
Spectrum Sensing Combining Time and Frequency
Domain in Multipath Fading Channels

Yuan Qi, Wenbo Wang, Tao Peng, Rongrong Qian
Wireless Signal Processing and Network Lab

Key Lab. of Universal Wireless Communication,
Ministry of Education

Beijing Univ. of Posts and Telecommunications
Beijing, China

qiyuan@bupt.edu.cn

Abstract—Spectrum sensing is one of the key challenges in the
cognitive radio network. Primary user signal must be detected
reliably in the low signal-to-noise ratio (SNR) regime and in
multipath fading environments.

This paper analyzes effects of time-variant multipath Rayleigh
fading channel on cyclostationary characteristics and derives the
relationship between cyclostationary statistics of transmitted and
received signal. Depending on the distinct feature and the set of
tested cyclic frequencies, the test statistics may have different
performances. Cyclostationary features of small scale should be
selected to be detected taking multipath effects into account. A
novel solution to detect cyclostationary features combining time
and frequency domain is proposed. Simulation results illustrating
the reliability of solution as well as the effects of time-variant
multipath fading channel on features are presented.

Index Terms—cognitive radio, spectrum sensing, cyclostation-
arity

I. INTRODUCTION

Recently, Cognitive Radio has been seen as a potential
solution to improve spectrum utilization via opportunistic
spectrum sharing. It is an intelligent wireless communication
system that can sense the radio spectrum in order to find
unused frequency bands and use them in an agile manner. One
of the key challenges currently facing cognitive radio system
is the issue of reliable spectrum sensing.

Cyclostationary feature detectors have been introduced as
a complex two dimensional signal processing technique for
recognition of modulated signals in the presence of noise
and interference [5][6][7]. Recently, they have been proposed
for detection of cyclostationary signatures for rendezvous
in orthogonal frequency division multiplex (OFDM)-based
cognitive radio networks [3][4]. Cyclostationary feature is
appealing in good performance at the low SNR regime and
distinguishing among different signal types. A key limitation
of cyclostationary signatures is the sensitivity to time-variant
multipath Rayleigh fading environments.

Communication signals exhibit multiple scales of cyclosta-
tionary features due to the symbol or chip rate, training or pilot
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signals, guard periods and have their own sensitivity to mul-
tipath fading. Multiple signatures are introduced to overcome
time-variant multipath Rayleigh fading [4] [7]. However, the
relationship between cyclostationary statistics of transmitted
and received signal in multipath Rayleigh fading environments
has not been discussed yet.

In our work, we investigate the effects of time-variant
multipath Rayleigh fading channel on cyclostationary charac-
teristics in both time and frequency domain. The relationship
between cyclostationary statistics of transmitted and received
signal in multipath Rayleigh fading environments is derived.
Choosing cyclostationary features of small scale to be detected
is also proposed. Then a novel method of cyclostationary
feature detection combining time and frequency domain is
presented. It extends the methods of [5] and [7] to take
into account the rich information present in both time and
frequency domain. This method can also serve to identification
of signal with unique features in time and frequency domain.
Moreover, performance of the detection method as well as
distinct sensitivities exhibited by different features in multipath
fading channels are illustrated.

This paper is organized as follows. In Section II, there is a
short review of cyclostationary statistics. The effects of time-
variant multipath Rayleigh fading channel on cyclostationary
feature are derived in Section III. Section IV addresses the
method of cyclostationary feature detection combining time
and frequency domain. Simulation results demonstrating the
confidence of detector presence and performance of different
features are given in Section VI. Finally, conclusions are
drawn.

