Now as events are produced they magically appear at the push() implementation. The
applications programmer is free to do whatever is pleasing with the information contained
in the any type passed to it.

Supplier
Object

Supplier
Object

Event ChannelConsumer
Proxy

Supplier
Proxy

Consumer
Object

Consumer
Object

Consumer
Object

Supplier
Proxy

Supplier
Proxy

Consumer
Proxy

Figure 17.11. Event Channel data flow

As discussed in Section 3.3, the Core Framework is required to implement two
event channels: the Incoming Domain Management (IDM) channel and the Outgoing
Domain Management (ODM) channel. From the SCA perspective there are three any
types defined: the StateChangeEventType, the DomainManagementObjectAddedEventType,
and the DomainManagementObjectRemovedEventType. The IDM is used by Devices to
register changes in state by sending StateChangeEventTypes to whatever PushConsumers
are connected to the IDM. The ODM event channel is used under the following
circumstances:

1. by an ApplicationFactory upon successful creation/removal of an Application;
2. by the DomainManager whenever a Device, DeviceManager, or Service is registered or

unregistered;

Event Service 339

3. by the DomainManager whenever a SAD is installed/uninstalled;
4. by the DomainManager whenever an pushConsumer is registered/unregistered.

In order to establish a PushConsumer, there were four steps previously identified:

1. instantiate a PushConsumer object;
2. obtain a ConsumerAdmin object;
3. obtain a ProxyPushSupplier;
4. register the PushConsumer with the ProxyPushSupplier.

The DomainManager has a interface called registerWithEventChannel that takes care of steps
2 through 4. This takes some of the pain out of the PushConsumer establishment process. If
the applications programmer wishes to connect to the IDM or ODM it is necessary only to
create the PushConsumer object (Step 1 above) and then register it with the DomainManager.
The DomainManager will then take care of everything else.

The following example shows how to connect an SCA-specific PushConsumer to the
event channels. Initially, it is necessary to obtain the Event Service IDL located at
http://www.omg.org/cgi-bin/doc?formal/01-03-02.

It is optional to get rid of the parts of the Event Service not required by the SCA. For our
purposes it is clearer to focus only on the mandatory push-model interface. Furthermore,
it is not necessary to have access to the Admin interfaces required to administer an event
channel or be able to create an event channel because the DomainManager takes care of
this. However, SCA specification section 3.1.2.2.3.1 clearly states that an OE should support
the ability to create an event channel. This support for event channels could be done for the
private benefit of the OE or it could be considered available to all users. The SCARI Core
Framework uses a Java implementation of the Event Service from the OMG but does not
make it explicitly available to the applications programmer. There are plenty of Event Service
implementations around so it is not necessary to go into detail on how to create or administer
event channels. The motivated reader can download Event Service implementations as part
of the ‘omni’ [22] or ‘MICO’ orbs [21].

As users of the Core Framework we will let the DomainManager do all the work and
restrict our attentions to the three Standard Event Types mandated in the SCA. Even though
ORBit2 does not come with an event service we are required only to implement a _push
method on a CosEventComm PushConsumer object. The IDL for our PushConsumer is
given in Figure 17.12.

1. module CosEventComm // SCA --> just the Push interfaces
2. {
3. exception Disconnected{};
4.
5. interface PushConsumer
6. {
7. void push (in any data) raises(Disconnected);
8. };
9. };

Figure 17.12. PushConsumer IDL

340 The Services

It is not even necessary to implement the disconnect method because the DomainManager
provides an unregisterFromEventChannel method. We can then generate the necessary
common, skeleton, and implementation files from the IDL compiler as follows:

orbit-idl-2 --skeleton-impl scaPushConsumer.idl

In the generated file scaPushConsumer_impl.c, this command will generate a function
placeholder as follows:

static void impl_CosEventComm_PushConsumer_push (� � �)
{

}

Now it is up to the applications programmer to fill in what to do when the _push method
gets invoked. The code segment in Figure 17.13 is helpful. Our _push implementation will
be connected to both the IDM and ODM event channels. Inside the implementation we will
handle each of the three event types separately. Initially, we define strings that map to the
couple of enumerated types that are needed. If necessary take a look at the StandardEvents
IDL contained in the Appendix C of the SCA specifications. The three SCA ‘standard’ event
types are defined in the header given in Figure 17.13.

10. static char* sourceCategoryString[] = {
11. "DEVICE_MANAGER",
12. "DEVICE",
13. "APPLICATION_FACTORY",
14. "APPLICATION",
15. "SERVICE"
16. }; /* the type of object being added-removed */
17.
18. static char* stateCategoryString[] = {
19. "ADMINISTRATIVE_STATE_EVENT",
20. "OPERATIONAL_STATE_EVENT",
21. "USAGE_STATE_EVENT"
22. }; /* for use by Devices on the IDM */
23.
24. static char* stateChangeString[] = {
25. "LOCKED",
26. "UNLOCKED",
27. "SHUTTING_DOWN",
28. "ENABLED",
29. "DISABLED",
30. "IDLE",
31. "ACTIVE",
32. "BUSY"
33. }; /* for use by Devices on the IDM */

Figure 17.13. IDM Event Channel data structures

Event Service 341

The first array of strings is for use with the ODM (added-removed events), the last two with
IDM (state change events). Although Added events and Removed events are quite similar –
the RemovedEvent data structure is a strict subset of the AddedEvent data structure – they
must be parsed separately because they are, in fact, different types. The code example in
Figure 17.14 shows an implementation of a _push method on a Consumer object. The
example shows how to work with the CORBA any type.

In a nutshell, the CORBA any type contains two fields. One field contains a description
of the type being passed – the _type field – and the other a _value field. The
_type field can describe anything from simple CORBA_long to a CORBA_sequence
of CORBA_strings to an elaborate CORBA_struct. The other field is a void pointer to
the data itself. The example given in Figure 17.14 shows how to interpret both the _type
and _value fields.

1. static void
2. impl_CosEventComm_PushConsumer_push(

impl_POA_CosEventComm_PushConsumer *servant, const
CORBA_any* data,
CORBA_Environment *ev) {

3.
4. SCA_StandardEvent_DomainManagementObjectAddedEventType added;
5. SCA_StandardEvent_DomainManagementObjectRemovedEventType removed;
6. SCA_StandardEvent_StateChangeEventType state;
7.
8. printf("_push: %s\n",CORBA_TypeCode_name(data->_type,ev));
9.
10. if (CORBA_TypeCode_kind(data->_type,ev) != CORBA_tk_struct)
11. {
12. printf("_push: expecting a struct\n");
13. return;
14. }
15.
16. if (strcmp("DomainManagementObjectAddedEventType",
17. (const char*)CORBA_TypeCode_name(data->_type,ev))==0
18. {
19. added = *(SCA_StandardEvent_DomainManagementObjectAddedEventType*)

data->_value;
20. printf("%s: ",CORBA_TypeCode_member_name(data->_type,0,ev));
21. printf("%s\n",added.producerId);
22. printf("%s: ",CORBA_TypeCode_member_name(data->_type,1,ev));
23. printf("%s\n",added.sourceId);
24. printf("%s: ",CORBA_TypeCode_member_name(data->_type,2,ev));
25. printf("%s\n",added.sourceName);
26. printf("%s: ",CORBA_TypeCode_member_name(data->_type,3,ev));
27. printf("%s\n\n",sourceCategoryString[added.sourceCategory]);
28. } else if
29. (strcmp("DomainManagementObjectRemovedEventType",

Figure 17.14. IDM/ODM pushConsumer – any type resolution

342 The Services

30. (const char*)CORBA_TypeCode_name(data->_type,ev))==0)

31. {

32. removed =

(SCA_StandardEvent_DomainManagementObjectRemovedEventType)

data->_value;

33. printf("%s: ",CORBA_TypeCode_member_name(data->_type,0,ev));

34. printf("%s\n",removed.producerId);
35. printf("%s: ",CORBA_TypeCode_member_name(data->_type,1,ev));

36. printf("%s\n",removed.sourceId);
37. printf("%s: ",CORBA_TypeCode_member_name(data->_type,2,ev));

38. printf("%s\n",removed.sourceName);
39. printf("%s: ",CORBA_TypeCode_member_name(data->_type,3,ev));

40. printf("%s\n\n",sourceCategoryString[removed.sourceCategory]);
41. } else if

42. (strcmp("StateChangeEventType",

43. (const char*)CORBA_TypeCode_name(data->_type,ev))==0)

44. {

45. state = *(SCA_StandardEvent_StateChangeEventType*)data->_value;

46. printf("%s: ",CORBA_TypeCode_member_name(data->_type,0,ev));

47. printf("%s\n",state.producerId);
48. printf("%s: ",CORBA_TypeCode_member_name(data->_type,1,ev));

49. printf("%s\n",state.sourceId);
50. printf("%s: ",CORBA_TypeCode_member_name(data->_type,2,ev));

51. printf("%s ",stateCategoryString[state.stateChangeCategory]);

52. printf("From %s ",stateChangeString[state.stateChangeFrom]);

53. printf("To %s\n\n",stateChangeString[state.stateChangeTo]);
54. } else

55. printf("Unknown struct %s\n",CORBA_TypeCode_name(data->_type,ev));
56.

57. }

Figure 17.14. (Continued)

A quick run through of the code example is in order. The basic design is to print out all
‘string’ or ‘enumerated’ fields of the SCA StandardEvents. In line 8 we print the _type of
event being received in the call. Of course this will be Object Added, Object Removed, or
State Change. If the _type received is not a CORBA_struct a message is printed and
the routine returns lines 10–13. Lines 16–17, 29–30, and 41–43 each test for one of the
three SCA-defined standard event types. If the type of structure passed is not one of the
recognized SCA Standard Events, an error message is printed in line 55.

Each of the parsing sequences starts by casting the void pointer contained in _value
to the correct type. Finally the pointer is de-referenced and the passed data is copied
into a local variable (lines 19, 32 and 45). Each line printed contains two parts.
The first part is the name of the member variable within the structure. Remember
this information is passed as part of the _type variable and is accessed through the

Event Service 343

CORBA_TypeCode_member_name() API. The second half of each line printed is the
content appropriate member variable within the de-referenced _value field. A complete
description of the any type, parsing of complex CORBA_structs and memory management
is beyond the scope of this book, but can be found elsewhere [28, paragraph 8.7]. This
reference is the full blown CORBA specification (version 2.2) upon which the SCA’s
minimum CORBA specification is based. The reader will come to find that much of the
information sent to the event channels is also available through the Lightweight Log Service
or directly accessible as attributes on the DomainManager object.

It is unfortunate to observe that in the minimum CORBA specification the
member_name() interface, as well as several other interfaces used to decode any types, are
generally not supported in ORBs claiming to be minimum CORBA-compliant. Since the SCA
explicitly defines the members of the Standard Event data structures there is really no need
to call member_name() in the run-time because the member names can be hard-coded.

With our _push implementation now complete it is time to compile it in to
some additional software that will create the PushConsumer object, register it with the
DomainManager, and spin like a server waiting for events to get pushed to it. We’ve not
created a server object in any of our previous code examples. We’ve always acted as a
client by running methods on existing CORBA objects living within the Core Framework.
The code segment in Figure 17.15 shows how to create an instance of the Portable Object
Adaptor (POA). Subsequently we will create our server-side object on that POA.

1. static
2. void startOrbPOA(int* argc, char** local_argv,
3. CORBA_ORB *orb, PortableServer_POA *poa, CORBA_Environment *ev)
4. {
5. PortableServer_POAManager poa_manager=CORBA_OBJECT_NIL;
6.
7. *orb = CORBA_ORB_init(argc, local_argv, "orbit-local-orb", ev);
8.
9. *poa = (PortableServer_POA)
10. CORBA_ORB_resolve_initial_references(*orb,"RootPOA",ev);
11.
12. poa_manager =
13. PortableServer_POA__get_the_POAManager(*poa,ev);
14.
15. PortableServer_POAManager_activate(poa_manager,ev);
16.
17. CORBA_Object_release((CORBA_Object)poa_manager,ev);
18. printf("ORB/POA initialized\n");
19.
20. }

Figure 17.15. CORBA server-side POA startup

For the sake of brevity we have left out tests for exceptions and nil references, but certainly
a robust code will not make the same omission. In the same manner as in CORBA client-side
code, line 7 creates an instance of an orb. As before, command line parameters are passed

344 The Services

to the ORB initialization routine – previously this was the IOR of the Naming Service. The
rest of the code example simple creates and activates a server-side POA. The ORB and POA
pseudo-object references are returned to the calling program in the parameter list. We can
now focus on the main program given in Figure 17.16.

1.
2. #include <ORBitservices/CosNaming.h>
3. #include "stubs/EventService.h"
4. #include "stubs/SCA.h"
5.
6. #include "scaPushConsumer_impl.c"
7.
8. int main(int argc, char * argv[])
9. {
10. CORBA_Environment ev;
11. CORBA_ORB orb=CORBA_OBJECT_NIL;
12. PortableServer_POA my_poa=CORBA_OBJECT_NIL;
13. CosEventComm_PushConsumer servant=CORBA_OBJECT_NIL;
14.
15. CosNaming_NamingContext myNC;
16. SCA_CF_DomainManager dmObj;
17.
18. CosNaming_Name myBindingName;
19. CosNaming_NameComponent

path[2]={{"SCARI_DM",""},{"DomainManager",""}};
20. int localArgc=argc;
21.
22. CORBA_exception_init(&ev);
23. --localArgc;
24. startOrbPOA(&localArgc,argv,&orb,&my_poa,&ev);
25.
26. getNamingService(argc, argv, &myNC, &orb, &ev);
27.
28. /* get the Domain Manager objRef */
29. myBindingName._maximum=2;
30. myBindingName._length=2;
31. myBindingName._buffer=path;
32. dmObj=(SCA_CF_DomainManager)CosNaming_NamingContext_resolve(myNC,
33. (const CosNaming_Name *)&myBindingName, &ev);
34.
35. /* create the PushConsumer object */
36. servant =
37. impl_CosEventComm_PushConsumer__create(my_poa,&ev);
38. printf("Have a valid PushConsumer\n");
39.
40. /* register with ODM */

Figure 17.16. Register with Event Channel – main

Event Service 345

41. SCA_CF_DomainManager_registerWithEventChannel(dmObj,
42. (const CORBA_Object)servant,
43. "johnConsumer", "ODM_Channel", &ev);
44.
45. /* register with IDM */
46. SCA_CF_DomainManager_registerWithEventChannel(dmObj,
47. (const CORBA_Object)servant,
48. "anotherConsumer", "IDM_Channel", &ev);
49.
50. CORBA_Object_release(dmObj, &ev);
51. CORBA_Object_release(myNC, &ev);
52.
53. CORBA_ORB_run(orb,&ev); /* Server runs forever */
54.
55. CORBA_ORB_destroy(orb,&ev);
56.
57. return 0;
58. }

Figure 17.16. (Continued)

Besides the normal include files, e.g. <stdio.h>, a couple of CORBA service specific include
files, as well as the SCA, are also required. Line 2 provides the prototypes for using the Naming
Service to locate the Domain Manager object reference. Line 3 is needed for its definition
of a the PushConsumer object. Line 4 is needed for the Domain Manager object and its
methodsregisterWithEventChannel andunregisterFromEventChannel. It is
assumed that the IDL for the SCA Core Framework has been complied and the output lives
in a directory called stubs beneath the current directory. Most importantly our code for the
scaPushConsumer implementation is included directly in line 6. The rest of the code example
is pretty straightforward. Lines 19 and 29–33 show an abbreviated way of directly accessing
the Domain Manager’s node within the naming graph. Our previous encounter in exploring
the naming graph led us to a recursive means of accessing the various nested levels.

Line 32 resolves the CosNaming_Name of the DomainManager and returns an object
reference. We will use this later to register our PushConsumer. Line 36 creates the
PushConsumer object (on the POA) and returns its object reference in the variable called
servant. Finally lines 40–48 register our PushConsumer with both the ODM and IDM
channels. The NamingContext and DomainManager object references are no longer needed
so they are released (lines 50 and 51). At last our POA server is put into the run state. The
code never actually returns from the call in line 53.

To run this executable type/paste the following unto the command line. The server will
run until you kill it.

./PCserver −ORBIIOPIPv4=1 IOR:… paste IOR of Naming Service here…

The first parameter is very important. The ORBit2 orb is used extensively within the
GNOME desktop environment. Typically there are four or five server objects running at any
given time. The default setting for ORBit2 is to make these connections private. This security
feature uses a protected GIOP interface that is not known to other ORBs. This command line
flag tells ORBit2 to use the universal IIOP in constructing object references. Without this
flag the object reference used to register our PushConsumer with the DomainManager would

346 The Services

be unrecognizable by the Java ORB. Finally, the second parameter required is the IOR for
the Naming Service so that our software can resolve the DomainManager object reference.
Upon successful execution the output given in Figure 17.17 is produced.

Resolved NameService
ident: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
profile: <profile filename="/DomainManager.dmd.xml" type="DMD"/>
Have a valid PushConsumer

Event 1 → _push: StateChangeEventType
producerId: DCE:72f795a2-5f6a-41cf-8d3a-9beaeef0ac7d
sourceId: DCE:72f795a2-5f6a-41cf-8d3a-9beaeef0ac7d
stateChangeCategory: USAGE_STATE_EVENT From IDLE To ACTIVE

Event 2 → _push: DomainManagementObjectAddedEventType
producerId: DCE:9601C10A-249F-48B0-8C5A-BE61545BB101
sourceId: AudioEffect0_DCE:9601C10A-249F-48B0-8C5A-BE61545BB101
sourceName: myApp
sourceCategory: APPLICATION

Event 3 → _push: StateChangeEventType
producerId: DCE:72f795a2-5f6a-41cf-8d3a-9beaeef0ac7d
sourceId: DCE:72f795a2-5f6a-41cf-8d3a-9beaeef0ac7d
stateChangeCategory: USAGE_STATE_EVENT From ACTIVE To IDLE

Event 4 → _push: DomainManagementObjectRemovedEventType
producerId: AudioEffect0_DCE:9601C10A-249F-48B0-8C5A-BE61545BB101
sourceId: AudioEffect0_DCE:9601C10A-249F-48B0-8C5A-BE61545BB101
sourceName: myApp
sourceCategory: APPLICATION

Event 5 → _push: DomainManagementObjectRemovedEventType
producerId: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
sourceId: DCE:d58c8931-7372-473c-b9be-8f15c995b75f
sourceName: AnalogFM
sourceCategory: APPLICATION_FACTORY

Event 6 → _push: DomainManagementObjectRemovedEventType
producerId: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
sourceId: DCE:A68A5812-6BE7-4920-9A29-A7C013734FAB
sourceName: node1AudioDevice
sourceCategory: DEVICE

Event 7 → _push: DomainManagementObjectRemovedEventType
producerId: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
sourceId: DCE:72f795a2-5f6a-41cf-8d3a-9beaeef0ac7d
sourceName: node1ExecutableDevice
sourceCategory: DEVICE

Event 8 → _push: DomainManagementObjectRemovedEventType
producerId: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
sourceId: DCE:B6C3F70D-A069-47B5-BCEA-708E51C08888
sourceName: node1RFDeviceImpl
sourceCategory: DEVICE

Figure 17.17. Event Channel output

Event Service 347

Event 9 → _push: DomainManagementObjectRemovedEventType
producerId: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
sourceId: DCE:f186ff96-b9aa-4d17-97e3-0999fca410b4
sourceName: node1Logger1
producerId: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
sourceId: DCE:d58c8931-7372-473c-b9be-8f15c995b75f
sourceName: AnalogFM
sourceCategory: APPLICATION_FACTORY

Event 10 → _push: DomainManagementObjectRemovedEventType
producerId: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
sourceId: DCE:18dd6458-494e-43cd-b823-07778bb9ca51
sourceName: node1DeviceManager
sourceCategory: DEVICE_MANAGER

Figure 17.17. (Continued)

Examination of the output yields a few worthwhile observations. The first bit of output
comes from the pushConsumer program itself saying it has found the Domain Manager and
then announcing the successful deployment of a PushConsumer server object. Subsequent
output is from the event channels themselves.

Events 1 and 2 are associated with the creation of the AudioEffect Application. The
first event is the Executable device changing from IDLE to ACTIVE. The application
named ‘myApp’ is then added to the domain. Now the user can start and stop the
AudioEffect application as desired. One would expect to find state change messages coming
from the Audio Device as the application was started and stopped. This is not the case.
It is likely that the Audio Device is started during startup of all the devices on the
domain. Our event channel consumer was not registered at that time so those events were
missed.

Events 3 and 4 are associated with shutting an application down. The ExecutableDevice
is set to IDLE and then the AudioEffect application is removed. Event 5 confirms the
removal of the AnalogFM application factory. And the remainder of events concern the
shutdown of all devices on the domain. Event 6 confirms removal of the audio device. What’s
curious is that state change events for the Audio Device are not observed as the system was
shutting down – perhaps this is an omission in the SCARI Audio device implementation.
For instance as part of the releaseObject() one expects to see adminState transition
from UNLOCKED to SHUTTING_DOWN. The rest of the devices are removed, finally the
Log service and then the device manager.

There is a bit of a problem in the example code and it is the ungraceful way that we are
forced to shutdown down the PushConsumer object server. When the user sends a ctrl-C
signal to the process it shuts down without un-registering from the DomainManager. An
attempt to execute the code again will result in an ‘AlreadyConnected’ exception being
generated by the DomainManager. Without an exception handler in place the user will just
get a Segmentation Fault with no explanation. There will be an error message sent to the
Log Service but we haven’t learned about that yet. The means of solving this problem is to
write a signal handler that will call the unregister method when the user sends a signal to
the process. This signal handler is shown in Figure 17.18.

348 The Services

1. static CORBA_ORB global_orb=CORBA_OBJECT_NIL;
2.
3. static void orderlyShutdown (int sig)
4. {
5. CORBA_Environment ev;
6. CORBA_exception_init(&ev);
7.
8. if (global_orb != CORBA_OBJECT_NIL)
9. {
10. /* This will cause the main program to break */
11. /* out of the CORBA_ORB_run call */
12. CORBA_ORB_shutdown (global_orb, FALSE, &ev);
13. /* put exception handler here */
14. }
15. }

Figure 17.18. Server-side signal handler

This routine will be registered within the main program as a signal handler. Note in
line 1 that we have moved the CORBA_ORB variable from main() context to global
context. This way the signal handler can see it too in order to shut it down. Don’t forget
to make the necessary adjustments in the main program and startOrbPOA routines. This
code example pushes us into a bit of a quandary for CORBA_ORB_shutdown() is not
supported by minimum CORBA ORB’s. With this restriction we would be forced to make
the unregister () CORBA call from within the signal handler – this is not good practice.
While in the main program add the following lines to register our signal handler.

25.3 signal(SIGINT, orderlyShutdown);
25.7 signal(SIGTERM, orderlyShutdown);

The program will now require the ‘signal.h’ header file. The first signal registration
is to intercept ‘ctrl-C’; the second is to intercept the signal normally generated by the
command line ‘kill’ command. Referring back to our main program when the user hits
ctrl-C the installed signal handler will run and the main program will return from the
call CORBA_ORB_run in line 53. This is our opportunity to clean up and unregister our
PushConsumer from the event channels. Before attempting to unregister it is first necessary
to shutdown the PushConsumer servant. The code segments given in Figure 17.19 will
perform the necessary clean-up operations.

14. PortableServer_ObjectId *objid=NULL; /* add this declaration */
. . .

50. /* CORBA_Object_release(dmObj, &ev);still need this for unregister */
51. CORBA_Object_release(myNC, &ev);
52.
53. CORBA_ORB_run(global_orb,&ev); /* Server runs forever */
54. printf("main() back alive\n",);
55.
56. /* destroy the PushConsumer */
57. objid = PortableServer_POA_reference_to_id (root_poa,
58. (const CORBA_Object)servant, &ev);

Figure 17.19. Unregister from Event Channel server shutdown

Event Service 349

59.
60. PortableServer_POA_deactivate_object (root_poa, objid, &ev);
61. CORBA_free (objid); /* don’t need this anymore */
62.
63. /* now unregister */
64. SCA_CF_DomainManager_unregisterFromEventChannel(
65. dmObj, "anotherConsumer", "IDM_Channel", &ev);
66. SCA_CF_DomainManager_unregisterFromEventChannel(
67. dmObj, "johnConsumer", "ODM_Channel", &ev);
68. CORBA_Object_release(dmObj, &ev); /* don’t need this anymore */
69.
70. PortableServer_POA_destroy (root_poa, TRUE, FALSE, &ev);
71. CORBA_Object_release(root_poa, &ev); /* don’t need this anymore */
72. CORBA_Object_release(servant, &ev); /* nor this */
73.
74. CORBA_ORB_destroy(global_orb,&ev); /* bye orb */
75.
76. return 0;

Figure 17.19. Unregister from Event Channel server shutdown

This code example overlays the previous main() example starting at line 50. As before
main() will go in to a server loop in line 53. This time the signal handler will intercept
the ctrl-C and execution will ‘re-start’ at line 54 wherein the process of shutting down and
cleaning up begins. First destroy the PushConsumer servant. This is done by retrieving its
POA identification and then de-activating it (lines 57–60). Second the PushConsumer is
removed from the DomainManager’s internal list of consumers. The DomainManager will
also take care of disconnecting the ProxyPushSupplier objects that were associated with our
PushConsumer. Finally, the root POA is destroyed and unused objects released. The orb
itself is destroyed just prior to exiting the main program. This program can be re-started at
anytime without the DomainManager complaining about it.

We have shown how to implement and register the consumer side of the Event Channel
push model. The reader is now able to listen in on the IDM and ODM event channels. The
next obvious question is how to establish the supplier side. If the applications programmer
wishes to write a Device or an ApplicationFactory it is necessary to access the IDM and
ODM event channels as a PushSupplier. The SCA does not specify exactly how to do
this but in the SCARI Core Framework PushSupplier connections to an event channel are
handled as a specialized port connect.

17.2.1 Core Framework Usage of the Event Service

The usage of event channels by Core Framework objects is clearly delineated in the
SCA. When a client creates an Application by invoking the create() operation on
an ApplicationFactory interface, the successful creation is noted by an ‘ObjectAdded’
event on the ODM event channel. When a Device Manager is successfully registered
with the registerDeviceManager() operation on the Domain Manager interface, an
‘ObjectAdded’ event is sent on the ODM event channel. When a Device is successfully
registered with the registerDevice() operation on the Domain Manager interface,
an ‘ObjectAdded’ event is sent on the ODM event channel. When an application is

350 The Services

successfully installed by invoking installApplication() on the Domain Manager,
an ‘ObjectAdded’ event is posted on the ODM event channel. As with all ‘ObjectAdded’
events, the newly installed ApplicationFactory stringified IOR is published on the event
channel. When a service is registered with the Domain Manager’s registerService()
operation, an ‘ObjectAdded’ event is placed on the ODM event channel.

When a client invokes the unregisterDeviceManager() operation on the Domain
Manager interface, an ‘ObjectRemoved’ event is posted on the ODM event channel.
When a client invokes the unregisterDevice() operation on the Domain Manager
interface, an ‘ObjectRemoved’ event is posted on the ODM event channel. When a client
invokes the uninstallApplication() operation on the Domain Manager interface,
an ‘ObjectRemoved’ event is placed on the ODM event channel. Finally, when a service is
removed by the unregisterService() operation an ‘ObjectRemoved’ event is placed
on the ODM.

17.2.2 Resource Usage of the Event Service

There are two primary usages of the event service required by a Resource. One usage
applies only to Devices and the other applies only to Application. The first usage is
strictly for Devices when they experience a change in state. When any of the three Device
states change – usageState, adminState, or operationalState – a ‘StateChange’ event is
required to be supplied to the IDM event channel. The second usage is when a client
invokes a releaseObject() operation on an Application interface. The successful
release of the all the application components shall be recorded with an ‘ObjectRemoved’
event on the ODM event channel. The releaseObject() operation is also inherited by
Devices. As part of releaseObject() processing a device will change its adminState
to ‘SHUTTING_DOWN’ and this, of course, will be recorded on the IDM event channel.
Finally a Device is required to unregister itself with a Device Manager. The Device Manager
will in turn perform an unregisterDevice() on the Domain Manager. This event will
be recorded on the ODM event channel.

17.3 Log Service

As discussed the original SCA Log Service migrated in to the Object Management Group
as a separate RFP that eventually became the Lightweight Log Service. Version 2.2.1 of
the SCA then removed that entire sub-section devoted to the original Log Service and
replaced it with a reference to the new OMG standard. This effort was partially funded by
the US DoD in that many of the authors and contributors to the SCA were under contract
to ‘commercialize’ the SCA. This important theme of the JTRS program was spelled out
very clearly in the JTRS Operational Requirements Document (ORD). The government
specifically did not want another Ada on their hands. Part of the charter of the JTRS Joint
Program Office was to see the commercial software radio community not only endorse the
SCA but also embrace it.

