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Abstract—The Open Spectrum approach to spectrum access fluctuates with both location and time due to movement and
can achieve near-optimal utilization by allowing devices to sense traffic variations of primary users. A user seizing spectrum
and utilize available spectrum opportunistically. However, a \yithout coordinating with others can cause harmful interfer-

naive distributed spectrum assignment can lead to significant ith it di iahb th duci ilabl
interference between devices. In this paper, we define a generalence WIth IS surrounding neigniors, thus reducing avallable

framework that defines the spectrum access problem for several SPectrum.
definitions of ove_rall system utility. By r_educing the allocation While maximizing spectrum utilization is the primary goal
problem to a variant of the graph coloring problem, we show ¢ open spectrum systems, a good allocation scheme also

that the global optimization problem is NP-hard, and provide . - .
a general approximation methodology through vertex labeling. needs to provide fairness across devices. To the best of our

We examine both a centralized strategy, where a central server knowle;dge, the question of how best to address these two
calculates an allocation assignment based on global knowledge,goals in the context of spectrum allocation for open spectrum
and a distributed approach, where devices collaborate to ne- systems has not been previously addressed. In this paper,
gotiate local channel assignments towards global optimization. \ve describe our work in defining a general framework for

Our experimental results show that our allocation algorithms . .
can dramatically reduce interference and improve throughput (as spectrum allocation in open spectrum systems, and present

much as 12-fold). Further simulations show that our distributed C€ntralized and distributed approaches to optimizing spectrum
algorithms generate allocation assignments similar in quality allocation for utilization and fairness. The key contributions
to our centralized algorithms using global knowledge, while of this paper are four-fold:

incurring substantially less computational complexity in the

process. 1) Spectrum Allocation Framework and Utilitf\We de-
Index Terms— Spectrum Management, Open Spectrum, User scribe a graph-theoretic model that describes efficient
Collaboration, Resource Allocation. and fair access in open spectrum systems. We also

define three policy-driven utility functions that combine
efficient spectrum utilization and fairness.

|. INTRODUCTION 2) Reduction to Graph Coloring and Lower-bound Proof.

Wireless devices are becoming ubiquitous, placing increas-  We show how the optimal spectrum allocation problem

ing stress on the fixed radio spectrum available to all access can be reduced to a variant of the graph coloring

technologies. To eliminate interference between different wire-  problem, proving that it is NP-hard. We also prove a

less technologies, current policies allocate a fixed spectrum  |ower bound on the maximal utilization problem where

slice to each technology. This static assignment prevents fajrness is not considered.

devices from efficiently utilizing allocated spectrum, resulting 3) Centralized and Distributed Approximatiowe describe

in spectrum holes (no targeted devices in local area) and very 3 vertex labeling mechanism which we use to build both

poor utilization (6%) in other geographic areas [15]. Studies  centralized and distributed approximation algorithms.

have shown that reuse of such “wasted” spectrum can providet) Simulation of Efficiency and ComplexitWe use ex-

an order of magnitude improvement in system capacity. tensive simulations to quantify the impact of these
These results further motivate ti@pen Spectruni2], [6], spectrum allocation algorithms on network access, while

[13], [19], [26], [27] approach to spectrum access. Enabled  comparing the distributed and centralized approaches in
by software defined radio (SDR) technology [5], [16], [24], efficiency and complexity.
Open Spectrum allows unlicensed (secondary) users to share

spectrum with legacy (primary) spectrum users, thereby “creat—The rest of the paper is organized as follows. We begin

ing” new capacity and commercial value from existing speér—' Section Il by describing the context of open spectrum

trum ranges. Based on agreements and constraints impo@\é%t?ms and its assqciated cha]lenges. Next in Section Ill, we
by primary users, secondary users opportunistically utili of_\lldeha mithemg}fuce;l mo_dellng zfdopen_bspectrudm ?Ccesf'
unused licensed spectrum on a non-interfering or leasing ba @fine t ree key utility functions an gescribe a re u<_:t|0n °
Open spectrum system designs must also deal syigectrum the allocation problem to graph coloring. Then in Section 1V,

heterogeneitywhere spectrum available to secondary devicdé® describe a set of centralized and distributed approximation
algorithms to optimize our utility functions. We describe our
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1. ACCESS INOPEN SPECTRUMSYSTEMS of available spectrum ranges forms a spectrum pool, divided
We begin by describing the spectrum allocation problem iﬂto non-overlapping orthogonal channélsSecondary users

the context oDpen Spectruraystems. Open spectrum systemgeled communication channels and adjust transmit power

allow unlicensed devices (who we refer to ascondary accordingly to avoid interfering with primary users. Each

secondary user keeps a list of available channels that it
userg to make use of spectrum unused by legacy spectrum

) : u o . can use without interfering with neighboring primary users.
devices primary usery, thereby “creating” new capacity and :
. N The spectrum access problem becomes a channel allocation
commercial value from existing spectrum. Secondary users
- . . . : roblem.
utilize licensed bands on a non-interfering or leasing basis
based on agreements and constraints imposed by primary

users. They can detect predefined spectrum signaturesAorExample Scenario

footprints of primary users automatically, through operator- |n this section, we illustrate the concept of spectrum hetero-
initiated broadcasts, or by accessing a central databasegéheity in open spectrum systems with a sample scenario. We
recent example of this approach is the FCC’s recent rep@iso demonstrate how the presence of a primary user impacts
on the feasibility of allowing unlicensed devices to operate ifot only which channels are available to nearby secondary
TV broadcast spectrum ranges at locations and times whemders, but also the power used on available channels, and the
is under-utilized. Secondary users can detect the presencee@iting range and throughput on those channels.
a sound carrier in NTSC (analog) TV systems or a pilot tone Figure 1 illustrates an example deployment where inactive
in ATSC (digital) TV systems, and operate without interferingroadcast (TV) spectrum is utilized to provide wireless con-
with TV broadcasts (primary users in this case). While the gogéctions to a residential community. The broadcast spectrum
is to maximize utilization, secondary users must not interfef€ divided into two channels (marked by and B). In this
with the normal operation of primary users. example, broadcast stations) @re primary users and wireless
In open spectrum systems, primary users’ mobility angccess points (I, Il and ll) are secondary users. Each primary
traffic variations result in the fact that the available spectrugser » occupies one channeh which is associated with
observed by secondary devices fluctuates with both loc@protection area with radiugp(z,m). Any radiation from
tion and time. We call this propertgpectrum heterogeneity secondary users falling into it would interfere with the primary
In addition, the interference constraint and the rewarel. ( user. Each secondary usecan adjust its interference range
throughput, connectivity) obtained on each spectrum bagpd(n,m) by tuning its transmit power on channel to avoid
could be different due to non-uniformly partitioned spectrunmterfering with primary users. We assume that a secondary
bands, differences in power constraints and associated teg§ern can use the same chanmelas a nearby primary user
nology. Spectrum heterogeneity also results from variatiosdly if dg(n,m) < Dist(n,z) —dp(z, m), whereDist(n, x)
in device radio capabilities. For example, a new radio devige the distance between and z. In general, interference
might have integrated Ultra Wide Band (UWB) and IEEkangeds is bounded by the minimum and maximum transmit
802.11a/b/g interfaces while an older device only suppof®wer, i.e. [dmin, dmaz)- Note that in this paper we assume
802.11a. In general, spectrum heterogeneity refers to variatignat each secondary user (wireless access point) can use
in spectrum availability, interference constraints and rewargischnologies like Orthogonal Frequency Division Multiplexing
on each spectrum band. Access (OFDMA) to utilize multiple channels to provide
The key to efficient utilization of open spectrum is taonnections for devices within its coverage area.
find an appropriate distribution of channels among secondaryin our example in Figure 1.a, primary useuses channed.
users while minimizing interference. When two simultaneougs protection area is shown as a dotted circle araunBach
transmissions overlap in spectrum and physical location, ba&Bcondary user adjust its; on channeld to avoid interfering
can fail®. Hence, a user seizing spectrum without coordinatingith . Secondary user Il is within the protection range of
with others can cause harmful interference with its neighbogs and therefore cannot use channkl If 1| was outside of
and degrade overall spectrum usage. For a simple examplerange, but itsds < d,nin, it Still cannot use channedl.
consider a ring of nodes around a center node. If the cenf@gure 1.b shows the case when no primary users are present
node uses its entire available spectrum, its will interfere withh channelB.
and disrupt all transmissions coming from its neighbors. In For each secondary user, tuning its transmission power to
contrast, network controlled spectrum access can optimiggjustds directly impacts its range or coverage. For example,
network-wide spectrum utilization by forcing secondary usetie coverage area of a wireless access point is proportional
to behave in a collaborative fashion. Specifically, the netwotl d%. Increasing the range with a largefs value also
needs to define and enforce a set of rules to encourage utiligiereases the probability of interfering with a neighboring
tion and minimize interference. Finally, spectrum allocatiogecondary user. For each channel, if two secondary users’
should be fair to ensure that each device gets a certain amauférference areas overlap, then they conflict and cannot use
of spectrum under normal conditiorise. avoid starvation.  the channel simultaneously. In this paper, we assume that
In this paper, we consider the case where the collectigacondary users use a fixed power control scheme to adjust