II. CYCLOSTATIONARITY

A zero mean complex random process x(t) is character-
ized by a time varying autocorrelation function Rx(t, τ) =
E{x(t)x∗(t + τ)}. It is said to be cyclostationary in wide
sense if its autocorrelation is periodic in time t with a given
lag τ . Due to the periodicity of the autocorrelation, it has a
Fourier series representation as [9]
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Rx(t, τ) =
∑
α

Rα
x (τ)ej2παt (1)

where the Fourier coefficients are

Rα
x (τ) = lim

T→∞
1
T

∫ T/2

−T/2

Rx(t, τ)e−j2παtdt (2)

and α is called the cyclic frequency. The function Rα
x (τ) is

called the cyclic autocorrelation function (CAF). The cyclic
Wiener relation states that the spectral correlation function
(SCF) can be obtained from the Fourier transform of the cyclic
autocorrelation in (2) [9]

Sα
x (f) =

∫ ∞

−∞
Rα

x (τ)e−j2πfτdτ (3)

which can be seen as a generalization of the conventional
power spectral density function. In practical situations, the
number of observation samples is limited. Therefore, both
the cyclic autocorrelation function and spectral correlation
function need to be estimated from a finite set of samples. An
estimate of the cyclic autocorrelation may be obtained using
T observations as

R̂α
x (τ) =

1
T

T∑
t=1

x(t)x∗(t + τ)e−j2παt (4)

And we use the spectrally smoothed cyclic periodogram
method [1]. Let us define the cyclic periodogram by [2]

Sα
XT

(t, f) =
1
T

XT (t, f + α/2)X∗
T (t, f − α/2) (5)

where XT is the short-time Fourier transform defined as
follows

XT (t, f) =
∫ t+T/2

t−T/2

x(u)e−j2πfudu (6)

The estimated SCF obtained by frequency smoothing of the
cyclic periodogram in (5) is

Sα
x (f) = lim

∆f→0
lim

T→∞
1

∆f

∫ f+∆f/2

f−∆f/2

Sα
XT

(t, ν)dν (7)

III. CYCLOSTATIONARY STATISTICS IN TIME-VARYING
MULTIPATH CHANNELS

The challenge of cyclostationary detection in cognitive radio
involves effects of time-varying multipath channel. In this
section we derive effects of time-varying multipath channel
on cyclic autocorrelation and spectral correlation function. We
assume that cyclostationary features of primary user signal
are known to cognitive radio user which is reasonable in this
case. Thus some issues dealing with selecting proper set of
cyclostationary features to be detected can be obtained.

We define signal model

y(t) =
∫ ∞

−∞
h(τ ; t)x(t− τ)dτ (8)

where y(t) and x(t) are received and transmitted signal
respectively, h(τ ; t) represents the equivalent lowpass response
of the channel at time t to an impulse at time t− τ . Let time-
varying channel impulse response be [10]

h(τ ; t) =
N∑

n=1

αn(t)e−jφn(t)δ(τ − τn(t)) (9)

where N denotes the number of resolvable multipath com-
ponents, αn(t) denotes the amplitude, τ(t) is the path delay,
and φn(t) is the phase shift. We also make the assumption that
the in-phase and quadrature components of h(τ ; t) are inde-
pendent Gaussian processes with the same autocorrelation, a
mean of zero, and a cross-correlation of zero. And this channel
model has a Rayleigh-distributed amplitude and uniform phase
without LOS component.

In order to analyze spectral correlation of received signal
under time-varying multipath fading, we characterize autocor-
relation of the channel assuming that our channel model is
wide-sense stationary (WSS) and uncorrelated scattering (US)

Ah(τ ;∆t) = E[h∗(τ ; t)h(τ ; t + ∆t)] (10)

Moreover we assume that the delay spread and Doppler spread
are separable.