There were a few aspects to the commercialization charter that weren’t clear. One was the
erroneous assumption that the commercial community would accept the SCA as it stood. This
simply could not happen – the Object Management Group and SDR Forum both have review and
voting procedures that allow an input document to mature to a standard. The paying membership

Log Service 351

of these organizations are endowed the right to contribute to the editorial maturation process
of a document. This natural progression is how good ideas become great implementations, and
furthermore, now not-so-good ideas ‘die on the vine’ for lack of commercial interest.

Also, another unclear aspect was that the government themselves had an internal Change
Proposal process that allowed defense contractors to contribute to the SCA, but unfortunately
excluded some members of the commercial community. Finally, and most obviously, was
how to retrofit the upgrades and modifications brought forth by the commercial community
into the DoD process. This last step keeps the commercialization relevant.

Commercialization is the process of staying synchronized with the community at large
as opposed to it being a one-time event. The beauty of the SCA version 2.2.1 release was
this retrofitting of the commercial advances back into the DoD standard, for what had so far
been a one-time event. The commercial SCA – that is, the Software Radio PIM/PSM and
ancillary standards – continues to diverge from its military antecedent. In conclusion one
should expect the DoD standard to somewhat lag the commercial standard, as long as the
commercial community stays interested.

This is not unlike the dynamic between standards organizations and the commercial
marketplace. The business model of a commercial standards organization is to produce
standards – where new product doesn’t exist then its time to upgrade the existing product
line. Commercial consumers of standards – producers of software product – will not just
automatically upgrade their product lines to the next new level of compliance. There has got
to be a demonstrated market/sales for the upgrade before management gives the thumbs up.
So even in the commercial world there is a lag, sometimes substantial, between the current
version of a specification and the version of specification that is prevalent in the marketplace.

This section will provide a code example (Figure 17.20) for the user to access the Log
Service in a consumer role. As we attempt to use the Core Framework in our application
development the feedback offered by the Log Service is an indispensable tool in tracking down
problems as well as monitoring healthy behavior and normal operation. The UML for the
Lightweight Log Service is found in Figure 3.5. It is key to understand that the LogRecordType
is a wrapper for the ProducerLogRecordType which is the structure that actually contains the
fields of interest. The wrapper contains an unsigned long long Id and a POSIX timespec time.
The SCA really says nothing about how to treat either of the fields but logically Id would
start at zero or one and be monotonically increasing and that time would be related to system
time, user time, or even UTC clock time. The code segment in Figure 17.20 will playback
the log record from its origin and then enter a sleepy loop to check for new log messages.

1. static const struct timespec fifthSecond = {0,200000000};
2.
3. int main(int argc, char * argv[])
4. {
5. CORBA_Environment ev;
6. CORBA_ORB orb;
7. CosNaming_NamingContext myNC;
8. SCA_LogService_Log lgObj;
9.
10. SCA_LogService_Log_RecordIdType logNum;

Figure 17.20. Log Service playback

352 The Services

11. SCA_LogService_Log_LogRecordSequence *aPtr;
12. SCA_LogService_Log_LogRecordType aLogRecord;
13. SCA_LogService_ProducerLogRecordType embeddedRecord;
14.
15. CORBA_exception_init(&ev);
16. startOrb(&argc,argv,&orb,&ev);
17.
18. myNC = CORBA_ORB_resolve_initial_references(
19. orb,"NameService",&ev);
20.
21. /* get the logger objRef */
22. lgObj = (SCA_LogService_Log)
23. CosNaming_NamingContextExt_resolve_str(myNC,
24. "node1Logger1", &ev);
25.
26. logNum=0;
27. aPtr = SCA_LogService_Log_retrieveById(lgObj, &logNum,

(const CORBA_unsigned_long)1, &ev);
28. while (aPtr->_length==1) {
29. aLogRecord = *(aPtr->_buffer);
30. embeddedRecord = aLogRecord.info;
31. printf("%s %s\n",

embeddedRecord.producerName,embeddedRecord.logData);
32. CORBA_free(aPtr);
33. aPtr = SCA_LogService_Log_retrieveById(lgObj, &logNum,

(const CORBA_unsigned_long)1, &ev);
34. }
35.
36. /* Enter timed loop */
37. while (1) {
38. nanosleep(&fifthSecond,NULL);
39. aPtr = SCA_LogService_Log_retrieveById(lgObj, &logNum,

(const CORBA_unsigned_long)1, &ev);
40. while (aPtr->_length==1) {
41. aLogRecord = *(aPtr->_buffer);
42. embeddedRecord = aLogRecord.info;
43. printf("%s %s\n",

embeddedRecord.producerName,embeddedRecord.logData);
44. CORBA_free(aPtr);
45. aPtr = SCA_LogService_Log_retrieveById(lgObj, &logNum,

(const CORBA_unsigned_long)1, &ev);
46. }
47. }
48.
49. CORBA_Object_release(lgObj, &ev);
50. CORBA_Object_release(myNC, &ev);
51. return 0;
52. }

Figure 17.20. (Continued)

Log Service 353

This code example uses resolve_initial_references() to retrieve the object
reference to the Name Service (line 18). The user however must supply a location for the
Name Service on the command line with

./playLog -ORBInitRef NameService=corbaloc::1.2@127.0.0.1:1050/NameService

or by hostname

./playLog -ORBInitRef NameService=corbaloc::1.2@monster:1050/NameService

or even by old-fashioned IOR

./playLog -ORBInitRef IOR:big long number goes here.

The code continues by obtaining the name of the Log Service object (line 22). The
application programmer must know the vendor-specific name of the log service in order to
use the Name Service to resolve the name of the Log Service. In this case ‘node1Logger1’,
which happens to be visible from the initial context. This is somewhat non-compliant as
the SCA specifications section 3.1.3.2.3.5 says that a service should be named within the
/DomainManager context. The name of the Log Service can be found in the DMD domain
profile file, domainfinder element, name attribute.

There is only one way to retrieve a record from the log and that is retrieveById().
This operation will return the specified number of records but the caller must also provide the
starting recordId. We happen to know that the SCARI Log Service’s initial recordId always
starts at one and is monotonically increasing by one. Even without this knowledge one can
likely get hands on the initial recordId by calling getRecordIdFromTime() with the
timespec set to zero. So line 27 returns the first record in the log. Then lines 28 through
34 incrementally iterate through the entire log until such time that the retrieveById()
operation returns a log sequence of length zero. This is an indication that the caller has
requested a recordId that does not yet exist. When this occurs the code segment enters a
forever loop (line 37) that wakes up five times a second (line 38) to test for the existence of the
next record (line 40). Notice in line 44 that the memory allocation made by the callee is freed
by the caller. If during the time the process was sleeping numerous records were written to
the log, the while loop in lines 40 through 46 will iterate through all of them until exhausted.

The output produced by the Log Service is shown in Figure 17.21. The SCA specifies a
minimum set of events to be logged but the platform or waveform developer can go beyond
what’s required.

1. DomainManager Connection DMDConnectionTonode1Logger1 is established.
DomainManager has been connected to the Log.

2. node1DeviceManager Connection node1DeviceManagerToLog is established.
node1DeviceManager has been connected to the Log.

3. DomainManager [1144002428556] installApplication::Application Factory
Installed for /AudioEffect0/AudioEffectApplication0.sad.xml

4. DomainManager [1144002429109] installApplication::Application
Factory

Installed for /AnalogFM/AnalogFM.sad.xml

Figure 17.21. Log Service output

354 The Services

5. DomainManager [1144002430084] registerDeviceManager: DeviceManager
node1DeviceManager has registered succesfully

6. DomainManager [1144002430300]
registerService:[DomainManager:registerService] Service ’node1Logger1’
has registered successfully

7. DomainManager registerDevice:[DomainManager:registerDevice] Device
DCE:72f795a2-5f6a-41cf-8d3a-9beaeef0ac7d has successfulyregistered

8. node1ExecutableDevice Connection node1ExecutableDeviceToLog is
established. node1ExecutableDevice has been connected to theLog.

9. node1ExecutableDevice [1144002423525]
[ExecutableDeviceOperationsImpl:finalizeConstruction] Device
node1ExecutableDevice WARNING: homeFileSystem directory not empty!

10. DomainManager registerDevice:[DomainManager:registerDevice] Device
DCE:B6C3F70D-A069-47B5-BCEA-708E51C08888 has successfulyregistered

11. RFDeviceImpl_node1RFDeviceImpl Connection node1RFDeviceImplToLog is
established. RFDeviceImpl_node1RFDeviceImpl has been connected to the Log.

12. DomainManager registerDevice:[DomainManager:registerDevice] Device
DCE:A68A5812-6BE7-4920-9A29-A7C013734FAB has successfulyregistered

13. RFDeviceImpl_node1RFDeviceImpl
[AggregateDeviceOperationsImpl:addDevice] DCE:A68A5812-6BE7-4920-9A29-
A7C013734FAB was succesfully added

14. DomainManager SCA.CF.PortPackage.InvalidPort:
IDL:CF/Port/InvalidPort:1.0 [ConnectionsHandler:isConnectable]
’IDMChannelEventPort’ is an invalid port name for source component in
connection id=node1AudioDeviceToIDM_Channel_2

15. [ConnectionsHandler:isConnectable] ’IDMChannelEventPort’ is an invalid
port name for source component in connection
id=node1AudioDeviceToIDM_Channel_2

16. AudioDevice_node1AudioDevice Connection node1AudioDeviceToLog is
established. AudioDevice_node1AudioDevice has been connected to the
Log.

17. AudioDevice_node1AudioDevice [1144002433284] [AudioDevice] Port
’AudioInLeftDouble’ should only be used with a stereo AUDIO_MODE

18. AudioDevice_node1AudioDevice [1144002433286] [AudioDevice] Port
’AudioInRightDouble’ should only be used with a stereo AUDIO_MODE

Figure 17.21. (Continued)

This logger output covers the boot up of the system including the re-installation of two
application factories, AudioEffect0 and AnalogFM (lines 3 and 4). Notice the increasing
time count in brackets. This LogTime type employs the commonly used POSIX timespec
structure which contains two fields one for nanoseconds and one for seconds. The SCA does
not specify the time base other than to say ‘current local time’. What is observed in the time
output is that time is not necessarily monotonically increasing. In going from Log Record
6 to 9 time goes backwards. This is not unlike most log services in that a process may be
blocked – or the log resource otherwise locked – during the time between when the time tag
is grabbed from the system and when it is output to the log. Depending on when the time
tag gets generated relative to the actual production of log output it might be necessary to
re-sort log output by time tag to see the true sequence of events.

Log Service 355

Looking through the rest of the log output we see a few non-standard messages – that is
messages that aren’t SCA mandatory messages required of certain Core Framework events.
These non-standard log messages include (line 9), home file system not empty and (line 15),
invalid port name. The ‘invalid port name’ message gives rise to some concern and warrants
further investigation. The error messages put unto the log service in lines 14 and 15 indicate
that the ‘invalid port name’ occurs when the Node 1 devices are being deployed during
startup of the domain. The error specifically occurs when attempting to connect the Audio
Device to the IDM Event Channel. The error is specifically complaining about an invalid
port name. Yet examination of the DCD file shows that the name ‘IDMChannelEventPort’
is completely consistent with the description of the Audio Device’s ports as found in its
SCD. It turns out there is a minor coding error in the SCARI Core Framework in line 693
of $SCA_HOME/demosources/devices/AudioDevice.java. The code should be
modified to read:

//portObject = super.getPort(name); // <-- This is in error
portObject = super.getPort(portName);

It was previously mentioned that StateChange events were not being observed on the IDM
event channel while the system was shutting down (see page 347). Unfortunately fixing this
bug, which inhibited the Audio Device from connecting to the IDM event channel, does not
eliminate this problem.

17.3.1 Core Framework Usage of the Log Service

The Core Framework’s required use of the Log Service is nearly identical to that of the
required use of the Event Service. A certain difference is that the SCA requires log entries
to be tagged as ADMINISTRATIVE or as FAILUREs (Table 17.1). The Event Service
possesses this notion of level or priority of event as does the Log Service.

Table 17.1 shows that the only difference of Log Service over Event Service is that any
time a client accesses the list of deviceManagers, applications, applicationFactories, or File
Manager a log message is posted with no corresponding event. Additionally when a Device

Table 17.1. Core Framework required use of Log Service

Operation Log Level Event Channel
also

ApplicationFactory.create() ADMINISTRATIVE if
successful

Yes

FAILURE if not
successful

DomainManager.get_deviceManagers ADMINISTRATIVE
DomainManager.get_applications ADMINISTRATIVE
DomainManager.get_applicationFactories ADMINISTRATIVE
DomainManager.get_fileMgr ADMINISTRATIVE
DomainManager.registerDeviceManager FAILURE if not

successful
No

Missing in SCA if
successful

356 The Services

Table 17.1. Continued

Operation Log Level Event Channel
also

DomainManager.registerDevice ADMINISTRATIVE if
successful

Yes

FAILURE if not
successful

DomainManager.installApplication ADMINISTRATIVEif
successful

Yes

FAILURE if not
successful

DomainManager.unregisterDeviceManager ADMINISTRATIVE if
successful

Yes

FAILURE if not
successful

DomainManager.unregisterDevice ADMINISTRATIVEif
successful

Yes

FAILURE if not
successful

DomainManager.uninstallApplication ADMINISTRATIVE if
successful

Yes

FAILURE if not
successful

DomainManager.registerService ADMINISTRATIVE if
successful

Yes

FAILURE if not
successful

DomainManager.unregisterService ADMINISTRATIVE if
successful

Yes

FAILURE if not
successful

AggregateDevice.addDevice FAILURE if
notsuccessful

AggregateDevice.removeDevice FAILURE if not
successful

DeviceManager.registerDevice FAILURE if not
successful

DeviceManager.unregisterDevice FAILURE if not
successful

DeviceManager.registerService FAILURE if not
successful

DeviceManager.unregisterService FAILURE if not
successful

Manager installs successfully no log record need be written; only an ‘ObjectAdded’ event
needs to be sent to the ODM event channel. This is probably an oversight on the part of the
SCA authors. Finally we see that when Devices and Services are registered and unregistered
on a Device Manager only failures are required to be logged.

Log Service 357

17.3.2 Resource Usage of the Log Service

Devices and Applications have only one required use of the Log Service (Table 17.2).
Depending on the Core Framework implementation this operation might or might not need
to be overloaded by the application or device programmer.

Table 17.2. Resource required use of Log Service

Operation Log Level Event Channel
also

Application.releaseObject() ADMINISTRATIVE if successful Yes
FAILURE if not successful

18
Exploring the Domain

With the component names provided by the Name Service it is now possible to retrieve
the object references of all artifacts made visible by the Core Framework. This brings up
the question of granularity. Should an application consist of four visible components or
forty? The SCA is silent on the subject. People talk about the spirit of the SCA; that is
having a multitude of relocate-able hardware independent CORBA components. Although
an implementation consisting of a myriad of objects spread across a universe of processors
is clearly supported by the SCA, the realities of a real-time software radio having limited
computational resources tends to push the implementation more towards the hardware. This
is especially true if the waveforms to be hosted are bandwidth intensive and/or the radio
platform is constrained by size, weight, and power.

There is a waveform that was done in the spirit of the SCA. It was composed of 33
CORBA components, 400+ ports, and over 200 000 lines of XML. This waveform was to
be ported to a variety of platforms and, needless to say, memory footprint, CPU utilization,
and time to instantiate became a stumbling block. The fact is that both commerce and the
military want a radio with giga-bit per-second throughput and that runs on a hearing-aid
battery, but the spirit of the SCA is somewhat contrary to these objectives. The software
radio concept works nicely with relatively narrow band waveforms – consider the military
and public safety domains where backwards compatibility is the precedent – but falls apart
on bandwidth, size, weight, and power. It is possible to construct platform independent code
that handles 25 year old modulation techniques but such code is not an efficient user of
clock cycles or bandwidth and does not scale well in to, say, the handheld domain.

So now we see the wisdom of the authors of the SCA in their reluctance to specify
granularity. On the one hand the SCA supports a waveform implemented entirely in FPGA
and on the other a waveform with hundred of thousands of lines of high level code running
on big, beefy multiple processors. Additionally there is also no guidance on the selection of
Properties. The SCA offers configure and query methods and that is all. What needs to be
configured and queried is platform- as well as application-dependent. Other than mandating
the tracking of capacity on devices that have a kindtype attribute ‘allocation’, the SCA
does not specify a vocabulary or semantics for capacity tracking. Thus we see that SCA
by itself does not specifically enable portability of applications among platforms. That is,
looking down into the radio Devices there is no guaranteed set of configurable parameters.

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

360 Exploring the Domain

The PropertySet interface is inherited by all Resource objects and thus, by inheritance, all
Devices and Applications. The PropertySet interface is also inherited by DeviceManagers
and the DomainManager.

The Name Service provides the object reference of the DomainManager through
the CosNaming_NamingContext_resolve() operation. In a sense having the
DomainManager object reference is like having the keys to the kingdom. Among other things
the DomainManager also acts like a Name Service: that is, the DomainManager maintains
data structures that contain object references to device managers, application factories, and
applications. Through device managers one can gain access to the object references of all
registered devices. Surprisingly there is no way to access the object references of application
components through the DomainManager. Only the Name Service or an Application object
can provide object references to application components. We will present code segments
in the form of subroutines to access all attributes; first application factory objects, second
applications, and then device managers and devices. The final segment presented is the entry
point into the hierarchy – the main program – which provides access to the DomainManager.

18.1 Application Factory Attributes

The function shown in Figure 18.1 accepts an object reference to an application factory and
then print outs all accessible information.

1. void queryAppFact(SCA_CF_ApplicationFactory anAppFact) {
2. CORBA_Environment ev;
3. CORBA_string aString;
4.
5. CORBA_exception_init(&ev);
6.
7. aString = SCA_CF_ApplicationFactory__get_name (anAppFact,&ev);
8. printf(" ApplicationFactory name: %s\n",aString);
9. CORBA_free(aString);
10. aString = SCA_CF_ApplicationFactory__get_identifier(anAppFact,&ev);
11. printf(" ApplicationFactory identifier: %s\n",aString);
12. CORBA_free(aString);
13. aString =
SCA_CF_ApplicationFactory__get_softwareProfile(anAppFact,&ev);

14. printf(" ApplicationFactory softwareProfile: %s\n\n",aString);
15. CORBA_free(aString);
16. }

Figure 18.1. Query Application Factory function

It’s worthwhile to note at this time that a preamble introduces all function calls to the
Core Framework. This preamble is SCA_CF_. The ‘C’ language mapping for CORBA
handles the nesting of modules and interfaces by concatenating the name of the parent
module together with the name of the child module separated by an underscore. Our code

Application Factory Attributes 361

examples use IDL files that came from the SCARI software tree. The SCARI developers
gathered all of the SCA modules – CF, PortTypes, LogService, PushPorts, PullPorts, and
StandardEvents – into a single module called SCA. Any Core Framework implementation
that doesn’t perform this nesting will have different names for Core Framework methods.
Most likely this would be ‘CF_’ instead of ‘SCA_CF_’. In order to port our code examples
it might be required to perform some global search and replaces.

We will examine the output later but essentially there are only three accessible attributes on
an application factory: the string name of the application that is manufactured by the factory;
a unique identifier for this application factory instance; and the name of the SAD XML file
that is parsed when one invokes the create() method. There is nothing spectacular with
this code segment, just invocations of __get methods to retrieve string parameters. We
are careful to return allocated memory to the heap with CORBA_free(). The allocation is
performed by the callee and it’s the responsibility of the caller to free the memory in order
to avoid memory leaks. Responsibility for allocating and freeing memory when making
CORBA-client calls with the ‘C’ language has been defined elsewhere [13, pages 1–24].
Memory leaks when using CORBA is assured if a methodical memory management policy
is not followed by the programmer.

The output shown in Figure 18.2 is produced when the Audio Application Factory is
queried on the domain. Note that an application must be ‘installed’ within the Domain for
its object reference to be available to the DomainManager. In our example two applications
have been installed.

ApplicationFactory name: AudioEffect0
ApplicationFactory identifier: DCE:9601C10A-249F-48B0-8C5A-BE61545BB101
ApplicationFactory softwareProfile: <profile

filename="/AudioEffect0/AudioEffectApplication0.sad.xml" type="DMD"/>

ApplicationFactory name: AnalogFM
ApplicationFactory identifier: DCE:d58c8931-7372-473c-b9be-8f15
c995b75f
ApplicationFactory softwareProfile: <profile

filename="/AnalogFM/AnalogFM.sad.xml" type="DMD"/>

Figure 18.2. Application Factory outptut

The identifier of an ApplicationFactory object accessible in the run-time is exactly the
same as the Id attribute of the softwareassembly element taken from the application’s
SAD file – see SCA specifications, paragraph 3.1.3.2.2.4.3. An ApplicationFactory’s name
‘shall contain the type of Application that can be instantiated’ by the factory. There is no
guidance offered on the contents of this name attribute and furthermore there is no explicit
mapping to the Domain Profile. The content of this field is most likely the name attribute
of the softwareassembly element from the application’s SAD file. Finally the software
profile attribute contains the filename of the SAD that is parsed when the create()
method is invoked on the factory. The end of the string, type="DMD", is hard-coded in
the SCARI software and really has no significance.

362 Exploring the Domain

It is good to have unique identifiers for all artifacts within our SCA-compliant radio but
it makes for very poor reading in the course of our book. Instead of printing out 128-bit
numbers in future examples we will printout ‘DCE:’ followed by a unique string that is
more meaningful to the reader. This makes it easier to see how UUIDs are cross-referenced
within the run-time and within the Domain Profile.

18.2 Application Attributes

The code segment in Figure 18.3 accepts an object reference to an Application and then
retrieves all available run-time attributes of the application. There are a total of seven
retrievable attributes on each application registered within the domain: the filename of the
application’s SAD; a name given to the instantiation by the ApplicationFactory when the
application is created; four unbounded sequences that describe components and dependencies
of the Application; and finally, since Application inherits from Resource, it also has an
identifier attribute.

1. void queryApp(SCA_CF_Application anApp) {
2.
3. CORBA_Environment ev;
4. int i;
5. SCA_CF_Application_ComponentElementSequence* cesSeq;
6. SCA_CF_Application_ComponentElementType aCES; /* string componentId;
7. CORBA_string elementId; */
8. SCA_CF_Application_ComponentProcessIdSequence* cpidSeq;
9. SCA_CF_Application_ComponentProcessIdType aCPID; /*string componentId
10. CORBA_unsigned_long processId */
11. SCA_CF_DeviceAssignmentSequence* dasSeq;
12. SCA_CF_DeviceAssignmentType aDAS; /* CORBA_string componentId;
13. CORBA_string assignedDeviceId; */
14. CORBA_string aString;
15.
16. CORBA_exception_init(&ev);
17.
18. cesSeq =

SCA_CF_Application__get_componentNamingContexts(anApp,&ev);
19. printf(" There are %d NamingContexts\n",(*cesSeq)._length);
20. for (i=0; i<(*cesSeq)._length; ++i) {
21. aCES = (SCA_CF_Application_ComponentElementType)

*((*cesSeq)._buffer+i);
22. printf(" %s %s\",aCES.componentId,aCES.elementId);
23. }
24.

Figure 18.3. Query Application function

Application Attributes 363

25. cpidSeq = SCA_CF_Application__get_componentProcessIds(anApp,&ev);
26. printf(" There are %d component process ID’s\n",

(*cpidSeq)._length);
27. for (i=0; i<(*cpidSeq)._length; ++i) {
28. aCPID = (SCA_CF_Application_ComponentProcessIdType)

*((*cpidSeq)._buffer+i);
29. printf(" %s %d\",aCPID.componentId,aCPID.processId);
30. }
31.
32. dasSeq = SCA_CF_Application__get_componentDevices(anApp,&ev);
33. printf(" There are %d device assignments\n",(*dasSeq)._length);
34. for (i=0; i<(*dasSeq)._length; ++i) {
35. aDAS = (SCA_CF_DeviceAssignmentType) *((*dasSeq)._buffer+i);
36. printf(" %s %s\",aDAS.componentId,aDAS.assignedDeviceId);
37. }
38.
39. cesSeq =

SCA_CF_Application__get_componentImplementations(anApp,&ev);
40. printf(" There are %d component implementations\n",

(*cesSeq)._length);
41. for (i=0; i<(*cesSeq)._length; ++i) {
42. aCES = (SCA_CF_Application_ComponentElementType)

*((*cesSeq)._buffer+i);
43. printf(" %s %s\n",aCES.componentId,aCES.elementId);
44. }
45.
46. aString = SCA_CF_Application__get_profile(anApp, &ev);
47. printf(" profile: %s\n",aString);
48. aString = SCA_CF_Application__get_name(anApp, &ev);
49. printf(" name: %s\n",aString);
50.
51. /* Now the attributes inherited from Resource */
52. aString = SCA_CF_Resource__get_identifier(anApp, &ev);
53. printf(" Resource_id: %s\n",aString);
54.
55. }

Figure 18.3. (Continued)

The code segment to query an Application object is somewhat more complicated than that
of the application factory. Most of this is due to the unique data structures embedded in the
Application IDL. Variables for these data structures are found in lines 6, 9, and 12. They
are data structures for ComponentElementType, ComponentProcessIdType, and
DeviceAssignmentType. As is very common in the Core Framework IDL we encounter
unbounded sequences of these data structures. These three data structures are used to hold
an Application’s attributes for four reasons:

1. a list of components that are registered with the Name Service;
2. a list of process identifiers;

364 Exploring the Domain

3. a list of devices used by the application;
4. a list of implementation SPDs used to define each component.

It is important to recall the difference between instantiations of a component and the
component implementation. A single implementation, as identified by an SPD, can be
instantiated multiple times. There can also be multiple implementations identified in the
SPD. For instance there might be one implementation for an x86 and another for a PPC.
The SAD will provide UUIDs that uniquely identify each and every instance and each and
every implementation.

Pointers to CORBA unbounded sequences are defined in lines 5, 8, and 11. The data
structures themselves are quite simple: a couple of CORBA_string components and
a CORBA_unsigned_long component for processId. Lines 18, 25, 32, and 39 use
‘__get()’ methods to retrieve pointers to the four unbounded sequences of structures. For
brevity’s sake calls to CORBA_free() are left out of the code example so be advised that,
as printed, this code segment will leak memory like a sieve. With a pointer to an unbounded
sequence it is simple to access the _length of the sequence; lines 19, 26, 33, and 40.
Finally, subsequent code blocks iterate the sequence, retrieve individual structured variables,
and print the contents. The output produced for our running AudioEffect application is given
in Figure 18.4.

There are 3 NamingContexts
DCE:Echo[0] /SCARI_DM/a2/EchoResource_DCE:Echo[0]
DCE:Chorus[0] /SCARI_DM/a2/ChorusResource_DCE:Chorus[0]
DCE:Controller[0] /SCARI_DM/a2/AudioEffectController_DCE:

Controller[0]
There are 3 component process IDs
DCE:Echo[0] 1
DCE:Chorus[0] 2
DCE:Controller[0] 3

There are 3 device assignments
DCE:Echo[0] DCE:node1_executableDevice[0]
DCE:Chorus[0] DCE:node1_executableDevice[0]
DCE:Controller[0] DCE:node1_executableDevice[0]

There are 3 component implementations
DCE:Echo[0] DCE:AudioResource_x86impl
DCE:Chorus[0] DCE:AudioResource_x86impl
DCE:Controller[0] DCE:EffectController_x86impl

profile:<"/AudioEffect0/AudioEffectApplication0.sad.xml" type="DMD"/>
name: a2
Resource_id: AudioEffect0_DCE:SAD_softwareassembly_id

Figure 18.4. Application Attributes output

Again we’ve replaced the un-interesting UUIDs with something a little more readable: The
first unbounded sequence is componentNamingContexts. This is essentially a mapping
between each uniquely identified waveform component and its full Name Service name.

Application Attributes 365

The nomenclature used to indicate an instantiation UUID is, for example, DCE:Echo[0].
Other instantiations of the Echo Resource might be DCE:Echo[1], DCE:Echo[2], etc.
The SCARI Application Manager queries the user to provide a name for the application.
In this example we called the waveform instantiation ‘a2’. This name appears as part
of the ‘path’ for the Name Service name. The reader will note that the contents of the
componentNamingContexts is exactly the same as was discovered by traversing the
name tree in Section 17.1. In that previous example we called the waveform instantiation
‘AudioApp1’. The mapping offered by componentNamingContexts is somewhat
pointless because

1. the component UUIDs, and more importantly their object references, are already available
through the name Service;

2. the mapping offered is only that of an instantiation UUID to that same UUID pre-pended
by Naming Context ‘path’ information;

3. all the components associated with an application are already located in a separate naming
context so it’s easy to tell which components are associated with which applications.

