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Abstract—In this paper a nonparametric cyclic correlation
estimator based on complex generalization of sign function is
proposed. Theoretical justification for detecting cyclostationary
signals is provided. Asymptotic distribution of the estimator
under null hypothesis is established. Constant false alarm rate
(CFAR) tests based on estimated sign cyclic correlation are
derived for single-user and collaborative spectrum sensing.
Simulation experiments comparing the proposed method with
cyclostationarity based spectrum sensing methods employing the
classical cyclic correlation estimator are performed. Nonparamet-
ric statistics provide additional robustness when noise statistics
are non-Gaussian or not fully known. Simulations demonstrate
the reliable performance and robustness of the proposed non-
parametric spectrum sensing method in both Gaussian and non-
Gaussian noise environments.

I. INTRODUCTION

Underutilization of many parts of radio frequency spectrum
has increased the interest in dynamic spectrum allocation.
Cognitive radios have been suggested as an enabling technol-
ogy for dynamic allocation of spectrum resources. Spectrum
sensing used for finding free spectrum is a key task in cognitive
radio systems. It enables agile spectrum use and interference
control. Recently, there has been increasing interest on devel-
oping low complexity and reliable spectrum sensing methods
for detecting the presence of primary users. Collaborative
sensing by multiple secondary users allows for mitigating the
effects of shadowing and fading.

It is important to consider the robustness of the spectrum
sensing algorithms as well. Motivation for this is that several
measurement studies have shown that in many outdoor and
indoor frequency bands the noise distribution has heavier
tails than Normal distribution. For example, in [1] indoor
measurements in the industrial, scientific, and medical (ISM)
bands showed the impulsive nature of the noise and inter-
ference due to, e.g., microwave ovens and electrical motors
in electrical devices, such as elevators, etc. As an example
of outdoor measurements, impulsive noise measurements in
a digital television band have been reported in [2]. For
more experimental measurement results, see [1], [2], and the
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references therein. Moreover, there may be multiple interferers
present contaminating the primary signal we wish to detect.

Some of the most promising spectrum sensing algorithms
exploit the cyclostationarity property of communication sig-
nals. Cyclostationarity based spectrum sensing algorithms
have been proposed in [3], [4], [5]. These algorithms do
not require any explicit assumptions on the data or noise
distributions. They are based solely on the asymptotic distribu-
tions of the cyclic correlation estimators. Nevertheless, these
algorithms are not necessarily highly robust. For example,
in case the noise distribution has heavier tails than Normal
distribution, the convergence of the classical cyclic correlation
estimator slows down and the performance of the algorithms
deteriorates.

Robust cyclic correlation estimators have been considered
in [6] where estimators stemming from M-estimation are
proposed. Both the proposed M-estimators as well as the
trimmed mean estimator are found to reduce the influence
of outliers (highly deviating observations). Simulation experi-
ments demonstrate significant improvement of performance of
the robust estimators in the face of non-Gaussian, heavy tailed
noise.

In this paper a cyclic correlation estimator based on complex
generalization of the sign function is proposed. It is shown that
the cyclostationarity property used in the detector is preserved
under sign function. Asymptotic distribution of the estimator
under the null hypothesis is derived. The test statistics for
single-user and collaborative spectrum sensing schemes are
proposed. The proposed methods are based on nonparametric
statistics making them highly attractive in real applications
where noise and interference statistics may not be fully known.
No additional nuisance parameters such as scale need to be
estimated unlike in the robust methods in [6]. Furthermore,
nonparametric detectors achieve a fixed false alarm rate under
all conditions satisfying the nonparametric null hypothesis.

Introduction to main techniques of nonparametric signal
detection has been given in [7]. Different multivariate sign and
rank concepts, corresponding covariance matrices and their
statistical properties have been presented in [8]. Complex sign
function employed in this paper could be considered to be
the bivariate spatial sign function. Cyclic spectrum estimation
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algorithms based on correlating signal with its sign have been
considered in [9] with the interest of reducing computational
complexity. The signs of the real and imaginary parts are
considered separately there.