From the definition presented in the preceding section, we
can arrive at cyclic autocorrelation function of received signal
as

Rα
y (∆t) = lim

T→∞
1
T

∫ T/2

−T/2

E[y(t)y∗(t + ∆t)]e−j2παtdt

= lim
T→∞

1
T

∫ T/2

−T/2

∫ ∞

−∞
E[h(τ ;u)h∗(τ ;u + ∆t)]

× E[x(u− τ)x∗(u− τ + ∆t)]
× e−j2πα(u−τ)e−j2πατdτdu

=
∫ ∞

−∞
A∗h(τ ;∆t)Rα

x (∆t)e−j2πατdτ (11)

where Rα
x (∆t) denotes cyclic autocorrelation function of

transmitted signal and A∗h(τ ;∆t) denotes complex conjugate
of autocorrelation function of h(τ ; t)

A∗h(τ ;∆t) = E[h(τ ; t)h∗(τ ; t + ∆t)] (12)

Using the Fourier transform of A∗h(τ ;∆t) in variable τ , the
cyclic autocorrelation function is given by

Rα
y (∆t) = A∗H(α;∆t)Rα

x (∆t) (13)

where AH(α;∆t) is the Fourier transform of the power delay
profile for given ∆t [10].

Since the channel response is approximately independent
at frequency separations ∆t > Bc, coherence bandwidth,
and the time-varying channel decorrelates after approximately
channel coherence time Tc, it is possible that the Rα

y (∆t)
approaches zero when frequency separation α exceeds Bc

and time separation ∆t exceeds Tc. Therefore, when we
choose the position of cyclostationary feature for primary user
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signal detection in time domain, we should take the following
conditions into account

α < Bc

∆t < Tc

(14)

Smaller α and ∆t lead to better performance of detection in
multipath channels.

Now, let us consider the spectral correlation of received
signal

Sα
y (f) = lim

T→∞
1
T

E[YT (t, f + α/2)Y ∗
T (t, f − α/2)]

= lim
T→∞

1
T

E[
∫ T/2

−T/2

y(u)e−j2π(f+α/2)udu

×
∫ T/2

−T/2

y∗(s)ej2π(f−α/2)sds] (15)

Following from the WSS and US properties of h(τ ; t), the
spectral correlation function can be simplified as

Sα
y (f) = lim

T→∞
1
T

∫ T/2

−T/2

∫ T/2

−T/2

∫ ∞

−∞
E[h(τ ;u)h∗(τ ; s)]

× E[x(u− τ)x∗(s− τ)]dτej2πf(u−s)ej2π α
2 (u+s)

× duds

(let : s− u = ∆t)

= lim
T→∞

∫ T/2

−T/2

∫ ∞

−∞
E[h(τ ;u)h∗(τ ;u + ∆t)]

× Rα
x (∆t)e−j2πατej2π(f−α

2 )∆tdτd∆t (16)

The scattering function [10] for random channels is defined
as the Fourier transform of Ah(τ ;∆t)

Sh(τ ; ρ) =
∫ ∞

−∞
Ah(τ ;∆t)e−j2πρ∆td∆t (17)

We can also define SH(∆f ; ρ) as the Fourier transform of
the scattering function [10]

SH(∆f ; ρ) =
∫ ∞

−∞
Sh(τ ; ρ)e−j2π∆fτdτ (18)

Now spectral correlation of received signal can be given by

Sα
y (f) = lim

T→∞

∫

T

SH(α,−∆t)Rα
x (∆t)e−j2π( α

2−f)∆td∆t

= SH(α, f − α

2
) ~ Sα

x (
α

2
− f) (19)

where ~ denotes convolution.
Considering effect of channel coherence bandwidth, we ob-

tain that if cyclic frequency α >> Bc, coherence bandwidth,
the autocorrelation goes to zero. Even if the transmitted signal
should exhibit cyclostationarity at cyclic frequency α, the
spectral correlation will be vanished after passing through this
time-varying multipath channel.

In the light of the discussion above, it is evident that
small scale of correlation which satisfies condition (14) is
appropriate when we select cyclostationary characteristics for
detection to overcome time-varying multipath effect.

IV. CYCLOSTATIONARY FEATURE DETECTION
COMBINING TIME AND FREQUENCY DOMAIN

In this section, a new approach of cyclostationary detection
combining features in time and frequency domain is presented.