1Wwhile multi-packet reception and other interference cancelation aIgorithmszChannel division can follow the format of TDMA, FDMA, CDMA or a
can minimize the impact of interference, in this paper we assume for simplicigmbination of them.
that interference causes both transmissions to fail. 3For our purposes, interference range is the same as the transmission range.



their transmit power to the maximum permissible level to avoi@hannel reward B = {b, ,,}nxm, @ N by M matrix
interfering with primary users. Thus we see how the presen@presenting the channel rewab;,, represents the maximum
of primary users on a channel can impact secondary usdsahdwidth / throughput that can be acquired (assuming no
channel availability and transmission power, which in turmterference from neighbors) by useusing channein. Using
defines its coverage, throughput and interference conditite example in Section Il, the reward can be the coverage of
with neighboring secondary users. This is the full impact @ secondary user using a channel:
spectrum heterogeneityNote that the secondary user can be
a wireless access point or a transmission link in an ad hoc bm = ds(n,m)?, dpmin < dg(n,m) < dmaa, 1)
network. Note that there is no power control among secondar . . . . .
users, and interference mitigation is done through conflig Fhe capaqty using a channel (ass.umlng the signal to noise
free spectrum allocation. The interaction of power control ar{at'o (SNR) is @ function ofis(n,m) ):
spe_ctrum gllocatlon will t_)e m_vesﬂgated ina future_ st_udy. bom = log(1 + F(ds(n,m)), dmin < ds(n,m) < dmas-

Finally, in orQer to adjust itslg correctly to avoid inter- _ @)
ference with primary users, _secondary users neeq to detect 'bbviously, by =0if I, =0.
and how much its transmission range overlaps with that of a ’ '
primary user. Detecting this dynamically is a challenging opénterference constraint Let C = {cykmlCnkm €
problem, since a secondary user can only listen for carrif, 1}} nxnxar, @ N by N by M matrix, represents the
signals inside the primary user’s transmission range. Hergerference constraints among secondary users, jlf,, = 1,
we assume secondary users can use out-of-band mechanigsessn and & would interfere with each other if they use
to get the location and power of primary users, and us@annehn simultaneously. The constraint depends on channel
that to calculate its ideafs. Similarly, secondary users canavailability,i.e., ¢, k.m < lnm X lkm @aNdcn nm =1 — Ly m.
use similar mechanisms to get the location and power Wfthis paper, we use a binary geometry model where two users
neighboring secondary users, and use it to determine whetbenflict if they are located within certain distance of each other.
it will interfere with neighboring transmissions. In particular,c,, i,m = 1if Dist(n, k) < dg(n,m)+ds(k, m).

Again, this constraint is channel specific: two users might be
I1l. OPTIMIZED ALLOCATION FOR A FIXED TOPOLOGY constrained on one channel but not another. A detailed pseudo

: . .code for generating channel availability, channel award and
The two key goals of a spectrum allocation algorithm i terference constraint is shown in Appendix I.

open spectrum systems are spectrum utilization and fairnes his model provides an approximation to the effects of
Specific combinations of these two goals form different utiIitY . .
nterference in real wireless systems. It captures the way

functions that can be customized for each type of networ . . Y . .
- . ; , : nterference is manifested in wireless environments without
application. In this section, we define a theoretical model L . . X
. . elving into complex detection and decoding algorithms and
represent the general allocation problem, and describe thrergtocols We are currentlv investigating the impact of non
utility functions that trade off spectrum utilization and fairnes : y gating P

We then show a reduction from the optimal allocation problemInary interference metric on the proposed approach.

to a variant of a graph-coloring problem. Conflict Free Channel Assignmentl = {a,.n|dnm €
{0,1},anm < lpm}nxar is @ N by M binary matrix that
A. Allocation Model and Utility Functions represents the assignmeat; ,,, = 1 if channelm is assigned

| del h . | dit Fiqnusern. A conflict freeassignment needs to satisfy all the
n our model, we assume that environmental conditions sUCh. tarence constraints defined 65 that is,

as user location, available spectrum are static during the time

it takes to perform spectrum assignment. This corresponds W+ akm <1, if Copm=1,Yn,k<N,m< M. (3)

a slow varying spectrum environment where users quickly

adapt to environmental changes by re-performing network-Let A(L,C)n a denote the set of conflict free spectrum
wide spectrum allocation. Therefore, we focus on a modassignments for a given set &f users and\/ spectrum bands
for a fixed topology. and constraint’.

