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ABSTRACT 
 
Spectrum sensing plays an important role in cognitive 
radios because the secondary users need to continuously 
monitor the spectrum for the presence of primary user. In 
this paper, we mainly investigated the cyclostationary 
feature spectrum detection in cognitive radios. Our analysis 
shows that cyclostationary feature detection requires partial 
information of the primary user and high computation cost 
although it is robust to interference in low SNR. We 
propose a novel strategy for spectrum sensing based on 
cyclostationary feature detection. Our new approach can 
effectively decrease the computational complexity and 
improve the performance of the inhibition of noise 
interference. At last, numerical results are provided in 
order to illustrate the advantages of our new technique.  
 
Key Words ⎯⎯ Cognitive radio, Spectrum sensing, 
Cyclostationary feature detection, Cyclic spectrum, Cyclic 
autocorrelation. 
 

1. INTRODUCTION 
 

The proliferation of wireless services and devices for 
uses such as mobile communications, public safety, Wi-Fi, 
and TV broadcast serve over the past several years 
demonstrates the vast and growing demand of businesses, 
consumers, and government for spectrum-based communi- 
cations. While land and energy constituted the most 
precious wealth creation resource during the agricultural 
and industrial eras respectively, radio spectrum has become 
the most valuable resource of the modern era. Spectrum 
access, efficiency, and reliability have become critical 
public policy issues. Notably, the unlicensed bands (e.g., 
ISM and UNII) play a key role in this wireless ecosystem 
given that many of the significant revolutions in radio 
spectrum usage has originated in these bands, and which 
resulted in a plethora of new applications including 
lastmile broadband wireless access, health care, wireless 
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PANs/LANs/MANs, and cordless phones. This explosive 
success of unlicensed operations and the many advancem- 
ents in technology that resulted from it, led regulatory 
bodies (e.g., the FCC through its Spectrum Policy Task 
Force (SPTF)) to analyze the way spectrum is currently 
used and, if appropriate, make recommendations on how to 
improve radio resource usage [4].  

The term Cognitive Radio was first defined by Mitola 
[1], [2] in 1999. The new CR technologies are increasingly 
being used in spectrum based communication systems and 
are likely to become more and more prevalent over the 
next few years. These technologies hold tremendous 
promise in helping to facilitate more effective and efficient 
access to spectrum by opening opportunities for spectrum 
use in space, time, and frequency dimensions that until 
now have been unavailable. Also it include the ability of 
devices to determine their location, sense spectrum use by 
neighboring devices, change frequency, adjust output 
power, and even alter transmission parameters and charact- 
eristics. The ability of CR technologies to adapt a radio’s 
use of spectrum to the real-time conditions of its operating 
environment offers regulators, licensees, and the public for 
more flexible, efficient, and comprehensive use of 
available spectrum while reducing the risk of harmful 
interference [3]. 

In cognitive radio, a spectrum hole is a band of frequen- 
cies assigned to a primary user, but, at a particular time and 
specific geographic location, the band is not being utilized 
by that user. In passively sensing the radio scene and 
thereby estimating the power spectra of incoming RF 
stimuli, we have a basis for classifying the spectra into 
three broadly defined types, as summarized here. 
1) Black spaces, which are occupied by high-power 

“local” interferers some of the time. 
2) Grey spaces, which are partially occupied by 

low-power interferers. 
3) White spaces, which are free of RF interferers except 

for ambient noise, made up of natural and artificial 
forms of noise, namely: 

 broadband thermal noise produced by external 
physical phenomena such as solar radiation; 
 transient reflections from lightening, plasma (fluore- 
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scent) lights, and aircraft; 
 impulsive noise produced by ignitions, commutators, 
and microwave appliances; 
 thermal noise due to internal spontaneous fluctuations 
of electrons at the front end of individual receivers. 

