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Abstract— In order to ensure trustworthy coexistence of 
unlicensed cognitive radio (CR) networks with licensed primary 
networks, CR spectrum sensing function must be able to detect 
licensed users even at very low SNR values. But, non-cooperative 
spectrum sensing methods are not so reliable and result in a low 
probability of detection. In this paper, we propose some 
cooperative detection schemes in order to improve the spectrum 
sensing performance in the CR networks. Because cyclostationary 
detectors can differentiate between modulated signals, 
interference, and noise even in low SNRs; in the proposed method 
a powerful multi-cycle detector is employed. Results of the 
simulations show that cooperative sensing based on multi-cycle 
detection outperforms conventional methods even in low SNR 
conditions. 

I. INTRODUCTION 

Radio transmitters are traditionally restricted to operate 
within those frequency bands that have been allocated them by 
regulatory bodies. But with many traditional technologies 
present, and many new incoming wireless standards, the 1-10 
GHz frequency spectrum is expeditiously becoming saturated. 
The latest measurements, however, disclose that the actual 
spectrum usage varies between 15% and 85%, based on the 
location and time of the day [1]. This has put forth the notion 
of dynamic/opportunistic spectrum use. The enabling 
technology of this idea, cognitive radio (CR), is an emergent 
smart wireless communications technology that is capable of 
identifying temporary unused frequencies (white spaces) and 
using them opportunistically, until a licensed primary user 
(PU) needs them. In December 2003, FCC specifies cognitive 
radio as the candidate for implementing opportunistic spectrum 
sharing [2]. In response to this, IEEE has established the 
802.22 Working Group to develop a standard for wireless 
regional area networks (WRAN), which reuse the TV 
bandwidth by CR technology (IEEE 802.22 standard) [3]. In 
such a network, CRs should be able to jump from a radio 
frequency band that is occupied by licensee to a free one, to 
complete a transmission link. This necessity asserts that all the 
primary signals in secondary networks must be detected 
reliably. If the CR wrongly concludes that there is no PU in the 
band and starts transmitting, it will destroy the primary signal. 

The primary user's signal might be severely attenuated due 
to multipath and shadowing before it reaches the secondary 
user (SU) [4]. This makes difficulties in PU signal detection 
and as a consequence, each CR must be able to detect very 

weak PU signals (i.e. in very low SNR regimes) [4]. In the case 
that there is not sufficient information about the PU signal, the 
energy detector is employed. But to detect the PU reliably, it 
may need to receive data over a long period of time. Moreover, 
it requires the correct estimate of the noise variance to perform 
properly. At low SNRs, cognitive radio will estimate the noise 
variance by taking a large number of samples. But there will 
still be uncertainty in the estimating of the noise variance [4] 
and the threshold selection for energy detection is highly 
influenced by the changing background noise and interference 
level [5]. Another challenging issue in the context of energy 
detection is that it cannot discriminate between different SUs 
sharing the same channel [5]. 

In wireless communication networks, there is usually some 
information about the statistical or structural properties of the 
PU signal, including the modulation scheme, coding scheme, 
symbol rate, pilot signals, etc. [6]. These properties could be 
exploited in the design of the detectors that operate in very low 
SNRs. The most important of such detectors is cyclostationary 
detector [6], [10] that operates much better than energy one, 
but it is more complex. 

Cooperative sensing is the process of making a final decision 
for the overall network, based on the sensing data collected 
from spatially distributed secondary users [5], [7]. This scheme 
can improve the probabilities of detection and false alarm. 
However, most of the researches in cooperative spectrum 
sensing are conducted on the basis of energy detection at each 
node [5], [7], [8]. In this paper, we propose some cooperative 
sensing algorithms based on cyclostationary detection. Given a 
target probability of detection for the network, we study the 
achievable (system-level) false alarm rate in the network. From 
the other point of view, the usage level of the vacant channels 
are fixed by setting the false alarm probability at a definite 
value and then, the detection probability is investigated. 

This paper is organized as follows. In Section II, we 
overview the concept of cyclostationary signals and detection 
hypothesis. Section III gives the review of proposed 
cooperative sensing schemes. In Section IV, performance 
evaluations and comparisons are given. The conclusions are 
drawn in Section V. Section VII introduces the future works. 