We assume a network df secondary users indexed from ) o )
0to N — 1 competing forM spectrum channels indexédo Radio Interface LimitC,,,, represents the maximum number

M — 1. Each secondary user can be a transmission link o°h channels that can be assigned to a secondary user. The

. M—1
broadcast access point. The channel availability and rewaRfSignment at each userneeds to satisfy),,,_; anm <

for each secondary user can be calculated based on the locaion-
and channel usage of nearby primary users. We define the kR¥sr Reward® = (8, = ZMfl Gnm by Y1 TEPrESENtS

components of our model as follows: the reward vector that ea?ﬁouser gets for a given channel
Channel availability L = {l, m|lnm € {0,1}}nxm is @ assignment.

by M binary matrix representing the channel ava"abi"tyl‘\letwork Utilization The channel allocation is to maximize
l,,m = 1ifand only if channeln is available at uset. Using network utilizationZ/(?).

the example in Section Il, ilg(n, m) < dm.n thenl,, , =0,

otherwisel,, ,, = 1. Given the model above, we can define the spectrum assignment



problem by the following optimization function: B. Color-Sensitive Graph Coloring

Our approach to solving this complex optimization problem
is to reduce it to a variant of the graph coloring problem by
mapping spectrum channels into colors, and assigning them

We can obtain utility functions for specific applicationto users (vertices in a graph). Past work has demonstrated
types using sophisticated subjective surveys. An alternatitree effectiveness of using conflict graphs to model interfer-
is to design utility functions based on traffic patterns anehce [11], [20], [28]. Our work extends the model to a multi-
fairness inside the network. We consider and address utilityéolor conflict graph by taking in to account the impact of
terms of single-hop flows, since they are the simplest formatimary users on secondary users’ interference condition.
in wireless transmissions. We define a bidirectional grapi = (V, L, E'), whereV is
a set of vertices denoting the users that share the spectrum,

« Max-Sum-Reward This maximizes the total spectrum’ is the available spectrum or the color list at each vertex,
utilization in the system regardless of faimess. The opfi€fined in section Ill-A, and? is a set of undirected edges

A* = argmax U(R). 4)
AGA(L,C)NJ\,I

mization problem is expressed as: betvyeen vertices represeqting interference between any two
vertices. For any two vertices,v € V, a m-colored edge
-1 NolM-1 exists between andv if ¢, » = 1. The set of edges depend
Usum = Z B = Z Z anm * bp,m- (5) on the interference constraitit (see section I1I-A), which is
n=0 n=0 m=0 determined by the spectrum usage of nearby primary users and

« Max-Min-Reward This maximizes the spectrum utiliza-the transmit power of user andv on channein. _
tion at the bottleneck user, or the user with the least The spectrum allocation problem is equivalent to coloring
allotted spectrum. The optimization problem is express&@Ch vertex using a number of colors from its color list to

as: maximize system utility. The coloring scheme is constrained
by that if am colored edge exists between any two vertices,
_ oo they cannot simultaneously use color. This is a variant
Unmin = 0omEN P = 0omEN Z @ bnm (6)  of the traditional graph coloring problem. In the traditional
m

problem, graphs are colorless, colors have the same reward,
Roughly, Max-Min-Reward driven allocation gives theand two connected vertices only have one colorless edge; in
most poorly treated user (i.e. the user who receives thgr problem, vertices can be connected via multiple colored

lowest reward) the largest possible share, while not wastdges. We call this problemolor-sensitive graph coloring

ing any network resources. This is the simplest notion ¢ESGC).

fairness. Figure 2 illustrates the reduced CSGC graph that corre-
« Max-Proportional-Fair. Consistent with prior work [10], sponds to the network from Figure 1. Chanrkls available
[14], [17], [23], we consider and address fairness fdp secondary user | and Ill, so that in the corresponding
single-hop flows. the corresponding fairness-driven utilit¢SGC, vertex | and Ill havel on their color list. Since the
optimization problem is expressed as: transmission areas of | and 1l on chanoebverlap, they can
conflict on channeld, and there is a color edge between
phly I and lll. ChannelB is available for three users and they all
Uair Z log(8,) conflict with each other. Hence? is on each vertex's color
;iol M1 list and a colorB edge exists between any two vertices. Thus
. we can use a conflict grapf to model the network setup
= 0g( Y anm - bnm) (") of each depl [ i
o = ployment of primary and secondary users, reducing

spectrum allocation to a graph coloring problem. We note that
The essence of proportional fair is that if for any otheCSGC only optimizes color assignment for a fixed topology. If
feasible assignmemt’ and the associated,, the aggre- the topology changes(g. due to user movement), the graph
gate of proportional changes in user reward is zero ooloring algorithm needs to be repeated.

negative:i.e.
N-1 ﬂ’ -8 IV. SPECTRUMALLOCATION ALGORITHMS
Z ] =0. The optimal coloring problem is known to be NP-hard [7].
n=0 n

In this section, we apply existing graph coloring solutions to
To make it comparable t&,,;, and U,,,,, we modify present heuristic based approaches that produce good approx-
the fairness utility to imations for our problem.

- N1 N NZAML ) N o A. Approximation via Labeling
fair = nl;IO B - H Z n,m " On,m - ® In [20], the author proposgzogressive minimum neighbor

=0 m=0 . . .. .
B first (PMNF) as a sequential heuristic solution to graph col-
Note that under the same assignm%bf,fsum > Usqir > oring for generalized channel assignment. He shows that the

Unmin- worst case performance of PMNF significantly outperforms



other heuristic approaches. The algorithm assigns each vemsers, and runs the assignment algorithm to distribute channels
a unique label, colors the vertex with the highest label witamong secondary users. It then broadcasts the assignments on
the lowest indexed color without violating the constraints. Thee predefined channel. Secondary users listen to the broadcast
algorithm removes the colored vertex and associated edgesl communicate using their assigned channels.
from the graph, and repeats until all the vertices are coloredWhile a central server can optimize across network-wide
In PMNF, the objective is to minimize the total colors requirethformation, there are two serious limitations to this approach.
to color each vertex, hence the basic idea of the algorithm isRirst, this scheme requires a communication path between the
color the “most difficult” vertices first. This way the verticesspectrum server and all secondary useées,all users need
are labeled proportional to the size of their neighborhood. interference-free access to a pre-assigned dedicated control
We apply a similar approach to our problem, we need tdhannel, possibly in a licensed band. In addition, as networks
consider conflict constraints in addition to different color listgrow in density, a pre-defined control channel will limit the
and color rewards at each vertex. The colors are assigrimhdwidth available for control messages. Second, the server
iteratively, as shown in Figure 3. A vertex is "saturated” iprocessing complexity will scale at least polynomially with the
its channel assignment has reach&gd... In each stage, the number of devices. Any central spectrum server will quickly
algorithm labels all the non-saturated vertices with a nobecome a computational bottleneck.
empty color list according to some policy-defined labeling  b) Distributed Architecture: As an alternative to the
rule. We define each labeling rules later in this section. Th@ntral spectrum server, secondary users can use a distributed
algorithm picks the vertex with the highest valued label anglgorithm to determine its own spectrum assignment. It must
assigns the color associated with the label to the vertex. Thge only locally available information. Gathering and dissem-
algorithm then deletes the color from the vertex’s color listhating information to a large neighborhood not only incurs
and also from the color lists of the constrained neighborsigh delay, but also limits the scalability of the network.
It also deletes all the edges from the colored vertex in theThe distributed algorithm works as follows. Each secondary
color graph, so the interference constraint of a vertex keepsSer detects the presence of primary users to determine
on changing as other vertices are processed, and the laiglsown channel availability and transmission constraints. It
of the colored vertex and its neighbor vertices are modifigen coordinates with nearby neighbors to determine channel
according to the new graph. The algorithm enters the nexdsignments in an iterative fashion. In each iteration, each
stage until every vertex's color list becomes empty or evepyser labels itself according to one of the policy-driven la-
vertex saturates. beling rules described in Section IV-C, and broadcasts the
Note that our graph coloring problem wants to maximizgbel to its neighborhodd After hearing all the labels from
utility while the conventional graph coloring problem [25]jts neighbors, the secondary user with the maximum label
[20] wants to minimize the number of colors used. While th@ithin its neighborhood selects the associated channel and
labeling rule in our approach is different from PMNF, theyroadcasts its selection. The neighbors who conflict with this
intuition is similar. We choose to color the “most valuableyser on this channel remove the channel from their respective
vertices first,i.e. the vertices that contribute to the systemyailable lists. After collecting assignment information from
utility the most. In particular, it can be shown that whegyrrounding neighbors, each secondary user updates its list
Cmaz = M, the problem of maximizing sum reward is equivof available channels and recalculates its label. The process
alent to a combination of maximum weighted independepy repeated until each user's available channel list is empty
set (WIS) problem on each color. In [22], the authors shogt users are satisfied. Through these iterative broadcasts,
that a greedy approach is a tighfy-approximation of WIS, this algorithm allows cooperation beyond a node’s immediate
wherea (G) is the maximum degree of the graph. The authorgeighbors, producing effects similar to global optimization
propose an iterative approach to repeatedly select the verfiggough cooperative local actions distributed throughout the
u from the graph@ with maximal dGb(%)H, whereb(u) is the  system.
bandwidth andi;(u) is the degree ofi in G. The algorithm
then deletes and its associated edges from the grébiHere