White spaces (for sure) and grey spaces (to a lesser ext- 
ent) are obvious candidates for use by unserviced operators. 
Of course, black spaces are to be avoided whenever and 
wherever the RF emitters residing in them are switched ON. 
However, when at a particular geographic location those 
emitters are switched OFF and the black spaces assume the 
new role of “spectrum holes,” cognitive radio provides the 
opportunity for creating significant “white spaces” by 
invoking its dynamic-coordination capability for spectrum 
sharing [8]. 

Since cognitive radios are considered lower priority or 
secondary users of spectrum allocated to a primary user, a 
fundamental requirement is to avoid interference to 
potential primary users in their vicinity. On the other hand, 
primary user networks have no requirement to change their 
infrastructure for spectrum sharing with cognitive networks. 
Therefore, cognitive radios should be able to independently 
detect primary user presence through continuous spectrum 
sensing. Different classes of primary users would require 
different sensitivity and rate of sensing for the detection. 
For example, TV broadcast signals are much easer to 
detect than GPS signals, since the TV receivers’ sensitivity 
is tens of dBs worse than GPS receiver [7]. 

The remainder of this paper is organized as follows. In 
Section II, the spectrum sensing techniques and the 
fundamentals of cyclostationarity are described. Section III 
presents a novel strategy that can decrease the computatio- 
nal complexity and improve the performance of the 
inhibition of noise interference. Section IV shows the num- 
erical results from the new sensing scheme. Finally, 
conclusions are presented in Section V. 
 

2. FUNDAMENTALS OF CYCLOSTATIONARITY 
 

To be able to sense very weak signals, cognitive radios 
must have significantly better sensitivity than conventional 
radios. So to enhance the detection probability, many 
signal detection techniques can be used in spectrum 
sensing. In the following, we give an overview of some 
well-known spectrum sensing techniques [10], [11]. 
 
2.1. Matched Filter Detection 
 

A matched filter is an optimal detection method as it 
maximizes the signal-to-noise ratio (SNR) of the received 
signal in the presence of additive Gaussian noise. A 
matched filter is obtained by correlating a known signal, or 
template, with an unknown signal to detect the presence of 
the template in the unknown signal. This is equivalent to 
convolving the unknown signal with a time-reversed 
version of the template. Matched filters are commonly used 

in radar transmission. In the cognitive radio scenario, 
however, the use of the matched filter can be severely 
limited since the information of the primary user signal is 
hardly available at the cognitive radios. If partial inform- 
ation of primary user signal such as pilots or preambles is 
known, the use of matched filter is still possible for 
coherent detection. For example, in order to detect the 
presence of a digital television (DTV) signal, we may 
detect its pilot tone by passing the DTV signal through a 
delay-multiply circuit. If the squared magnitude of the 
output signal is larger than a threshold, the presence of the 
DTV signal can be detected. 
  
2.2. Energy Detection 
 

The energy detection method is optimal for detecting 
any unknown zero-mean constellation signals. The 
implementation simplicity of the energy detector is perhaps 
its key advantage. In the energy detection approach, the 
radio frequency energy in the channel or the received 
signal strength indicator (RSSI) is measured to determine 
whether the channel is occupied or not. The received 
signals ( )x t sampled in a time window are first passed 
through an FFT device to get the spectrum ( )X f . The peak 
of the spectrum is then located. After windowing the peak 
in the spectrum of ( )x t , we get . The signal energy is 
then collected in the frequency domain. Finally, the 
following binary decision is made,  

( )Y f

2
1

0

, ( )
, .

H if Y f
H otherwise

λ⎧ ≥⎪
⎨
⎪⎩

∑                  (1) 

Although the energy detection approach can be 
implemented without any prior knowledge of the primary 
user signal, it still has some drawbacks. The first problem 
is that it can only detect the signal of the primary user if the 
detected energy is above a threshold. Another challenging 
issue is that the energy approach cannot distinguish 
between other secondary users sharing the same channel 
and the primary user. The threshold selection for energy 
detection is also problematic since it is highly susceptible 
to the changing background noise and interference level. 
 