The next unbounded sequence available on the Application object is
componentProcessIds. This unbounded sequence maps application component UUIDs
to their operating system process Ids. Our output from the SCARI Core Framework shows
processIds that number 1 through 3. These are evidently not the process Ids assigned by
the operating system. Normally we would expect this sequence to map component UUIDs
to operating system process Ids. A subtle guidance could be inferred here in that the
granularity of components could be that of an operating system process. This is kind of
at odds with an SCA POSIX profile that is thread, not process, oriented. Ultimately the
SCA does not mandate that every process (or thread) should have a uniquely identifiable,
one-to-one mapping between component identifiers and process Ids. In the pathological
case an application, perhaps with many components, would be identified with a single SCA
component and process Id. This notion of a single visible process is re-enforced by the
fact that threads are not provided with a unique process number by the operating system.
A multi-threaded application would normally have a single process Id. A possible use for
componentProcessIds would be to attach a debugger or examine file system usage,
IP ports, etc.

The next unbounded sequence available on the Application object is
componentDevices. This unbounded sequence associates an application component
(instantiation UUID) to a device. The device or rather instantiation of a device is identified
in the DCD XML which identifies all devices reporting to a particular device manager. The
devices are exactly identified within a DCD by the componentinstantiation element and
Id attribute. In our example each application component is associated with an instance of
a generic ExecutableDevice. In the SCARI example the ExecutableDevice can be traced
through the Node1 DCD to its Device Package Descriptor (DPD) which identifies the
device as a GPP.

The final unbounded sequence maps instances of application components to their
implementations. We see that the Echo and Chorus resources are both mapped to
the x86 implementation of an Audio resource. Examination of the XML indicates
otherwise. Implementation UUIDs are found in a component’s SPD file. If we
compare AudioEchoResource.spd.xml and AudioChorusResource.spd.xml we see that the

366 Exploring the Domain

implementations are associated with separate ‘jar’ (Java archive) files. Since they are from
separate implementation files they should identified by separate UUIDs. This disconnect is
probably due to the UUID being cut and pasted from one SPD to the other. In the case of
the EffectController component there is a separately identified UUID given for a separate
implementation file – AudioEffectController.jar.

The three final retrievable pieces of information on an Application object are the relative
pathname of the SAD file, an arbitrary name issued to the application instance, and finally
the UUID corresponding to the softwareassembly element, Id attribute taken from the SAD.
The utility of all these Application attributes will be summarized at the end of the chapter.

18.3 DeviceManager Attributes

The next code segment (Figure 18.5) accepts an object reference to a DeviceManager object
and then retrieves all attributes on the instance.

1. void queryDevMgr(SCA_CF_DeviceManager aDevMgr) {
2. CORBA_Environment ev;
3. CORBA_string aString;
4. SCA_CF_FileSystem aFileSys;
5.
6. /* just a pointer to sequences of CORBA_Objects */
7. SCA_CF_DeviceSequence* pSeq;
8. SCA_CF_Device aDevice;
9.
10. /* a pointer to sequences of ServiceTypes */
11. SCA_CF_DeviceManager_ServiceSequence* sSeq;
12. SCA_CF_DeviceManager_ServiceType aService; /* Obj serviceObject */
13. /* CORBA_string serviceName; */
14. int i;
15. CORBA_exception_init(&ev);
16.
17. aString =
SCA_CF_DeviceManager__get_deviceConfigurationProfile(aDevMgr,&ev);

18. printf(" DeviceManager configProfile: %s\n",aString);
19.
20. aFileSys = SCA_CF_DeviceManager__get_fileSys(aDevMgr,&ev);
21. if (CORBA_Object_is_nil(aFileSys,&ev))
22. printf(" FileSystem is NIL\n");
23. else printf(" FileSystem has valid IOR\n");
24.
25. aString = SCA_CF_DeviceManager__get_identifier(aDevMgr,&ev);
26. printf(" DeviceManager ident: %s\n",aString);

Figure 18.5. Query Device Manager function

DeviceManager Attributes 367

27.
28. aString = SCA_CF_DeviceManager__get_label(aDevMgr,&ev);
29. printf(" DeviceManager label: %s\n",aString);
30.
31. pSeq = SCA_CF_DeviceManager__get_registeredDevices(aDevMgr,&ev);
32. printf(" There are %d registeredDevices\n",(*pSeq)._length);
33. for (i=0; i<(*pSeq)._length; ++i) {
34. aDevice = (SCA_CF_Device) *((*pSeq)._buffer+i);
35. queryDevice(aDevice);
36. }
37.
38. sSeq = SCA_CF_DeviceManager__get_registeredServices(aDevMgr,&ev);
39. printf(" There are %d registeredServices\n",(*sSeq)._length);
40. for (i=0; i<(*sSeq)._length; ++i) {
41. aService = (SCA_CF_DeviceManager_ServiceType)

*((*sSeq)._buffer+i);
42. printf(" %s\n",aService.serviceName);
43. if (CORBA_Object_is_nil(aService.serviceObject,&ev))
44. printf(" Service is NIL\n");
45. else printf(" Service has valid IOR\n");
46. }
47. }

Figure 18.5. (Continued)

Line 17 retrieves the filename of the DCD. This element of the domain profile contains
XML data describing all Device objects started by this device manager. Line 20 retrieves
the object reference to the FileSystem object running under this device manager. A device
manager can be associated with only ONE FileSystem, however, many device managers
could be setup to refer to the same FileSystem. Lines 25 through 29 retrieve and print
the contents of a couple of string variables. The DeviceManager’s identifier (UUID) is the
deviceconfiguration element, Id attribute from the DCD. The DeviceManager’s label is a
‘user-friendly’ appellation provided by the deviceconfiguration element, name attribute from
the DCD.

Finally, in lines 31 through 45 we get to the meat of a DeviceManager object and that is
object references to all of its registered Devices and Service objects. Please note that Service
is not italicized. This is done specifically to indicate that a Service object is not a defined
Core Framework interface. Unlike a Core Framework Device which has defined start() and
stop() methods, etc., from the perspective of the SCA, a Service object is simply a CORBA
object with unknown attributes and methods. All a DeviceManager gives us is a string name
and an object reference. The output given in Figure 18.6 is produced by querying the SCARI
Node1 device manager.

Not a lot of information is found in the DeviceManager itself. The real value is in obtaining
object references to the devices themselves. The next section follows each registered Device’s
object reference down into the implementation to see what attributes are available on it.

368 Exploring the Domain

DeviceManager configProfile: <profile filename="/Node1.dcd.xml"
type="DCD"/>

FileSystem has valid IOR
DeviceManager ident: DCE:18dd6458-494e-43cd-b823-07778bb9ca51
DeviceManager label: node1DeviceManager
There are 3 registeredDevices
There are 1 registeredServices
node1Logger1 Service has valid IOR

Figure 18.6. Device Manager Attribute output

18.4 Device Attributes

The code segment of Figure 18.7 accepts an object reference to a Device object and then
retrieves all attributes on the instance.

1. static char* usageStateString[] = {
2. "IDLE",
3. "ACTIVE",
4. "BUSY"
5. };
6. static char* adminString[] = {
7. "LOCKED",
8. "SHUTTING_DOWN",
9. "UNLOCKED"
10. };
11. static char* stateString[] = {
12. "ENABLED",
13. "DISABLED"
14. };
15.
16. void queryDevice(SCA_CF_Device aDev, int nested) {
17.
18. CORBA_Environment ev;
19. CORBA_string aString,bString,cString;
20. int aUsageNum,anAdminNum,aState;
21. CORBA_Object anObj;
22.
23. CORBA_exception_init(&ev);
24.
25. aString = SCA_CF_Device__get_softwareProfile(aDev,&ev);
26. bString = SCA_CF_Device__get_label(aDev,&ev);
27. cString = SCA_CF_Device__get_identifier(aDev,&ev); /* inherited */
28. printf("SPD = %s\n",aString);

Figure 18.7. Device Query function

Device Attributes 369

29. printf("label = %s\n",bString);
30. printf("ident = %s\n",cString);
31.
32. aUsageNum = SCA_CF_Device__get_usageState(aDev,&ev);
33. anAdminNum = SCA_CF_Device__get_adminState(aDev,&ev);
34. aState = SCA_CF_Device__get_operationalState(aDev,&ev);
35.
36. printf(" %s %s %s \n", usageStateString[aUsageNum],
37. adminString[anAdminNum], stateString[aState]);
38.
39. anObj = (SCA_CF_AggregateDevice)
40. SCA_CF_Device__get_compositeDevice(aDev,&ev);
41. if (CORBA_Object_is_nil(anObj,&ev))
42. printf("compositeDevice is NIL\n");
43. else {
44. printf("Found a compositeDevice\n");
45. if (!nested)
46. queryAggDev(anObj);
47. }
48. }

Figure 18.7. Device Query function

The first attributes are the now familiar SPD filename, UUID, and label (lines 25–30). All
of these parameters come from the DCD part of the Domain Profile. The SPD filename is the
localfile element, name attribute. The UUID and label come from the componentinstantiation
element, Id and usagename attributes, respectively.

The next attribute available on any Device is its state information. There are three
independent states available on each and every Device object: adminState, usageState, and
operationalState. For two of the three devices, AudioDevice and RFDevice, in the SCARI
example the state information is as follows:

usageState = IDLE, adminState = UNLOCKED, operationalState = ENABLED

For the node1ExecutableDevice (the GPP) the usageState is ACTIVE. Lines 32–36 from
the code example provide this output. The enumerated types are mapped unto string variables
at the head of the code example (lines 1–14). Finally, each Device can in fact be part of an
aggregation of Devices. This is discernable in the run-time by examining the compositeDevice
attribute. Running the __get() method on the compositeDevice attribute returns an object
reference to an AggregateDevice if, in fact, the Device is part of an aggregation. If the
Device is not associated with other devices, a NIL pointer is returned. Before examining
the output from our SCARI example, we provide a code example in the next section that
retrieves attributes on an AggregateDevice.

370 Exploring the Domain

18.5 AggregateDevice Attributes

The only retrievable attribute on an AggregateDevice object is an unbounded sequence of
pointers to Devices. The code given in Figure 18.8 will retrieve those Devicess one by one
and call the queryDevice() routine on each.

1. void queryAggDev(SCA_CF_AggregateDevice anAggDev) {
2.
3. SCA_CF_DeviceSequence* pSeq;
4. SCA_CF_Device aDevice;
5. CORBA_Environment ev;
6. int i;
7. CORBA_exception_init(&ev);
8.
9. pSeq = SCA_CF_AggregateDevice__get_devices(anAggDev,&ev);
10. printf(" There are %d members of the

AggregateDevice\n",(*pSeq)._length);
11. for (i=0; i<(*pSeq)._length; ++i) {
12. aDevice = (SCA_CF_Device) *((*pSeq)._buffer+i);
13. queryDevice(aDevice,1);
14. }
15.
16. }
17.

Figure 18.8. Aggregate Device Query function

In working with the Core Framework we’ve had lots of examples of unbounded sequences
so the code in lines 10–12 should be quite familiar. The output of Figure 18.9 is generated
by running queryDevice() with calls to queryAggDev() as necessary:

The Node1 device manager lists three registered devices: node1ExecutableDevice,
node1RFDevice, and node1AudioDevice. Examining this output yields a few notable
observations. The only Device mapped to our running audio application is the
node1ExecutableDevice. The UUID of this device is cross-referenced from the
componentDevices attribute of our Audio Application object. In fact the audio application
consists of three components: Echo, Chorus, and Controller all of which are
associated with the node1ExecutableDevice which is a GPP. There is nothing available in
the run-time domain that expresses a relationship between the audio application and the
audio device. The only place to find this relationship is in the SAD. Upon examining the
AudioEffect0 SAD, the relationship between audio application components and the audio
device is found in the form of ‘uses’ and ‘provides’ ports. Unfortunately, there can be
nothing garnered from the run-time with respect to port connections.

The last of the three Devices listed is the node1AudioDevice. When the __get() method
is invoked on the compositeDevice attribute a non-nil object reference to an AggregateDevice
object is returned. This object reference is then passed to the queryAggDev() function
which interrogates the unbounded sequence of constituent Devices (line 10) to find that there

DomainManager Attributes 371

SPD = <profile filename="/ExecutableDevice.spd.xml" type="SPD"/>
label = node1ExecutableDevice
ident = DCE: node1_executableDevice[0]

ACTIVE UNLOCKED ENABLED
compositeDevice is NIL

SPD = <profile filename="/RFDeviceImpl.spd.xml" type="SPD"/>
label = node1RFDeviceImpl
ident = DCE:B6C3F70D-A069-47B5-BCEA-708E51C08888
IDLE UNLOCKED ENABLED

compositeDevice is NIL

SPD = <profile filename="/AudioDevice.spd.xml" type="SPD"/>
label = node1AudioDevice
ident = DCE:A68A5812-6BE7-4920-9A29-A7C013734FAB
IDLE UNLOCKED ENABLED

Found a compositeDevice
There are 1 members of the AggregateDevice
SPD = <profile filename="/AudioDevice.spd.xml" type="SPD"/>

label = node1AudioDevice
ident = DCE:A68A5812-6BE7-4920-9A29-A7C013734FAB
IDLE UNLOCKED ENABLED

Found a compositeDevice

Figure 18.9. Device Attributes output

is one device in the aggregation. For each Device in the sequence the queryDevice()
method is invoked to discern the attributes of the Device. By definition any Device which
has a non-nil AggregateDevice cross-reference will be listed in the sequence of Devices
within the AggregateDevice object. That Device will have a non-nil AggregateDevice object
reference which calls the queryAggDev() method and so on and so forth ad infinitum.
To break the recursion we have a ‘nesting’ parameter passed into the queryDevice()
function which prevents a nested call to queryAggDev().

18.6 DomainManager Attributes

The entry point into the domain is the object reference to the Domain Manager. This object
reference is resolved through the Name Service. Depending on how one interprets SCA
specifications section 3.1.3.2.3.5, there is no standardized name for the Domain Manager.
In our SCARI example the Name Service name is ‘DomainManager’ which is found in
the Name Service context ‘SCARI_DM’. If one interprets specification section 3.1.3.2.3.5
literally then domain managers everywhere are called ‘DomainManager’ within the context
‘DomainName’. As always the Name Service name.kind component shall be set to the
null string – ‘’.

The complete specification of the Domain Manager’s Name Service name can always
be found in any Device Manager’s DCD. The element domainmanager, sub-element
namingservice, attribute name is a #REQUIRED character data field in all DCDs.

372 Exploring the Domain

Once the object reference to the DomainManager object is resolved the code segment in
Figure 18.10 will query all of its attributes.

1. main(int argc, char * argv[])
2. {
3. CORBA_Environment ev;
4. CORBA_ORB orb;
5. CosNaming_NamingContext myNC=CORBA_OBJECT_NIL;
6. CosNaming_Name myBindingName;
7.
8. SCA_CF_DomainManager dmObj=CORBA_OBJECT_NIL;
9. CORBA_string aString;
10.
11. /* this is just a pointer to a sequence of CORBA_Objects */
12. SCA_CF_DomainManager_DeviceManagerSequence *pSeq;
13.
14. /* these are just CORBA_Objects */
15. SCA_CF_DeviceManager aDevMgr;
16. SCA_CF_ApplicationFactory anAppFact;
17. SCA_CF_Application anApp;
18. CosNaming_NameComponent

path[2]={{"SCARI_DM",""},{"DomainManager",""}};
19. int i;
20.
21. CORBA_exception_init(&ev);
22. startOrb(&argc,argv,&orb,&ev);
23.
24. myNC = CORBA_ORB_resolve_initial_references(
25. orb,"NameService",&ev);
26.
27. myBindingName._length=2;
28. myBindingName._buffer= path;
29.
30. dmObj=(SCA_CF_DomainManager)
31. CosNaming_NamingContext_resolve(myNC,
32. (const CosNaming_Name *)&myBindingName, &ev);
33.
34. aString = SCA_CF_DomainManager__get_identifier(dmObj,&ev);
35. printf("\nDomain Manager ident: %s\n",aString);
36.
37. aString =

SCA_CF_DomainManager__get_domainManagerProfile(dmObj,&ev);

38. printf("Domain Manager profile: %s\n",aString);
39.
40. pSeq = SCA_CF_DomainManager__get_deviceManagers(dmObj, &ev);

Figure 18.10. Domain Manager Query function

Properties 373

41. printf("\nThere are %d deviceManagers\n",(*pSeq)._length);
42. aDevMgr = (SCA_CF_DeviceManager) *((*pSeq)._buffer+0);
43. queryDevMgr(aDevMgr);
44.
45. pSeq = SCA_CF_DomainManager__get_applicationFactories(dmObj, &ev);
46. printf("\nThere are %d applicationFactories\n",(*pSeq)._length);
47. for (i=0; i<(*pSeq)._length; ++i) {
48. anAppFact = (SCA_CF_ApplicationFactory) *((*pSeq)._buffer+i);
49. queryAppFact(anAppFact);
50. }
51.
52. pSeq = SCA_CF_DomainManager__get_applications(dmObj, &ev);
53. printf("There are %d applications\n",(*pSeq)._length);
54. for (i=0; i<(*pSeq)._length; ++i) {
55. anApp = (SCA_CF_Application) *((*pSeq)._buffer+0);
56. queryApp(anApp);
57. }
58.
59. anApp = SCA_CF_DomainManager__get_fileMgr(dmObj, &ev);
60. if (CORBA_Object_is_nil(anApp,&ev))
61. printf("\nFileManager is NIL\n");
62. else printf("\nFileManager has valid IOR\n");
63.
64. return 0;
65. }

Again the code example leaks memory by neglecting to free strings allocated by the many
calls to __get() methods that return a pointer to strings. After resolving the initial context
of the Name Service – its corbaloc or IOR must be passed on the command line – the
Domain Manager object reference is resolved in line 30. There are two string field attributes
associated with the DomainManager object; line 34 queries the UUID and line 37 the
filename of the DomainManager’s DMD. The remainder of the code traverses the following
unbounded sequences: i) device managers; ii) application factories; and iii) applications.
The final attribute on the DomainManager object is, line 59, an object reference to the
FileManager object. Within a ‘domain’ the SCA specifies a cardinality of one for the
Domain Manager, one for the FileManager, and at least one for DeviceManager. All other
elements are optional. Running the program for our SCARI example yields the output of
Figure 18.11.

The output generated by nested calls to queryApp(), queryAppFact() and
queryDevMgr() is suppressed in the output having already appeared in the previous
sub-sections.

18.7 Properties

Of significant importance within our run-time domain is the presence of the PropertySet
interface which can be queried and configured. The PropertySet interface is inherited by

374 Exploring the Domain

Domain Manager ident: DCE:305CCD21-C9S9-4738-9C81-BA0B29745CEW
Domain Manager profile:<profile
filename="/DomainManager.dmd.xml"type="DMD"/>
There are 1 deviceManagers
There are 2 applicationFactories
There are 1 applications
FileManager has valid IOR

Figure 18.11. Domain Manager Attributes output

Resource, DeviceManager, and DomainManager. Since Resource is inherited by the Device
interface and Application interface every object reference available in the run-time with the
exception of ApplicationFactory objects has properties that can be queried and/or configured.
Present initial values of properties can be ascertained from a component’s PRF file but this
necessarily involves fishing through a lot of XML. It’s easier to get property settings from
the run-time.

The code segment (Figure 18.12) examines the Domain Manager, three Devices, and three
(application) resources found when running the Audio application in our SCARI example.

For the sake of a simple illustration, the code example in Figure 18.12 does a lot of
cheating. For instance all the Name Service names are hard-coded. Repeated runs of the

1. static CosNaming_NameComponent allObjs[7][3] = {
2. { {"SCARI_DM",""},{"DomainManager",""},{"",""} },
3. { {"node1DeviceManager_DCE:18dd6458-494e-43cd-b823-
07778bb9ca51",""},{"",""},{"",""} },

4. { {"node1RFDeviceImpl_DCE:B6C3F70D-A069-47B5-BCEA-
708E51C08888",""},{"",""},{"",""} },

5. { {"node1AudioDevice_DCE:A68A5812-6BE7-4920-9A29-
A7C013734FAB",""},{"",""},{"",""} },

6. { {"SCARI_DM",""},{"tuesdayAfternoon",""},
7. {"AudioEffectController_DCE:7F19A71E-DE41-4BEF-A619-
9EE5ECCD832C",""} },

8. { {"SCARI_DM",""},{"tuesdayAfternoon",""},
9. {"EchoResource_DCE:916B1F9F-25BA-43A6-896E-
5B078D12B727",""} },

10. { {"SCARI_DM",""},{"tuesdayAfternoon",""},
11. {"ChorusResource_DCE:8FC4B3CF-5203-4874-98D6-
0FF6E4F2ED5C",""} }

12. };
13.
14. int main(int argc, char * argv[])
15. {
16. CORBA_Environment ev;
17. CORBA_ORB orb;
18. CosNaming_NamingContext myNC=CORBA_OBJECT_NIL;

Figure 18.12. Property Set Query function

Properties 375

19. CosNaming_Name myBindingName;
20. CosNaming_NameComponent myNameComponent;
21.
22. SCA_CF_Properties propHolder; /* a sequence of DataTypes */
23. SCA_CF_DataType anElement;
24. CORBA_Object anObj=CORBA_OBJECT_NIL;
25. CORBA_TCKind tk;
26. int i,j;
27.
28. CORBA_exception_init(&ev);
29. startOrb(&argc,argv,&orb,&ev);
30.
31. myNC = CORBA_ORB_resolve_initial_references(
32. orb,"NameService",&ev);
33.
34. for (j=0; j<7; ++j)
35. {
36. if (j==0) myBindingName._length=2;
37. if (j>=1) myBindingName._length=1;
38. if (j>=4) myBindingName._length=3;
39. myBindingName._buffer= &(allObjs[j][0]);
40.
41. anObj=(CORBA_Object)CosNaming_NamingContext_resolve(myNC,
42. (const CosNaming_Name *)&myBindingName, &ev);
43.
44. propHolder._length=0; /* signal you want all the properties */
45. SCA_CF_PropertySet_query((SCA_CF_PropertySet)anObj,
46. &propHolder, &ev);
47. myNameComponent =*(myBindingName._buffer+myBindingName._ length-1);
48. printf("\n%s Properties\n",myNameComponent.id);
49.
50. printf("There are %d elements\n",propHolder._length);
51. for (i=0; i<propHolder._length; ++i)
52. {
53. anElement = *(propHolder._buffer+i);
54. tk = CORBA_TypeCode_kind(anElement.value._type,&ev);

55. if

((tk==CORBA_tk_struct)� �(tk==CORBA_tk_enum)� �(tk==CORBA_tk_alias))
56. printf("%d %s %s\n", i,anElement.id,
57. CORBA_TypeCode_name(anElement.value._type,&ev));
58. else
59. {
60. printf("%d %s %s =", i,anElement.id, tkString[tk]);

Figure 18.12. (Continued)

SCARI AudioEffect0 application allow us access to componentinstantiation UUIDs so, for
the sake of iterating all seven objects that happen to have properties, it is made easier if we

376 Exploring the Domain

61. if (tk == CORBA_tk_long)
62. printf(" %d\n",*(CORBA_long*)anElement.value._value);
63. if (tk == CORBA_tk_double)
64. printf(" %g\n",

(CORBA_double)anElement.value._value);
65. }
66. }
67.
68. }
69. return 0;
70. }

stick the Name Service names in to an array (see lines 1 through 11). The ‘friendly’ name
given to the application by the user at run-time also happens to be part of the naming context
traversed on the way to resolving application components. In previous SCARI example
‘runs’ we’ve called the application ‘myAudioApp’ or ‘a2’, etc. For this execution example
we called the application ‘tuesdayAfternoon’.

The code example loops through the seven objects within the domain that have inherited
the PropertySet interface (line 34). After resolving the object reference, line 41, a call is made
to the objects CF::PropertySet::query() method. A nice feature of SCA-compliant
systems is that if you set the length parameter to zero in the _query() call all properties
on that object are returned. As opposed to a return value, the caller must provide a pointer to
a location for the _query() operation to put an unbounded sequence of DataTypes. This
is one of the three times that the Core Framework makes use of inout parameters. The other
two are the query method on a FileSystem and to hold the test results of a TestableObject.

So the call to _query() takes an inout parameter called Properties which is really an
unbounded sequence of DataType. DataType is a structure having two fields, a string Id and
an any value. The IDL for these constructs is as follows:

struct DataType {
string id;
any value;

};
typedef sequence <DataType> Properties;

This is our second encounter with CORBA’s any type which leads to the second form of
cheating in our code example. By repeated runs of our code example we can know the types
of properties to expect. Line 55 checks for structures or enumerated types and just prints
out the name of the structure or enumeration. If the any _type is not one of these then we
know it is either a long or a double (lines 61 and 63). In reality, code that can de-cipher any
any _type would be quite complex – imagine a structure containing unbounded sequences
of structures. Our simple code example shows the heart of de-ciphering the any _ type
and that is using the _type information to make the proper type casts of the de-referenced
void pointer _value (lines 62 and 64). The output in Figure 18.13 is produced with the
AudioEffect0 application running.

The SCARI application manager GUI allows the user to modify certain parameters while
the application is stopped. Running the PropertySet query program again properly reflects
the modified values.

Properties 377

DomainManager Properties
There are 1 elements
0 PRODUCER_LOG_LEVEL LogLevelSequenceType

node1DeviceManager_DCE:18dd6458-494e-43cd-b823-07778bb9ca51 Properties
There are 1 elements
0 PRODUCER_LOG_LEVEL LogLevelSequenceType

node1RFDeviceImpl_DCE:B6C3F70D-A069-47B5-BCEA-708E51C08888 Properties
There are 3 elements
0 PRODUCER_LOG_LEVEL LogLevelSequenceType
1 USAGE CORBA_tk_long = 1
2 RF_MODE CORBA_tk_long = 1

node1AudioDevice_DCE:A68A5812-6BE7-4920-9A29-A7C013734FAB Properties
There are 8 elements
0 AUDIO_IN_RIGHT CORBA_tk_long = 1
1 AUDIO_IN_LEFT CORBA_tk_long = 1
2 PRODUCER_LOG_LEVEL LogLevelSequenceType
3 AUDIO_OUT_LEFT CORBA_tk_long = 4
4 AUDIO_BUFFER_SIZE CORBA_tk_long = 8192
5 AUDIO_PROFILE CORBA_tk_long = 0
6 AUDIO_OUT_RIGHT CORBA_tk_long = 4
7 AUDIO_MODE CORBA_tk_long = 6

AudioEffectController_DCE:7F19A71E-DE41-4BEF-A619-9EE5ECCD832C
Properties

There are 4 elements
0 PRODUCER_LOG_LEVEL LogLevelSequenceType
1 ECHO_DELAY CORBA_tk_double = 0.5
2 NUMBER_OF_VOICES CORBA_tk_long = 5
3 ECHO_GAIN CORBA_tk_double = 0.5

EchoResource_DCE:916B1F9F-25BA-43A6-896E-5B078D12B727 Properties
There are 5 elements
0 SAMPLING_FREQUENCY CORBA_tk_double = 0
1 PRODUCER_LOG_LEVEL LogLevelSequenceType
2 OUTPUT_GAIN CORBA_tk_double = 0
3 ECHO_DELAY CORBA_tk_double = 0.5
4 ECHO_GAIN CORBA_tk_double = 0.5

ChorusResource_DCE:8FC4B3CF-5203-4874-98D6-0FF6E4F2ED5C Properties
There are 3 elements
0 PRODUCER_LOG_LEVEL LogLevelSequenceType
1 OUTPUT_GAIN CORBA_tk_double = 0
2 NUMBER_OF_VOICES CORBA_tk_long = 5

Figure 18.13. Resource Properties output

378 Exploring the Domain

18.8 Manipulating Ports

The port concept enabled by the SCA is quite powerful and flexible. The designers of the
SCA wanted users to have maximum flexibility and stopped short of dictating actual push
or pull semantics. The transport level details of a port are implementation-dependent. The
only operations required by the SCA are a getPort operation, which returns a Port object
and connect and disconnect operations on the Port object that accepts an object reference
as a parameter. The mechanization of ports is simple. The Core Framework reads the port
configuration from the SAD. Ports are paired as connections. With getPort the Core
Framework retrieves object references for ports A and B. Port A provides or implements an
interface, for example, pushOctet. The Core Framework then calls the connect interface
on port B and passes to it the object reference for A. Port B is now fully able to invoke
pushOctet operations on port A. In this sense the Core Framework acts as a broker.