% approximates the contribution efto sum reward in C. Labeling Rules

its local neighborhood. We have described both centralized and distributed alloca-
tion algorithms based on iteratively coloring nodes using label

B. Centralized vs. Distributed Network Architectures values. In this section, we define a number of labeling rules

The algorithm we describe above assumes a central allogz‘a"’}t correspond to each of the utility functions described in

tion server with knowledge about all users in the system. ection IlI-A for both centralized and distributed algorithms.

this section, we discuss the challenges facing the centralizecﬁ distributed algorithms, we use collaborative rules that con-

. . . L . gider the impact of interference on neighbors when labeling.
version of the algorithm, and describe a distributed version .
the algorithm. able | summarizes how the proposed rules correspond to

a) Centralized Architecture:in a centralized architec- utility functions and centralized or distributed approaches.

ture, a central spectrum server makes decisions on channel _ .
This requires a coordination scheme so that secondary users can commu

gSS|gnment. The serv_er collects Iocatlop, power, spectrum "’Hﬂgte with each other without interfering primary users. A detailed study on
interference information from both primary and secondaryis subject can be found in [8].



For each vertex, its m color-specific degred),, ., is the each stage, the vertex with the minimum accumulated reward
number of conflict edges it shares with its neighbors for colavill be colored with the color that maximizes utilization while
m. This is the number of neighbors who cannot simultaneoustgnsidering interference. If two vertices have the same label,

usem with n, i.e. then the vertex with largemax,,ce, bnm/(Dn,m + 1) value
N1 gets a higher label.
D,y = Z c(n, kym) - lnm - Lo (9) Non-collaborative-Max-Min-Reward (NMIN)This rule is
" k=0 kn ’ ’ a non-collaborative version of CMIN where the impact of
. . . interference is not considered in the vertex labeling and
D, ., is a good measure of the impact to neighbors Whenc@lor' ;
e ) ) ing, i.e.
color is assigned to a vertex. Now we describe the relevant
labeling values organized by the utility function they optimize Nl
o label, = — Y @nm - bpm,
m=0
Max Sum Reward color, = arg m&x bpm.- (13)

Collaborative-Max-Sum-Reward (CSUMhis rule aims to ) o
maximize the sum reward defined in (5). When a verteis N each stage, the vertex with the minimum accumulated
assigned with a colom, its contribution to the sum reward inreward will be colored with the color that has the largest
a local neighborhood can be computedbas, /(D + 1) reward. If two vertices have the same label, then the vertex
since some of its neighbors cannot use this color. We propd¥éh largermaxy,e;,, by is assigned with a higher label.

to label the vertex: according to Max Proportional Fair

label, = max bym/(Dpm + 1), .CoIIaborgtive-Max-P_rqpor?ionaI-Fair (CFAIR) This rule
mely aims to achieve a specific fairness among vertices, correspond-
color, = arg max bo.m/(Dpm + 1) (10) ing to (8). It is well known that proportional fair scheduling

) ) assigns resource to the user with the highegtl%n, where
where £, represents the color list available at vertexat . represents the reward generated by using a time slot and

this assignment stage. This rule considers the tradeoff betwqu is the average reward that the usehas received in the

spectrum utilization (in terms of selecting the color with th%ast [18], [3]. The concept of proportional fair scheduling is

largest reward) and interference to neighbors (in terms Qfplied to this problem by viewing colors as time slots. In

degree). This rule is collaborative, since it takes into accoyg . stage, each vertexis labeled according to

the impact to neighbors.

Non-collaborative-Max-Sum-Reward (NSUMThis rule label., — 0axmet, bom/(Dnm +1)
. . . . . n M-1 ’
aims to improve the sum of reward without considering the Y m—0 Gn,m *bum
impact of interference to neighbors. The vertex with the color, = argmax by m/(Dpm+1). (14)
maximum reward will be colored,e. a vertexn is labeled mehn
with where label, represents the ratio of the maximum
interference-weighteceward from using a color and the accu-
labely = max bn,m, mulated reward in past stages. This rule is in general different
color, = argmax by . (11) frpm the tr.aditionlal proport?onal fair rule as it captures the
mely difference in the impact of interference generated by a color

When colors are homogeneous, this corresponds to a ragsignment.
dom labeling. Compared to CSUM, this rule is relatively Non-collaborative-Max-Proportional-Fair (NFAIR)This is
selfish. It is non-collaborative, since each vertex only considekgion-collaborative version of the CFAIR rule. Each ventex
its own reward and ignores impact on the overall system. is labeled according to

maXe, bn,m

Max Min Reward label, = — ;
Collaborative-Max-Min-Reward (CMIN)This rule tries to Y om—0 Gnm  bum
distribute colors uniformly among vertices to improve the color, = arg max bp,m.- (15)

minimum reward that a vertex can get, while considering i y
interference to neighbors. This rule tries to solve Max-Mi¥/hen all the channels have uniformed bandwid#,b,,,,, =
optimization as defined in (6). In each stage, a veneis L. this rule become&iMIN rule.

labeled according to
V. SIMULATION RESULTS ANDDISCUSSIONS

N-1
label, = — Z Ao * Doy In this section, we conduct experimental simulations to
— ’ quantify the performance of open spectrum systems, and
color, = argmax by,m/(Dpm+1). (12) validate the proposed spectrum allocation algorithms. We
mel, ’ ’

start by examining the appropriateness of the labeling rules
where a,, ., represents the reward obtainedratbefore this designed for different utility functions. We then compare the
assignment stage. Note that unlik&sU M and NSU M, the performance of collaborative and non-collaborative approaches
label depends on the reward obtained in previous stages.tdra baseline approach, and study the impact of system settings



on utility performance. We also compare the performance ahd CFAIR rules grant priority to these users by taking into
centralized and distributed implementations and their resp@ccount the accumulated reward in the labeling metric. As the
tive associated complexity. priority is mainly determined by the accumulated reward, these