This paper is organized as follows. Section II introduces the
sign cyclic correlation estimator. The distribution of the sign
cyclic correlation for a complex noise process is determined
in Section III. In Section IV the testing problem is formulated
as a hypothesis test. The test statistics and their distributions
under the null hypothesis are defined. Simulation examples
are given in Section V. Concluding remarks are given in
Section VI. Theoretical results showing that the proposed
detector is applicable for cyclostationary signals are provided
in the Appendix.

II. SIGN CYCLIC CORRELATION

The spatial sign function for complex valued data x is
defined as [7], [8]

S(x) =

{
x
|x| , x �= 0

0, x = 0.
(1)

We define the sign cyclic correlation estimator as

R̂S(α, τ) =
1
M

M∑
t=1

S(x(t))S(x∗(t + τ))e−j2παt, (2)

where M is the number of observations and α is the cyclic
frequency. In the Appendix it is shown that the periodicity of
autocorrelation function is preserved for a circularly symmetric
complex Gaussian process in spite of the sign function.

In (2) it has been assumed that the signal has zero mean.
Otherwise an estimate for the mean (using a robust estimator)
has to be obtained and removed from the received signal before
employing the estimator.

A symbol rate estimator can now be defined as

α0 = arg max
α∈(0, 1

2 ]
||r̂S(α)||2 (3)

where || · || denotes the Euclidean vector norm and r̂S(α) is
a vector containing the estimated sign cyclic correlations for
different time delays τ1, . . . , τN , i.e.,

r̂S(α) = [R̂S(α, τ1), . . . , R̂S(α, τN )]T . (4)

However, in order to define a CFAR test for the presence of
cyclostationarity at a given cyclic frequency, the distribution
of the estimator needs to be established. In the next section,
the distribution of the sign cyclic correlation estimator is
determined for independent and identically distributed (i.i.d.)
zero-mean circular noise process. Nonparametric performance
is achieved for all i.i.d. circular zero-mean noise probability
distribution functions. Note, however, that circularity is not
required from the primary user signal.

III. DISTRIBUTION OF THE SIGN CYCLIC CORRELATION

ESTIMATOR

The number of observations M is typically large (in the
order of several thousands) in cognitive radio applications.
Hence, applying the central limit theorem to infer the distri-
bution of the sign cyclic correlation estimator is well justified
in a realistic scenario. According to the central limit theo-
rem the distribution of the sign cyclic correlation estimator
approaches Normal distribution as M goes to infinity. Thus,
a Normal distribution approximation can be used for large
M . Consequently, only the mean and the variance of the
estimators need to be determined in order to fully specify the
asymptotic distribution. Validity of the central limit theorem
approximation will be assessed by simulations in Section V.

In the following it is assumed that x(t) = n(t) where n(t)
is i.i.d. zero-mean circular noise process. That is, only noise is
considered to be present. In that case, the mean of R̂S(α, τ)
is given by (assuming that τ �= 0)

E[R̂S(α, τ)] =
1
M

M∑
t=1

E[S(n(t))S(n∗(t + τ))]e−j2παt

=
1
M

M∑
t=1

E[S(n(t))]E[S(n∗(t + τ))]e−j2παt

= 0, ∀α, ∀τ �= 0
(5)

where the second equality follows from independence of the
noise samples. The last equality follows from the fact that
noise is circular, i.e., S(n(t)) = ejθ where θ has a uniform
distribution between 0 and 2π.

Since the mean of R̂S(α, τ) is zero, the variance of
R̂S(α, τ) is given by

Var(R̂S(α, τ)) = E[(R̂S(α, τ))(R̂S(α, τ))∗]

= E

[(
1
M

M∑
t=1

S(n(t))S(n∗(t + τ))e−j2παt

)
·

·
(

1
M

M∑
t=1

S(n(t))S(n∗(t + τ))e−j2παt

)∗ ]

=
1

M2

M∑
t=1

M∑
k=1

E[S(n(t))S(n∗(k))·

· S(n∗(t + τ))S(n(k + τ)))]e−j2πα(t−k)

=
1

M2

(
M∑

t=1

E[|S(n(t))|2|S(n∗(t + τ))|2]

+
M∑

t=1

M∑
k=1
k �=t

E[S(n(t))S(n∗(k))S(n∗(t + τ))S(n(k + τ))]︸ ︷︷ ︸
=0

·

· e−j2πα(t−k)

)

=
1
M

, ∀α, ∀τ �= 0.