The power of this connection scenario is that it is script driven. A user can rewire
port connections by simply changing the XML within the SAD. Figure 18.14 shows the
port configuration for the SCARI Audio Effect application. The Audio device performs
pushPacket operations on the Echo resource. The Echo resource in turn performs a
pushPacket operation on the Chorus resource. Finally the Chorus resource performs
a pushPacket on the Audio Device. The reader is encouraged to rewire this scenario
by modifying the SAD. For instance the echo can be removed from the processing chain
by changing the providesname, line 63 of the AudioEffectApplication0.sad.xml file,
from Echo to Chorus. The Echo to Chorus connection can be deleted in its entirety. These
modifications must be made in the $SCA_HOME/demosources/Waveforms/AudioEffect0
directory. The reader must then proceed to the $SCA_HOME/lib directory and ‘make
clean’ and then ‘make’ the executables. The application will need to be re-installed
through the startApplicationManager application. A simple way to uninstall
an application is to remove its entry from the ApplicationFactory.conf file located in
$SCA_HOME/demosources/Nodel/profile directory.

An even more radical modification would be to route the AudioOut port directly back in
to the AudioIn port of the Audio Device. This exercise is quite instructive in that the concept
of packet latency becomes very apparent. Even without the Echo and Chorus resources,
there is a delay operation that takes place on the audio stream. This is a product of the
design. What constitutes a packet? A tenth of a seconds worth of data, a quarter of a
second? Sometimes legacy waveform latency requirements are hard to meet because of
this packetization concept. Legacy radios didn’t packetize they streamed – there is quite a
difference. In a legacy radio when a bit was pulled off the air it was immediately clocked
into the baseband terminal device. In a software radio the modem will gather up at least
a byte, perhaps hundreds of bytes depending on data rate. The packet is transmitted over
some kind of bus, e.g., PCI, VME, to another computer that then clocks it into the baseband
terminal device. Because of the packetization there is going to be a latency there that wasn’t
present in the legacy radio.

18.9 Summary

Our code examples have shown that there is a lot of redundancy in the information that is
held by the Core Framework. Several parameters that originate within the Domain Profile are

Summary 379

Audio Device

AudioOut
uses port

Echo Resource

AudioIn
provides port

AudioOut
uses port

Chorus
Resource

AudioIn
provides port

AudioOut
uses port

AudioIn
provides port

Figure 18.14. SCARI Audio Effect port connections

additionally published within the run-time domain’s Core Framework objects. Much of this
same data is published by all three CORBA services: Naming, Event, and Log. Of course
the persistence of these publications is different. The Core Framework and Name Service
provide a current snapshot. The Core Framework additionally provides a list of installed
applications – that is given as a sequence of ApplicationFactorys. The Name Service lists
application components currently instantiated but does not also list the factories. Hence it is
impossible to create() an application without going through the Domain Manager to get an
Application Factory’s object reference.

The Log Service provides a historical record of events and identifications. The SCARI Log
Service persists with the same lifetime as the DeviceManager. There is nothing to preclude
a Log Service from persisting across power cycles thus providing a life-cycle record of
events and identifications. Because of this persistence the Log Service provides an excellent
means of catching the output of debug statements. The Domain Manager is required to log
registerDevice() events as both the Log Service ADMINISTRATIVE_EVENTS and
on the ODM event channel. If the same data is recorded on both then the log file will
contain IORs for all registered devices. Similarly the IORs of application components are
also logged when the components are created by an ApplicationFactory.

The shortest window of opportunity available is provided by the Event Service. A user
will see events only when his or her IDM and/or ODM push consumer is registered with
the DomainManager. This summary section cross-references which items of interest can
be found in the domain profile, run-time domain, and the various services. Figure 18.15
provides a summary comparison of the run-time domain and the Name Service.

Figure 18.15 shows that all the object references available through the DomainManager
object are also available through the Name Service with the exception of ApplicationFactory

380 Exploring the Domain

id AccessIORs

«CORBAInterface»
NameService

«CORBAInterface»
DomainManager

«CORBAInterface»
AppComponents

«CORBAInterface»
Services

«CORBAInterface»
AppFactories

«CORBAInterface»
DeviceManagers

«CORBAInterface»
Devices

«CORBAInterface»
Application

«hasIORto»«hasIORto»

«hasIORto»

«hasIORto»

«hasIORto»

«hasIORto»

«hasIORto»

«hasIORto»

«hasIORto»
«hasIORto»

Figure 18.15. Accessing object references

objects. The only way to get to an Application Factory say, for example, to run the create()
method is through the Domain Manager. We are reminded that Application Factories are
installed on a domain by calling the DomainManager::installApplication() method. There is
nothing that disallows the applications programmer from registering an ApplicationFactory
with the Name Service. Also, the stringified IOR of an Application Factory is published
on the ODM event channel. There are two ways of accessing object references of Devices:
through the Naming Service or through a Device Manager. There is only one way to access
individual components (Resource objects) within an application and that is – surprisingly –
through the Name Service.

Access to all of these object references doesn’t buy you much if you don’t have access to
the object’s IDL or SCD. This is because SCA requires minimum CORBA which does not
have support for the Dynamic Invocation Interface (DII). Thus there is no way to say to an
object ‘give me all your operations’ or ‘give me all your attributes’.

Throughout this chapter we have tried to show how parameters accessible in the run-time
trace back in to the Domain Profile. Table 18.1 shows a complete summary of all Core
Framework attributes accessible in the run-time traced back to their origin in the Domain
Profile. Note that for certain attributes the SCA is not explicit. In these instances we provide,
as a reference, the choices made by the SCARI implementation. Perhaps future versions of
the SCA will nail down these loose ends.

T
ab

le
18

.1
.

C
or

e
Fr

am
ew

or
k

A
ttr

ib
ut

es
cr

os
s-

re
fe

re
nc

e
to

D
om

ai
n

Pr
of

ile

C
F
O
b
j
e
c
t

A
t
t
r
i
b
u
t
e

D
o
m
a
i
n
P
r
o
f
i
l
e
C
r
o
s
s
-
R
e
f
e
r
e
n
c
e

R
e
s
o
u
r
c
e

I
d
e
n
t
i
f
i
e
r

S
C
A
–
u
n
i
q
u
e
i
d
e
n
t
i
f
i
e
r
(
i
n
s
t
a
n
c
e
)

S
C
A
R
I
–
D
C
D
.
c
o
m
p
o
n
e
n
t
i
n
s
t
a
n
t
i
a
t
i
o
n
.
i
d

f
o
r
a
D
e
v
i
c
e
–

S
A
D
.
s
o
f
t
w
a
r
e
a
s
s
e
m
b
l
y
.
i
d
f
o
r
a
n
A
p
p
l
i
c
a
t
i
o
n

–
S
A
D
.
c
o
m
p
o
n
e
n
t
i
n
s
t
a
n
t
i
a
t
i
o
n
.
i
d
f
o
r
a

R
e
s
o
u
r
c
e

D
e
v
i
c
e
M
a
n
a
g
e
r

d
e
v
i
c
e
C
o
n
f
i
g
u
r
a
t
i
o
n
P
r
o
f
i
l
e

P
r
o
f
i
l
e
.
f
i
l
e
n
a
m
e
=
D
C
D
f
i
l
e
n
a
m
e

P
r
o
f
i
l
e
.
t
y
p
e
(
o
p
t
i
o
n
a
l
)

D
e
v
i
c
e
M
a
n
a
g
e
r

I
d
e
n
t
i
f
i
e
r

D
C
D
.
d
e
v
i
c
e
c
o
n
f
i
g
u
r
a
t
i
o
n
.
i
d

D
e
v
i
c
e
M
a
n
a
g
e
r

L
a
b
e
l

D
C
D
.
d
e
v
i
c
e
c
o
n
f
i
g
u
r
a
t
i
o
n
.
n
a
m
e
(
s
e
c
t
i
o
n

3
.
1
.
3
.
2
.
4
.
5
)

D
e
v
i
c
e
M
a
n
a
g
e
r

r
e
g
i
s
t
e
r
e
d
S
e
r
v
i
c
e
s
.
s
e
r
v
i
c
e
N
a
m
e

S
C
A
–
n
o
t
s
p
e
c
i
f
i
e
d

S
C
A
R
I
–
D
C
D
.
u
s
a
g
e
n
a
m
e

R
e
s
o
u
r
c
e
F
a
c
t
o
r
y

I
d
e
n
t
i
f
i
e
r

S
C
A
–
u
n
i
q
u
e
i
n
s
t
a
n
c
e
i
d
e
n
t
i
f
i
e
r

S
C
A
R
I
–
n
o
t
i
m
p
l
e
m
e
n
t
e
d

D
e
v
i
c
e

s
o
f
t
w
a
r
e
P
r
o
f
i
l
e

P
r
o
f
i
l
e
.
f
i
l
e
n
a
m
e
=
S
P
D
f
i
l
e
n
a
m
e

P
r
o
f
i
l
e
.
t
y
p
e
(
o
p
t
i
o
n
a
l
)

D
e
v
i
c
e

L
a
b
e
l

S
C
A
–
m
e
a
n
i
n
g
f
u
l
n
a
m
e
S
C
A
R
I
–

D
C
D
.
u
s
a
g
e
n
a
m
e

D
o
m
a
i
n
M
a
n
a
g
e
r

d
o
m
a
i
n
M
a
n
a
g
e
r
P
r
o
f
i
l
e

P
r
o
f
i
l
e
.
f
i
l
e
n
a
m
e
=
D
M
D
f
i
l
e
n
a
m
e

P
r
o
f
i
l
e
.
t
y
p
e
(
o
p
t
i
o
n
a
l
)

D
o
m
a
i
n
M
a
n
a
g
e
r

I
d
e
n
t
i
f
i
e
r

D
M
D
.
d
o
m
a
i
n
m
a
n
a
g
e
r
c
o
n
f
i
g
u
r
a
t
i
o
n
.
i
d

A
p
p
l
i
c
a
t
i
o
n

c
o
m
p
o
n
e
n
t
N
a
m
i
n
g
C
o
n
t
e
x
t
s
.
c
o
m
p
o
n
e
n
t
I
d

S
A
D
.
c
o
m
p
o
n
e
n
t
i
n
s
t
a
n
t
i
a
t
i
o
n
.
i
d

A
p
p
l
i
c
a
t
i
o
n

c
o
m
p
o
n
e
n
t
N
a
m
i
n
g
C
o
n
t
e
x
t
s
.
e
l
e
m
e
n
t
I
d

f
u
l
l
y
-
q
u
a
l
i
f
i
e
d
N
a
m
e
S
e
r
v
i
c
e
N
a
m
e

A
p
p
l
i
c
a
t
i
o
n

c
o
m
p
o
n
e
n
t
P
r
o
c
e
s
s
I
d
s
.
c
o
m
p
o
n
e
n
t
I
D

S
A
D
.
c
o
m
p
o
n
e
n
t
i
n
s
t
a
n
t
i
a
t
i
o
n
.
i
d

A
p
p
l
i
c
a
t
i
o
n

c
o
m
p
o
n
e
n
t
D
e
v
i
c
e
s
.
c
o
m
p
o
n
e
n
t
I
d

S
A
D
.
c
o
m
p
o
n
e
n
t
i
n
s
t
a
n
t
i
a
t
i
o
n
.
i
d

A
p
p
l
i
c
a
t
i
o
n

c
o
m
p
o
n
e
n
t
D
e
v
i
c
e
s
.
a
s
s
i
g
n
e
d
D
e
v
i
c
e
I
d

D
C
D
.
c
o
m
p
o
n
e
n
t
i
n
s
t
a
n
t
i
a
t
i
o
n
.
i
d

A
p
p
l
i
c
a
t
i
o
n

c
o
m
p
o
n
e
n
t
I
m
p
l
e
m
e
n
t
a
t
i
o
n
s
.
c
o
m
p
o
n
e
n
t
I
d

S
A
D
.
c
o
m
p
o
n
e
n
t
i
n
s
t
a
n
t
i
a
t
i
o
n
.
i
d

A
p
p
l
i
c
a
t
i
o
n

c
o
m
p
o
n
e
n
t
I
m
p
l
e
m
e
n
t
a
t
i
o
n
s
.
e
l
e
m
e
n
t
I
d

S
P
D
.
i
m
p
l
e
m
e
n
t
a
t
i
o
n
.
i
d

A
p
p
l
i
c
a
t
i
o
n

P
r
o
f
i
l
e

P
r
o
f
i
l
e
.
f
i
l
e
n
a
m
e
=
S
A
D
f
i
l
e
n
a
m
e

P
r
o
f
i
l
e
.
t
y
p
e
(
o
p
t
i
o
n
a
l
)

A
p
p
l
i
c
a
t
i
o
n

N
a
m
e

s
t
r
i
n
g
p
a
s
s
e
d
t
o

A
p
p
l
i
c
a
t
i
o
n
F
a
c
t
o
r
y
.
c
r
e
a
t
e
(
)

A
p
p
l
i
c
a
t
i
o
n
F
a
c
t
o
r
y

N
a
m
e

S
C
A
–
“
t
y
p
e
o
f
A
p
p
l
i
c
a
t
i
o
n
”

A
p
p
D
,
D
.
6
-
S
A
D
.
s
o
f
t
w
a
r
e
a
s
s
e
m
b
l
y
.
n
a
m
e

A
p
p
l
i
c
a
t
i
o
n
F
a
c
t
o
r
y

I
d
e
n
t
i
f
i
e
r

S
A
D
.
s
o
f
t
w
a
r
e
a
s
s
e
m
b
l
y
.
i
d

A
p
p
l
i
c
a
t
i
o
n
F
a
c
t
o
r
y

s
o
f
t
w
a
r
e
P
r
o
f
i
l
e

p
r
o
f
i
l
e
.
f
i
l
e
n
a
m
e
=
S
A
D
f
i
l
e
n
a
m
e

p
r
o
f
i
l
e
.
t
y
p
e
(
o
p
t
i
o
n
a
l
)

19
An SCA-compliant Application

This chapter starts with a simple non-SCA-compliant Hello World application – consider
this a legacy application – which will then be modified to make it SCA-compliant. In order
to maximize educational value, we adopt a minimalist approach to SCA-compliance. Recall
that for good reason the SCA allows the developer a great deal of latitude in specifying
component granularity. The current view of compliance testing is whether your application
is 100 % compliant with the ‘shall’s of the SCA or not. If it is not, then the application
becomes SCA-compliant with waivers. There is no graduation of scale – that is, a 9 or a 10
for an application built to the ‘spirit’ of the SCA versus a 1 or a 2 for an application that has
a single CORBA object that manages the entire waveform. The granularity of an approach
is typically dictated by the operational requirements of the radio system and not the SCA.

It is now generally recognized that there is little connection between SCA-compliance
and portability. Legacy codes originally developed for radio ‘X’ will generally be very
difficult to port to radio ‘Y’. An SCA-wrapped version of those codes will still be as difficult
to port – perhaps even more difficult on account of the OE. Not all ORBs are the same
and neither are real-time OSs claiming to be POSIX-compliant actually POSIX-compliant.
Hence, the porting operation invariably involves some re-write of application software to
accommodate the new OE. (Another approach is to create an OE abstraction but that’s a
subject for another book.)

19.1 Hello World Legacy Application

The domain profile SPD’s softpkg element contains an attribute called type. This attribute
can be set to sca_compliant or sca_non_compliant with sca_compliant being
the default value when not otherwise specified. As a starting point we’ll just use
the Core Framework to install our legacy application using DomainManager::
installApplication(). In order to survive the various tests that are mandatorily
performed by the installApplication routine we will have to generate a certain amount
of XML to describe our application to the domain manager. At a minimum there has
to be a SAD file because that filename is expected as a parameter in the call to
DomainManager::installApplication(). The SAD file in turn requires a file

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

384 An SCA-compliant Application

reference to at least one SPD. It is inside this SPD that we are finally able to tell the
domain manager that our application is not SCA-compliant. As an sca_non_compliant
component the domain manager will not look for an SCD. So as far as installation goes
the two domain profile files, SAD and SPD, are all that’s needed. Thus, minimally, even a
legacy sca_non_compliant application requires two XML files to describe itself to the
domain manager and application factory.

We start by presenting the Hello World ‘C’ code and its corresponding XML. Then we need
some sort of CORBA-based client software to invoke the DomainManager::install
Application() operation and the ApplicationFactory::create() operation.
For many readers the Hello World application has been seen many times and Figure 19.1
shows it once again.

1. #include <stdio.h>
2. #include <time.h>
3.
4. static const struct timespec oneSecond = {1,0};
5.
6. int main() {
7.
8. while (1) {
9. fprintf(stdout,"Hello World \ n");
10. fflush(stdout);
11. nanosleep(&oneSecond,NULL);
12. }
13.
14. }

Figure 19.1. Hello World – main

The program will simply print ‘Hello World’ to the standard output device once every
second until the process is killed. It is necessary to compile this software and then put the
executable in a place where the domain manager can find it. The SCARI software includes
a GUI application that copies a Java archive (jar) file from where it was built to where the
domain manager can find it. A jar file is Java’s version of the Unix tar file or the Windows
zip file. It allows one to combine all of the executable ‘class’ files and other required data
files (XML) into one file that is easily copied and then extracted at the new location. After
performing the copy and extract, the GUI then invokes the DomainManager::install
Application() operation to create an ApplicationFactory object. Since that GUI is
hard-wired to work with jar files, we won’t be able to use it to install our application.

As part of the installApplication operation the domain manger will look for a
SAD, SPD, and the executable itself in the following location:

$SCA_HOME/demosources/Node1/profile/HelloWorld

The SCA does not specify pathname naming conventions so the pathnames offered in this
example are specific to the SCARI Core Framework. Let’s now examine a Document Type
Definition (DTD) for a minimum, but still SCA-compliant, SAD.

Hello World Legacy Application 385

We will walk through this code example by comparing it to the softwareassembly DTD
and then to that minimal set required by the SCA – well at least SCARI interpretation of the
SCA. We start by creating a minimal softwareassembly DTD by taking the full specification
(SCA Appendix D.6) and eliminating any element or attribute that is not #REQUIRED
or any element that has a cardinality that includes zero. The DTD given in Figure 19.2
represents that minimum.

1. <!ELEMENT softwareassembly
2. (componentfiles
3. , partitioning
4. , assemblycontroller)>
5.
6. <!ATTLIST softwareassembly
7. id ID #REQUIRED
8. name CDATA #IMPLIED> <!- REQUIRED by SCARI -->
9.
10. <!ELEMENT componentfiles
11. (componentfile+)>
12.
13. <!ELEMENT componentfile
14. (localfile)>
15.
16. <!ATTLIST componentfile
17. id ID #REQUIRED>
18.
19. <!ELEMENT localfile EMPTY>
20.
21. <!ATTLIST localfile
22. name CDATA #REQUIRED>
23.
24. <!-- DTD says that sub-elements of partitioning are optional -->
25. <!-- mandatory assmemblycontroller element requires a refid that -->
26. <!-- must match some componentinstantiation id declared here -->
27. <!-- therefore at least one sub-element must exist -->
28.
29. <!ELEMENT partitioning
30. (componentplacement+)> <!-- modified for single processor -->
31.
32. <!ELEMENT componentplacement
33. (componentfileref
34. , componentinstantiation+)>
35.
36. <!ELEMENT componentfileref EMPTY>
37.
38. <!ATTLIST componentfileref

Figure 19.2. Minimum software assembly descriptor

386 An SCA-compliant Application

39. refid CDATA #REQUIRED>
40.
41. <!ELEMENT componentinstantiation EMPTY>
42.
43. <!ATTLIST componentinstantiation
44. id ID #REQUIRED>
45.
46. <!ELEMENT assemblycontroller
47. (componentinstantiationref)>
48.
49. <!ELEMENT componentinstantiationref EMPTY>
50.
51. <!ATTLIST componentinstantiationref
52. refid CDATA #REQUIRED>

Figure 19.2. (Continued)

The DTD given is truly minimal – no ports and only one component instantiation.
A brief walk through this DTD will provide context for our Hello World SAD to
follow. The softwareassembly element must have an Id attribute (line 7). Additionally
the softwareassembly element also has a name attribute (line 8). This is used to fill-in
the name attribute of the ApplicationFactory interface. (SCA itself specifies only that the
ApplicationFactory name attribute is a ‘type of Application’ but does not specify where it
comes from. However paragraph D.6 of SCA Appendix D specifies that this name attribute is,
in fact, the ApplicationFactory name attribute.) After this the softwareassembly is composed
of three mandatory elements called componentfiles, partitioning, and assemblycontroller.
The order of definition of these elements is as unambiguously stated in the DTD.

The softwareassembly next requires definition of a componentfiles element (line 10). The
presence of this element is mandatory and its cardinality is unity. Now the componentfiles
element must contain one or more componentfile elements (line 11). Each componentfile
must have an Id attribute – this, of course refers to a UUID. Finally, each componentfile
must have an empty localfile sub-element with a single name attribute. This name is the
filename of the component’s SPD.

For each of the components previously identified the next element – partitioning –
describes where to place the components. However for the multi-processor case – consider
multiple executable devices – SCA Appendix D does not allow the SAD, by itself, to identify
what component goes on what processor. That operation is performed when the application is
created. For the minimal SAD, the partitioning element does provide a very important UUID
that is needed later by the mandatory assemblycontroller element. Since hostcollocation is
somewhat meaningless for a single processor domain it has been removed from the minimal
SAD. This now leaves one or more componentplacement elements (line 30). Each of these
requires a componentfileref.refid and a componentinstantiation.Id. The componentfileref.refid
(line 39) must match one of the componentfile.ids declared in the previous componentfiles
section (line 17). Finally, the user provides a UUID for the componentinstantiation.id (line
44). One of these components so identified will be required later by the assemblycontroller
element.

Hello World Legacy Application 387

The final mandatory element is identification of the assemblycontroller. SCA specification
section 3.1.3.2.1.5 requires one and only one point-of-contact between the Application
interface and the implementation. So an application might have several components but only
one – the assembly controller – overloads the Resource start(), stop(), runTest(),
etc. interfaces. Anyhow the assemblycontroller element has a single required sub-element
componentinstatiationref that has an Id attribute (line 52) that must match one of the
componentinstantiation.Id attributes in the previous described partitioning section (line 44).

Our simple SAD makes no provision for connections – the SAD connections element is
in fact optional in the DTD – but this will be required later as we build an SCA-compliant
application.

It’s apparent that even the simplest SAD file has element inter-dependencies that must be
honored. It is sometimes necessary to go searching in the documentation for these required
inter-dependencies. The best places to look are the SCA main document, Appendix D, the
DTDs, and maybe even Appendix C IDL. Let’s now examine the XML files required for
installation. The minimal SAD file given in Figure 19.3 describes our Hello World software
assembly.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!-- Manually edit for Wiley book -- Legacy HelloWorld example -->
3. <!DOCTYPE softwareassembly SYSTEM "dtd/softwareassembly.2.2.dtd">
4. <softwareassembly id="DCE:a8135383-4ee5-4400-b512-cb69ed4f21ee" name=

"HelloWorld">
5. <componentfiles>
6. <!-- Must be at least 1 component, "assemblycontroller" -->
7. <componentfile id="HelloAssemCtrlFile" type="SPD">
8. <localfile name="HelloAssemCtrl.spd.xml"/>
9. </componentfile>
10. </componentfiles>
11. <partitioning>
12. <!-- Must have componentplacement OR hostcollocation-->
13. <componentplacement>
14. <!-- Must have componentfileref one -->
15. <componentfileref refid="HelloAssemCtrlFile"/>
16. <!-- Must have at least one componentinstantiation -->
17. <componentinstantiation id="DCE:1d9bbb8e-d6ac-4350-b3c6-

8226ced4e0ef">
18. </componentinstantiation>
19. </componentplacement>
20. </partitioning>
21. <assemblycontroller>
22. <!-- Must match componentinstantiation id of 1 of the components -->
23. <componentinstantiationref refid="DCE:1d9bbb8e-d6ac-4350-b3c6-

8226ced4e0ef"/>
24. </assemblycontroller>
25. </softwareassembly>

Figure 19.3. Hello World software assembly descriptor

388 An SCA-compliant Application

Given the rather exhaustive treatment of the underlying minimal DTD it is necessary only
to briefly point out the inter-dependencies required by the SCA. After the softwareassembly
itself is id’d and name’d the Hello World SAD identifies one component (line 7). The
component’s SPD file name is given in line 8. This information will be parsed and the
existence of the SPD file will be verified during the install() operation. The next
required use of the SAD is to identify the assembly controller. Here is the dependency
path: Line 15 relates componentfileref to lines 7 and 8 where the SPD is called out; the
componentinstantiation.Id associated with line 15 is provided as the UUID of the mandatory
assembly controller (line 23).

19.2 Legacy Hello World SPD

In this section we examine the DTD of a minimum SPD. Once again the DTD requires
certain elements that are required by the SCA. Figure 19.4 identifies the minimal SPD with
respect to the SCA’s requirements.

1. <!ELEMENT softpkg
2. (author+
3. ,implementation+
4.)>
5.
6. <!ATTLIST softpkg
7. id ID #REQUIRED
8. name CDATA #REQUIRED
9. type (sca_compliant � sca_non_compliant)"sca_compliant"
10. version CDATA #IMPLIED >
11.
12. <!ELEMENT author EMPTY>
13.
14. <!ELEMENT implementation
15. (code
16. , runtime?
17. , (os � processor � dependency)+
18.)> <!-- all three os, proc and depend are used -->
19.
20. <!ATTLIST implementation
21. id ID #REQUIRED>
22.
23. <!ELEMENT code
24. (localfile)>
25.
26. <!ELEMENT localfile EMPTY>
27.
28. <!ATTLIST localfile
29. name CDATA #REQUIRED>

Figure 19.4. Minimum Software Packager Descriptor (no SCD)

Legacy Hello World SPD 389

30.
31. <!ELEMENT os EMPTY>
32.
33. <!ATTLIST os
34. name CDATA #REQUIRED>
35.
36. <!ELEMENT processor EMPTY>
37.
38. <!ATTLIST processor
39. name CDATA #REQUIRED>
40.
41. <!ELEMENT dependency
42. (propertyref)>
43.
44. <!ATTLIST dependency
45. type CDATA #REQUIRED> <!-- mips_allocation or
46. memory_allocation -->
47.
48. <!ELEMENT propertyref EMPTY>
49.
50. <!ATTLIST propertyref
51. refid CDATA #REQUIRED
52. value CDATA #REQUIRED> <!-- allocation property, UUID and value -->
53.
54. <!ELEMENT runtime EMPTY>
55.
56. <!ATTLIST runtime
57. name CDATA #REQUIRED> <!-- required by SCARI -->

Figure 19.4. (Continued)

There are at least two elements required for a SCA non-compliant component. The strict
significance of SCA non-compliance is the lack of an SCD. The component is likely to be not
even CORBA-capable so most of the content within the SCD is not relevant. Despite being a
minimal SPD there is still quite a bit of content required. A complete SPD first off requires an
author element (line 2). The oddity is that the author element has no required sub-elements
or attributes. The DTD requirement is satisfied by inserting an empty author element in to the
XML (line 12). Finally, a complete SPD requires one or more implementation elements. Each
implementation is identified by a combination of os, processor, and dependency elements
(line 17). Literally the DTD specifies at least one of the three elements, but in practice all
three are used to identify a code element uniquely which is the binary file image (lines 15, 23,
and 28). Two allocation parameters figure prominently in components that are to be loaded
and executed on an ExecutableDevice: mips_allocation and memory_allocation
(line 45). The UUIDs for these dependency properties (line 51) must match the corresponding
capacity properties given in the Properties File (PRF) of the ExecutableDevice. When
the application is created these values are checked against the ExecutableDevice’s current
capacity to determine if sufficient capacity exists on the ExecutableDevice to accommodate

390 An SCA-compliant Application

the component. These allocation versus capacity comparisons apply to all components,
SCA-compliant or not.