II. CYCLOSTATIONARY DETECTION 

Most of the signals in wireless communications and radar 
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systems can be treated as the cyclostationary random processes 
[6]. The cyclostationary processes are the random processes in 
which their statistical properties, such as the mean and 
autocorrelation, change periodically as a function of time [9]. 
Examples of the processes that are appropriately modeled as 
the cyclostationary processes are the familiar modulated 
signals AM, FM, ASK, PSK, FSK, PAM, OFDM, etc [10]. If 
the signal of the PU exhibits cyclostationary properties, it can 
be detected even at very low SNR values [5]. Before dealing 
with the detection problem, we must overview the concept of 
the cyclostationarity in order to provide the better 
understanding of the subsequent sections. 

A. Cyclostationarity 

The process x(t) is said to be (second-order) cyclostationary 
(in the wide sense) if its mean and autocorrelation functions are 
periodic with some period, say T0 [9], [11]. Because of the 
periodicity of the autocorrelation function, it can be 
represented by its Fourier series expansion [9]. Therefore, with 
the assumption of its convergence, we can write: 
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 is the conjugate auto-correlation 

function and the sum is taken over the integer multiples of 
fundamental frequencies α (i.e. A={α=m/T0}, m integer). The 
Fourier coefficients, which depend on the lag parameter τ, can 
be calculated as [9]: 

  









  

2

2

2

0

0

0 2
,

2

1 T

T

tj
xxxx

dtettR
T

R             (2) 

These coefficients are generally referred to as Cyclic 
Autocorrelation (CA) function and the frequencies α are called 
cycle frequencies. More generally, a stochastic process x(t) is 
said to be exhibited cyclostationarity at cycle frequency α, if 

  0 xx
R  [9]. 

B. Detection Algorithm 

The discrete-time version of the consistent estimation of the 
conjugate cyclic autocorrelation function is given as [10]: 
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where ν is the discrete version of the lag parameter τ, x[i] = 
x(iTst) with the sampling time Tst and ( )

xx

  is the estimation 

error, which vanishes as T0→∞ [10], [11]. In order to examine 
for the presence of a cycle frequency in a set of time lags ν at 
the same time, we consider multiple values of ˆ ( )

xx
R    rather 

than a single value [11]. Using the fixed set of lags {ν1, ν2, …, 
νN}, we defined a row vector consisting of conjugate cyclic 

autocorrelation estimates at the candidate cycle frequency α=α0 
(Re{} and Im{} are the real and imaginary parts, respectively): 
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The true value of the above vector is then [11], 
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and the estimation error vector is [11], 

     
     

NNxxxx

Nxxxxxx

211

1

Im,,Im

,Re,,Re























 (7) 

Hence, we can write [11], 

x̂x xx xx
r r        (8) 

It is shown that [10],[11]: 
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where 
D

  denotes the convergence in distribution and 
(0, )

xx    is a multivariate normal distribution with zero 

mean and covariance matrix 
xx  which is given by [11]: 
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The (m,n)th entries of the complex covariance matrices Q(∗) 
and Q can be approximated as [11]: 
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where W(s) is a spectral window of length L (odd) and, 

[ ] [ ] [ ]f i x i x i      (13) 

If the hypothesis H0 represents the case where the PU signal 
is not present, and the hypothesis H1 represents the case where 
the PU signal is present, we can formulate the following binary 
hypothesis testing problem based on (8) [10], [11]: 
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or in the other word, 
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Since 
xx

r   is non-random, the distribution of 
x̂x

r  under H0 

and H1 differs only in mean. The asymptotic complex 
normality of 

x̂x
r  allows the formulation of the following 

generalized likelihood function as the test statistic for the 
binary hypothesis test [11]: 
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where t denotes the transpose of the matrix and the estimated 

covariance matrix is represented by ˆ
xx  . To set a threshold 

for hypothesis testing, we need the asymptotic distribution of 

xx  . In [11], it is shown that the asymptotic distribution of the 

test statistic under the hypothesis H0 is central chi-squared with 
2N degrees of freedom (irrespective of the distribution of the 
input data): 
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and under the hypothesis H1 it has the normal asymptotic 
distribution: 
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For T large enough, we may approximately write the 
distribution of 

xx   as [11]: 
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Hence, for a given threshold, the detection probability (Pd) 
can be calculated regardless of the particular input signal, for 
large enough observation lengths T0. In practice, the probability 

of detection can be evaluated by substituting for 
xx

r   and 
xx   

in (19) by their estimates [11]. 