Communication signals which will be used in cognitive
radio exhibit cyclostationarity at multiple cyclic frequencies
instead of just a single one. For example a signal that has
cyclic frequency related to the symbol rate is typically cyclo-
stationary at all integer multiples of the symbol rate. Besides
it may also exhibit cyclostationarity related to guard periods,
cyclic prefix (CP) and pilot carriers. In such cases sensitivities
of these presented cyclic frequencies to channel quality may
be distinct. And they provide rich information for us to detect
and identify communication signal.

In the following we extend the test based on second-order
cyclic statistics to cyclic frequencies in time and frequency
domain. For time domain test, from (4) we obtain that

R̂α
x (τ) = Rα

x (τ) + ∆α
x(τ) (20)

where the latter term is estimation error which is consistent
[8].

The 1× 2N row vector consisting of cyclic autocorrelation
estimates at the cyclic frequency α for a number of lags
τ1, ..., τN is given as

r̂α
x(τ) = [Re{R̂α

x (τ1)}, ..., Re{R̂α
x (τN )},

Im{R̂α
x (τ1)}, ..., Im{R̂α

x (τN )}] (21)

Defining the row vector of the true value of the cyclic
autocorrelation rα

x(τ) and the estimation error vector ∆α
x(τ)

in a similar fashion, we can write

r̂α
x(τ) = rα

x(τ) + ∆α
x(τ) (22)

It can be shown that the estimation error is asymptotically
normal distributed [8],

lim
T→∞

√
T∆α

x(τ) = N (0,Σx) (23)

where N (0,Σx) is a multivariate normal distribution with
mean 0 and covariance matrix Σx.

Given that the hypothesis H0 represents the case where x(t)
does not exhibit cyclostationarity with the cyclic frequency α
and H1 represents the case where x(t) does exhibit cyclosta-
tionarity the following binary hypothesis testing problem can
be formulated:

H0 : ∀{τn}N
n=1 ⇒ r̂α

x(τ) = ∆α
x(τ)

H1 : for some {τn}N
n=1 ⇒ r̂α

x(τ) = rα
x(τ) + ∆α

x(τ)
The asymptotic complex normality of r̂α

x(τ) allows the
formulation of the following generalized likelihood function
as the test statistic for the binary hypothesis test [8]:

T = T r̂α
x(τ)Σ̂−1

x r̂α(T )
x (τ) (24)

Under null hypothesis, the distribution of the test statistic
converges asymptotically to a central χ2 distribution with
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2N degrees of freedom. Moreover, relying on the asymptotic
nomality and consistency of spectral correlation function,
frequency domain test can be developed in a similar way. The
cyclic test statistic in frequency domain has similar property
as that in time domain[8].

Now in order to extend the test for the presence of second-
order cyclostationarity at cyclic frequencies of interest αt ∈
At and αf ∈ Af in time and frequency domain respectively,
we formulate the hypothesis testing as follows where At

denotes the set of cyclic frequencies in time domain while
Af the set of cyclic frequencies in frequency domain.

H0 : ∀αt ∈ At and ∀{τn}N
n=1 and ∀αf ∈ Af and ∀{fn}N

n=1

⇒ r̂α
x(τ) = ∆α

x(τ) and ŝα
x(f) = ∆α

x(f)
H1 : for some αt ∈ At and for some {τn}N

n=1 or for some
αf ∈ Af and for some {fn}N

n=1

⇒ r̂α
x(τ) = rα

x(τ) + ∆α
x(τ) or ŝα

x(f) = sα
x(f) + ∆α

x(f)
For this hypothesis testing problem, we propose the follow-

ing test statistic:

Ts =
∑

αt∈At

Tt +
∑

αf∈Af

Tf (25)

where Tt denotes the test statistic in time domain test and Tf

the test statistic in frequency domain test [8].
This test statistic calculates the sum of the cyclostationary

statistic over the cyclic frequencies of interest. Since the sum
of independent χ2 random variables is also χ2 distributed,
Ts is asymptotically χ2

2N(Nαt+Nαf
) distributed under the null

hypothesis, where (Nαt
+ Nαf

) is the number of cyclic fre-
quencies taking time and frequency domain into consideration.