The minimum SPD is not as bad as it looks in the DTD. Figure 19.5 provides the SPD
XML necessary to get the SCARI Core Framework to recognize and accommodate our
legacy Hello World application.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE softpkg SYSTEM "dtd/softpkg.2.2.dtd">
3. <softpkg id="DCE:5975bdaa-a9ff-44f3-b9ca-7b12272ffbf5"
4. name="demoHelloResource" type="sca_non_compliant">
5. <!-- required -->
6. <author>
7. </author>
8. <!-- required -->
9. <implementation id="DCE:16dff434-67d4-4654-a7f8-d609851df7ac">
10. <code type="Executable">
11. <!-- required -->
12. <localfile name="/helloWorld"/>
13. </code>
14. <os name="Linux"/>
15. <processor name="x86"/>
16. <runtime name="Xterm" version="1"/>
17.
18. <!-- at least one of os OR processor OR dependency -->
19. <!-- Must match UUID in ExecutableDevice MIPS property -->
20. <dependency type="mips_allocation">
21. <propertyref refid="DCE:F364A630-5F0E-11d4-8164-

00508B6A52E6" value="2"/>
22. </dependency>
23. <dependency type="memory_allocation">
24. <propertyref refid="DCE:F364A630-5F0E-11d4-8164-

00508B6A52E6" value="200"/>
25. </dependency>
26. </implementation>
27. </softpkg>

Figure 19.5. Legacy Hello World SPD

The SPD XML has comments to help guide the reader but a few key elements are worth
noting. Line 12 is the filename of the executable – notice that pathname is not included.
Again the SCA provides little guidance on pathnames other than to say that the files to
be loaded and the corresponding XML should all be in the same place. (More guidance
is offered by the SCA with respect to naming contexts which could be extended to cover
pathnames.) The file image identified by line 12 is associated with the implementation,
os.name = Linux, processor.name = x86 (lines 14 and 15). These names are standardized
by the SCA specifications, section 2.2.1 in Attachment 2 to Appendix D. Unfortunately
the attachment specifies the compliant spelling for Linux as ‘Linix’. An additional element

HMI Applications 391

called runtime (line 16) is used by the SCARI Core Framework to indicate whether an
implementation runs in the java runtime or not. We will use this parameter to get the
SCARI Core Framework to recognize runtimes other than java. In our example we specify
the runtime name attribute as Xterm (line 16). Recall that an SPD can identify numerous
implementations, so the same SPD could also be used to refer to a vxWorks/PPC image.
The Core Framework will select the appropriate image file for the node.

Finally, lines 20 through 25 identify mandatory allocations required of components
that depend on an ExecutableDevice. Although the SCA does not attempt to
standardize these critical allocation properties they are sufficiently documented in the
ExecutableDevice’s PRF file. It is mandatory that the UUIDs in lines 21 and 24
match UUIDs attached to the corresponding capacity properties in the ExecutableDevice’s
PRF file. The SCARI Executable Device is identified in line 17 in the top
level Node1.dcd.xml, path=$SCA_HOME/demosources/Node1/profile. This
is a list of all devices started on the node when the Device Manager/Domain
Manager is instantiated. The SPD associated with the SCARI Executable Device is
ExecutableDevice.spd.xml. Line 11 of the SPD refers to the SPD level Properties
File: ExecutableDevice_SPDLevel.prf.xml. The device’s capacity is ‘uniquely’
identified in lines 5 and 10. As seen in previous SCARI examples, these UUIDs appear to
be cut and pasted and hence are not really unique.

19.3 HMI Applications

In addition to the main program and the two XML files we need a couple of ancillary
applications in order to install and create our Hello World application. First of all we need to
pre-install Hello World by putting the executable, Hello World, in the file system where the
Core Framework expects to find it. For the SCARI Core Framework, the legacy executable,
SAD, and SPD need to reside in the $SCA_HOME/demosources/Node1/profile/
HelloWorld directory.

The ancillary applications can run from anywhere – and this means anywhere, as long as
one can get to the Name Service. Figure 19.6 shows a short code segment that is used to
invoke the DomainManager::installApplication() operation.

28. #include <orbit/orbit.h>
29. #include <ORBitservices/CosNaming.h>
30. #include "stubs/SCA.h"
31.
32. void startOrb(int* argc, char** argv,
33. CORBA_ORB *orb, CORBA_Environment *ev)
34. {
35. *orb = CORBA_ORB_init(argc, argv, "orbit-local-orb", ev);
36. printf("ORB initialized\n");
37. }
38.

Figure 19.6. Hello World Install program

392 An SCA-compliant Application

39. static CosNaming_NameComponent allObjs[1][3] = {
40. {{"SCARI_DM",""},{"DomainManager",""},{"",""} },
41. };
42.
43. int main(int argc, char * argv[])
44. {
45. CORBA_Environment ev;
46. CORBA_ORB orb;
47. CosNaming_NamingContext myNC=CORBA_OBJECT_NIL;
48. CosNaming_Name myBindingName;
49.
50. SCA_CF_DomainManager dmObj=CORBA_OBJECT_NIL;
51. CORBA_string aString="/HelloWorld/HelloWorldApp.sad.xml";
52.
53. CORBA_exception_init(&ev);
54. startOrb(&argc,argv,&orb,&ev);
55.
56. myNC = CORBA_ORB_resolve_initial_references(
57. orb,"NameService",&ev);
58. myBindingName._length=2;
59. myBindingName._buffer= &(allObjs[0][0]);
60. dmObj=(SCA_CF_DomainManager)
61. CosNaming_NamingContext_resolve(myNC,
62. (const CosNaming_Name *)&myBindingName, &ev);
63.
64. SCA_CF_DomainManager_installApplication(dmObj,aString,&ev);
65.
66. return 0;
67. }

Figure 19.6. (Continued)

For clarity, the standard headers and exception handlers have been left out of the code
segment and the cosNaming name of the Domain Manager has been hard-coded (lines 39
and 40). The user should save this program as installHW.c, short for ‘installHello World’.
In building this application the user will need to include, for linking, the SCA object files
(stubs and common) as well as the Name Service libraries. As before, the user is required to
fire up the Java Naming Service and Core Framework and launch the Node1 Devices. The
user then provides a reference to the Name Service on the command line, for example:

./installHW -ORBInitRef NameService=corbaloc::1.2@127.0.0.1:1050/
NameService

The Name Service is used to retrieve the Domain Manger object reference (line
60) and the application is installed in line 64. The single parameter required of the
installApplication() operation is the qualified name of the SAD file. The string
name of our SAD file is found in line 51. If the three files (executable, SAD, and SPD)
are located in the right place and consistently named the install() operation should run
without incident. The reader can run the previously provided queryDomainManager program
and witness the presence of the new ApplicationFactory object. This install() operation

HMI Applications 393

need only be run once because the SCA requires core frameworks to remember which
applications are installed across power cycles. SCARI performs this function with a file
called ApplicationFactory.conf that is read on Core Framework startup. Essentially
the application factories are re-installed from scratch every time.

Before we are able to instantiate or create() our Hello World application there are some
modifications required to the Core Framework itself. An applications programmer could inherit
the ApplicationFactory interface and overload the create() operation. This is a server
side operation, and because the server software is written in Java our overloaded operation
would be too. The SCARI Core Framework was principally designed to work with SCA-
compliant applications in packaged Java jar files. Our legacy application is simply an executable
meant to run from the command line. The SCARI designers actually built in the ability
to deal with non-Java applications but a few code modifications are required to make it work.

The first modification is to recognize a non-Java application and form the command line
argument.

in $SCA_HOME/demosources/devices
modify ExecutableDeviceOperationsImpl.java as follows:

1. modify line 870 to read:
from: if(runtimeName != "")
to: if (runtimeName.compareToIgnoreCase("java") ==
0)

2. make a copy of the entire else block, lines 908–919
3. paste it underneath the orginal else block
4. modify line 908:

from: else
to: else if(runtimeName.compareToIgnoreCase("Xterm")
== 0)

5. insert two lines before line 918 to read:
execCmdList.add("xterm");
execCmdList.add("-e");

Change 1 will distinguish between a Java and non-Java runtime. The SCARI Core
Framework uses the SPD element runtime to convey this information to the Domain
Manager. The SCA does not specify how to convey run-time information so this behavior
is likely to be unique to SCARI. Modifications 2–4 add an elseif block appropriate to a
runtime of Xterm. When runtime is not ‘java’ or ‘Xterm’, then the final else clause executes
the filename just as if it were on the command line. Modification 5 adds lines to the Xterm
block that prepends the executable filename with the command and parameter necessary
for the executable to be run in a newly spawned X terminal. So for runtime = Xterm, the
SCARI Core Framework will send the following command line to the OS:

xterm -e pathname/appName

This will take the name of our executable as identified in the SPD and launch it in an
xterm. Upon execution a new window is spawned and our Hello World application begins
execution.

Additional modification is required to the SCARI software: Namely, the Core Framework
was tested only for SCA-compliant waveforms and not for legacy applications so there are
a few loose ends in the software.

394 An SCA-compliant Application

in $SCA_HOME/scasources/SCA/CFImpl
modify ApplicationFactoryImpl.java as follows:

6. add line 702:
if (assemblyController != null)

This simple modification checks for a null assemblyController object reference
before attempting to run the configure() operation on it. Since our application is not
CORBA-based it has no object reference. The final modification has to do with the lack of
an SCD file.

in $SCA_HOME/scasources/util/domainprofile/launchers
modify SADDeployedComponentLauncher.java as follows:

7. insert before line 476:
String scdFileName = "";
if (scdParser != null)

scdFileName = applicationPath + scdParser.
getPRFFile();

8. Modify line 481:
from: applicationPath + scdParser.getPRFFile(),
to: scdFileName,

Again this simple check will avoid the getPRFFile() operation from being performed
on a null object reference when the scdParser object does not exist. With these
Core Frmework modifications complete, the reader can re-build each of affected sub-
directories and then do a ‘make clean’ and a ‘make’ to re-build the $SCA_HOME/lib
directory. The reader can now start the Naming Service, and fire up the ORB with
./DemoPlatformNode1Bootup in the scari-Open directory. We are now ready to
instantiate and execute our application. Figure 19.7 shows a short code segment that will
invoke the create() operation on the correct ApplicationFactory interface.

Once the ORB is started it is necessary to create a few empty parameters that will be
passed to the create() operation. Line 33 allocates memory for a CF::Properties

1. static CosNaming_NameComponent allObjs[1][3] = {
2. {{"SCARI_DM",""},{"DomainManager",""},{"",""}},
3. };
4.
5. int main(int argc, char * argv[])
6. {
7. CORBA_Environment ev;
8. CORBA_ORB orb;
9.
10. /* vars needed to find the DomainManager */
11. CosNaming_NamingContext myNC=CORBA_OBJECT_NIL;
12. CosNaming_Name myBindingName;
13. SCA_CF_DomainManager dmObj=CORBA_OBJECT_NIL;
14.
15. /* vars needed to find the correct AppFact */

Figure 19.7. Hello World Create program

HMI Applications 395

16. CORBA_string aString="HelloWorld"; /* softwareassembly name */
17. SCA_CF_DomainManager_ApplicationFactorySequence *afSeq;
18. SCA_CF_ApplicationFactory anAppFact;
19.
20. /* vars needed for create() */
21. SCA_CF_Application ourApp; /* return value */
22. SCA_CF_Properties* initProp;
23. SCA_CF_DeviceAssignmentSequence* dasSeq;
24.
25. /* miscellaneous vars */
26. CORBA_string bString;
27. int i;
28.
29. CORBA_exception_init(&ev);
30. startOrb(&argc,argv,&orb,&ev);
31.
32. /* Initialize vars needed for create() */
33. initProp = SCA_CF_Properties__alloc();
34. (*initProp)._length=0;
35. dasSeq = SCA_CF_DeviceAssignmentSequence__alloc();
36. (*dasSeq)._length = 0;
37.
38. /* get Domain Manager object reference */
39. myNC = CORBA_ORB_resolve_initial_references(
40. orb,"NameService",&ev);
41. myBindingName._length=2;
42. myBindingName._buffer= &(allObjs[0][0]);
43. dmObj=(SCA_CF_DomainManager)
44. CosNaming_NamingContext_resolve(myNC,
45. (const CosNaming_Name*)&myBindingName, &ev);
46.
47. /* Iterate through sequence of AppFactories and
48. * locate the correct appFactory */
49. afSeq = SCA_CF_DomainManager__get_applicationFactories(dmObj, &ev);
50. for (i=0; i<(*afSeq)._length; ++i) {
51. anAppFact = (SCA_CF_ApplicationFactory) *((*afSeq)._buffer+i);
52. bString = SCA_CF_ApplicationFactory__get_name(anAppFact,&ev);
53. if (strcmp(aString,bString)==0) break;
54. CORBA_free(bString);
55. }
56. if (i!=(*afSeq)._length) {
57. printf("Found %s appFactory\n",bString);
58. CORBA_free(bString);
59. }
60.
61. /* run the create method */
62. ourApp = SCA_CF_ApplicationFactory_create(anAppFact, "rtName",

Figure 19.7. (Continued)

396 An SCA-compliant Application

63. (const SCA_CF_Properties*)initProp,
64. (const SCA_CF_DeviceAssignmentSequence*)dasSeq,&ev);
65.
66. return 0;
67. }

Figure 19.7. (Continued)

type. Recall that this is just an unbounded sequence of DataType. Line 34 sets the
length of that unbounded sequence to zero. This parameter is normally used to over-ride
configure() values found in an application’s PRF files. Line 35 allocates an sequence of
device assignments. These are devices that would be allocated to the application. There is no
run-time information contained in the DeviceAssignment sequence. It is merely an sequence
of strings that show how application components (identified as UUID strings) map to devices
(identified as UUID strings). The data structure is used in a strictly clerical sense by the
SCARI Core Framework. We choose to allocate (line 35), and pass an empty sequence (line
36). Lines 38 through 45 uses the Name Service to locate the Domain Manager:

./createHW -ORBInitRef NameService=corbaloc::1.2@127.0.0.1:1050/
NameService

Line 49 will perform a _get() operation that returns an unbounded sequence of
Application Factories. Line 51 retrieves the object reference of an individual Application
Factory. Line 52 performs a __get_name() operation on the ApplicationFactory in order
to recover its name attribute. When an ApplicationFactory named ‘Hello World’ is found, the
search loop is exited (line 53) and the ApplicationFactory::create() operation is
exercised on the Hello World ApplicationFactory object (line 62). As required by the SCA,
a run-time name is given to the application, ‘rtName’, as a parameter to the create()
operation. Our helper application should exit successfully and an X-terminal with ‘Hello
World’ running should appear.

19.4 Shutting Down
Typically any kind of distributed application is harder to shutdown than startup. We
experience a bit of relief with the SCARI CF in that the existing GUI-based Application
Manager can be used to shutdown our Hello World application cleanly. At the $SCA_HOME
directory, start the Application Manager by typing

./startApplicationManager &

A window will open up that shows the installed applications. Click on the Hello World
application and the user will see the ‘rtName’ instance of the application running.
Highlight the name of the instance and click ‘Shutdown’. The ‘Hello World’ X-terminal
should disappear and the process should be dropped from the process list.

It should be possible to run multiple instances of the Hello World program by merely
providing a unique run-time name to each instance.

An SCA-compliant Hello World Application 397

19.5 An SCA-compliant Hello World Application

In designing an SCA-compliant application we will divide responsibilities between the
application and the device. Our approach will be to create an SCA-compliant terminal device
which will be started when the Core Framework and other devices are started on the node.
Recall the output from the Name Service after the node is initialized (see Figure 17.3) There
are currently two devices, Audio and RF, as well as a Device Manager and a Logger service.
We will modify the Device Configuration Descriptor (DCD), Node1.dcd.xml, to include
a new TerminalDevice. Later an application is provided that will make a Port connection
to the TerminalDevice. Once the application is started a string will be sent for display on
the terminal. Our Hello World application will have four components: a terminal device; a
talk application that generates the ‘Hello World!’ string; and two Port objects. A uses Port
will be associated with the application and a provides Port with the terminal device. For
the sake of brevity connections will not be made to the event channels or logger; however,
both the device and application will be registered with the Name Service. Normally the
IDM event channel is used by devices to announce a change in usageState, adminState,
or operationalState. Applications use the ODM event channel to announce the addition or
removal of components. Messages are redundantly posted to the logger object. The Core
Framework will take care of some of these notifications. Figure 19.8 shows the objects that
compose our SCA-compliant Hello World application.

Talk
Application

Terminal
Device

FromTalker
uses port

ToTerm
provides port

Figure 19.8. SCA-compliant Hello World application

19.5.1 An SCA-compliant Terminal Device

All four components in the Hello World application are CORBA objects that extend Core
Framework interfaces. Figure 19.9 provides the very simple IDL for the Terminal object. To
avoid contaminating the global namespace, line 6 creates a module called wileyDevices.
Two interfaces are defined in that module, one for the Port and the other the terminal device
itself. No new operations are added to these objects. We intend to use only operations that
are inherited from the Core Framework.

398 An SCA-compliant Application

1. #ifndef _TERMINAL_IDL
2. #define _TERMINAL_IDL
3.
4. #include "SCA.idl"
5.
6. module wileyDevices
7. {
8. interface termPort : SCA::CF::Port, SCA::PushPorts::

OctetSeqConsumer
9. {
10. // inherits
11. // oneway void processOctet Msg(in CF::OctetSequencemsg,
12. // in CF::Properties options);
13. };
14.
15. interface terminalDevice : SCA::CF::Device {
16.
17. };
18.
19. };
20.
21. #endif

Figure 19.9. Terminal Device IDL

The SCARI implementation extends the SCA by offering Push and Pull Port interfaces.
The SCA only defines Port types, whereas the SCARI implementation actually implements
push and pull operations on the different types of ports. For example, these SCA port types
include sequences of longs, Booleans, floats, etc. For our terminal port we choose the SCA
octet sequence. Line 8 shows the termPort interface inheriting both the SCA Port interface
and the SCARI OctetSeqConsumer interface. The SCA Port interface provides operations for
connect and disconnect while the OctetSeqConsumer provides a processOctetMsg operation.
The Talk application will invoke the processOctetMsg interface to send a null-terminated
sequence of octets to the terminal device. The terminal implementation of processOctetMsg
will simply print the octet sequence to the Xterm. Line 15 shows the interface for the
terminalDevice itself. It has no new operations or attributes but will implement only the
19 operations it inherits from the SCA Device interface. These SCA standard interfaces
primarily allow the Core Framework to control the life cycle of the terminal device.

When the SCARI Core Framework is started a DeviceManager object reads the
Node1.dcd.xml file and begins to instantiate devices and then register them with the
Domain Manager. We simply modify the XML to point to a new device – that is our terminal
device executable – and the Core Framework does the rest. The Core Framework will invoke
operations on our device object during this instantiation procedure so, at a minimum, our
executable needs to implement these operations. It is first necessary to compile the Terminal
IDL into ‘C’ code and then into object code that can be linked in to the executable. Since
we are implementing the server side of our object it will be necessary for the IDL compiler

An SCA-compliant Hello World Application 399

to generate skeleton-impl ‘C’ code. The job of implementing the terminal device will be to
fill in the skeleton-impl code. The command to compile the IDL is

orbit-idl-2 --showcpperrors -I $SCA_HOME/idl --skeleton-impl Terminal.idl

The result of the compile operation will be the five files: Terminal.h; Terminal-
stubs.c; Terminal-skels.c; Terminal-common.c; and Terminal-skelimpl.c Everything except
the skelimpl file can be compiled by adding their source code filenames to the Makefile
found in Figure 17.2. Because of the inheritance of the Device interface from the Core
Framework IDL the skelimpl contains many more data structures, prototypes, and empty
implementations than we will actually need. In fact all of the parent Core Framework objects
are also present in the skelimpl – these are simply not needed. It is helpful but not mandatory
to create a separate skelimpl file and then cut and paste only the portions of the Terminal-
skelimpl.c that we will actually implement. There are five major sections to the skelimpl
file: 1) servant structs; 2) prototypes; 3) epv structs; 4) vepv structs; and 5) the empty impl
functions. We will extract only what is needed for our terminal implementation. We will
need only two structs from the first section, impl_POA_wileyDevices_termPort
and impl_POA_wileyDevices_terminalDevice. The reader will notice that
SCA::Device attributes are contained within these data structures, e.g. identifier,
compositeDevice, and profile. Proceed to the next section of the skelimpl file by searching
for ‘stub proto’. This section contains prototypes for all the operations. Extract any prototype
that contains wileyDevices_termPort or wileyDevices_terminalDevice. Do
the same extractions for the ‘epv struct’ and ‘vepv struct’ sections. The final section is found
by searching for ‘Stub impl’. These are the empty functions that we will fill in to implement
our device. There a total of 20 interfaces that must be implemented on the terminalDevice
and five interfaces for the termPort object. Figure 19.10 lists these functions, names.

1. impl_wileyDevices_termPort__create()
2. impl_wileyDevices_termPort__destroy()
3. impl_wileyDevices_termPort_connectPort()
4. impl_wileyDevices_termPort_disconnectPort()
5. impl_wileyDevices_termPort_processOctetMsg()
6. impl_wileyDevices_terminalDevice__create()
7. impl_wileyDevices_terminalDevice__destroy()
8. impl_wileyDevices_terminalDevice_initialize()
9. impl_wileyDevices_terminalDevice_releaseObject()
10. impl_wileyDevices_terminalDevice_runTest()
11. impl_wileyDevices_terminalDevice_configure()
12. impl_wileyDevices_terminalDevice_query()
13. impl_wileyDevices_terminalDevice_getPort()
14. impl_wileyDevices_terminalDevice__get_identifier()
15. impl_wileyDevices_terminalDevice_start()
16. impl_wileyDevices_terminalDevice_stop()
17. impl_wileyDevices_terminalDevice__get_usageState()
18. impl_wileyDevices_terminalDevice__get_adminState()
19. impl_wileyDevices_terminalDevice__set_adminState()

Figure 19.10. Terminal Device functions requiring implementation

400 An SCA-compliant Application

20. impl_wileyDevices_terminalDevice__get_operationalState()
21. impl_wileyDevices_terminalDevice__get_softwareProfile()
22. impl_wileyDevices_terminalDevice__get_label()
23. impl_wileyDevices_terminalDevice__get_compositeDevice()
24. impl_wileyDevices_terminalDevice_allocateCapacity()
25. impl_wileyDevices_terminalDevice_deallocateCapacity()

Figure 19.10. (Continued)

The __create and __destroy() functions are essentially constructors and
destructors for the objects. We will need to modify the parameter list of the
terminalDevice__create function to initialize readonly attributes. When the Core
Framework synthesizes the command line to start a device certain identifying information is
passed in to the executable namely, DEVICE_ID, DEVICE_LABEL, PROFILE_NAME,
and DEVICE_MGR_IOR. These same parameters will need to get passed to the
terminalDevice when it is created. The impl_POA data structure generated by the
IDL compiler already contains variables to hold these values: attr_identifier,
attr_label, and attr_softwareProfile. They will need to be initialized inside
the create operation. For the sake of brevity we will only provide code for five
of the 25 operations. For instance it is unlikely that the SCARI Core Framework
will invoke the runTest() operation so we can leave that function empty. We know
the following operations will get called by the Core Framework over the terminal’s
lifetime: get_identifier(), initialize(), get_softwareProfile(),
get_label(), and releaseObject(). We can surmise that when we
instantiate and run the Talk application there will be calls to getPort(),
termPort_connectPort(), and of course termPort_processOctetMsg(). The
following code extracts provides the precise implementations.

First of all it is necessary to modify the terminalDevice__create parameter list as follows:

static wileyDevices_terminalDevice impl_wileyDevices_terminalDevice__create(
PortableServer_POA poa, sharedMem *ss, pid_t myPID, /* ← added 2 params */
CORBA_Environment *ev)

where sharedMem is defined as:
typedef struct {

SCA_CF_DeviceManager theDevMgr;
SCA_CF_Device ourTerminalDevice;
wileyDevices_termPort ToTerm;
CosNaming_NamingContext myNC;
CosNaming_Name *pMyName;
CORBA_char *devId,*devLbl,*profName;

} sharedMem;

Most of these objects will need to be accessible to the terminalDevice servant. For
instance devId is the UUID passed in from the Core Framework. It needs to be available
also to the terminalDevice servant so it can be supplied as a return value to the
__get_identifier() operation. A little thought will need to go into the design of
our terminal device. But for now let’s define the __create function and the rest of the
skelimpl code.

An SCA-compliant Hello World Application 401

/* ------ init private attributes here ------ */
newservant->attr_identifier = ss->devId;
newservant->attr_label = ss->devLbl;
newservant->attr_softwareProfile = ss->profName;
newservant->privatePID = myPID;
newservant->ToTermPort = CORBA_Object_duplicate(ss->ToTerm,ev);
/* ------ ---------- end ------------- ------ */

Essentially we copy parameters that are passed to the create function in to the impl_POA
structure that is known to the terminalDevice servant object. At the beginning of the
skelimpl file we will need to add two members to the default impl_POA structure as
follows:

pid_t privatePID;
SCA_CF_Port ToTermPort;

We now present the implementations one by one:

For impl_wileyDevices_terminalDevice_releaseObject() add
kill(servant->privatePID,SIGHUP);

This signal will cause the servant object to exit its CORBA_run loop and start to shutdown.
No modification is required for initialize(). Our implementation has nothing to do.
A better implementation might clear the screen or something.

For impl_wileyDevices_terminalDevice_getPort()add

retval = CORBA_Object_duplicate(servant->ToTermPort,ev);

For impl_wileyDevices_terminalDevice__get_identifier()add

retval = CORBA_string_alloc(strlen(servant->attr_identifier));

strcpy(retval,servant->attr_identifier);

For impl_wileyDevices_terminalDevice__get_label()add

retval = CORBA_string_alloc(strlen(servant->attr_label));

strcpy(retval,servant->attr_label);

For impl_wileyDevices_terminalDevice__get_softwareProfile() add

1. /* ------ insert method code here ------ */
2. char *cPtr;
3. /* The SCA requires the software profile filename to be in the form */
4. /* of a profile element (Appendix D.9) */
5. /* As passed in the command line: /WileyTerminal.spd.xml, example */
6. /* output: <profile filename="/AudioDevice.spd.xml" type="SPD"/> */
7. static const char beginS[] = "<profile filename=\"";
8. static const char endS[] = "\" type=\"SPD\"/>";
9. retval = CORBA_string_alloc(strlen(servant->attr_softwareProfile) +
10. strlen(beginS) + strlen(endS));

402 An SCA-compliant Application

11. strcpy(retval,beginS);
12. cPtr = retval + strlen(retval); /* address of terminating \0 */
13. strcpy(cPtr,servant->attr_softwareProfile);
14. cPtr = retval + strlen(retval); /* address of terminating \0 */
15. strcpy(cPtr,endS);
16. /* ------ ---------- end ------------ ------ */

As the comment indicates, the softwareProfile returned by the __get() operation is in
the form of a profile element. This is not the way it was passed to the terminal device when
it is executed by the Core Framework so some string manipulation is involved. The SCARI
Core Framework will invoke this operation and test the syntax of the return value. So far
there is not too much device software that had to be written for SCA compliance. It is more
of a book-keeping function. The Core Framework gives the device certain strings from the
XML and the device regurgitates the strings when queried by the Core Framework. So let’s
get to the important code: that is, the code that will actually print to the screen.

For impl_wileyDevices_termPort_processOctetMsg() add
printf("%s\n",(char *)msg->_buffer);
fflush(stdout);

Those two lines are the guts of the terminal device code. The remaining operations on
the termPort don’t really do anything in our implementation and can be left alone. The SCA
requires some 45 user-defined exceptions to be posted, for instance, invalidPort. Our sample
application is designed for success not failure so we choose not to implement the throwing
of the 45 user-defined exceptions. The reader is advised that the JTAP tool which is used
for SCA-compliance testing does in fact test for the user-defined exceptions. Now for the
main program. Figure 19.11 provides the terminalDevice code that gets executed by the
Core Framework.

1. /* normal includes, orbit, CosNaming, etc. */
2. #include "SCA.h"
3. #include "Terminal.h"
4.
5. #include "wileyTerm-skelimpl.c"
6.
7. static const struct timespec tenthSecond = {0,100000000};
8.
9. int main(int argc, char * argv[]) {
10.
11. int i;
12. CORBA_Environment ev;
13. PortableServer_POA root_poa=CORBA_OBJECT_NIL;
14. CORBA_char *cPtr;
15. static const char under[] = "_";
16. sharedMem simpleBlock = {
17. CORBA_OBJECT_NIL, CORBA_OBJECT_NIL, CORBA_OBJECT_NIL,
18. CORBA_OBJECT_NIL};
19.