C. Multi-Cycle Detection 

Simultaneous detection of multiple cycle frequencies can 
improve performance of the detector [13]. In order to detecting 
multiple cycle frequencies of interest α at the same time, we 
propose the following test statistics: 
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We assume that the CA estimates for different candidate 
cycle frequencies are independent, so the asymptotic 
distribution of ΓM.C. under the null hypothesis is 2

2 .N S , where S 
is the number of cyclic frequencies to be tested, and under the 
hypothesis H1 is normally distributed. This detector is the one 
that we employ in each CR node of the network. 

III. COOPERATIVE DETECTION 

Cooperative communications has been recently recognized 
as a powerful solution that can conquer some limitations in 
wireless systems. Specially, in view of the low reliability of 
single SU sensing, a cooperative spectrum sensing scheme is 
employed [5], [7], [8]. Cooperative sensing is done by 
combining the individual observations of SUs and making a 
final decision at the secondary BS. This procedure is somewhat 
analogous to distributed decision making in wireless sensor 
networks (WSNs) [12], where each sensor makes a local 
decision based on its own observations and those decision 
results are reported to a Fusion Center (FC) to give a final 
decision under some fusion rule. In this paper, the fusion center 
is a secondary access point (AP) in a wireless LAN or a 
secondary base station (BS) in a cellular network. 

We consider two decision combining techniques at the 
secondary base station. Cooperative spectrum sensing will go 
through two successive channels, first the sensing channel 
(from the PU to CRs); and second the reporting channel (from 
the CRs to the secondary BS). Perfect reporting channels are 
assumed for simplicity. 

A. Soft Decision Combining (SDC) 

In SDC cooperative detection, each CR forwards its decision 
statistics to the secondary BS. Based on these statistics, BS 
makes the final decision about the spectrum occupancy. In this 
case, we simply propose the following cyclostationary based 
test statistic for the hypothesis testing problem at the BS: 
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It is obvious that with the assumption of conditional 
independence, the asymptotic distribution of the test statistic 
ΓSDC is chi-squared under the null hypothesis, with 2NSNc 
degrees of freedom ( 2

2 cNSN ). 

B. Hard Decision Combining (HDC) 

In SDC scheme, as the number of cognitive radios increases, 
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reporting their sensing results to the common receiver will 
require much bandwidth. But if CRs process their own 
observations and then transmit condensed information to the 
BS, the required bandwidth decreases (Fig. 1). This scheme is 
recognized as the parallel distributed detection [12]. 

Assuming that there are Nc cognitive radios and each one 
performs local spectrum measurements independently, then the 
binary decisions are as follow: 

 
1
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Afterwards, all the CRs forward their binary decisions to the 
secondary BS. Then the secondary BS combines those binary 
decisions and according to a fusion rule makes a final decision 
q0 to infer the absence or presence of the PU in the observed 
band [5], [12]. The fusion rule is a logical function with Nc 
binary inputs and one binary output of the BS: 
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Hence there are 22
N c

different fusion rules. The optimum 
decision fusion rule is Chair-Varshney rule, which is based on 
log-likelihood ratio test [8]. However to avoid complexity in 
secondary BS we propose the following suboptimum Max rule 
for hypothesis testing problem at the secondary BS: 
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If 
jMP and 

jfaP  be the probabilities of miss detection and 

false alarm for the jth CR, with the assumption of independence 
of different decisions, we can formulate the probability of 
detection of the network as follows: 
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Similarly, we can derive: 
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If a guaranteed usability rate of vacant channels is needed, 
the Pfa of the network has to be fixed and the Pd of the network 
is maximized as much as possible. This is referred to as 
constant false alarm rate (CFAR) requirement. In the Max  

 
 

Fig. 1. Parallel centralized PU detection scheme. The kth local CR observes 
xk and sends its decision qk to the BS. 

 
fusion rule, to achieve a target probability of false alarm for 

the network (Pfa), we propose that the individual SUs satisfy 
the following average probability of false alarm,

ifaP (is drawn 

from (26)), 
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From the other point of view, the probability of detection 
can be fixed at a target value Pd. This is defined as constant 
detection rate (CDR) requirement. Using the Max rule at the 
BS, we can set the individual SUs' average probability of 
detection as, 

1 1 , 1,2, ,c
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N
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Therefore the proposed HDC scheme, in spite of SDC 
approach, lowers the sensitivity requirements on individual 
CRs. 