We conduct our simulations under the assumption of taoo rules perform similarly. The same conclusion applies to
noiseless, immobile radio network. We randomly place a numen-collaborative rules, and we omit those results because of
ber of primary and secondary users in a given area (10x18pace constraints.
Each primary user randomly selects one channel to utilize
from a pool of channelse(g. 10 channels). For simplicity, B. Collaborative vs. Non-collaborative Rules
we assume that primary users have uniform protection rangesin this section, we compare the performance of collaborative
i.e. Dp = const. Given the location and channel selectiormnd non-collaborative rules. We also introduce a baseline ran-
of primary users, each secondary useadjusts its transmit dom labeling approach which assigns a random label between
power (and hence interference range) on each chanpek. 0 and 1 and selects a color randomly from the color list.
ds(n,m) to avoid interference with primary users. Channegtor easy notation, we will use CA, NCA, and RAND to
availability, reward and interference constraints are derivedpresent collaborative, non-collaborative and random rules. It
according to section Ill. By default, we assume that thefe well-known that the performance of graph coloring depends
are 10 channels,20 primary users and0 secondary users. heavily on the topology of the conflict graph. Hence, only
We setCuax = 10, Dp = 2, dyin = 1 and dpa: = 4. through comprehensive evaluations under different network
Each deployment of primary and secondary users produceseings can we thoroughly understand the problem. Next,
topology and a colored conflict graph. We study the statistioae present simulation results evaluating the impact of four
performance of spectrum allocation in terms of the averaggstem parameters: the number of primary users, the number
system utility over 500 deployments. of secondary users, the maximum transmission poiygr,

We modify the definition of two utility functions to facilitate of secondary users and the number of channels.
the simulations. We use mean reward instead of sum rewardl) Impact of the Number of Primary User§\e start by

in the following simulationsj.e.: guantifying the performance of labeling rules under different
| M=l configurations of primary user deployment. Note that the
Unnean = ~ Z 3., (16) conflguratlop of primary users dgtermmes channel availability,

=0 reward and interference constraints seen by secondary users. In

so that all three utilities are within the same scale. In additio'fflhe simulated system, increasing the number of primary users

the fairness based utility defined in (8) beconted there of'.mcreasmg th_e protection range: would both expand the
exists a secondary user without any channels assigred primary protection area, and force affected secondary users

. : to, reduce their power and thug. The impact is two-fold.
starved user. For a better illustration of the performance at )

: . irst, the number of available channels, and channel reward at
non-starved users, we modify (8) into:

secondary users are reduced, degrading spectrum utilization.
N-1 Second, the interference among secondary users decreases,
U= (H (8, + le — 4)) . (17) improving the possibility of spectrum reuse by multiple sec-
n=0 ondary users. The final impact on system utility depends on the
by assuming a baseline rewardlef-4 at each secondary user.radeoff between the two, which in turn depends on the settings
Overall, the results are indexddean RewardMin Reward of Ch_annel reward and |_nterf_erence_constralnts. Figure 5_sh0ws
and Fairessrespectively. that in the current setting, increasing the_ n_umber of primary
users would degrade all three utilities. Similar trends can be
obtained by increasingp, and those results are omitted due
to space constraints.

We start by examining the relationship between the pro- Compared to CA and NCA, RAND rule performs poorly
posed rules and the utility functions. For this purpose, we ugeterm of all three utilities. This is because both CA and
the centralized implementation and the default setting definRA rules take into account certain property sectrum
above. Figure 4 illustrates the system utilities correspondingheterogeneitypy approximating the contribution of a channel
each of thel0 topologies chosen randomly. The results confirmssignment to system utility. Overall, results in Figure 5 shows
that each proposed collaborative rule outperforms othersthat CA and NCA rules outperform RAND rule B9 —50% in
optimizing the respective targeted utility function. From theiterms ofMean Reward?2 — 14-fold in terms ofMin Reward
definitions, we see that the CFAIR rule is a combination @nd 2 — 4-fold in terms of Fairness Improvements in both
CSUM and CMIN rules. Hence, CFAIR’s performance is itMean Rewardand Fairnessare much more significant since
between that of CSUM and CMIN in boftiean Rewardand they depend heavily on the “poor” user’s performance. Using
Min Reward In terms of Min Rewardand Fairness CMIN  random labeling, a “poor” user’s available channels diminish
and CFAIR have similar performance while CSUM performguickly due to its small available channel list and large number
poorly. This is because both utilities are critically limited byf interference constraints. This limits the system utility.
the “poor” users. Those users are located in crowded area€ompared to NCA rules, CA rules not only consider the
and near primary users, and hence have many edges eward obtained for each individual user, but also the conse-
small color list in the corresponding conflict graph. CMINguence of interference and its impact on overall system utility.

2|

A. Labeling Rules and Utilities



The label provides a more accurate characterization of tfeg good system performance. We also observe tatin
user's contribution to system utility. Figure 5 shows that CRewardin general reaches its maximum value at a higher
leads to an improvement 6f-30% in Mean Reward15—80% d,... compared to the other utilities. This can be explained
in Min Rewardand 15 — 40% in Fairness as follows. Increasing,,., could help “rich” users who are

2) Impact of the Number of Secondary Useidext, we located in a sparse area, but degrade the performance of
examine the performance of different rules under differeffpoor” users who are within close distance with each other.
configurations of secondary user deployment. We start by vays Mean Rewardlepends heavily on “rich” users, the impact
ing the number of secondary users in the arga,user den- of increasingd,,,, remains positive until these “rich” users
sity. Increasing density clearly creates additional interferenbecome “poor” users a$,,., increases.
constraints, thus increasing the vertex degree in the conflict
graph. Hence, Figure 6 shows that all three utilities degrade Comparing to the Optimal Solution
as the number of secondary users increases. In addition, th

five now compare the system utility derived from the pro-
performance difference among CA, NCA and RAND rules i P y 4 P