(6)
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IV. HYPOTHESIS TESTING

Testing for the presence of a second-order cyclostationary
signal can be seen as testing whether the estimated sign
cyclic correlation R̂S(α, τ) is different from zero or not for
the cyclic frequencies of the signal. Hence, the hypothesis
testing problem for testing the presence of a second-order
cyclostationary signal for a given cyclic frequency α may be
formulated as [3]

H0 : r̂S(α) = ε(α), ∀{τn}N
n=1

H1 : r̂S(α) = rS(α) + ε(α), for some {τn}N
n=1

(7)

where ε(α) is the estimation error and r̂S(α) is a vector
containing the estimated sign cyclic correlations for different
time delays τ1, . . . , τN ,

r̂S(α) = [R̂S(α, τ1), . . . , R̂S(α, τN )]T . (8)

From Section III, it follows that under the null hypothesis
(assuming an i.i.d. circularly symmetric noise process)

R̂S(α, τ) ∼ NC(0,
1
M

), ∀α, ∀τ �= 0 (9)

where NC(·, ·) denotes the complex Normal distribution.
Now, define the test statistic for the sign cyclic correlation

based test for a single secondary user (SU) as

λ = M ||r̂S(α)||2. (10)

The null hypothesis is rejected if λ > γ where γ is the test
threshold defined by p(λ > γ|H0) = pfa. Here pfa is the
constant false alarm rate parameter of the test.

It follows that under the null hypothesis λ is chi-square
distributed with N complex degrees of freedom. The proba-
bility distribution function of a chi-square distributed random
variable with N complex degrees of freedom is given by

f(z) =
1

(N − 1)!
zN−1e−z, z > 0 (11)

which is a gamma distribution with integer parameters N and
1.

The proposed detector is a single cycle detector. However,
wireless communication signals typically exhibit cyclostation-
arity at multiple cyclic frequencies. Multicycle extensions
similar to the ones proposed in [4] may be obtained as well
in order to take into account the rich information present in
wireless communication signals.

A. Multiple secondary users

Assuming that the test statistics of the secondary users are
independent given H0 or H1, the single-user test statistics can
be combined as follows

λL =
L∑

i=1

λ(i) (12)

where L is the number of collaborating secondary users and
λ(i) denotes the sign cyclic correlation test statistic of the ith
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Figure 1. Normalized squared modulus of the (a) classical cyclic correlation
(b) sign cyclic correlation. The signal is an OFDM signal with symbol
frequency of 0.025. The sign non-linearity preserves the cyclic frequencies.

user. Since the single-user test statistic λ has a quadratic form
it is the log-likelihood under the null hypothesis. Hence, the
sum of the single-user test statistics in (12).

Under the null hypothesis λL is chi-square distributed with
LN complex degrees of freedom.

V. SIMULATION EXAMPLES

In this section the performance of the proposed single cycle
sign cyclic correlation based detector is compared to the single
cycle detectors proposed in [4] for both single and multiple
secondary users. However, first we show using an example
that sign non-linearity preserves the cyclic frequencies for an
OFDM signal. Fig. 1 shows the normalized squared modulus
of the cyclic correlation for an OFDM signal for classical and
sign estimators. It can be seen that the cyclic frequencies are
preserved by the sign non-linearity.

Secondly, the validity of the central limit theorem approx-
imation is considered. Fig. 2 plots the probability density
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(a) Probability density function
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Figure 2. Validity of the central limit theorem approximation. (a) Probability
density function and (b) cumulative distribution function of the test statistic
λ = M ||r̂S(α)||2 for a contaminated Gaussian process 0.95NC(0, σ2) +
0.05NC(0, 25σ2). The number of observations M = 100. Measured
empirical distribution is very accurately approximated by the distribution
derived using central limit theorem.

and cumulative distribution functions of the test statistic λ =
M ||r̂S(α)||2 for a circularly symmetric i.i.d. contaminated
complex Gaussian process 0.95NC(0, σ2)+0.05NC(0, 25σ2).
The number of observations M = 100. Two random lags
between 1 and 20 observations and a random cyclic frequency
in the interval [0.05, 0.5] were employed. The histogram and
empirical cumulative distribution functions have been obtained
from 10000 experiments. Measured empirical distribution is
very accurately approximated by the derived theoretical distri-
bution thus confirming the central limit theorem approxima-
tion.