Communication signals exhibit cyclostationarity introduced
by CP, symbol rate or pilot carriers. Unique features can be
created in time and frequency domain for signal and their
test statistics may have different performance. This detection
method can exploit cyclostationrity of time and frequency
domain simultaneously and serve to identification signal type.

V. SIMULATIONS

In the following, the confidence of the proposed method has
been investigated. The effects of time-variant multipath fading
channel on different signatures are demonstrated as well.

OFDM signals are generated using quadrature phase shift
keying (QPSK) modulated random data symbol. A 64-bin
IFFT is used. We select cyclostationary features introduced
by CP and pilot carriers for time and frequency domain
respectively. Simulations are performed for both non-multipath
and multipath fading channels. In the latter case, we choose
COST 207 bad urban model which contains six fading paths
with their respective powers and delays for a carrier frequency
900 MHz. The data are passed through a channel with different
SNR. The SNR is measured by the ratio of the power of
OFDM symbol to the power of noise. Detection is carried
out by 60 OFDM symbol observations.

Fig.1 and Fig.2 show the performance of cyclostationary
features of different scale in both addictive white Gaussian
noise (AWGN) and multipath propagation channel. Probability
of detection Pd vs. SNR for a fixed false alarm rate Pf = 0.05
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Fig. 1. Pd vs SNR for cyclostationary features of different scale in time
domain and Pf = 0.05
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Fig. 2. Pd vs SNR for cyclostationary features of different scale in frequency
domain and Pf = 0.05

is plotted. In Fig.1 We choose a fixed lag τ = Tu and cyclic
frequencies α = Fd and 2Fd to be detected where Tu denotes
useful symbol duration and Fd denotes OFDM symbol rate.
In Fig.2, Two sets of separation between pilot carriers with
same value are taken into consideration: sep = 4 carriers and
sep = 50 carriers. We could observe that feature of a smaller
scale α = Fd in Fig.1 and sep = 4 carriers in Fig.2 have
better performance.

Fig.3 and Fig.4 indicate proposed detection method perfor-
mance in both AWGN and multipath channel and compare
it with single and multiple cyclic frequencies detector where
αt = Fd denotes cyclic frequency introduced by CP and αf

cyclic frequency introduced by pilot carriers. In Fig.3, the
proposed method outperforms single cyclic frequency detector.
In Fig.4, αt = Fd and 2Fd are selected in time domain
test. Performance of this detector approaches that of multiple
cyclic frequencies detector in time domain and is much better
than that of multiple cyclic frequencies detector in frequency
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Fig. 3. Pd vs SNR for comparing proposed detection method with single
cyclic frequency detectors and Pf = 0.05
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Fig. 4. Pd vs SNR for comparing proposed detection method with other
multiple cyclic frequencies detectors and Pf = 0.05

domain. Moreover, the detector combining features in time
and frequency domain has less complexity than multiple
cyclic frequencies detector in time domain. It can also aid
in identifying unique features in time and frequency domain
simultaneously.

VI. CONCLUSION

This paper has analyzed effects of time-varying multipath
channel on cyclostationary characteristics of OFDM-based
waveforms. Cyclostationary features of small scale have been
proposed to be detected considering multipath effects. A new
method of detecting cyclostationarity combining time and
frequency domain have been presented, which can aid in
identification of multiple features in two domains. Simulation
results demonstrating the confidence of detector have been
presented. Desirable performance of the proposed detector has
been verified. We have also investigated distinct sensitivities
to noise and multipath of several cyclostationary features. The

results have indicated that features selected with small scale
to be detected improve performance considerably.
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