- - 8osed heuristic based approaches to the optimal value. We
similar to that in Figure 5. use exhaustive search to find the channel assignment that
~3) Impact of the Number of ChannelsNe now exam- ayimizes each system utility. Given the complexity of the
ine how system utility scales with the number of channel§,p, stive search scales exponentially with the number of
Figure 7 quantifies the performance of different rules as ”r"\%des, we use simple topologies (see Fig. 11) with limited
number of channels changes. We see that in general all thiee,er of nodes and channels. Topo | and 11 are two extreme
utilities scale linearly with the number of channels (at IeaﬁBpoIogies: a star topology with one vertex interferes with the
when the number of channels exceeds 10). We also obsef¥g anqg a ring topology with uniformed interference condi-
that the scale depends on the number of secondary users.ij, Fig 12 and 13 summarize the results for 18 node ring
4) The Impact ofd,.,: We then study the impact of tgpology and 10 node star topology, assuming 3 channels with
varying the value ofd,,q;. Raisingdy., allows secondary throughput 1, 0.81 and 0.64, respectively. There is randomness
users to transmit at highetis, which leads to improved i, the graph coloring assignment (if two vertices have the same
spectrum utilization for seco_ndary users.who are distant frqghe|, the algorithm randomly picks one vertex). Hence, results
primary users. However, since there is no power contrgte represented as mean with 90% confidence interval. We
among secondary usetsthis also leads to additional interfer-gpserve that the proposed collaborative rule based approaches
ence constraints and reduced possibility of spectrum sharigghjeve similar performance compared to the global optimal.
Hence, there exists a tradeoff between improving Spectryfg; star topology, the performance under fairess utility is
utilization and degrading spectrum sharing. Figure 8 iIIustratgﬁghﬂy worse.
the system utilities wheré,,,, varies from2 to 8. We see e also consider a set of small random topologies assuming
that system utilities are quite sensitive to variationsij,.. g5 secondary users, 10 primary users and 5 channels. The
In particular, Mean Rewardincreases withd,,q., and Min onojogies are formed by randomly deploying primary and
RewardandFairnessreach the maximum fof,.... = 3 and4  secondary users following the procedure in Appendix I. We
and converge afted,,,, exceeds 5. Hence, we should adjuséetDP =2, dyin = 1 andd,,., = 4. For a clear illustration,
dmaz to Optimize system utility, or equivalently, invoke powekye introduce another performance meelative difference
control to adjustd,,. at each secondary user. This measures the difference of system utility provided by the
Note that the above results are obtained by assuming tb?éposed graph coloring approach and the global optimum. If
bum = Ds(n,m)*. We also examine the impact @f,... the utility obtained through graph coloring using a particular
where b, ,,, is computed differently. Figure 9 illustrates theyle 5 is T'(n) and the global optimum i€, the relative
system utilities where the channel reward is defined,py, = {ifference is1 — T(n)/Topi. WhenT,,; = 0, the relative
log(1 + Ds(n,m)?). In this case, the gain from improvingiference is 0. Table Il summarizes tRelative differencéor
spectrum utilization becomes less significant. In this case, Gfffferent system utilities averaged over 100 random topologies.
rules that consider interference to neighbors in labeling aggmilar to the above, CA and NCA refer to the collaborative
less sensitive to variations i, comparing to NCA and and non-collaborative rules under different system utilities. We
RAND. Figure 10 illustrates the utility performance wher@ee that there is still visible difference between the proposed
dmaz = dmin and by, = dp,,,. This represents the caseapproach and the global optimum, particularly for min reward

where users transmit at a fixed power, hence get homogenegyg fairness. Overall, CA provides the best approximation
reward by using each channel. Note that even without rewagmpared to NCA and RAND.

heterogeneity, CA rules perform significantly better than NCA
and RAND rules. Results show that the system performanlr_:)e

. .. . . . Centralized vs. Distributed Implementation
is sensitive tad,,..., and a proper setting af,,,,.. is essential P

In this section, we compare the performance of central-

5Secondary users can adjust their transmission power andduac- 12€d and distributed implementations. Figure 14 compares the
cordingly to avoid interference among themselves. This is the conventiog@rformance of collaborative rules as the number of chan-
Coe power control 1 avoid interferng primary users. Research on combinig S, V211es: We also include a distributed implementation of
power control and spectrum allocation to further improve system utility wiI.ﬂ%AND” rU|e: We observe that_ the centralized anq d_'St”bUted
be included in another study. implementations of collaborative rules perform similarly and



significantly outperform the distributed implementation of Theorem 1:Using centralized implementation and CSum
RAND rule. There is a visible difference between two imrules, the sum reward is bounded.

plementations in terms dflin Reward This is becauslin

Reward represents the worst user performance in the sys- 5(Cmax) = GB(Cimax)- (22)

Fem and thu; requires .system—wide o_ptimization. CentralizedTheorent expands the lower bounds derived in [22] regard-
|mp|em“entat|on“ is designed to maximize the performanggy weighted independent set problem (WIS) into the proposed
of the “poorest” user within the network, while distributectg|or-sensitive graph coloring problem with the constraint
implementation aims to maximize the performance of the ~~ \whenc,,,, = M, the problem can be reduced into
“poorest” user in local neighborhood. _ ~ finding the maximum WIS on each color graph. A coler
We also examine the complexity of two implementationgyanh 'is derived from grapli by removing colorm from
The major difference between two implementations is thgfi the color lists, and removing colon edges. The proof is
during each coloring stage, centralized implementation selegts,ightforward following the work in [22]. For general choice
one user while distributed implementation selects multipje Cinaws We need to jointly consider the color assignment for
users. Hence the number of labeling/coloring stage requirgfl the color graphs, and the results in [22] are not directly
for distributed implementations is much less than that %Jpplicable. The detailed proof is shown in the Appendix Il

centralized implementation. Figure 15 compares the numberc()m”ary 1: The same lower bounds can be obtained using
of labeling stages in both implementations. We see that di§iztriputed implementations.

:it;]?t‘?:d impletm?_nta(;io_n C|“t5 th? r;umbtehr of stages b%/ atImOStDistributed and centralized implementations differ in terms
alf. For centralized implementation, the number of stag - :
equals 105N L3010 oo the number of Stage BF the choice of vertex to be colored in each stage. In

! n=0 2um=0 dn,m- il a9€Yistributed implementations, more than one vertex can be
required forMean Rewards much higher than that dflin  5|0red in each stage, but each chosen vertex is associated with
RewardandFairness As expected, the number of stages scalgge highest labeling in its neighborhood. Hence, the selected

linearly with both the number of channels and the number g&ers contribution to the sum throughput can still compensate
secondary users. for the throughput loss at its conflicting neighbors. A detailed
proof is included in Appendix Ill. The derived lower bounds

) i _ . are shown in Figure 5 to 14.

WhenC.q, = M, seeking channel assignment to maximize Thegrem 2:Using centralized implementation and CSum

sum reward is equivalent to finding the maximum WEight%les, theperformance ratioof the proposed approach to the

independent set problem. The work in [22] shows that Sbtimal SO|Uti0np:infc§gEg’"“jg, whereSc(Conas) is the

greedy approach that selects to color the vertex with maxym reward obtained using the €Sum labeling rule on geaph

b"L i 1 . .
mum 5> outputs an independent set of weight at IeaatndaG(Cmaz) is the optimal sum reward. Whe,, ., = M,

Y onev D”inﬂ) In this section, we conduct theoretical analysighe performance raticis bounded by

on the ﬁower bound of sum reward using the CSum rule and 1 1

a centralized implementation, under ttg,,, constraint. . >p> . (23)
For each vertexa, we sort the channel list by the CSum Miny, MaxXy, Dn,m MaXy, MaXp Di,m

label by, . /(Dn.m + 1) in decreasing order. Defing(n, K) The proof is straightforward following the results in [22].

as the collection of up td< highest labeled channels at

VI. THEORETICALLOWERBOUND

Define coloring bound VIl. RELATED WORK
N-1
bn.m Extensive research exists on the general problem of channel
GB(K) = —_— 18 _ : . .
(K) Z Z Dym+1 (18) allocation. Both analytical framework and practical strategies
n=0 men(n, K) ’ . .
) ) have been proposed. Analytical frameworks in [17], [10]
In particular, if K = M, n(n, K) = {0,..., M — 1}, and address fairness for single-hop flows, and derive an estimate of
N-1M-1 the rate at each flow to achieve Max-Min fairness. However,
GB(M) = Z Z elile (19) there is no guarantee that a feasible scheme exists to achieve
Dn.m + 1
n=0 m=0 " the rate.
and if K = 1, i.e. every user can only use one channel, Practical strategies have been proposed for sharing a single
(N, Cag) = arg maxo<m<nmi—1 bn,m/(Dn,m + 1), and channel. Contention based schemes invoke a random access
N_1 protocol like ALOHA and CSMA, where users contend in time
GB(1) = Z max bn,m (20) to sh_are acommon chann_el [1_4], [10], [1_7]. While this scheme
S 0smsM-1 Dy +1 provides fairness and utilization on a single channel system
Let probabilistically, its application to a multi-channel system
N-1M-1 requires each user to know how many and which channel(s) to
S(Craz) 2 Z Z n,m * Op,m, (21) access. Another approach, conflict free time slot scheduling,
n=0 m=0 provides guaranteed channel usage by reserving time slots

represent the sum reward obtained using the CSum labelfog each flow. Solutions in [21], [1], [20] assign exactly one
rule, which depends on the choice @f,,,.. Since Vn, time slot to each flow. This approach can be used in multi-
Zﬁ\f;ol an,m < Cmax- channel systems if each user uses only one channel. Another
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solution [23] allows users to use multiple slots/channels to APPENDIXI
achieve Max-Min-fair, but does not consider interference from PSEUDOCODE FORMODELING NETWORK CONFLICT
neighbor transmissions. GRAPH