IV. SIMULATION RESULTS 

In this section we present some computer simulation results 
to evaluate the performance of proposed algorithms under both 
CFAR and CDR requirement. Also these results demonstrate 
the performance of the multi-cycle (MC) cyclostationary based 
cooperative spectrum sensing in the low SNR conditions. The 
test signal is a base-band QPSK signal with symbol rate 1/Ts. 
This signal exhibits cyclostationarity with cycle frequencies of 
α = k/Ts, k = 0, ±1, ±2, … . The cycle frequencies employed by 
the detectors are 1/Ts and 2/Ts. Single-cycle (SC) detectors use 
1/Ts and multi-cycle detectors use both. Each detector uses 
zero time-lag (ν=0). Performances of cyclostationary detectors 
are examined in additive white Gaussian noise (AWGN) 
channel. All the curves are averages over 1500 experiments. 
Five CRs are assumed in the network and each one receives the 
same PU signal with different AWGN noise. 
The Performances of the different cooperative and non-
cooperative techniques are compared in Fig. 2 (at low SNR 
conditions). This figure, which is known as the receiver 
operating characteristics (ROC), plots the probability of 
detection versus the probability of false alarm for SNR of -12 
dB. Results indicate that the performance of the cooperative 
techniques is better than the single node schemes. Also, the 
multi-cycle detections lead to higher performance. 
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Furthermore, hard decision combining centralized detection 
has the best performance. The probability of detection Pd 
versus SNR for different schemes is given in Fig. 3. The local 
and global decision thresholds of the SDC are chosen based on 
constant false alarm (CFAR) test, such that Pfa = 0.03. But in 
the case of HDC, the probability of false alarm for the network 
is set to 0.03 and local probabilities of false alarm for CRs 
computed by equation (27). The results demonstrate an 
improvement in the probability of detection when cooperative 
schemes are used and specially, hard decision combining 
achieves the best performance for all SNRs. In either 
cooperative or non-cooperative spectrum sensing, it is the 
multi-cycle detector that has better performance than the 
single-cycle detector. Results of the CDR test are given in Fig. 
4. The target probability of detection Pd of the network is set at 
0.99. 
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Fig. 2. ROC curve for different detection proposed methods. 
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Fig. 3. Probability of detection of the network versus SNR, with fixed 
probability of false alarm, Pfa=0.03. 

In this case, HDC has higher probability of false alarm than the 
SDC. But the bandwidth required for HDC is much lower than 
the other scheme, so the HDC is of interest. Fig. 5 illustrates 
HDC cooperative sensing in a network with different number 
of SUs. We can see that the detection performance improves, 
when the number of collaborating SUs increaseses. Finally, 
Fig. 6 represents the detection probability of the overall 
network when the number of cooperating SUs in the network 
increases (SNR = -12 dB). 

V. CONCLUDING REMARKS 

As the interest in the cognitive radio technology has been 
exploded recently, the proper spectrum sensing functionality 
has been recognized as a key issue. In this paper, two 
cooperative detection schemes based on cyclostationarity have  
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Fig. 4. False alarm probability of network as the SNR increases. 
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Fig. 5. Detection performance of the secondary network for different 
number of cooperating SUs. 
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Fig. 6. Detection probability vs. the number of collaborating SUs. 
 

been proposed. The proposed schemes improve the overall 
reliability of the network (due to cooperative sensing) and can 
achieve significant performance gains in the low SNR regimes 
(due to cyclostationary detection). Simulation results confirm 
this reality. 

VI. FUTURE WORKS 

The cooperation scheme we studied here is a form of 
centralized detection. Future efforts will focus on decentralized 
schemes, and studying cooperative sensing between multiple-
antenna CRs. 
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