The first test signal is an orthogonal frequency division
multiplexing (OFDM) signal. The OFDM signal is a DVB-T
signal with a Fast-Fourier transform (FFT) size NFFT = 8192
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Figure 3. Probability of detection vs. Average SNR (dB) in a Rayleigh fading
channel for 1 and 5 secondary users. Additive noise is Gaussian. Signal is
an OFDM signal (DVB-T). Sign cyclic correlation based detectors suffer
small performance degradation compared to methods based on classical cyclic
correlation estimator in Gaussian noise for the OFDM signal.

and a cyclic prefix of Ncp = 1024 samples. The symbol
length is defined as TS = NFFT +Ncp. Number of employed
subcarriers is 6817. Subcarrier modulation was 64-QAM. The
length of the signal is 3 OFDM symbols (≈ 3 ms). The signal
was sampled at the Nyquist rate. Thus, the oversampling factor
with respect to the symbol rate is NFFT + Ncp.

OFDM signal is cyclostationary with respect to the symbol
frequency. Thus, the detection is performed at the symbol
frequency. In addition, all the detectors employ two time lags
±NFFT . The cyclic autocorrelation of the OFDM signal peaks
for these time lags [10].

Fig. 3 depicts the performance of the detectors in a
Rayleigh fading channel (ETSI EN 300 744 V1.5.1 (2004-
11)) and additive white Gaussian noise as a function of the
average signal-to-noise ratio (SNR). The SNR is defined as
SNR = 10 log10

σ2
x

σ2
n

where σ2
x and σ2

n are the variances of the
transmitted signal and the noise, respectively. The channel is
normalized to have an expected gain of 1. False alarm rate is
0.05 (the same false alarm rate is used in all of the following
simulations, as well). All the simulation curves in the figures
are averages over 1000 independent experiments. It can be
seen that employing the sign non-linearity causes performance
degradation.

Fig. 4 shows the performances for the DVB-T sig-
nal in a more impulsive noise environment. The noise
has a contaminated Gaussian distribution 0.95NC(0, σ2) +
0.05NC(0, 25σ2). The robustness of the non-parametric sign
cyclic detector compared to the normal cyclic detector can be
clearly seen.

The second test signal is a quadrature phase shift keying
(QPSK) signal with root raised-cosine pulse shaping with
excess bandwidth of 0.2. The length of the signal was 1500
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Figure 4. Probability of detection vs. Average SNR (dB) in a Rayleigh fading
channel for 1 and 5 secondary users. Additive noise has a contaminated
Gaussian distribution 0.95NC(0, σ2) + 0.05NC(0, 25σ2). SNR is defined
with respect to σ2. Signal is an OFDM signal (DVB-T). The sign cyclic
correlation based detectors are more robust against impulsive noise.

symbols. The signal was four times oversampled. Detection
was performed at the symbol frequency using the following
time delays ±1,±2 samples.

Figs. 5 and 6 depict the performances of the detectors for
the QPSK signal in a frequency flat Rayleigh fading channel
for Gaussian and contaminated Gaussian 0.95NC(0, σ2) +
0.05NC(0, 25σ2) noise distributions, respectively. In this case,
the sign cyclic correlation detector outperforms the normal
cyclic detector even in the non-impulsive noise environment.
This is due to the fact that QPSK is a constant modulus signal.
Hence, hard-limiting the amplitude does not result in infor-
mation loss. Furthermore, unlike sign cyclic correlation based
detector the conventional cyclic detector requires estimation of
the covariance matrix of the estimator. This can be considered
as nuisance parameter whose estimation may result in a small
performance loss, especially, for small number of observations.
In the impulsive noise environment the robustness of the sign
cyclic correlation based detector is clearly observed.