Multi-channel assignment strategies were developed mostlypepioy i primary users: each primary userl < k < K)
for cellular networks. The work in [12] provides solutions t0 |ocates inxy, and uses channegy,. -

assign frequency bands among base stations to minimize Callbeploy N secondary users: each secondary usgl <
blocking probability for voice traffic. There is no notion of , ~ N) locates ing,,.

fairness as the traffic determines the number of channels eacky ,, — 1 to N do

base station should use. Distributed channel assignment for Dsp(n,m) = min(dpaz, Ming=1. g yp=m{DIST($,,, 1)~
OFDM based systems has been studied in [9] but only for Dpr}) )

fully-connected network, where all the flows interfere with Dsp(n,m) > dpmin then

each other. Bum = Dsg(n,m)?, lnm =1
While most existing approaches allocate channels according g|se
to a fixed user demand.e. call requests or one channel per Bum =lom=0

user, our goal is to optimize spectrum utilization across the end if

entire network while taking fairness into account. In addition, end for

we consider the issue @pectrum heterogenejtywhere users  for n=1to N — 1 do
perceive different channel availability and different channel for ; =n +1 to N do

interference constraints as a function of time and their location. for m = 1 to M do
For Sum Reward based utility, and unlimited channel access if Dgp(n,m)+ Dsg(i,m)> DIST(¢,,¢;) then
i.e. Chax = M, the optimization is exactly a Weighted e(n,i,m) = c(i,n,m) =1
Independent Set (WIS) problem [22]. However, we generalize else
the optimization ta’,,,., < M and derive the theoretical lower e(n,i,m) = c(i,n,m) =0
bound. We consider a general multi-hop network topology, end if
while most work on OFDM based channel allocation are based end for
on fully-connected single hop wireless networks. end for
end for

VIIl. CONCLUSION AND ON-GOING WORK
APPENDIXII

In this paper, we define a general model and utility functions PROOF OFTheoreml

for optimizing utilization and fairness in spectrum allocation In this section, we provide the proof @®heoreml. We start
for open spectrum systems. By reducing the optimal allocatiavith the following denotations.

to one ofColor-Sensitive Graph Coloring (CSGQle show | s() = {(n,,m;)}: The chosen vertex and the associate
that it is an NP-hard problem. While taking into account  cojor, j.e. vertex-color pair at théth coloring stage:
spectrum heterogeneity, we describe a set of approximation, AW — {(n,m)|(n,m) € S®_k < i}: The list of color
algorithms for both centralized and distributed approaches to assignment at vertex before theith stage.

spectrum allocation. Our experimental results show that not, 19 - The availability ofm after theith coloring stage.
only can our algorithms drastically improve network perfor- (After each assignment, a set of colors are removed (or
mance by reducing interference, but our distributed algorithm disabled) from some vertices.)

provides benefits comparable to the centralized approach while FO = {(n m)\lgf)m — 1}:The set of available vertex-
drastically reducing computation complexity. color pairs ’aften‘tﬁ stage.

While we propose several computationally efficient dis- | () . an indicator of the disabled vertex-color pair due
tributed allocation algorithms in this paper, we assumed a to ltheith coloring, i.e. u%)m — 1 only if ZS;;}) —1 and
static network environment and focused on optimizing a O N ’ ' ’
snapshot of the network. If we consider a dynamic network, "™ ) i ) .
network-wide spectrum allocation becomes a more complex® ut = {.(n’m”u;“)’” ~ 1}' The set of disabled vertex-
problem. The algorithm needs to recompute allocations as co(li())r.paw due,tOLth coloring. , .
the topology changes. We develop an adaptive approach that nm- Vertej\>f<fbls degree on COlo(’;'} aft%r)’th coloring,i.e.
adapts to topology variations through local optimizations [4]. Dinm = Zkzo,k;én ey kym) - I - lgm- L8t Dy =
We are also examining the impact of changing spectrum D?L_,m' _
availability and bandwidth distributions on our algorithms. Nﬁf)(n) = {k‘cn7k7m:17l](;,),m = 1,k < N,k # n}

The set ofmm colored neighborhood of vertex after ith
coloring. DY), = | N, (n))].

ACKNOWLEDGMENTS o M(K): The set ofK preferred vertex-color pairs in the
systemi.e.

The authors would like to acknowledge the anonymous
reviewers for their insightful suggestions. M(K) = {(n,m)lm € m(n, K),n < N}.  (24)
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The following lemmas will be used in the proof. For a vertex-color paifn,m) disabled atith stage, the
following lemma holds.

Lemma 1:
FO U@ andS® are related by Lemma 5:
Fi=D - Oy ygH,
@ Ay — D ASH ) A g — by,m
FI9nu» = F ﬁ.s =U ‘mS =0 Z Z D(T
FO (U u(z)) U (U S(z)) , (25) i (nm)EM(K)NUO
! ! b, m, 4 ,
n;,m; (i—1) (i)
The proof is trivial and thus omitted. S Z DD | I(Dnumi + [S¥AM(K)]).  (31)
) TG,y
Lemma 2: Proof: There are two reasons to disable a vertex-color
) ) air.
DY), <DV, <D, Vizj= 0. (26 © | |
' ’ « At each coloring stage, after a vertex is colored, the color
Proof: Sincel?),, < 1971 then it is obvious that the will be deleted from the neighbors of the vertex to avoid
vertex degreefo,)m is a non-increasing function af [ ] future conflict. Let
Lemma 3: uy = U (n,m;)

) . . (i=1)
Using CSum rule based coloring scheme, the color assignment n€Nm; " (ni)

atith coloring stage ign;, m;), and represent the set of vertex-color pairs disabled atithe

coloring stage to prevent future conflict. These vertices

(ni,m;) = arg Hflixl)ﬁ (27) are the neighbors of the selected vertex who share a
(nm)e m, colored edge withn;. Obviously the size ot/\?
It satisfies, the number of conflicting neighbors af; who haSml

available i.e. /()| = D).

; (i—-1) . .
Vi >0, ¥(n,m) € F « At each coloring stage, after a vertex is colored, the

bnm > ?’nﬂn > bi,m .(28) assignment of the vertex might reach the maximum
DR +1) (DY +1) T (D +1) constraintsk = Cnqs. The vertex and its color list will

Proof: The proof is trivial by combining (25),(26) and be deleted. Let

@7). u U = U (ng,m)
. . s mEm 1D =1,| A |=K v
To prove Theorem 1, we start by analyziogl(K). Since tng,m =11 An;
M(K) C F©, we can divide it into two groups.e. represent the vertex-color pairs that are disabled because
. . vertexn;'s assignment reachds.
ME) = (WuOnmE) v (USOaME))
i i Obviously

joint with disabled vertex-color pair joint with selected vertex-color pair . . .

