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Abstract

This paper addresses the problem of cyclostationary de-
tection when the signal spectrum is partly intercepted. The
signal model for partial interception of spectrum is pre-
sented. Cyclostationary feature of signal is analyzed in this
scenario and cyclic spectrum present region is also defined.
An improved cyclic spectrum estimator as well as detection
strategy for unknown feature location is proposed. Simula-
tion results verify that performance of proposed algorithm
can satisfy the requirement of feature detection.

1. Introduction

Spectrum sensing is one of the most critical components
of cognitive radio (CR) technology. Reliable spectrum sens-
ing functionality needs to be equipped for CR users. Cyclo-
stationary detector has been introduced for detecting weak
signal in cognitive radio [6][5][9], since it has desirable per-
formance under low signal-to-noise ratio (SNR) and can be
used for signal recognition and classification.

A CR system should provide invisible spectrum access
over a wide frequency range covering multiple communi-
cation standards thus wideband spectrum sensing as an im-
portant feature is required for CRs[7]. A tunable narrow-
band bandpass filter(BPF) or a filterbank composed of sev-
eral narrowband filters can be employed as radio frontend
according to spectrum usage for wideband sensing[8]. Ex-
isting signal types and their frequency locations are usu-
ally unknown to CR over a wide range of frequency (above
100MHz), therefore signal spectrum may be intercepted
partly by bandpass filter. Current research of cyclostation-
ary sensing are based on assumptions that signal spectrum
is fully intercepted and center frequency can be captured.
However none of previous works concerns cyclostationary
sensing when signal spectrum is partly intercepted.

In this paper, we concern cyclostationary sensing when
signal spectrum is partly intercepted. We introduce a sig-
nal model for partial interception of signal spectrum. With
this model, we analyze effects of partial interception of sig-
nal spectrum on cyclostationary feature of signal and cyclic
spectrum estimator. By applying weighting factor, we pro-
pose an improved cyclic spectrum estimator and a detection
strategy when feature location is unknown. Simulation re-
sults demonstrated desirable performance of the estimator
and detection strategy are presented.

2. Signal Model for Partial Interception of
spectrum

Suppose that several spectrum bands whose frequency
boundaries locate at f0 < f1... < fN are to be detected
for wideband CR. The n-th band is defined as Bn : {f ∈
Bn, fn−1 < f < fn}, n = 1, 2, ...N . The bandwidth
of narrowband BPF is assumed to be Bw. When the tun-
able narrowband BPF is employed to search over wideband
sequentially or the filterbank formed by multiple BPFs is
applied to detect wide spectrum at a time[8], signal spec-
trum can be intercepted partly by BPF inevitably. The
PSD structure of a wideband signal is illustrated in Fig.1,
where the n-th band centered by fc,n is intercepted partly
by the BPF. The assumptions are adopted that the width of
n-th band is Bn = fn − fn−1, with center frequency at
fc,n = (fn + fn−1)/2. After signal spectrum is intercepted
partly by BPF, the width of n-th band remains in BPF is
Bp = fH − fn−1, where (fL, fH) is passband of BPF. And
only one signal band is captured by BPF but its location is
unknown to CR. The bandpass representation of the signal
can be defined as

s(t) = Re[sl,n(t)ej2πfc,nt] (1)

where sl,n(t) is the lowpass representation of the signal.
After signal spectrum is intercepted partly, the signal can
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Figure 1. The PSD structure of a wideband
signal

be described by

sp(t) = s(t) ⊗ hBP (t) (2)

where ⊗ denotes convolution and hBP (t) the impulse re-
sponse of BPF. For the simplicity of analysis, we may ap-
proximate frequency response as

HBP (f) = e−jπfM , fL < |f | < fH (3)

where M denotes the filter order. When f locates at other
values, HBP (f) remains zero. Equivalent lowpass repre-
sentation of signal whose spectrum is partly intercepted can
be expressed as

slp(t) = [s(t) ⊗ hBP (t) ⊗ h+(t)]e−j2πfcBP t

= s+(t)e−j2πfcBP t (4)

where s+(t) denotes the analytical signal, h+(t) the im-
pulse response of Hilbert transform, and fcBP the center
frequency of BPF, (fH − fL)/2.

3. Cyclostationary Detection for partial inter-
ception of signal spectrum

Cyclostationary feature can be described by cyclic spec-
trum which measures the density of spectral correlation,
that is, the density of correlation between widely separated
spectral components. When the spectrum is intercepted
partly, cyclic spectrum will be deformed.