2.3. Cyclostationary Feature Detection 
 

In this section, a brief review of the basic concepts and 
definitions associated with cyclostationary processes is 
presented. A more expansive survey of both theory and 
applications of cyclostationarity is given in [6]. 

A zero-mean process ( )x t is said to be cyclostationary (in 
the wide sense) if its autocorrelation is a periodic function 
of time, 

0 0( , ) ( ,
2 2 2 2x xR t t R t T t T )τ τ τ τ

+ − = + + + − ，    (2) 

for some period 0 0T ≠ where 
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 ( , ) { ( ) ( )
2 2 2 2xR t t E x t x t },τ τ τ ∗+ − = + −

τ         (3) 

and { }E i denotes the mathematical expectation operation. 
Since xR is periodic, it admits a Fourier series representation, 

2( , ) ( )
2 2

j t
x xR t t R eα πα

α

τ τ τ+ − = ∑              (4) 

where the sum overα includes all integer multiples of the 
reciprocal of the fundamental period . The Fourier coeffi- 
cients

0T

( )xRα τ are given by either 
0

0

22

0 2

1( ) ( , ) ,
2 2

T
j t

Tx xR R t t e
T

α τ ττ −

−
= = + −∫ dtπα       (5) 

or 
22

2

1( ) lim ( , ) .
2 2

T
j t

Tx xT
R R t t e

T
α τ ττ −

→∞ −
= + −∫ dtπα       (6) 

The function ( )xRα τ , which-for each value ofτ -is the 
strength of the sinusoid in at frequencyt α in the 
autocorrelation ( / 2, / 2xR t t )τ τ+ − , is referred to as the cyclic 
autocorrelation. If the process ( )x t is modeled as cycloergo- 
dic (which excludes all time-invariant random phases), as 
is assumed henceforth, then the cyclic autocorrelation can 
be obtained from the limiting time average 

22

2

1( ) lim ( ) ( ) .
2 2

T
j t

Tx T
R x t x t e

T
α τ ττ ∗ −

→∞ −
= + −∫ dtπα      (7) 

for any sample path of the process ( )x t . The cycloergodic 
model is a natural model for the applications of interest in 
this paper. Clearly, the cyclic autocorrelation (5), or (7), is 
not identically zero for all nonzero a if and only if the 
autocorrelation in (3), or the lag-product of the 
cycloergodic process ( )x t in (4), contains an additive peri- 
odic component, which will be the case if ( )x t is 
cyclostationary. The set  is referred to as the 
set of cycle frequencies. By analogy with the terminology 
for the conventional autocorrelation (which is (7) 
with

({ : )xRα τα ≠ 0}

0α = ), the Fourier transform of the cyclic autocorrela- 
tion, 

2( ) ( ) ,j ft
x xS f R e dα α πτ τ

+∞ −

−∞∫�                  (8) 

is called the cyclic spectrum. The cyclic spectrum can also 
be interpreted as a spectral correlation function (SCF) 
according to the following characterization [6]: 

*2

2

1( ) lim lim ( , / 2) ( , / 2) ,
t

tx T TT t
S f X t f X t f dt

T t
α α α

Δ

Δ→∞ Δ →∞ −
= +

Δ ∫ −  (9) 

where 
22

2

( , ) ( ) .
Tt j uv

TT t
X t v x u e duπ+ −

−∫�                   (10) 

is the complex envelope of the spectral component of ( )x t at 
frequency with approximate bandwidth 1/T. Since the 
frequencies of the correlated spectral components are 

v

/ 2f α+ and / 2f α− , theα cycle frequencyα is also called 

the frequency separation [5]. We can detect the cyclic 
stationary signals from the stationary interference since the 
difference that the general stationary signals don’t possess 
cyclic stationary characteristic. 