Ud =@ ouf, uld nuf =0 (32)
The first group represents the vertex-color pairA(K) ‘

which is selected at each coloring stage, and the second gré@p each(n;, m) € M(K) nu'?, since it hasn’t been chosen

represents the vertex-color pair it (K) that is discarded at by the labeling rule, we have

each coloring stage (in topology updating). Next, we analyze

the vertex-color pairs of two groups separately. Z Z :);’7’”
~ For a_vertex-color pai(n,m) chosen atth coloring stage, i (nm)EM(K)NUN Dniim +1
it is obvious that the following lemma holds. b ' b
< U =5 = D) e (39)
Lemma 4: Dy m)y + 1 Dy im; + 1
Z b For each(n;,m) € M(K) mué“, since\AEfi) = K, then
(0) . ) )
(nm)em)nst Pnm +1 K =AY = [ME) N AD |+ [AD\M(K)| - (34)
bni7mi
< Z —iy - (by Lemma 3) From the definition ofr(n;, K), we have

(n,m)EM(K)NS® Dy m; +1

K = K| = |r(ng, K) N AD| + |7 (n;, K)\ AW
— ‘M(K) ﬁs(z ‘ (?nll)ml |7T(n )‘ "R’(TL ) e |(z) |7T(n )\ o
Dyt +1 = [ME)NAY |+ M(K)NUg’|
, - ;
= (1= [SO\M(K) )= (30) + 3 |m(ni, K) nU|. (35)
DanL +1 Jj<i



Combining (34) and (35), we get
IM(K) mué"’|

= 5 K)(J A \M(K)|
n“ mu(J)D
j<t
< S(JAY) | = K)|ATN\M(K)). (36)

For each(n;,m) € M(K) N UY), since it hasn't been
chosen by the labeling rule, the following holds:

bni ,m

DY, +1

bn“mJ

b+l

J

< min

i<i(nimy)edl, DY
&(ng, ).

Hence, we can derive

> X

b (nm)e M(K)NUS”

D2 0(AR = o) M(K) UG 6 (ni. i)
D 0(AR = o) AD\M(K) €. )

>

i

(37)

bnm

DY) +1

IN

IN

bni;mi

— SO\ M(K)).
D;ﬁf,}i{+1| \M(K))

(38)

Combininglemma 4and5 we have
GB( )

ZZ

n=1 men(n,K)
bn,m

2 O +1

(n,m)eEM(K) D”vm

2 by

i (n,m)eEM(K)

+§; >

(n,m)EM(K)NU

2 2

o\ (n,m)EM(K)N
b, i T i
Z%(l — [SA\M(K)))
5 Dnyom; +1
bni,ml

+§: (
DS 41

7 ( Pz
§ bnl 3G *
%

bn,m

D), +1

bIL m

0
g DO 1

bn m

DY) +1

b71 ,m

w”Dw

IN

nl,mi

S (U isOm)))
TG ,My

)

(39)

bn,;,nu

(i-1)  _ nomi
DY 41

ng,m;
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This completes the proof ofheorem 1
In the special case of = M (z > M), that is, each vertex
can use as many colors as possiblé(K) is equal toF(©,

uf;') = (), and then (39) can be rewritten as
GB(M)
n<Nm<M Dn.m + Dym +1
b b’ﬂ m
=2 X + X o
i (TLJYL)ES( )Dnm+1 n m)GL{( )Dn,m+1
bni,mi bn,mi

< > >

i—1 i—1
F\ P %M$Wmfmm3+1

- Z 1 + Dii =
i (an,mz + 1) (Dniymi + 1)

ani’mi
Actually, (40) obtains the generalization of Weighted Indepen-
dent Set Problem in Color-Sensitive Graph Coloring Problem

in [22].

(40)

APPENDIX I
PROOF oFCorollary 1

In a similar way, we can expand the above results to
the distributed cases, &orollary 1. The difference between
the centralized and distributed implementations is the vertex
choice, that is, more than one vertex may be chosen at one
coloring stage in distributed implementation, a${@ probably
consists of multi pairsS@ = {(n;,,mi,), (ni,, mi,), - }.

Let u((;)hmi) represent the individually disabled pair set by
U u(l)

(ng,m;) (ni;mq)”
may be chosen at one stage, their individual disabled sets may
be overlapped, therefore,

>

(n,m)e M(K)N

(ni, m;), obviouslyi/) = Since multi pairs

bnm

0
UG )D7(L Zn

bn,m
< Z A Z m (41)
(ni”rni)ES(l) (nv'm)eM(K)ﬂu((n) m;) i
Hence
GB(z)
= Z Z D(l())r)t m 1
i \(nm)em(K)ns Pnm +
bn,m
' o Dnm +1
i\ (n,m)EM(K)NUE Zmm
bn m
D D S
i (ng,mi) €S (n,m)EM(K)N(ni,m;) = ™ +
by,
" 7(42)
X5 2 DY), +1

t (ni,mi) €SP (n m)e M(K)NUD

(ng,m;)
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Using similar approach as in proving (39), (42) can bge] XG working group RFC, the XG vision and the XG architecturtp:

expanded as

IA

(1]
(2]
(3]

(4]
(5]

(6]
(7]

(8]
(9]

[20]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[27]
GB(x)
O S R = i el
i (ng,m;)eS® Dni,mi‘f'l ’ Dm,m +1
> by m,- (43)
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Primary user X and its
channel usage Secondary User |

TABLE I
COMPARISON TOGLOBAL OPTIMUM - RANDOM TOPOLOGIES

[ Relative Difference (%)] Sum Reward] Min Reward | Fairness|

e CA 0.08 35 20
Secondary User Il Secondary User Il NCA 095 a4 58
RAND 15 76 65
CHA Y
(b) .
Labeling
Fig. 1. Spectrum availability changing with the presence of primary For each vertex nin G
users. (a) Topology (b) availability of channel/colér (c) availability Select color(n), calculate label(n)

of channel/colorB.

'

Coloring
Find n*=argmax label(n)
Assign color(n*) to vertex n*

'

(A.B)

Updating Topology
¢ Remove color(n*) from vetex n*’s color list
(B) (A, B) ¢ Remove color(n*) from the color list of any
neighbor who has a color(n*) edge with
Fig. 2. An example CSGC graph for Figure 1 vertex n*, delete the associated color(n*)
edges
TABLE | e Delete vertices with empty color list and the
SUMMARY OF LABELING RULES associated edges
¢ Delete saturated vertices and the associated
[ Utility \ Rule Type | Collaborative [ Non-collaborative | edges
Max Sum Reward CSUM NSUM e For each standalone vertex (without any
Max Min Reward CMIN NMIN edge), assign colors with the largest reward
Max Prop. Fair CFAIR NFAIR until it saturates, and delete the vertex

No

Fig. 3. Flow Chart of Coloring
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Fig. 6. Spectrum allocation performance with varying secondary users. Fig. 7. Spectrum allocation performance with varying channels.
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