Figure 19.11. Main program for Terminal Device

An SCA-compliant Hello World Application 403

20. CORBA_exception_init(&ev);
21.
22. signal(SIGABRT, orderlyShutdown);
23. signal(SIGHUP, orderlyShutdown);
24.
25. /* The orb will ignore the args it cannot recognize */
26. /* and remove those args it understands */
27. startOrbPOA(&argc,argv,&global_orb,&root_poa,&ev);
28.
29. /* Parse the SCA-required args, will need to pass to
30. terminal device when it is created */
31. for (i=1; i<argc; ++i) {
32. if (strcmp(argv[i],"DEVICE_ID")==0)
33. simpleBlock.devId = argv[i+1];
34. if (strcmp(argv[i],"DEVICE_LABEL")==0)
35. simpleBlock.devLbl = argv[i+1];
36. if (strcmp(argv[i],"PROFILE_NAME")==0)
37. simpleBlock.profName = argv[i+1];
38. }
39.
40. /* Get the Device Manager Object Reference */
41. for (i=1; i<argc; ++i)
42. if (strcmp(argv[i],"DEVICE_MGR_IOR")==0) break;
43. simpleBlock.theDevMgr =
44. (SCA_CF_DeviceManager)CORBA_ORB_string_to_object(global_orb,
45. (const CORBA_char *)argv[i+1],&ev);
46.
47. /* create the Port object */
48. simpleBlock.ToTerm =
49. impl_wileyDevices_termPort__create(root_poa, &ev);
50.
51. /* Create the terminal device */
52. /* need to pass a pointer to sharedMem and the process number */
53. simpleBlock.ourTerminalDevice =
54. impl_wileyDevices_terminalDevice__create(
55. root_poa, &simpleBlock, getpid(), &ev);
56.
57. /* prepare to bind the terminalDevice with the Naming Service */
58. /* Need to get the initial naming context */
59. simpleBlock.myNC = CORBA_ORB_resolve_initial_references(
60. global_orb,"NameService",&ev);
61.
62. simpleBlock.pMyName = CosNaming_Name__alloc();
63. simpleBlock.pMyName->_length = 1;
64. simpleBlock.pMyName->_buffer = CosNaming_NameComponent__alloc();
65.
66. /* name = label + "_" + uuid */

Figure 19.11. (Continued)

404 An SCA-compliant Application

67. simpleBlock.pMyName->_buffer->id = CORBA_string_alloc(
68. strlen(simpleBlock.devLbl)+strlen(simpleBlock.devId)+1);
69. strcpy(simpleBlock.pMyName->_buffer->id,simpleBlock.devLbl);
70. cPtr = simpleBlock.pMyName->_buffer->id +
71. strlen(simpleBlock.pMyName->_buffer->id);
72. strcpy(cPtr,under);
73. cPtr = simpleBlock.pMyName->_buffer->id +
74. strlen(simpleBlock.pMyName->_buffer->id);
75. strcpy(cPtr,simpleBlock.devId);
76. simpleBlock.pMyName->_buffer->kind = CORBA_string_alloc(0);
77. *(simpleBlock.pMyName->_buffer->kind) = ’\0’;
78.
79. if (fork()!=0)
80. {
81. CORBA_ORB_run(global_orb,&ev); /* returns on signal */
82.
83. CosNaming_NamingContext_unbind(simpleBlock.myNC,
84. (const CosNaming_Name*)simpleBlock.pMyName, &ev);
85. kill(getppid(),SIGHUP);
86. }
87. else
88. registration (&simpleBlock); /* child process */
89.
90. return 0;
91. }

Figure 19.11. (Continued)

This code segment begins in line 3 by including the skelimpl.c. The reader should insert
the definition of the sharedMem data structure before this include. Since this is server
side software signal handlers are installed in lines 22 and 23 to allow the user the ability
to shut the ORB down cleanly. This signal handler and the startOrbPOA functions are
exactly the same as found in Figures 17.18 and 17.15. Lines 31 through 38 recognize the
SCA parameters passed in the command line and copy their pointers to the sharedMem
variable. Lines 41 through 45 retrieve the Device Manager’s stringified object reference and
converts it to a true object reference. The Device Manager object reference is provided in
that SCA-compliant Devices are required to register with it once they are up and running.
Now it’s time to create our two objects. Line 49 creates the Port object and line 54 the
terminalDevice object. A pointer to the sharedMem variable and the current process number
is passed to the terminal’s __create function. Finally in preparation for the Name Service
bind() operation, line 59 recovers the object reference to the initial Name Context. Lines 62
through 77 form the Name that will be used to bind to the terminal’s object reference. The
SCA does not mandate that Devices register with the Name Service, only with application
components. When it comes to performing Port connections the SCARI Core Framework
requires both components to be registered with the Name Service.

As of line 79 we are all ready to register our Device with both the Name Service and
Device Manager; however, our Device is not running yet. The POA servant does not accept
connections until CORBA_ORB_run() gets called and that call will block permanently until

An SCA-compliant Hello World Application 405

a shutdown is signaled. Once registered the SCARI Core Framework will start making calls
on our terminal object which isn’t running yet. This minor chicken and egg scenario is easily
handled by forking off a new process that will test for the existence of the terminal device
before registering with the Name Service and Device Manager. We know that fork() is
not on the list of mandatory POSIX APIs. However that list applies only to Application
components not Devices so we are well within the guidelines of the SCA. The call to
fork() clones the parent process and creates a child process. The only distinguishable
feature between parent and child is that fork() returns a value of zero to the child process
whereas in the parent the non-zero process number of the child is returned. So the parent
will execute line 81 which puts the servant online to accept connections to our Port and
terminalDevice objects. The child will execute line 88 and call the registration routine. Note
that a pointer to the sharedMem variable is passed. The code for the register routine is
provided in Figure 19.12.

1. int registration (sharedMem *sBlock)
2. {
3. CORBA_Environment ev;
4. CORBA_exception_init(&ev);
5.
6. /* bind with the Name Service */
7. CosNaming_NamingContext_bind(sBlock->myNC,
8. (const CosNaming_Name*)sBlock->pMyName,
9. (const CORBA_Object)sBlock->ourTerminalDevice, &ev);
10.
11. /* register with the Device Manager */
12. SCA_CF_DeviceManager_registerDevice(sBlock->theDevMgr,
13. (const SCA_CF_Device)sBlock->ourTerminalDevice, &ev);
14.
15. return 0;
16. }

Figure 19.12. Registration function for Terminal Device

Although the term ‘shared memory’ is used, there are two separate process spaces involved.
This ‘shared’ memory is unilateral from parent to child. When the fork occurs a child is
cloned that has an exact copy of the state of the parent. Any variable that changes state in the
parent will not be reflected in the child and vice versa. In line 7 the terminal object and Name
are bound on the initial Name Context. Finally, line 12 registers the terminal device with
the Device Manager. Thus the terminal’s object reference is available through the Device
Manager or the Name Service. It is likely that in other Core Framework implementations,
Devices will only be registered with the Device Manager. With the terminalDevice software
now complete it’s time to address modifications and additions to the XML.

19.5.2 Domain Profile for Terminal Device

The Device Component Descriptor (DCD) is used by the Device Manager at boot time
to start up all the Devices on a particular computational node. Like other files in the

406 An SCA-compliant Application

Domain Profile the DCD is broken up into sections. The ones that will get modified
are componentfiles and partitioning. We will not make modifications to connections
because our Device example will not connect to any other Device or service. Our
single connection between the Talk application component and the Terminal device will
be described in the SAD file. The Node1.dcd.xml file is located in the directory
$SCA_HOME/demosources/Node1/profile. Add the following componentfile to the
componentfiles element of the Node1 DCD:

<componentfile id="wileyTermFile" type="SPD">
<localfile name="TerminalDevice.spd.xml"/>
</componentfile>

This addition provides an Id to the component which will be referred to later in the DCD
and, as always, the name of the Device’s SPD. We reiterate here that EVERY component –
device or application – requires an SPD. SCA-compliant, CORBA-enabled components will
also require an SCD. Add the following componentplacement sub-element to the partitioning
element.

<componentplacement>
<componentfileref refid="wileyTermFile"/>
<componentinstantiation id="DCE:fe994973-b25a-4aa4-95e6-9b58555c39bc">
<usagename>TerminalWindow</usagename>
</componentinstantiation>
</componentplacement>

The componentfileref.refid attribute must match the componentfile.id
from the previous section. These elements link the two sections together. When the terminal
device registers with the Name Service it will concatenate usagename with Id separated by
an underscore. The result that will appear on the initial context of the name tree is

TerminalWindow_DCE:fe994973-b25a-4aa4-95e6-9b58555c39bc

The DCD componentfile.localfile.name attribute provides a link to the
terminal’s SPD which is presented in Figure 19.13.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE softpkg SYSTEM "dtd/softpkg.2.2.dtd">
3. <softpkg id="DCE:24573c13-7e78-42e0-8a11-23cab6ecc7dd"

name="wileyTerm">
4. <author>
5. </author>
6. <propertyfile type="PRF">
7. <localfile name="TerminalDevice_SPDLevel.prf.xml"/>
8. </propertyfile>
9. <descriptor>
10. <localfile name="TerminalDevice.scd.xml"/>
11. </descriptor>
12. <implementation id="DCE:cc62f6a9-5ffb-4c7a-8031-d07d23a2a478">
13. <propertyfile>
14. <localfile name="TerminalDevice.prf.xml"/>

Figure 19.13. Terminal device SPD

An SCA-compliant Hello World Application 407

15. </propertyfile>
16. <code type="Executable">
17. <localfile name="wileyTerm"/>
18. </code>
19. <runtime name="Xterm" version="1"/>
20. <processor name="x86"/>
21. <os name="Linux"/>
22. </implementation>
23. </softpkg>

Figure 19.13. (Continued)

This SPD sequence provides several links to further XML files that will provide
information required for successful instantiation of the terminalDevice. Line 7 provides
a link to a Properties file (PRF) that will contain allocation properties and Log Service
settings for this device across all implementations: ppc, x86, linux, windows, etc. Line 10
contains a reference to the terminal’s SCD (more about that later). Line 14 refers to a
PRF file unique to this particular implementations (that is, x86-Linux-Xterm). This PRF
file contains command line exec parameters required by the ORB. Finally, in line 17 an
x86-Linux-Xterm implementation component wileyTerm is identified as the name of the
executable. When the terminalDevice code is successfully compiled this executable should be
copied to $SCA_HOME/demosources/Node1/profile. This directory is also home
to all the terminal device’s XML. Remember this same SPD can be supplemented to refer
to other implementations. In this sense the SPD readily supports portability in that the
Device Manager will match the correct executable to the processor type/operating system
combination.

Next we present the two PRF files. Figure 19.14 shows the PRF file that applies to all
implementations and Figure 19.15 shows the PRF unique to this implementation.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE properties SYSTEM "dtd/properties.2.2.dtd">
3. <properties>
4. <simple id="TERMINAL_TYPE" type="string" mode="readwrite">
5. <value>Xterm</value>
6. <kind kindtype="allocation"/>
7. <action type="eq"/>
8. </simple>
9. <simplesequence id="PRODUCER_LOG_LEVEL" type="long"
10. name="PRODUCER_LOG_LEVEL">
11. <kind kindtype="configure"/>
12. </simplesequence>
13. </properties>

Figure 19.14. SPD level PRF file

In lines 4 through 8, the SCA requires that all Devices have at least one allocation property.
In lines 9 through 12, the SCA requires that all components have a PRODUCER_LOG_LEVEL

408 An SCA-compliant Application

14. <?xml version="1.0" encoding="UTF-8"?>
15. <!DOCTYPE properties SYSTEM "dtd/properties.2.2.dtd">
16. <properties>
17. <simple id="dummy0" type="string">
18. <value>-ORBIIOPIPv4=1</value>
19. <kind kindtype="execparam"/>
20. </simple>
21. <simple id="dummy1" type="string">
22. <value>-ORBIIOPUNIX=0</value>
23. <kind kindtype="execparam"/>
24. </simple>
25. </properties>

Figure 19.15. PRF file containing exec parameters

property. These properties apply across all implementations. Now for the execparams unique
to our ORBit ORB. Lines 18 and 22 setup two command line options that are required to
configure ORBit for IIOP interoperability. Recall that the default mode of connectivity for
ORBit is a secure connection based on UNIX domain sockets. This protects the ORB from
Denial of Service attacks. We want to interoperate over TCP-IP with the Java ORB so we
enable IPv4 and disable UNIX domain sockets. The last bit of XML required is the SCD.
In earlier domain profile examples, we specifically examined the absolute minimum amount
of XML required to satisfy the DTD. In the case of the Software Component Descriptor
(SCD) all elements are required. Even if an object has no ports the componentfeatures must
still be present: it will just be empty. Figure 19.16 provides the SCD for our SCA-compliant
terminal device.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE softwarecomponent SYSTEM "dtd/softwarecomponent.2.2.dtd">
3. <softwarecomponent>
4. <corbaversion>2.2</corbaversion>
5. <componentrepid repid="IDL:CF/Device:1.0"/>
6. <componenttype>device</componenttype>
7. <componentfeatures>
8. <supportsinterface repid="IDL:CF/Device:1.0"
9. supportsname="Device"/>
10. <supportsinterface repid="IDL:CF/Resource:1.0"
11. supportsname="Resource"/>
12. <supportsinterface repid="IDL:CF/PropertySet:1.0"
13. supportsname="PropertySet"/>
14. <supportsinterface repid="IDL:CF/LifeCycle:1.0"
15. supportsname="LifeCycle"/>
16. <supportsinterface repid="IDL:CF/PortSupplier:1.0"
17. supportsname="PortSupplier"/>

Figure 19.16. SCD for SCA-compliant Device

An SCA-compliant Hello World Application 409

18. <supportsinterface repid="IDL:CF/TestableObject:1.0"
19. supportsname="TestableObject"/>
20. <ports>
21. <provides repid="IDL:PushPorts/OctetSeqConsumer:1.0"
22. providesname="ToTerm">
23. <porttype type="data"/>
24. </provides>
25. </ports>
26. </componentfeatures>
27. <interfaces>
28. <!--Supported Interfaces -->
29. <interface repid="IDL:CF/Device:1.0" name="Device">
30. <inheritsinterface repid="IDL:CF/Resource:1.0"/>
31. </interface>
32. <interface repid="IDL:CF/Resource:1.0" name="Resource">
33. <inheritsinterface repid="IDL:CF/PropertySet:1.0"/>
34. <inheritsinterface repid="IDL:CF/LifeCycle:1.0"/>
35. <inheritsinterface repid="IDL:CF/PortSupplier:1.0"/>
36. <inheritsinterface repid="IDL:CF/TestableObject:1.0"/>
37. </interface>
38. <interface repid="IDL:CF/PropertySet:1.0" name="PropertySet"/>
39. <interface repid="IDL:CF/LifeCycle:1.0" name="LifeCycle"/>
40. <interface repid="IDL:CF/PortSupplier:1.0" name="PortSupplier"/>
41. <interface repid="IDL:CF/TestableObject:1.0"

name="TestableObject"/>
42. <!- Port Interface ->
43. <interface repid="IDL:CF/Port:1.0" name="Port"/>
44. </interfaces>
45.</softwarecomponent>

Figure 19.16. (Continued)

This SCD is very much boilerplate for any SCA-compliant device. It basically reiterates the
repository ids of the Core Framework interfaces. This is completely pointless in that minimum
ORB’s do not have an interface repository. Our device inherits all of these interfaces through
SCA::Device. A key piece of information required by the Core Framework is found in lines
21 through 24 – this identifies our port interface. This must match information that will be
supplied in our Talk application SAD. That is all there is to it. Once the executable and
XML are placed in the proper directory, the next time the Core Framework starts up an
Xterm window should pop up.

19.5.3 An SCA-compliant Talk Application

The next task at hand is to design and develop an SCA-compliant application that will send
messages to our terminal device. As before we will start with the IDL, fill in the skelimpl,
write the main program, and finally present the XML. The IDL for our Talk application is
given in Figure 19.17.

We will add no attributes or operations – the Talk application will implement only
interfaces inherited from the Core Framework IDL. Since both Application and Device inherit

410 An SCA-compliant Application

1. #ifndef _TALK_IDL
2. #define _TALK_IDL
3.
4. #include "SCA.idl"
5.
6. module wileyApps
7. {
8. interface talk : SCA::CF::Application {
9.
10. };
11. };
12.
13. #endif

Figure 19.17. Talk application IDL

from Resource, and Application offers no new operations, the list of operations is pretty
much the same as Figure 19.10. The Application object does have five additional attributes
not found in Resource but we will find out that the SCARI Core Framework itself
implements those __get() operations and our server implementation doesn’t even get
called.

As before, compile the IDL and the generated ‘C’ files. Again it is recommended
to setup a separate skelimpl file and copy only the data structures, prototypes and
Stub implementations directly associated with the wileyApps_talk interface and the
CF_Port interface. The following implementations need to be filled in:

For the impl_POA_SCA_CF_Port struct add

wileyDevices_termPort *pTerminalPort; /* ptr to shared mem*/

int *pIsConnected; /* ptr to shared memory */

For the impl_POA_wileyApps_talk struct add

SCA_CF_Port FromTalkerPort;

int *pIsStarted; /* ptr to shared memory */

Modify the parameter list to impl_SCA_CF_Port__create()to include

wileyDevices_termPort *pTermPort

int *pIsConnect

To the body of impl_SCA_CF_Port__create() add

newservant->pTerminalPort=pTermPort; /* needed by connect */

newservant->pIsConnected=pIsConnect; /* needed by connect */

An SCA-compliant Hello World Application 411

To the body of impl_SCA_CF_Port_connectPort() add

*(servant->pTerminalPort) =

CORBA_Object_duplicate(connection,ev);

*(servant->pIsConnected) = TRUE;

Modify the parameter list of impl_wileyApps_talk__create�� add

sharedMem *ss,

To the body of impl_wileyApps_talk__create() add

newservant->FromTalkerPort =

CORBA_Object_duplicate(ss->FromTalker,ev);

newservant->pIsStarted = &(ss->isStarted);

To impl_wileyApps_talk_getPort() add

retval = CORBA_Object_duplicate(servant->FromTalkerPort,ev);

To impl_wileyApps_talk_start() add

*(servant->pIsStarted) = TRUE;

To impl_wileyApps_talk_stop() add

*(servant->pIsStarted) = FALSE;

These are all of the modifications required of the skelimpl file. We want our application to
be SCA-compliant therefore we will employ threads within the same process space. Where
the terminal device example used cloned memory our Talk application relies on shared
memory. That is a write to shared memory by one thread will need to be read in a different
thread. The skelimpl code inserts show data being written to shared memory via pointers.
An example of this is the shared memory variable to control the starting and stopping of the
application. The sharedMem struct is provided:

typedef struct {
SCA_CF_Application ourApplication; /* needed to bind with Name Service */
SCA_CF_Port FromTalker; /* needed for getPort */
volatile wileyDevices_termPort TerminalPort; /* set by connect */
CORBA_char *ncsIOR; /* from CF, application name context */
CORBA_char *Id, *bindName; /* other info from the CF */
volatile int isCreated;
volatile int isConnected;
volatile int isStarted;
volatile int isShuttingDown;
int argc; /* allows threads access to command line params */
char **argv;
} sharedMem;

This data structure should be defined prior to the #include for the skelimpl file. Some
more transactions with the sharedMem structure include a getPort operation which returns a

412 An SCA-compliant Application

duplicate of Talk’s uses port interface. The Core Framework will then perform a connect on
that port object. One of the parameters passed in connect() is the object reference to the
provides port. This is the port object on the terminal device on which we will be performing
processOctetMsg(). So internally the connect() operation duplicates the provides
port object reference to a shared memory area where the thread responsible for sending
the ‘Hello World’ can use it. Note that parameters used to communicate changes of state
between threads are qualified as volatile. This keyword forces the compiler to re-read the
variable from memory every time. An optimizing compiler might try to save clock cycles
by caching the variable into a register.

The main program for the Talk application is given in Figure 19.18. Note that initialization
of the ORB and POA does not take place in the main thread – this is different to any previous
example and will warrant further examination.

1. int main(int argc, char * argv[]) {
2.
3. CORBA_Environment ev;
4. sharedMem simpleBlock = {
5. CORBA_OBJECT_NIL, CORBA_OBJECT_NIL,CORBA_OBJECT_NIL, NULL };
6. CosNaming_Name myBindingName;
7. pthread_t serverT;
8. CosNaming_NamingContext appNC=CORBA_OBJECT_NIL;
9. CosNaming_Name *pAppName;
10. const char outString[] = "Hello World!";
11. SCA_CF_Properties *initProp=NULL;
12. SCA_CF_OctetSequence *aMsg=NULL;
13.
14. CORBA_exception_init(&ev);
15. simpleBlock.isCreated = simpleBlock.isConnected = FALSE;
16. simpleBlock.isStarted = simpleBlock.isShuttingDown = FALSE;
17.
18. simpleBlock.argc = argc;
19. simpleBlock.argv = argv;
20.
21. pthread_create(&serverT,
22. (const pthread_attr_t *)NULL,(void *)server,
23. (void*)&simpleBlock);
24.
25. signal(SIGABRT, orderlyShutdown);
26. signal(SIGHUP, orderlyShutdown);
27.
28. /* wait for objects to be created */
29. while (!simpleBlock.isCreated)
30. nanosleep(&tenthSecond,NULL);
31.
32. /* get the Application’s Naming Context */
33. appNC = (CosNaming_NamingContext)

Figure 19.18. Talk application main program

An SCA-compliant Hello World Application 413

34. CORBA_ORB_string_to_object(global_orb, simpleBlock.ncsIOR, &ev);
35.
36. /* bind the Application */
37. pAppName = CosNaming_Name__alloc();
38. pAppName->_length = 1;
39. pAppName->_buffer =CosNaming_NameComponent__alloc();
40.
41. pAppName->_buffer->id = CORBA_string_alloc(
42. strlen(simpleBlock.bindName));
43. strcpy(pAppName->_buffer->id,simpleBlock.bindName);
44. pAppName->_buffer->kind =CORBA_string_alloc(0);
45. *(pAppName->_buffer->kind) = ’\0’;
46.
47. CosNaming_NamingContext_bind(appNC,
48. (const CosNaming_Name*)pAppName,
49. (const CORBA_Object)simpleBlock.ourApplication, &ev);
50.
51. /* create parameters for the processOctetMsg operation*/
52. aMsg = SCA_CF_OctetSequence__alloc();
53. aMsg->_length = strlen(outString)+1;
54. aMsg->_maximum = aMsg->_length;
55. aMsg->_buffer = CORBA_sequence_CORBA_octet_allocbuf(aMsg->_length);
56. strcpy((char *)aMsg->_buffer,outString);
57.
58. initProp = SCA_CF_Properties__alloc();
59. (*initProp)._length=0;
60.
61. /* Wait for connect */
62. while (!simpleBlock.isConnected) {
63. nanosleep(&tenthSecond,NULL);
64. }
65.
66. operateLoop(ss,aMsg,initProp)
67.
68. pthread_join(serverT,(void **)NULL);
69. return 0;
70. }

Figure 19.18. (Continued)

After initializing a few variables the main program creates a server thread and passes
the shared memory block to it. The thread will parse the command line start the ORB
and POA, and then create the Port and Talk objects. The main program will block in
a loop at line 29 until the thread has finished creating the two objects. The caller – in
this case the Core Framework – passes the application’s Name Context as an execparam.
Lines 33 and 34 convert that object reference from stringified form. Lines 41 through 49
bind the application Name and object reference to that context. Next main synthesizes
the parameters for the processOctetMsg operation (lines 51 to 59). At line 62 the main

414 An SCA-compliant Application

program will check and wait, if necessary, for the port to be connected. The Core Framework
actually calls the connect operation as part of parsing the application’s SAD file. Once
connected the main program can go into its while-forever loop. This loop will return only
when the terminalPort object reference is set to NIL. The while-forever loop is given in
Figure 19.19.

1. operateLoop(sharedMem *ss, SCA_CF_OctetSequence aMsg,
2. SCA_CF_Properties initProp) {
3. int i=0;
4. CORBA_Environment ev;
5. CORBA_exception_init(&ev);
6.
7. /* wait for application to get started or released */
8. while (1) {
9. nanosleep(&tenthSecond,NULL);
10. if (ss->isStarted) {
11. if ((++i)%10 == 0) { /* send Msg once a second */
12. if (!CORBA_Object_is_nil((CORBA_Object)ss->TerminalPort,&ev)){
13. wileyDevices_termPort_processOctetMsg(ss->TerminalPort,
14. aMsg, initProp, &ev);
15. }
16. }
17. }
18 if (CORBA_Object_is_nil((CORBA_Object)ss->TerminalPort,&ev)) {
19. ss->isShuttingDown = TRUE;
20. break;
21. }
22. } /* end while (1) */
23. }

Figure 19.19. While-Forever loop for Talk application

This is a loop that runs 10 times a second. If the application is started (line 10) the loop
will send a packet to the terminal device every 10th iteration. In line 12 the software tests
for a NIL object reference before attempting the processOctetMsg operation. The skelimpl
software will set the provides port object reference to NIL as part of releaseObject(). When
this happens lines 18 through 20 will notify the other threads and exit the while-forever loop.

19.5.4 Multi-threaded Servant

In order for this application to work the ORB has to be configured to run in multi-threaded
mode. The Root POA cannot be configured to do this so it will be necessary to create a child
POA that is configured at creation for ‘Thread per Request’ operation. The code segment of
Figure 19.20 provides this startup sequence.

This code sequence was derived from test code that was posted on the ORBit2 website [29];
we are grateful to the authors for their efforts without which our SCA-compliant application
would be in a world of hurt. There only a few differences over the basic RootPOA activation
found in Figure 17.15. In line 9 the option passed to ORB_init() is modified to read

An SCA-compliant Hello World Application 415

1. static void startOrbPOA(int* argc, char** argv,
2. CORBA_Environment *ev)
3. {
4. const static int MAX_POLICIES = 1;
5. PortableServer_POA rootpoa = CORBA_OBJECT_NIL;
6. PortableServer_POAManager rootpoa_mgr = CORBA_OBJECT_NIL;
7. CORBA_PolicyList *poa_policies;
8.
9. global_orb = CORBA_ORB_init(argc, argv, "orbit-local-mt-orb", ev);
10.
11. rootpoa = (PortableServer_POA)
12. CORBA_ORB_resolve_initial_references(global_orb,"RootPOA",ev);
13.
14. rootpoa_mgr =
15. PortableServer_POA__get_the_POAManager(rootpoa,ev);
16.
17. poa_policies = CORBA_PolicyList__alloc ();
18. poa_policies->_maximum = MAX_POLICIES;
19. poa_policies->_length = MAX_POLICIES;
20. poa_policies->_buffer = CORBA_PolicyList_allocbuf (MAX_POLICIES);
21. CORBA_sequence_set_release (poa_policies, CORBA_TRUE);
22.
23. poa_policies->_buffer[0] = (CORBA_Policy)
24. PortableServer_POA_create_thread_policy (
25. rootpoa,
26. PortableServer_ORB_CTRL_MODEL,
27. ev);
28.
29. default_poa = PortableServer_POA_create_POA (rootpoa,
30. "Thread Per Request POA",
31. rootpoa_mgr, poa_policies, ev);
32.
33. ORBit_ObjectAdaptor_set_thread_hint (
34. (ORBit_ObjectAdaptor) default_poa,
35. ORBIT_THREAD_HINT_PER_REQUEST);
36.
37. CORBA_Policy_destroy (poa_policies->_buffer[0], ev);
38. CORBA_free (poa_policies);
39.
40. PortableServer_POAManager_activate(rootpoa_mgr,ev);
41. CORBA_Object_release((CORBA_Object)rootpoa_mgr,ev);
42.
43. }

Figure 19.20. Multi–threaded POA activation

orbit-local-mt-orb. The ‘mt’ here denotes a multi-threaded operation. Everything
proceeds normally until line 17 where an unbounded sequence of policies is allocated. The
policy itself is returned by a call to create_thread_policy in line 24. This operation
is part of the minimum CORBA spec in 1998 but is then deleted in the 2002 spec. Line

416 An SCA-compliant Application

29 actually creates the new POA as a ‘Thread Per Request POA’ under the root. Line 40
activates the root including the newly created threaded POA. This routine is called from the
server thread that was created back in the main program. After starting the ORB and POA the
server thread has a few tasks to perform before entering the blocking CORBA_ORB_run()
routine. The server code is provided in Figure 19.21.

1. void server(sharedMem *sBlock)
2. {
3. int i;
4. int argc = sBlock->argc;
5. char **argv = sBlock->argv;
6. CORBA_Environment ev;
7.
8. CORBA_exception_init(&ev);
9.
10. /* The orb will ignore the args it cannot recognize */
11. /* It will remove those args it understands */
12. startOrbPOA(&argc,argv,&ev);
13.
14. /* Parse the SCA-required args, will need to pass to
15. application object when it is created */
16. for (i=1; i<argc; ++i) {
17. if (strcmp(argv[i],"COMPONENT_IDENTIFIER")==0)
18. sBlock->Id = argv[i+1];
19. if (strcmp(argv[i],"NAMING_CONTEXT_IOR")==0)
20. sBlock->ncsIOR = argv[i+1];
21. if (strcmp(argv[i],"NAME_BINDING")==0)
22. sBlock->bindName = argv[i+1];
23. }
24.
25. /* Create the port first, must pass to Application constructor */
26. sBlock->FromTalker =
27. impl_SCA_CF_Port__create(default_poa,
28. &(sBlock->TerminalPort), &(sBlock->isConnected), &ev);
29.
30. /* Create the application */
31. sBlock->ourApplication =
32. impl_wileyApps_talk__create(
33. default_poa, sBlock, &ev);
34.
35. /* Notify main program to register the Application */
36. sBlock->isCreated = TRUE;
37. CORBA_ORB_run(global_orb,&ev); /* block until signal */
38.
39. /* notify main program that we are shutting down */
40. sBlock->TerminalPort =
41. CORBA_Object_duplicate(CORBA_OBJECT_NIL,&ev);
42.
43. }

Figure 19.21. Application/Port server thread

An SCA-compliant Hello World Application 417

The server thread contains some very simple code. After starting the ORB/POA (line 12)
the server will parse the command line and populate the sharedMem data structure with
pointers to the various SCA-required arguments. In lines 26 through 33 the server creates
the Port and Talk objects. The sharedMem’s is Created flag is updated to let the main
program know that it is now safe to bind the application to the Name Service. The blocking
call to fire up the ORB is made in line 37 and will not return until a signal is received.
A SIGHUP is actually sent by the Core Framework whereas in the terminal device the
SIGHUP was generated within the releaseObject() skelimpl. Line 40 sets the TerminalPort
object reference to NIL; this will tell the main program to break out of the while-forever
loop and shutdown. And that is all the software for the our Talk application. Just two items
remain: generation of the XML and some more upgrades to the SCARI Core Framework for
minimum CORBA.