The calculation of the cyclic spectrum autocorrelation 
function refers two variables: cyclic frequency α and 
spectrum frequency f . The spectrum frequency and the 
cyclic frequency must satisfy the following conditions for 
the reliable spectrum estimation [9]: 

1  or  1f t f
α
Δ

Δ Δ
Δ

� � .                      (11) 

fΔ and αΔ denote the resolution of the spectrum frequency 
and the cyclic frequency respectively. To obtain the reliable 
spectrum autocorrelation estimation, the method of smoot- 
hing the cyclic periodogram is employed because of the 
constraints of (11). 

The discrete-frequency smoothing method is given by 
( 1) / 2

*

( 1) / 2

1 1( , ) ( , ) ( , )
2 2

M

X t f t s t
v M

S t f X t f vF X t f vF
M t

α α α−

Δ Δ Δ Δ
=− −

= + +
Δ∑� � �

s− +  (12) 

where 
1

2 ( )

0
( , ) ( ) ( ) s

N
j f t kT

t t s s
k

X t f a kT x t kT e π
−

− −
Δ Δ

=

−∑� �         (13) 

which is the downconverted output of a sliding DFT, and 
where taΔ

is the data-tapering window, sf MFΔ = is the width 
of the spectral smoothing interval, 1/s sF NT= is the frequency 
sampling increment, sT is the time-sampling increment, and 

is the number of time samples in the data segment of 
length
N

tΔ , which is Fourier transformed by the DFT, 
/ sN t T 1= Δ + . Thus, the resolution product is 

( 1) /t f M N N 1MΔ Δ = − ≅ � .Also we can use the discrete-time 
averaging method to smooth the cyclic periodogram. 

Based on the fundamentals of the cyclostationarity, 
given the input time series [ ], 0,1, 2,...,x n n N= and sampling 
interval sT , the cyclostationary feature detection (CFD) is 
conducted through the following steps: 

1) We first calculate N point FFT of the input time series  
[ ], 0,1, 2,...,x n n N=  for the frequency spectrum [ ]TX k ,  

21

0
[ ] [ ]

knN j
N

T
n

X k x n e
π− −

=

= ∑ ,                      (14) 

2) The cyclic periodogram [ ]k can be calculated via 
the periodogram average function, 

TXSα

as 
*1[ ] [ ] [ ],

2 2TX T TS k X k X k
N

α α α
= + −                (15)        

3) To satisfy the constraints of (11), the cyclic power 
spectrum estimation is smoothed by the discrete-fre- 
quency smoothing function 

 
1

0

1[ ] [ ]
T T

M

X f X
m

S k S kM m
M

α α
−

Δ
=

= +∑� .                (16) 

The CFD approach is more robust to random noise and 
interference from other modulated signals than the 
approaches of matched filter detection and energy detecti- 
on, because the noise has only a peak of spectral correlate- 
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on function at the zero cyclic frequency and the different 
modulated signals have different unique cyclic frequencies.  
 
3. SUBSECTION-AVERAGE CYCLOSTATIONARY 

FEATURE DETECTION 
 

The cyclic spectrum correlation estimation algorithm has 
some disadvantages although it can obtain the cyclic power 
spectrum estimation effectively. The computational compl- 
exity of the CFD approach, which is mainly brought by 
FFT calculations and cyclic periodogram calculations, is 
about 2

2( / 4 / 2 log )NO N N+ . The computational cost is high 
while N is large. Moreover, in the CFD method, the 
processing procedure that the statistical average is 
substituted by the time average induces large variances and 
impacts the quality of the estimation. Accordingly we 
propose a novel method to ameliorate the CFD algorithm. 