VI. CONCLUSION

In this paper a nonparametric sign cyclic correlation based
spectrum sensing method for cognitive radio systems has
been proposed. It has been shown that the sign cyclic cor-
relation function remains periodic for circularly symmetric
complex Gaussian processes which makes it applicable to
cyclostationary signals. Asymptotic distributions of the test
statistics under the null hypothesis have been derived. Tests for
single-user and collaborative detection have been developed.
Simulation experiments show that the proposed nonparametric
spectrum sensing method has highly robust performance in
non-Gaussian impulsive noise environments as well as very
good performance in Gaussian noise environments.
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Figure 5. Probability of detection vs. Average SNR (dB) in a frequency
flat Rayleigh fading channel for 1 and 5 secondary users. Additive noise
is Gaussian. Signal is a QPSK signal with root raised-cosine pulse shaping.
Nonparametric sign cyclic correlation based detectors slightly outperform the
methods based on classical cyclic correlation estimator even in Gaussian noise
for the QPSK signal.
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Figure 6. Probability of detection vs. Average SNR (dB) in a frequency flat
Rayleigh fading channel for 1 and 5 secondary users. Additive noise has
a contaminated Gaussian distribution 0.95NC(0, σ2) + 0.05NC(0, 25σ2).
SNR is defined with respect to σ2. Signal is a QPSK signal with root raised-
cosine pulse shaping. Due to the impulsive nature of the noise the robust
sign cyclic correlation based spectrum sensing methods clearly outperform
the methods based on classical cyclic correlation estimator.

APPENDIX

Considering the effects of spatial sign non-linearity for a
general cyclostationary process is not an easy task. However,
certain results that apply for high SNR cases can be defined
for certain type of inputs. Here, we will consider complex
Gaussian input process. Although many of the communication
signals may not be Gaussian, the Gaussian process is still a
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very important special case. For example, an OFDM signal
is well approximated by a Gaussian process for a sufficiently
large number of subcarriers.

Assume that the input signal to the hard-limiting sign
non-linearity is a zero-mean circularly symmetric complex
Gaussian process. Then it follows that the normalized complex
autocorrelation function of the hard-limited process y(t) =
S(x(t)) is given by [11], [12]

ρyy(t, τ) = E[S(x(t))S∗(x(t + τ))]

=
π

4
ρxx(t, τ)2F1

(
1
2
,
1
2
; 2; |ρxx(t, τ)|2

)
,

(13)

where ρxx(t, τ) is the normalized autocorrelation function
of x(t), i.e., ρxx(t, τ) = E[x(t)x∗(t + τ)]/E[x(t)x∗(t)].
2F1(·, ·; ·; ·) is the Gaussian hypergeometric function given by
the following series representation

2F1

(
1
2
,
1
2
; 2; |ρ|2

)
=

Γ(2)
Γ2( 1

2 )

∞∑
n=0

Γ2( 1
2 + n)

Γ(2 + n)
|ρ|2n

n!

= 1 +
1
8
|ρ|2 +

3
64

|ρ|4 +
25

1024
|ρ|6 + . . .

(14)
From (13) it can be seen that the phase of the autocorre-

lation function is unaltered by the spatial sign non-linearity.
Furthermore, we can make the following approximations:

ρyy(t, τ) ≈ ρxx(t, τ) (15)

when ρxx(t, τ) is close to unity, and

ρyy(t, τ) ≈ π

4
ρxx(t, τ) (16)

when ρxx(t, τ) is close to zero.
Hence, the periodicity of the autocorrelation function of a

circularly symmetric complex Gaussian process is preserved
by the spatial sign non-linearity (although the autocorrelation
may be attenuated). Note, however, that the spatial non-
linearity may also cause periodicities that do not exist in the
original autocorrelation function due to the second and higher
terms in (14).
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[2] M. G. Sanchéz, L. de Haro, M. Calvo, A. Mansilla, C. Montero, and D.
Oliver, “Impulsive Noise Measurements and Characterization in a UHF
Digital TV Channel,” IEEE Trans. Electromagn. Compat., vol. 41, no.
2, pp. 124–136, May 1999.
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