19.5.5 Talk Application XML

The centrepiece of the SCA-compliant application is the SAD given in Figure 19.22.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE softwareassembly SYSTEM "dtd/softwareassembly.2.2.dtd">
3. <softwareassembly id="DCE:2037fd5d-41f5-4707-902d-a6a4210e331c"
4. name="Talk0">
5. <componentfiles>
6. <componentfile id="TalkAssemblyControllerFile" type="SPD">
7. <localfile name="TalkAssemblyController.spd.xml"/>
8. </componentfile>
9. </componentfiles>
10. <partitioning>
11. <componentplacement>
12. <componentfileref refid="TalkAssemblyControllerFile"/>
13. <componentinstantiation
14. id="DCE:e9b7420a-5f94-4630-8642-3847bc3e6f91">
15. <usagename>TalkController0</usagename>
16. <findcomponent>
17. <namingservice name="TalkController"/>
18. </findcomponent>
19. </componentinstantiation>
20. </componentplacement>
21. </partitioning>
22. <assemblycontroller>
23. <componentinstantiationref
24. refid="DCE:e9b7420a-5f94-4630-8642-3847bc3e6f91"/>
25. </assemblycontroller>
26. <connections>
27. <connectinterface id="TalkerToTerminalConnection">
28. <usesport>
29. <usesidentifier>FromTalker</usesidentifier>
30. <findby>
31. <namingservice name=

Figure 19.22. Talk application SAD

418 An SCA-compliant Application

32. "TalkController_DCE:e9b7420a-5f94-4630-8642-3847bc3e6f91"/>
33. </findby>
34. </usesport>
35. <providesport>
36. <providesidentifier>ToTerm</providesidentifier>
37. <findby>
38. <namingservice name=
39. "TerminalWindow_DCE:fe994973-b25a-4aa4-95e6-9b58555c39bc"/>
40. </findby>
41. </providesport>
42. </connectinterface>
43. </connections>
44. </softwareassembly>

Figure 19.22. (Continued)

As before the SAD provides a linkage to each component’s SPD (line 7). In lines 6
and 12 are a link between the componentfile and the componentinstantiation.
They must match. In lines 14 and 17, the actual name used to bind the application to the
real-time Name Context is the concatenation of these two attributes. In line 24 we identify
our single component (line 14) as the assembly controller. Finally, we identify our single
connection. The connection itself is given a name (line 27). A single uses port (lines 28–34)
and provides port (lines 35–41) are identified. The naming convention for these ports is
exactly as given in the initial application block diagram (see Figure 19.8). As required by
the SCARI Core Framework, both Port object references must be accessible through the
Name Service. These names are identified in lines 32 and 39. Since Device and Application
components are registered in different Name Contexts, the Core Framework will need to
search the name tree for the desired connection component. Note also that the port name
given in line 36 must match the port name given in line 23 of the Terminal device’s SCD
(see Figure 19.16). Next the mandatory SPD is given in Figure 19.23.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE softpkg SYSTEM "dtd/softpkg.2.2.dtd">
3. <softpkg id="DCE:8b99d9e6-9ea3-426b-9d42-5e8849eea95b"
4. name="talkerResource" type="sca_compliant">
5. <author></author>
6. <descriptor>
7. <localfile name="TalkAssemblyController.scd.xml"/>
8. </descriptor>
9. <implementation id="DCE:5ad12078-79f4-4068-a37f-96d4417797b9">
10. <description>"C" program sends Hello to Terminal</description>
11. <propertyfile type="PRF">
12. <localfile name="TalkAssemblyController.prf.xml"/>
13. </propertyfile>
14. <code type="Executable">
15. <localfile name="/wileyApp"/>
16. </code>

Figure 19.23. Talk application SPD

An SCA-compliant Hello World Application 419

17. <runtime name="ELF_executable" version="1"/>
18. <os name="Linux"/>
19. <processor name="x86"/>
20. <dependency type="mips_allocation">
21. <propertyref refid="DCE:F364A630-5F0E-11d4-8164-00508B6A52E6"
22. value="2"/>
23. </dependency>
24. <dependency type="memory_allocation">
25. <propertyref refid="DCE:F364A630-5F0E-11d4-8164-00508B6A52E6"
26. value="200"/>
27. </dependency>
28. </implementation>
29. </softpkg>

Figure 19.23. (Continued)

Two additional XML files are identified in the SPD. These are the SCD (line 7) and the
Properties file (line 12). The implementation filename is identified in line 15. Its runtime
is identified as an ‘ELF_executable’. A previous example of run time was ‘Xterm’. An
ELF_executable will not have a window associated with it, but will run as a background
process. Finally, since the application is required to run on ExecutableDevice the two required
dependencies – mips_allocation and memory_allocation – are identified by
UUID in lines 21 and 25. These UUIDs must match the allocation properties of UUIDs
given in the ExecutableDevice’s PRF file. This is not unlike the same matching that had to
be performed for the non-SCA-compliant version of the Hello World program. The PRF file
for this implementation is exactly the same as that for the terminal device (see Figure 19.15).
These properties are simply command line options that are passed to the ORB. Figure 19.24
presents the application’s SCD.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE softwarecomponent SYSTEM "dtd/softwarecomponent.2.2.dtd">
3. <softwarecomponent>
4. <corbaversion>2.2</corbaversion>
5. <componentrepid repid="IDL:CF/Resource:1.0"/>
6. <componenttype>resource</componenttype>
7. <componentfeatures>
8. <supportsinterface repid="IDL:CF/PortSupplier:1.0"
9. supportsname="PortSupplier"/>
10. <supportsinterface repid="IDL:CF/LifeCycle:1.0"
11. supportsname="LifeCycle"/>
12. <supportsinterface repid="IDL:CF/PropertySet:1.0"
13. supportsname="PropertySet"/>
14. <supportsinterface repid="IDL:CF/TestableObject:1.0"
15. supportsname="TestableObject"/>
16. <ports>
17. <uses repid="IDL:CF/Port:1.0" usesname="FromTalker">

Figure 19.24. Talk application SCD

420 An SCA-compliant Application

18. <porttype type="data"/>
19. </uses>
20. </ports>
21. </componentfeatures>
22. <interfaces>
23. <interface repid="IDL:CF/Port:1.0" name="FromTalker"/>
24. <interface repid="IDL:CF/Resource:1.0" name="Resource">
25. <inheritsinterface repid="IDL:CF/PortSupplier:1.0"/>
26. <inheritsinterface repid="IDL:CF/LifeCycle:1.0"/>
27. <inheritsinterface repid="IDL:CF/PropertySet:1.0"/>
28. <inheritsinterface repid="IDL:CF/TestableObject:1.0"/>
29. </interface>
30. <interface repid="IDL:CF/PortSupplier:1.0" name="PortSupplier"/>
31. <interface repid="IDL:CF/LifeCycle:1.0" name="LifeCycle"/>
32. <interface repid="IDL:CF/PropertySet:1.0" name="PropertySet"/>
33. <interface repid="IDL:CF/TestableObject:1.0"
34. name="TestableObject"/>
35. </interfaces>
36. </softwarecomponent>

Figure 19.24. (Continued)

The important part of the SCD is the identification of the uses port in lines 16–20. The
name usesname in line 17 needs to match line 29 of the SAD (Figure 19.22). This completes
all the code that is required for the Talk application. Once compiled and linked it will be
necessary to create a sub-directory for the application files. This sub-directory needs to
be created under $SCA_HOME/demosources/Node1/profile. For consistency with
HMI code yet to be provided, the directory should be named Talker. The application should
be named as specified in line 15 of the SPD; wileyApp. We need one final HMI application
to allow us to install, create, start, stop and release our application. Figure 19.25 provides
such a code.

1. static CosNaming_NameComponent allObjs[7][2] = {
2. {"SCARI_DM",""},{"DomainManager",""} };
3.
4. int main(int argc, char * argv[])
5. {
6. CORBA_Environment ev;
7. CORBA_ORB orb;
8. CosNaming_NamingContext myNC=CORBA_OBJECT_NIL;
9. CosNaming_Name myBindingName;
10.
11. SCA_CF_DomainManager dmObj=CORBA_OBJECT_NIL;
12.
13. CORBA_string aString="Talk0", bString;
14. CORBA_string cString="/Talker/Talk0.sad.xml";

Figure 19.25. Talk application control code

An SCA-compliant Hello World Application 421

15. CORBA_string dString="rtName";
16. SCA_CF_DomainManager_ApplicationFactorySequence *afSeq;
17. SCA_CF_ApplicationFactory anAppFact;
18.
19. SCA_CF_DomainManager_ApplicationSequence* aSeq;
20. SCA_CF_Application ourApp;
21.
22. SCA_CF_DeviceAssignmentSequence* dasSeq;
23. SCA_CF_Properties* initProp;
24. int i;
25.
26. CORBA_exception_init(&ev);
27. startOrb(&argc,argv,&orb,&ev);
28.
29. /* initialize some empty sequences for create */
30. dasSeq = SCA_CF_DeviceAssignmentSequence__alloc();
31. (*dasSeq)._length = 0;
32. initProp = SCA_CF_Properties__alloc();
33. (*initProp)._length=0;
34.
35. /* Locate the Domain Manager */
36. myNC = CORBA_ORB_resolve_initial_references(
37. orb,"NameService",&ev);
38.
39. myBindingName._length=2;
40. myBindingName._buffer= &(allObjs[0][0]);
41.
42. dmObj=(SCA_CF_DomainManager)
43. CosNaming_NamingContext_resolve(myNC,
44. (const CosNaming_Name *)&myBindingName, &ev);
45.
46. /* Parse the command: install, create, release, start, stop */
47. if (strcmp(argv[1],"create")==0) {
48.
49. printf("create Application %s, name = %s\n",aString,dString);
50.
51. /* Locate the correct appFactory */
52. afSeq = SCA_CF_DomainManager__get_applicationFactories
53. (dmObj, &ev);
54. for (i=0; i<(*afSeq)._length; ++i) {
55. anAppFact=(SCA_CF_ApplicationFactory)*((*afSeq)._buffer+i);
56. bString = SCA_CF_ApplicationFactory__get_name(anAppFact,&ev);
57. if (strcmp(aString,bString)==0) break;
58. CORBA_free(bString);
59. }
60. if (i!=(*afSeq)._length) {
61. printf("Found %s appFactory\n",bString);
62. CORBA_free(bString);

Figure 19.25. (Continued)

422 An SCA-compliant Application

63. }
64. ourApp = SCA_CF_ApplicationFactory_create(anAppFact, dString,
65. (const SCA_CF_Properties*)initProp,
66. (const SCA_CF_DeviceAssignmentSequence*)dasSeq, &ev);
67. return 0;
68. } else if (strcmp(argv[1],"install")==0) {
69.
70. printf("install Application, profile = %s\n",cString);
71. SCA_CF_DomainManager_installApplication(dmObj,cString,&ev);
72. return 0;
73.
74. } else { /* remaining commands require the Application IOR */
75. aSeq = SCA_CF_DomainManager__get_applications(dmObj, &ev);
76. printf("There are %d applications\n",(*aSeq)._length);
77. for (i=0; i<(*aSeq)._length; ++i) {
78. ourApp = (SCA_CF_Application) *((*aSeq)._buffer+i);
79. bString = SCA_CF_Application__get_name(ourApp, &ev);
80. if (strcmp(bString,dString)) break;
81. }
82. printf("%s application located\n",dString);
83. }
84.
85. if (strcmp(argv[1],"release")==0) {
86. SCA_CF_LifeCycle_releaseObject((SCA_CF_LifeCycle)ourApp,&ev);
87. printf("releaseObject OK\n");
88. }
89. else if (strcmp(argv[1],"start")==0) {
90. SCA_CF_Resource_start((SCA_CF_Resource)ourApp,&ev);
91. printf("start() OK\n");
92. }
93. else if (strcmp(argv[1],"stop")==0) {
94. SCA_CF_Resource_stop((SCA_CF_Resource)ourApp,&ev);
95. printf("stop() OK\n");
96. }
97. else {
98. printf("Unknown command, no action performed\n");
99. }
100.
101. return 0;
102. }

Figure 19.25. (Continued)

The control application hard codes a couple of names (lines 13–15). The reader might want
to make these mutable by making them command line parameters. The first name ‘Talk0’ is
the name of the ApplicationFactory object. Line 14 provides the full pathname to the SAD
file relative to the node’s base directory. Line 15 is the name we provide in the run-time
as a parameter for the create() operation. The Core Framework will use this name to
create a unique naming context for the application’s components. In the command line the

An SCA-compliant Hello World Application 423

user must supply the corbaloc for the Name Service as well as a command. Acceptable
commands are install, create, start, stop, or release. The control application uses the Domain
Manager to install() the ApplicationFactory (lines 68 through 72). The application files
including the executable must already be located in the Talker sub-directory because the
Core Framework will validate the XML and the presence of the executable as part of the
install procedure.

Next an Application can be created. This is done in lines 52 through 67. It is first necessary
to find the correct Application Factory. When located it is simple to run the create()
operation which then returns an Application object. The remaining operations are on the
Application itself – these include start, stop, and release – lines 85–95. It is necessary to
query the Domain Manager to locate the correct Application object reference. It is not correct
to use the Name Service to get to the Application. This is because that object reference
refers only to the assembly controller component. There is a part of the Talk application
that lives inside the Core Framework: Consider it the parent of the assembly controller. If
you send a releaseObject() directly to the child assembly controller, who is going
to notify the Core Framework to also release? At a minimum the Core Framework has to
remove the Application’s object reference from the DomainManager’s readonly attribute
ApplicationSequence. Because of its readonly modifier, this data structure is accessible only
from within the Core Framework’s Java code. It cannot be accessed through CORBA. Thus
all SCA operations on the Application need to go through the Core Framework; a user
should never go directly to the assembly controller because it will corrupt state information
held internally by the Core Framework.

19.5.6 Modifications for Minimum CORBA Compliance

The reader is now free to install the Talk application. As long as the XML is syntactically
correct and files are located where they are supposed to be the installation should be painless.
However we will run into problems when we attempt to create() our application. Inside
the Core Framework there is a module called ConnectionHandler that takes care of calling
getPort() and connectPort(). That Java code verifies the object type of the Port
objects using the CORBA call is_a(). That call is not supported by minimum CORBA. Not
being a compliance junky this would normally not be bothersome. However, the is_a()
is not supported by ORBit and this could sabotage our efforts. Fortunately we can modify
the Java code and just remove the calls. ConnectionHandler.java is located in
the $SCA_HOME/scasources/SCA/CFImpl directory. The following instruction will
remove the offending calls:

1. comment out lines 535 to 542;
2. comment out lines 547 to 554;
3. comment out lines 566 to 572;
4. comment out lines 435, 528, and 529.

We are not out of the woods yet. Any calls to narrow() also include an embedded call
to is_a(). Therefore, each call to narrow needs to get commented out so we can substitute
an appropriate code segment:

5. comment out line 559 and replace with:

424 An SCA-compliant Application

if (sourceObj == null)
sourceComponent = null;

else if (sourceObj instanceof SCA.CF.PortSupplier)
sourceComponent = (SCA.CF.PortSupplier)sourceObj;

else
{ org.omg.CORBA.portable.Delegate delegate =

((org.omg.CORBA.portable.ObjectImpl)sourceObj)._get_delegate();
SCA.CF._PortSupplierStub PSstub = new SCA.CF._PortSupplierStub();
PSstub._set_delegate(delegate);
sourceComponent = (SCA.CF.PortSupplier)PSstub;

}

6. with the 11 lines added, comment out line 584 and replace with:

if (sourcePortObj == null)
sourceComponentPort = null;

else if (sourcePortObj instanceof SCA.CF.Port)
sourceComponentPort = (SCA.CF.Port)sourcePortObj;

else
{ org.omg.CORBA.portable.Delegate delegate =
((org.omg.CORBA.portable.ObjectImpl)sourcePortObj)._get_delegate();
SCA.CF._PortStub stub = new SCA.CF._PortStub();
stub._set_delegate(delegate);
sourceComponentPort = (SCA.CF.Port)stub;

}

7. with the 22 lines added, comment out line 611 and 612 and replace with:

if (destinationComponent == null)
destinationPortSupplier = null;

else if (destinationComponent instanceof SCA.CF.PortSupplier)
destinationPortSupplier = (SCA.CF.PortSupplier)destinationComponent;

else
{ org.omg.CORBA.portable.Delegate delegate = ((
org.omg.CORBA.portable.ObjectImpl)destinationComponent)._get_

delegate();
SCA.CF._PortSupplierStub stub = new SCA.CF._PortSupplierStub ();
stub._set_delegate(delegate);
destinationPortSupplier = (SCA.CF.PortSupplier)stub;

}

That’s it. Re-make the directory and re-make the $SCA_HOME/libs directory and the
new Core Framework should effortlessly create the Talk application. The reader is free to
send start, stop, or release commands and enjoy the show.

19.5.7 Concluding Remarks

A simple ‘C’ Hello World program takes the novice programmer maybe half an hour to get
working. For an experienced programmer, it would take five minutes. The SCA-compliant
Hello World program took over a month. The experience was enhanced by spending many,
many hours getting the ORB and Core Framework to run the application to completion.

An SCA-compliant Hello World Application 425

For the ORB a single flag needed to be cleared on the command line – the problem was
solved in 30 seconds, the research to isolate the problem took three days. The same applied
to the Core Framework. The result is a great work that is very stable and only needed minor
code patches to run non-Java applications on a minimum ORB. Again the time to isolate
the issues was extraordinary compared to the actual time to put in the fixes. In retrospect
one-third of the time was writing code and experiencing the hard way that, for instance, all
devices must have at least one allocation property. Then two-thirds of the time was chasing
issues in the infrastructure and learning about multi-threaded servants.

This experience is not unlike stories heard from the front line – that is, from the companies
that are building SCA-compliant radios. Embedded software engineers who know CORBA
and XML just didn’t need to exist prior to SCA. Now a project cannot be expected to succeed
without that talent base. Companies are encouraged to consider sub-contracting SCA work
to an experienced vendor. The cost of building such a talent base internally is prohibitive
and likely to be a schedule breaker.

Appendix A
Mandatory POSIX Calls

All 256 POSIX system calls deemed as mandatory by the SCA
abort getcwd pthread_attr_setstacksize sem_trywait
abs gets pthread_cancel sem_unlink
access gmtime pthread_cleanup_pop sen_wait
acos gmtime_r pthread_cleanup_push setbuf
aio_cancel isalnum pthread_cond_broadcast setjmp
aio_error isalpha pthread_cond_destroy setlocale
aio_fsync iscntrl pthread_cond_init sigaction
aio_read isdigit pthread_cond_signal sigaddset
aio_return isgraph pthread_cond_timedwait sigdelset
aio_suspend islower pthread_cond_wait sigemptyset
aio_write isprint pthread_create sigfillset
asctime ispunct pthread_detach sigignore
asctime_r isspace pthread_equal siginterrupt
asin isupper pthread_exit sigismember
atan isxdigit pthread_getschedparam signal
atan2 kill pthread_getspecific sigpending
atof ldexp pthread_join sigprocmask
atoi link pthread_key_create sigqueue
atol lio_listio pthread_key_delete sigset
bsearch localtime pthread_kill sigstack
calloc localtime_r pthread_mutex_destroy sigsupend
ceil log pthread_mutex_getprioceiling sigtimedwait
chdir log10 pthread_mutex_init sigwait
clearerr longjmp pthread_mutex_lock sigwaitinfo
clock Lseek pthread_mutex_setprioceiling sin
clock_getres malloc pthread_mutex_trylock sinh
clock_gettime mkdir pthread_mutex_unlock sprintf
clock_settime mktime pthread_mutexattr_destroy sqrt
close mlock pthread_mutexattr_getprioceiling srand
closedir mlockall pthread_mutexattr_getprotocol sscanf

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

428 Mandatory POSIX Calls

cos modf pthread_mutexattr_init stat
cosh mq_close pthread_mutexattr_ strcat

setprioceiling
creat mq_getattr pthread_mutexattr_ strchr

setprotocol
ctime mq_notify pthread_once strcmp
ctime_r mq_open pthread_self strcpy
difftime mq_receive pthread_setcancelstate strcspn
exp mq_send pthread_setcanceltype strftime
fabs mq_setattr pthread_setschedparam strlen
fclose mq_unlink pthread_setspecific strncat
fdopen munlock pthread_sigmask strncmp
feof munlockall pthread_testcancel strncpy
ferror nanosleep putc strpbkr
fflush open putchar strrchr
fgetc opendir puts strspn
fgets pathconf qsort strstr
fileno pause raise strtok
floor perror rand strtok_r
fmod pow rand_r tan
fopen printf read tanh
fpathconf pthread_attr_destroy readdir time
fprintf pthread_attr_getdetachstate realloc time
fputc pthread_attr_getinheritsched remove timer_create
fputs pthread_attr_getschedparam rename timer_delete
fread pthread_attr_getschedpolicy rewind timer_getoverrun
free pthread_attr_getscope rewinddir timer_gettime
freopen pthread_attr_getstackaddr rmdir timer_settime
frexp pthread_attr_getstacksize scanf tmpfile
fscanf pthread_attr_init sched_yield tmpnam
fseek pthread_attr_setdetachstate sem_close tolower
fstat pthread_attr_setinheritsched sem_destroy toupper
ftell pthread_attr_setschedparam sem_getvalue ungetc
fwrite pthread_attr_setschedpolicy sem_init unlink
getc pthread_attr_setscope sem_open utime
getchar pthread_attr_setstackaddr sem_post write

Appendix B
References to Part III

[1] minimumCORBA, OMG TC Document orbos/98-05-13, Object Management Group,
http://www.omg.org/, 19 May 1998

[2] CAE Specification System Interfaces and Headers, Issue 5: Volume 1, The Open Group, UK,
February 1997

[3] The Single UNIX Specification, Version 3, A White Paper from the Open Group, The Open
Group, UK, May 2003

[4] International Standard, Programming languages – C, ISO/IEC 9899:1999, International
Organization for Standardization/International Electrotechnical Commision, Switzerland

[5] The Austin Group Home Page, http://www.opengroup.org/austin
[6] POSIX.4: Programming for the Real World, Bill O. Gallmeister, O’ Reilly & Associates January

1995, p. 114
[7] Against Priority Inheritance, Victor Yodaiken, Finite State Machine Labs (FSMLabs), 9 July

2002
[8] http://www.software.org/quagmire/descriptions/rtcado-178b.asp
[9] Pthreads Programming, Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell, O’Reilly

& Associates, 1996, pp. 18–19
[10] Federal Information Processing Standards (FIPS) 151-2, National Institute of Standards

(NIST) – ISO/IEC 9945-1:1990, International Organization for Standardization/International
Electrotechnical Commision, 1990

[11] POSIX Programmers Guide: Writing Portable UNIX Programs, Donald Lewine, O’Reilly &
Associates, 1991, pp. 152, 157, 166, 401, 408

[12] Programming with POSIX Threads, David R. Butenhof, Addison-Wesley, 1997, pp. 163–172
[13] C Language Mapping Specification, OMG TC Document, formal/06-xx-99, Object Management

Group, http:// www.omg.org/, June 1999
[14] PIM and PSM for Software Radio Components Final Adopted Specification, dtc/04-05-04, Object

Management Group, May 2004
[15] Object Interconnections, An Overview of the OMG CORBA Messaging Quality of Service

Framework, Douglas C. Schmidt and Steve Vinoski, C++ Report Magazine, March 2000
[16] Minimum CORBA version 1.0, formal/02-08-01, Object Management Group, August 2002
[17] Orbacus™ Users Guide, version 4.3.1, IONA Technologies PLC, 7 Feb 2006, pp. 354–359

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

430 References to Part III

[18] Distributed Object Computing for Distributed Real-time and Embedded Systems,
http://www.dre.vanderbilt.edu/

[19] Objective Interface Systems Home Page, http://www.ois.com/
[20] ORBit2 Home Page, © GNOME Foundation, http://www.gnome.org/projects/ORBit2/index.html
[21] MICO ORB Home Page, http://www.mico.org/
[22] omniORB Home Page, http://omniorb.sourceforge.net/
[23] Event Service Specification, OMG TC Document, formal/01-03-01: EventService, v1.1, Object

Management Group, http://www.omg.org/, March 2001
[24] Lightweight Logging RFC, OMG TC Document, realtime / 02-06-14, Object Management Group,

http:// www.omg.org/, June 2002
[25] Lightweight Log Service Specification v 1.0, OMG TC Document, formal/03-11-03, Object

Management Group, http://www.omg.org/, November 2003
[26] Advanced CORBA Programming with C++, Michi Henning and Steve Vinoski, Addison-Wesley,

1999, pp. 771–810
[27] Distributed Computing Environment (DCE) Univeral Unique Identifier (UUID) 1.1 Remote

Procedure Call, Open Software Foundation, 1994
[28] The Common Object Request Broker: Architecture and Specification, OMG TC Document

formal/98-07-01, Object Management Group, http://www.omg.org/, February 1998
[29] ORBit2 Documentation, Ewan Birney, Michael Lausch, Todd Lewis, Stéphane Genaud and Frank

Rehberger, http://www.gnome.org/projects/ORBit2/documentation.html

Index

addDevice 108, 134–5, 354, 356
AdministrativeStateType 18, 48–51,

55, 57
adminState 108–10, 112–21, 124, 126,

132–3, 347, 350, 369, 397, 399
AdminType 18, 108–10, 112
AEP 14–16, 38, 199–200, 227, 256
AggregateDevice 18, 41, 107–9, 111–14,

121, 134–6, 140, 142, 238, 354, 356,
369–71

allocateCapacity 92, 108–9, 118–19, 186,
190, 222, 230, 400

allocation 31, 34, 57, 91–2, 107–9, 116,
118–20, 124, 159, 162–3, 203, 218–19,
222, 230, 273, 320, 353, 359, 361,
389–91, 407, 419, 425

AlreadyConnected 154, 176, 347
any type 312–13, 325, 338, 341, 343,

376
API 8, 10, 14, 15–17, 52, 105, 222, 304,

343, 405
Application 3, 5, 10, 15–19, 22, 28–34,

41–2, 47, 92, 106, 130–1, 148, 151–3,
158, 164–6, 170, 183–202, 205, 221,
227, 253–5, 257, 262, 274, 275, 278,
292, 301, 303–5, 311–12, 316, 322–3,
328–9, 336, 347, 349–51, 353, 357,
359–66, 370, 373–6, 378–80, 383–424

Application Environment Profile, see AEP
Application Programmer Interface, see API

Application Specific Integrated Circuit,
see ASIC

Application__get_profile 363
applicationFactories 152, 155–7, 171, 355,

373–4, 395, 421
ApplicationFactory 18, 41–2, 59, 107,

118, 148, 151–2, 155–6, 158, 164–6,
169–71, 183–91, 195–6, 201–3, 215,
221–2, 224, 226, 245, 338, 349, 355,
360–2, 372–4, 378–81, 384, 386, 392–6,
421–3

ApplicationFactory__get_name 395–6,
421–2

ApplicationFactorySequence 152, 156,
395, 421

ApplicationInstallError 153
applications 4–6, 9–14, 19, 21, 23, 25, 34,

38, 42–3, 45, 47–8, 63, 83, 86, 92, 95,
105, 118, 120, 129, 151–3, 155–8, 195,
199, 215–16

ApplicationSequence 151–2, 156, 421,
423

ApplicationUninstallationError 153,
169–71

ASIC 3–4
assemblycontroller 187, 196, 243–4,

385–7, 417
asynchronous 19, 255, 260, 300, 303, 337
AvailabilityStatusType 18, 48–9, 51, 55
AVAILABLE_SPACE 65, 70–1, 179–80

Software Defined Radio: The Software Communications Architecture John Bard, Vincent J. Kovarik Jr.
© 2007 John Wiley & Sons, Ltd