Comparing with the CFD scheme, the SACFD strategy 
can be described as follows: 

1) First we calculate P point FFT of the input time series 
for the frequency spectrum [ ]TX k , 

21

,
0

[ ] [ ] , [0, ],
knP j

P
T l

n
X k x lP n e l L

π− −

=

= + ∈∑            (17) 

2) Then we get the cyclic periodogram  via 
meaning the periodogram for each subsection, 

[ ]
TXT kα

*
, , ,

1[ ] [ ] [ ], [0, ],
2 2TX l T l T lS k X k X k l L

P
α α α

= + − ∈       (18) 

3) The average of the L sections can be got by the 
following function, 

,
0

1[ ] [ ],
T

L

X X
l

S k S k
L

α α

=

= ∑ T l
                      (19)  

4) Last we smooth the cyclic power spectrum 
estimation by the discrete-frequency smoothing 
function, as   

1

0

1[ ] [ ].
T T

M

X f X
m

S k S kM m
M

α α
−

Δ
=

= ∑� +

)

                (20)             

In SACFD approach, we divide the input series into L 
P-length series and compute cyclic periodogram for each 
P-length series. The total cyclic periodogram can be 
calculated by meaning each subsection cyclic periodogram. 
The computational complexity of the SACFD approach is 
about 2( / 4 / 2logNO NP N+  that has linear relationship with 
the sample length. It can not only reduce the computational 
complexity but also facilitate the hardware implementation. 
As we know from the probability theory, given independ- 
ent random variables

1 2, ,..., LX X X with the same mean μ and 
variance 2σ , which the mean of these random variables is 

1 2( ... ) / ,LX X X X L= + + + we can find that the mean of X is μ  
but the variance of X becomes 2 / Lσ . The step (3) in the 
SACFD strategy makes the total variance of the input 
random series decrease with the subsection number L 
increasing since we divide the input Gaussian white noise 
series which is a random series into L P-length independent 
random series. Then the SACFD algorithm improves the 

variance performance in statistical sense. Furthermore, it 
inhibits the noise interference more effectively than the 
conventional CFD approach.  
 

4. NUMERICAL RESULTS AND DISCUSSION 
 

In this section, we present some numerical results in 
order to get insight into the performance of SACFD method 
and further demonstrate the advantages of the new algorithm. 
Gaussian white noise series are used as the input random 
signals to illustrate the improvement effect generated by 
the SACFD method. For our experiments, α and M are 
assumed to be 100 and 40 respectively. 

We first give the cyclic spectrum autocorrelation 
diagram of Gaussian white noise with conventional method 
in Fig. 1. Fig. 2 shows the cyclic spectrum autocorrelation 
diagram of Gaussian white noise with five times average 
using SACFD method. It can be seen from Fig. 1 and Fig. 
2 that the interferences on the cyclic frequency 0α ≠ are 
restrained effectively by the SACFD method. The average 
amplitude of the Gaussian white noise power spectrum 
reduces from 0.15 with the non-average method to 0.05 
with SACFD method. 
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Fig. 1. Cyclic power spectrum of Gaussian white noise  
(without average) 
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Fig. 2. Cyclic power spectrum of Gaussian white noise  
(with five times average) 
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Fig. 3. Cyclic power spectrum of Gaussian white noise 

 (with ten times average) 

TABLE I                                         
ADVANTAGES AND DISADVANTAGES OF SPECTRUM SENSING TECHNIQUES 

              

 

  
The inhibition effect of the noise interference will be 

better with the average times increasing. Ten times average 
are adopted in Fig. 3. Compared the Fig. 2 and Fig. 3 we 
can also observed that the average amplitude of the 
Gaussian white noise cyclic power spectra is reduced from 
0.05 to 0.025 and the SNR on the cyclic frequency is 
enhancing with the average times increasing. 

Finally, a summary about the advantages and disadvant- 
ages of spectrum sensing techniques is shown in Table I. 
 

5. CONCLUSION 
 

A subsection-average method based on the cyclostation- 
ary feature detection in cognitive radio systems is proposed 

in this paper. To decrease the computational complexity 
and improve the quality of variance performance of 
cyclostationary feature detection, subsection average 
means is exploited in cyclic spectrum autocorrelation 
estimation of cyclostationary feature detection approach. 
Simulation results show that the variance performance of 
the proposed method is improved considerably compared 
with conventional cyclostationary feature detection. That is 
to say, the subsection-average means can inhibit the noise 
interference more effectively in practical significance than 
conventional cyclostationary feature detection.   
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