432 Index

background 263, 266–73, 419
bind 301, 316, 319, 326, 334–6, 403–5,

411, 413, 417–18
BindingIterator 326, 331–3
blocking 263–5, 268, 270–2, 282, 293,

299, 313, 317, 416–17

CCM 6, 10
certification 205–11, 262
CF 4, 9–10, 13–19, 21–5, 28, 35, 37,

40–1, 44–5, 58, 64, 106, 118, 151,
158, 160, 171, 178, 183, 195, 201, 203,
205, 216, 239, 253–6, 258, 262, 274–5,
304, 310, 312, 322, 325–9, 334–9, 343,
345, 349, 351, 355, 357, 359–61, 363,
365, 367, 370, 376, 378, 379–81,
383–425

ChangeEvent 338, 341–2, 346
clearLog 48–9, 56–7, 63
close 73, 75–6, 79–80, 253, 257, 260,

273, 283, 300, 327
Common Object Request Broker

Architecture, see CORBA
componentDevices 193–5, 363, 365, 370,

381
ComponentElementSequence 193–5, 362
ComponentElementType 18, 192–4,

362–3
componentfeatures 230–1, 408–9, 419–20
componentfiles 235–8, 243–4, 385–7,

406, 417–18
componentImplementations 193–5, 363,

381
componentinstantiation 141–3, 172–3,

175, 187, 191–2, 195, 237–9, 244–6,
328–9, 336, 365, 369, 375, 381, 385–8,
406, 417, 418

componentinstantiationref 243–4, 247–9,
386–7, 417

componentplacement 236–8, 244–6,
385–7, 406, 417

componentProcessIds 193–4, 363, 365,
381

ComponentProcessIdSequence 192–4, 362
ComponentProcessIdType 18, 192–3,

362–3

componentproperties 238–9, 245–6
componentrepid 230–1, 408, 419
componentresourcefactoryref 191, 238–9,

245
componentsupportedinterface 246–9
compositeDevice 107–9, 111–12, 114–15,

121, 369–71
compositepartofdevice 237–8
configurationkind 223–4
configure 17, 21, 31, 52, 59, 64, 84,

90–2, 130, 137, 142–3, 151–2, 187–8,
191–3, 195–6, 206, 218–19, 221, 223–4,
239, 246, 290, 312, 359, 394, 396, 399,
407–8

connectinterface 246–7, 417–18
connections 14, 28, 45, 59–60, 79,

99–103, 105, 159–60, 162–4, 172–3,
176–7, 183, 185, 187–8, 191–2, 196,
201–3, 235–6, 239, 243–4, 246–7, 307,
317, 320, 337, 345, 349, 364, 370,
378–9, 383, 387, 397, 404–6, 408, 411,
417–18

connectPort 99–103, 399–400, 411, 423
copy 64, 67–9, 123, 125, 133, 206, 243,

247, 288, 301, 335, 384, 393, 401,
404–5, 410

CORBA 6, 10–18, 23, 25, 43, 45, 48, 56,
60, 63, 70, 87, 89, 97–9, 101–2, 106,
112, 121–2, 127, 135–40, 142–3, 145,
147, 149, 157–9, 167,169, 174–5, 188,
194, 197, 199–200, 205, 230, 239, 242,
244–6, 253–5, 277, 303–17, 319–23,
325, 327, 329–35, 337, 341–5, 348–52,
359–425

CORBA Components Model, see CCM
CORBA_free 332–3, 349, 352, 360–1,

364, 395, 415, 421
Core Framework, see CF
__create 308, 344, 399–400, 403–4,

410–11, 416
create_thread_policy 415
CreateApplicationError 184, 189, 191
CreateApplicationRequestError 184, 189,

191
CREATED_TIME 65

Index 433

createResource 84, 95–7, 188, 191, 222,
224, 335

CreateResourceFailure 96–7

DataType 18,64,84, 108, 375–6, 396
DCD 15, 18, 25, 137–44, 159–60, 162,

216, 235–6, 238–9, 328, 355, 365, 367,
368, 371, 381, 397, 405–6

DCE 219, 226, 313, 335, 362
deallocateCapacity 108–9, 119–20, 222,

400
dependency 201–2, 222, 229–30, 388–90,

419
deployondevice 141, 237–8
Descriptor file 185, 217, 226, 230, 244
destroy 43, 48–9, 56, 58, 197, 279–80,

283, 286, 289, 294, 296, 326, 331, 333,
337, 345, 348–9, 399–400, 415

Device 14–18, 22–7, 31, 37, 41–2, 45–7,
92, 105–22, 124, 126–8, 130–46, 148,
150, 152–4, 158–63, 166, 168–9, 186,
189, 191, 194, 203, 215–19, 222, 230,
232–3, 235–9, 248, 253–4, 258, 274–5,
327, 328, 334, 336, 338, 347, 349–50,
355–6, 366–71, 374, 378–81, 391,
397–409, 418

Device Configuration Descriptor,
see DCD

Device Package Descriptor, see DPD
Device__get_label 368, 400–1
DeviceAssignmentSequence 18, 184, 189,

191, 193, 195, 362, 395–6, 421–2
DeviceAssignmentType 362–3
deviceconfiguration 138–9, 235–7, 239,

367, 381
deviceConfigurationProfile 137–9, 141,

366, 381
DeviceManager 18, 41, 56, 121, 135–50,

152–4, 156, 158–63, 166–8, 171–3,
178–80, 182, 219, 221–2, 224, 230,
235–7, 239, 338, 354, 356, 366–8,
372–4, 379, 381, 398, 400, 403, 405

DeviceManager__get_fileSys 366
DeviceManagerNotRegistered 153, 161,

163, 171, 173

deviceManagers 151–3, 155–6, 159, 161,
168, 173, 355, 373–4

DeviceManagerSequence 152–3, 156, 372
devicemanagersoftpkg 235–6, 241
devicepkg 232–3
devicepkgfile 237–8
devices 5, 14, 17, 23, 28, 31, 34, 41,

45, 63, 83, 86, 92, 105–8, 112, 114–15,
118, 121, 123, 126, 129, 134–6,
139–41, 150–1, 184, 186, 189–90,
194, 197–8, 203, 215, 222, 230,
234–5, 254, 304, 328, 347, 355, 359–60,
364–5, 367, 369, 370, 379, 386, 391,
396–8, 425

devicethatloadedthiscomponent 248
deviceusedbythiscomponent 248
Digital Signal Processor, see DSP
disconnectPort 99–100, 102–3, 399
Distributed Computing Environment, see

DCE
DMD 15, 155, 157–8, 215–18, 222, 232,

241, 249, 346, 353, 361, 373, 381
DO 178 263, 321
Document Object Model, see DOM
Document Type Definition, see DTD
DOM 28, 216
Domain Manager Descriptor, see DMD
Domain Profile 6, 14–15, 17–19,

22, 28–31, 34–5, 40, 85, 171, 200,
203, 312, 335, 361–2, 369, 378, 380–1,
405–6

domainfinder 159–60, 188, 242, 247–8,
353

DomainManagementObjectAddedEvent
Type 18, 46–7, 160, 162–3, 165–6,
172, 188, 191

DomainManagementObjectRemovedEvent
Type 18, 46–7, 167–70, 174, 198

DomainManager 16, 46–50, 56, 59, 112,
116–17, 141, 143–9, 151–78, 190, 201,
203, 217, 219, 226, 230, 235–7, 239,
241–3, 247–8, 328, 335, 338–40, 343–7,
349, 353, 355–6, 360–1, 371–3, 379–81,
383, 394–5, 420–2

DomainManager__get_identifier 372

434 Index

domainmanagerconfiguration 155, 157,
241, 381

domainManagerProfile 152, 155, 372, 381
DPD 18, 217–19, 232–3, 238, 365
driver 122, 254, 274
DSP 3–5, 8, 10, 12, 16, 38–9, 101, 106,

108, 122–3, 125, 136, 303
DTD 111, 166, 216–17, 384–90, 408
Dynamic Invocation Interface (DII) 253,

312–13, 321, 380

Event Channel 19, 22–3, 25–6, 338–40,
344, 346, 348–9, 355–7

Event Service 18–19, 25, 42, 44–6, 167,
169, 191, 253, 325, 336–50, 355, 379

exec 132, 190, 262, 272, 275, 407–8
execparam 140, 142, 187, 190, 218, 222,

246, 408, 413
executable 122–3, 262, 278, 280, 288,

295, 304, 309, 345, 384, 386, 390–3,
398, 400, 407, 419, 423

ExecutableDevice 18, 41, 107–8, 127–33,
190, 192, 194, 196, 222, 262, 272, 347,
365, 389, 391, 419

execute 5, 21, 24, 31, 72, 85, 108, 127,
130–3, 140, 142, 186–7, 190, 200, 220,
222, 229, 235, 255, 259, 262, 266, 270,
285, 290, 336, 347, 394, 405

ExecuteFail 129–33
exists 43, 64, 67–9, 72, 75, 97, 112, 160,

163–4, 167, 169, 173, 175, 181, 304,
319, 389

eXtensible Markup Language, see XML
externalports 199, 243–4, 249

factoryparam 187, 191, 218, 222, 224, 246
Field Programmable Gate Array, see FPGA
File 15, 18–19, 22–7, 37, 41–2, 63–4,

67–70, 72, 75–81, 122, 133, 137, 139,
167, 178, 199–200, 217–18, 220, 226,
243, 253, 274, 335, 355, 389, 391

FileInformationSequence 64, 66, 73
FileInformationType 18, 66, 72–3
FileManager 18, 41, 63, 140–1, 151–2,

155–9, 161, 164, 178–83, 195, 200, 239,
373–4

fileMgr 152, 155–6, 158, 161, 168, 355,
373

fileName 67–72, 76–7, 123–7, 179
filePointer 75–80
fileSys 138–41
FileSystem 18, 37, 41–2, 63–75, 77, 80,

108, 123–5, 133, 136–41, 149, 152, 156,
159, 161, 165–6, 168, 178–83, 200, 237,
239, 274, 366–8, 376

filesystemname 236
FileType 18, 66–7
findby 241–2, 246–9, 417–18
foreground 263–73
fork 262–3, 272, 275, 404–5
FPGA 3–5, 8, 10, 15–16, 18, 31,

38–9, 94, 101, 105–8, 122–3, 125–6,
136, 359

General Inter-ORB Protocol (GIOP) 305,
308, 317, 345

General Purpose Processor, see GPP
getAdministrativeState 48–9, 54–5
getAvailabilityStatus 48–9, 54–5
getComponentImplementationId 148–9
getCurrentSize 48–9, 54–5
getLogFullAction 48–9, 54–5
getMaxSize 48–9, 54
getMounts 178, 182–3
getNumRecords 48–9, 54–5
getOperationalState 48–9, 54–5
getPort 84, 86–7, 100, 137, 193, 199,

335–6, 355, 378, 399–401, 411, 423
getRecordIdFromTime 62–3, 353
GPP 3–5, 8, 10–12, 15, 27, 33, 38–9, 83,

94, 106, 108, 118, 122, 125, 128–9, 190,
216, 265, 369–70

Ground Mobile Radio (GMR) 8

Handler 300, 310, 313, 329–30, 347–9,
392, 404

High Assurance Internet Protocol
Encryption (HAIPE) 263

hostcollocation 244–5, 386–7
humanlanguage 228–9
hwdeviceregistration 232–4

Index 435

identifier 58–9, 84, 93, 95–6, 102,
112–13, 116–17, 137–41, 152, 155, 157,
159–63, 165–73, 175, 183, 185–8,
190–1, 198, 200, 227, 230, 232, 235,
237, 249, 336, 361, 362, 365, 367

IDL 6, 8, 12, 14, 19, 25, 38–9, 41, 47–8,
60, 63, 67, 83, 87, 99–100, 120, 122,
124, 158, 199–200, 219, 227, 231, 253,
262, 305–9, 311–13, 319, 339–40,
345–7, 361, 363, 376, 380, 387,
397–400, 408–10, 419–20

IDM 45, 113, 116–17, 157–8, 338–41,
345, 349–50, 355, 379, 397

Incoming Domain Management, see IDM
Infrastructure 5, 425
inheritance 261–2, 290, 312–13, 320, 360,

399
inheritsinterface 232, 409, 420
initialize 84, 88–9, 142, 187, 191, 193,

196, 399–401
InitializeError 88–9
inout 61–3, 70, 85–6, 90, 319, 376
installApplication 152–3, 156–8, 164–6,

185–6, 203, 350, 353, 356, 380, 383–4,
391–2, 422

Institute of Electrical and Electronic
Engineers (IEEE) 256–7, 277

Interface Definition Language, see IDL
Interface Repository (IR) 310–14, 321
International Electrotechnical Commission

(IEC) 256–7
International Organization for

Standardization (ISO) 256–7
Internet Inter-ORB Protocol (IIOP) 305,

308, 313, 345, 408
Interoperable Object Reference, see IOR
InvalidCapacity 109, 118–20
InvalidConfiguration 89–91
InvalidEventChannel 154
InvalidFilePointer 77, 80–1
InvalidFileSystem 18, 178, 181–2
InvalidFunction 129–32
InvalidIdentifier 153, 169–71
InvalidInitConfiguration 184, 189, 191
InvalidLoadKind 123–5
InvalidOptions 130–2

InvalidParameters 129–32
InvalidPort 101–3, 354
InvalidProcess 129, 133
InvalidResource 95, 98
InvalidState 109, 118–20, 123–7, 130–3
IOException 76, 78–9
IOR 140–4, 186–7, 190, 200, 308, 311,

320, 325, 327, 330–1, 336, 344–6, 350,
353, 366–8, 373–4, 380, 400, 403, 416,
422

jar file 384, 393
Joint Program Office, see JPO
Joint Tactical Radio System, see JTRS
Joint Test and Interoperability Command,

see JTIC
JPO 7–9, 205, 207–10, 350
JTIC 205, 210
JTRS 7–9, 11, 13, 16, 205–8, 210–11,

304, 308, 320, 322, 350

KERNEL_MODULE 122

Label 142, 381
LAST_ACCESS_TIME 65
LifeCycle 18, 40–2, 83–4, 88–9, 92, 120,

187, 191, 193, 258, 321, 408–9, 419–20,
422

Linux 123, 129, 148, 256–75, 280, 292–3,
295, 307, 390, 407, 419

load 10, 12, 21, 25, 29–31, 40, 42, 107–8,
122–7, 129, 133, 148, 186, 198, 222,
227, 230, 235

LoadableDevice 18, 41, 107–8, 121–7
LoadFail 123–5
LoadType 18, 108, 122–4
localfile 226–30, 233, 236–7, 241, 243–4,

369, 385–8, 390, 406–7, 417–18
Log 8, 17–19, 22–7, 37, 42, 47–51, 53,

55–7, 59–62, 136, 139, 146, 148, 162,
167, 253, 295, 325, 327, 379, 407

Log Service 8, 17–19, 23, 25–6, 47–51,
53, 55–7, 59, 61, 136, 139, 146, 148,
253, 325 327, 343, 347, 350–7

LogAdministrator 18, 48–50, 56
LogConsumer 18, 48–9, 61
LogFullActionType 18, 48–9, 51, 55, 57

436 Index

Logical Device 17, 254, 274
LogLevel 18, 49–51, 58, 377
LogLevelType 18, 51–2, 58–9
LogProducer 18, 48–9, 52, 58, 60, 62, 191
LogRecord 49–50, 52–3, 58, 60–1, 351–2
LogRecordType 18, 48, 53–4, 351–2
LogStatus 18, 48–9, 53–4
LogTimeType 18, 53–4, 62

memory leak 281, 310, 329, 333, 361
memory management unit (MMU) 262,

277
message queue 260–72, 274, 278, 283,

293, 304
minimum CORBA 253, 310–17, 321–2,

343, 348, 380, 415, 417, 423
MIPS 390
mkdir 64, 74–5
Model Driven Architecture (MDA) 308–9
MODIFIED_TIME 65
mount 125, 140–1, 159, 165, 178–83
MountPointAlreadyExists 18, 178, 181–2
MountSequence 18, 178, 180, 182
MountType 18, 178, 180
mq_ 263–72
multi-threaded 284, 301, 314, 316, 365,

414–16, 425
mutex 277–8, 285–90, 293, 295–9, 320

Name Context, see NamingContext
Name Service, see namingService
NameComponent 43, 326, 344, 372,

374–5, 392, 394, 403, 413, 420
namespace 265, 336, 397
naming graph 325–7, 330, 333–4, 345
naming service 15, 18–19, 24–5, 42–4,

157–8, 190, 194, 197–8, 200, 237, 239,
242, 246, 253, 321, 325–36, 353,
359–60, 363–4, 371, 373–4, 376,
379–80, 391–2, 396–7, 404–6, 411,
417–18, 423

NamingContext 43, 326–36, 404–5, 413,
418

namingservice 218, 230, 236, 238–9, 242,
244–5, 248, 329, 336, 371, 417–18

nanosleep 264–8, 270, 272, 285, 288, 295,
352, 384, 412–14

NonExistentMount 18, 178, 180, 182
NotConnected 154, 177

Object Management Group, see OMG
object-oriented 6, 277–8
Object Request Broker, see ORB
ObjectAdded 325, 338, 341, 346, 349–50,

356
ObjectRemoved 325, 338, 341–2, 346–7,

350
OccupiedPort 101–2
OE 9, 13–14, 15, 17, 38, 43, 45–6, 80, 89,

201–2, 205–10, 229, 253, 255–7, 274,
321–2, 383

OMG 7–8, 18, 25, 38, 43–5, 47, 308–9,
311, 314, 322, 325, 336–7, 339, 350

oneway 60, 100, 319, 398
OO 6, 305
open 52–3, 64, 69–70, 77, 125, 131, 133
Open Group 256–7, 322
Operating Environment, see OE
Operating System, see OS
operationalState 49–51, 55, 108–9,

116–20, 124, 126, 132–3, 350, 369, 397,
400

OperationalStateType 18, 48–50, 55
OperationalType 18, 108–10, 117
ORB 6, 13–16, 38, 89, 140, 205, 253,

254, 256, 303–23
ORB_init 311, 329, 343, 391, 414–15
ORB_run 308, 336, 345, 348, 404, 416
ORB_shutdown 348
ORBit2 256, 311, 321, 327, 339, 345, 414
OS 4, 13–15, 16–18, 19, 23–5, 27, 33, 38,

43, 57, 63, 65, 67, 72, 77, 94, 105–6,
118, 121–3, 125, 127–33, 140–1, 149,
190, 198–9, 200, 205, 227, 229, 253–74,
277, 293, 295, 310, 317, 319, 321–2,
365, 407

Outgoing Domain Management (ODM)
45, 157–8, 160, 162, 165, 167, 169–70,
172, 174, 188, 191, 198, 338

overload 393

Index 437

PartialConfiguration 90–1
partitioning 186, 236–7, 243–6, 385–7,

406, 417
Platform Independent Model (PIM) 309
Platform Specific Model (PSM) 309
POAManager 343, 415
Policy object 315
port 5, 18, 41–2, 86–7, 99–103, 137, 199,

207, 232, 247–8, 258, 336, 354, 378,
397–8, 401–5, 409–11, 413, 416–20,
423–4

Portable Object Adaptor (POA) 305, 308,
311–21, 341, 343–5, 348–9, 399–404,
410, 412–17

Portable Operating System Interface for
Unix, see POSIX

PortSupplier 40–2, 83–4, 86–7, 92, 100,
136, 152, 193, 258, 408–9, 419–20, 424

porttype 231–2, 409, 420
POSIX 8, 14, 16, 38, 54, 73, 131–2,

199–200, 253–75, 277–301, 304, 320,
322, 351, 354, 365, 383, 405

POSIX thread 259–75, 277–300
priority 128, 131–2, 140, 142, 186, 228–9,

259–61, 275, 277, 279, 290–5, 299, 304,
319–20, 355

priority inheritance 261, 290, 320
priority inversion 261, 320
PRIORITY_ID 128, 130–2
profile 19, 28–30, 32, 93, 111, 124, 137,

139, 155, 161–2, 164, 166–7, 169, 185,
189–91, 193–5, 197, 216–17, 346, 353,
361, 363–8, 371–2, 378–81, 383–4, 391,
399, 401–2, 406–8, 420, 422

programminglanguage 228–9
Properties Descriptor 18, 85, 218, 219–21,

223
Properties File (PRF) 217, 389, 391
propertyref 201–2, 218, 228–30, 389–90,

419
PropertySet 41–2, 83–4, 89, 91–2, 136–7,

152, 188, 192–3, 219, 258, 312, 360,
373, 375–6, 408–9, 419–20

provides port 379, 397, 412, 414, 418
providesport 244, 246–8, 418

Pseudo Interface Definition Language
(PIDL) 311–13, 317, 320

pthread_attr_t 277–82, 286, 290–1, 294,
297, 412

pthread_cond_ 296–9
pthread_condattr_ 261, 277, 296
pthread_create 263, 278–82, 286, 288,

292–7, 412
pthread_key_ 277, 300–1
pthread_mutex_ 277–98
pthread_mutexattr_ 258, 261, 277, 289–90
_push 300, 337–41, 343, 346, 347
pushOctet 378
pushPacket 100, 378
PushPort 361, 398, 409

query 44, 64, 70–1, 84, 90–1, 137, 152,
178–80, 193, 195–6, 219, 221–2, 224,
280, 290, 294, 312, 359, 363, 372,
375–6, 399, 423

read 25, 50–1, 69–70, 75–8, 80, 163
real-time CORBA 304, 319
registerDevice 137–8, 140, 143–4, 146,

152, 161–3, 349, 354, 356, 379, 405
registerDeviceManager 152, 157–60, 349,

354–5
registeredDevices 121, 138–40, 143–4,

146–7, 149, 153, 158–9, 367–8
registeredServices 138–9, 145–8, 159,

367–8, 381
RegisterError 154, 158, 160–1, 163–4,

171, 173–4
registerService 137, 145–6, 152, 157–8,

171–5, 335, 350, 354, 356
registerWithEventChannel 152, 175–6,

337, 339, 345
ReleaseError 88–9, 121, 198–9
releaseObject 84, 88–9, 120–1, 149–50,

193, 196–9, 201–2, 347, 350, 357,
399–401, 414, 417, 422–3

releaseResource 84, 95, 97–8, 197
remove 32, 34, 63–5, 71–2, 75, 89, 94,

135–6, 146–7, 168–70, 174, 179, 182,
196, 378, 423

removeDevice 108, 134–6, 356

438 Index

resolve 43, 176, 182, 326, 332, 334, 344,
346, 352–3, 360, 372, 375, 392, 395, 421

resolve_initial_references 311, 315, 343,
352–3, 372, 375, 392, 395, 403, 415, 421

resource 5, 18–19, 41–2, 45, 47, 58, 83–4,
86, 92–8, 106–9, 130, 137, 152, 183,
186, 188, 190–3, 196–7, 200, 203, 219,
221, 224, 258, 350, 357, 360, 362–5,
374, 377, 379–81, 387, 408–10, 419–22

ResourceFactory 18, 41, 83–4, 95–9,
187–8, 190–1, 196–8, 221–2, 224, 239,
244–5, 258, 336, 381

resourcefactoryproperties 238–9, 245–6
retrieveById 48–9, 61–3, 352–3
rmdir 64, 75
RootPOA 308, 311, 314–16, 343, 415
run-time performance 256–7, 316, 318,

322
runTest 83–6, 193, 195–6, 219–20, 222,

224, 387, 399–400

SAD 15, 28, 101, 155, 164–5, 183, 185–6,
188–92, 194–6, 199, 202, 215, 217–18,
232, 243–6, 329, 335–6, 339, 361–2,
364, 366, 370, 378, 381, 383–4, 386–8,
391–2, 406, 409, 414, 417–22

SCA Reference Implementation (SCARI)
325–6, 328–9, 336, 339, 344, 347, 349,
353, 355, 361, 365, 367, 369–76,
379–81, 384–5, 389–405, 410, 417, 420

sca_compliant 218, 225–6, 383, 388, 418
SCD 18, 87, 217–19, 227, 230–1, 246,

314, 335, 355, 380, 384, 388–9, 394,
406–9, 418–20

sched_ 260–5, 279–99
sem_ 267–70, 282–96
semaphore 258–74, 277–99
services 5, 14–15, 17, 37–8, 40, 42,

136–7, 139, 143, 146, 160, 200, 253–4,
311, 325, 328, 330, 332, 334, 335–6,
338, 340–56, 380

ServiceSequence 136, 366
ServiceType 18, 136, 140, 366–7
setAdministrativeState 48–9, 56–7
setFilePointer 75–6, 80
setLogFullAction 48–9, 56–7

setMaxSize 48–9, 56–7
SHARED_LIBRARY 122–3
shm_ 260
shutdown 21, 26–7, 30, 47, 84, 95–6,

98–9, 114, 137, 146, 148–9, 158, 197–8,
313, 347–9, 396, 401, 405, 417

ShutdownFailure 96, 98–9
signal 7, 12, 83–4, 100, 105, 107,

199–200, 235, 258, 274, 285, 300, 313,
320, 347–9, 401, 403–4, 412, 416–17

simple 219–25
simplesequence 220, 222–4, 407
SIZE 65, 70–1, 179–80, 259–60
sizeOf 75–6, 81
skeleton 305–7, 340, 399
skeleton-impl 340, 399
softpkg 225–7, 229–30, 383, 388, 390,

406–7, 418–19
softpkgref 229–30
Software Assembly Descriptor, see SAD
Software Component Descriptor, see SCD
Software Package Descriptor, see SPD
softwareassembly 185, 243–4, 361, 364,

366, 381, 385–8, 395, 417–18
softwarecomponent 230–1, 408–9, 419–20
softwareProfile 108–9, 111, 183, 185,

360–1, 368, 381, 400–2
SourceCategoryType 18, 46
SPD 18, 85, 91, 111, 122, 140, 142,

148–9, 163, 186, 189–90, 194–5, 200–3,
217–19, 222, 225, 230, 236–7, 243–4,
246, 335, 364–71, 381, 383–4, 386–93,
401, 406–7, 417–20

STACK_SIZE 127–8, 130–2, 190
start 10, 24–5, 33, 57, 61, 66, 73, 84,

92–5, 100, 107, 113, 129–31, 141, 193,
195–6, 216, 235, 347, 367, 387, 391,
399–401, 405, 411, 414, 420–4

StartError 92–4
StateChangeCategoryType 18, 46
StateChangeEventType 18, 46, 113,

116–17, 338, 341–2, 346
StateChangeType 18, 46
stop 84, 92–5, 107, 130–1, 193, 195–6,

347, 367, 387, 391, 399–401, 405, 411,
414, 420–4

Index 439

StopError 92–4
struct 219–20, 222–4
structsequence 220, 224
stub 305–7, 344–5, 391–2, 399, 424
supportsinterface 231–2, 246, 408–9, 419

terminate 27, 94, 96, 108, 127, 130, 133,
166, 196–8

test 83–6, 205–10, 218–20, 222, 224–5,
232

thread attributes 277–82, 286, 290–2, 294,
297, 412

_to_object 308, 330, 334, 403, 413
_to_string 308, 311, 332–4
_type 312, 326, 332, 341–2, 375–6
Type Codes 312, 321

UML 19, 21, 40, 144, 217, 308–9, 351
Unified Modeling Language, see UML
uninstallApplication 152, 169–70, 203,

350, 356
Universal Unique Identifier (UUID) 219,

226, 235, 328–9, 335–6, 362, 364–7,
369–70, 373, 375, 386, 388–91, 396,
400, 419

UnknownFileSystemProperties 64, 70–1,
179–80

UnknownPort 87, 199
UnknownTest 83, 85–6
unmount 167, 178, 182
unregisterDevice 121, 137, 146–8, 152,

160, 168–9, 350, 356

unregisterDeviceManager 152, 160,
166–8, 173, 350, 356

UnregisterError 154, 166–9, 174–5
unregisterFromEventChannel 177, 340,

345, 349
unregisterService 137, 146–8, 152, 174–5,

350, 356
unregisterWithEventChannel 177
usageState 108–9, 113–16, 118–21, 350,

368–9, 397, 399
UsageType 18, 108–10, 115
Use case 19, 303
uses port 379, 397, 412, 418, 420
usesdevice 225, 228, 230
usesport 188, 244, 246–9, 417–18

_value 341–3, 376
volatile 282–4, 286, 288, 297–8, 411–12
VxWorks 12, 123, 260, 262–73, 265, 391

write 57–8, 60–2, 69–70, 75–7, 79–80,
126, 135–6, 143, 145, 147, 155, 159–60,
162, 164, 167, 169–70, 172, 174, 188,
198

writeRecords 48–9, 58–61

XML 6, 309, 312, 314, 359, 361, 365,
367, 374, 378, 383–4, 389–91, 398, 402,
405, 407–9, 417, 419, 423, 425

Xterm 393