3.1. Cyclostationary Feature for partial in-
terception of signal spectrum

Based on Linear Periodically Time-Variant transforma-
tion (LPTV) model [4], we can obtain cyclic spectrum of
the equivalent baseband signal in equation (4):

Sα
slp

(f) = Sα
s+

(f + fcBP ) (5)

where α is cyclic frequency of the signal. Since narrowband
BPF and Hilbert transform are time invariant, considering

h(t) = hBP (t) ⊗ h+(t) as impulse response function of
LPTV system, we can arrive at

Sα
s+

(f) = H+(f + α/2)Sα
sBP

(f)H∗
+(f − α/2)

= H+(f + α/2)HBP (f + α/2)Sα
s (f)

× H∗
BP (f − α/2)H∗

+(f − α/2) (6)

where H+(f) = 2u(f) is unit step function and also the
frequency response of Hilbert transform, ∗ complex con-
jugate. Besides, cyclic spectrum of baseband signal satis-
fies its spectral support region [2]. Thus cyclic spectrum of
equivalent baseband signal for partial spectrum interception
is bandlimited to |f | < Bp − |α|/2, which is

Sα
slp

(f) = HBP (f + fcBP + α/2)Sα
s (f + fcBP )

× H∗
BP (f + fcBP − α/2) (7)

while Sα
slp

(f) = 0 for |f | ≥ Bp − |α|/2.
We note that cyclic spectrum for partial spectrum inter-

ception depends on how much the signal spectrum is cap-
tured. When signal spectrum is fully covered, its whole
cyclostationarity can be presented. However, as width of
signal spectrum cut off by BPF increases, the present cyclic
spectrum is deformed. In spectral support region, width of
intercepted spectrum is

Blp = fH − fn−1

= fH − fc,n + Bn/2 (8)

while the cyclic frequency which can be present satisfies

|α| < fH − fc,n + Bn/2 (9)

That is, when width of captured signal spectrum equals to
(fH−fc,n+Bn/2), cyclic spectrum locating at |α| > fH−
fc,n + Bn/2 disappears. The present cyclic spectrum of
partly intercepted signal spectrum is illustrated in Fig.2.

The diamond region with dashed line shows the spec-
tral support region of signal moved to baseband from center
frequency fcBP while solid line denotes the spectral sup-
port region of equivalent baseband signal captured by BPF.
When signal spectrum can be fully covered, the dashed dia-
mond should be contained by the solid one. As captured
signal spectrum reduces, the dashed diamond moved out
of solid one along the f axis. The intersection of dashed
and solid diamond demonstrates present area of cyclic spec-
trum for partial spectrum interception and can be defined as
cyclic spectrum present region.

3.2. Cyclic Spectrum Estimator for Partial
Interception of spectrum

Considering received signal model, x(t) = s(t) + n(t),
cyclic spectrum estimator [3] can be given by

Ŝα
x (f) =

1
MT

(M−1)/2∑

υ=−(M−1)/2

XT (f + α/2 + υFs)

108

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on May 6, 2009 at 10:59 from IEEE Xplore.  Restrictions apply.



f

α

0

,c n cBPf f−

2pB−

pB

n cBPf f−

, 2H c n nf f Bα = − +

nB

2nB

Figure 2. The present cyclic spectrum of
partly intercepted signal spectrum

× X∗
T (f − α/2 + υFs) (10)

where T denotes observation length, M spectral smooth-
ing length, Fs frequency sample interval, XT (f) short-time
Fourier transform XT (f) =

∑T−1
t=0 x(t)e−j2πft.

Suppose that when signal spectrum is intercepted partly,
frequency bins locating at f ∈ (f−α/2−(M−1)Fs/2, f−
α/2− (M − 1)Fs/2 + ΔMFs) are cut off and their valves
are assumed to be estimation errors, XT (f) = εf . Then
conventional estimator computes cyclic spectrum at certain
(f, α) as

Ŝα
x (f) =

1
MT

[
ΔM−M ′∑

υ=−M ′
XT (f + α/2 + υFs)

× ε∗f−α/2+υFs
+

M ′∑

υ=ΔM+1−M ′
XT (f + α/2 + υFs)

× X∗
T (f − α/2 + υFs)]

=
1

MT
[

M ′∑

υ=ΔM+1−M ′
XT (f + α/2 + υFs)

× X∗
T (f − α/2 + υFs) + ξ] (11)

where ξ is accumulation of spectral correlation at frequency
bins cut off and M ′ = (M − 1)/2. Note that spectral cor-
relation exhibits at (M − ΔM)Fs frequency bins. Con-
ventional estimator averages over MFs frequency bins with
unknown locations of cut off ones, thus the estimated result
is reduced.

The reduction of the feature due to cut off frequencies
can be improved by weighted spectral correlation. Smooth-
ing window is used for smoothed correlation with window
length L. Two adjacent windows have P overlapped fre-
quency samples. The number of smoothing group is defined

as Q = �M−L
L−p + 1�. The smoothed spectral correlation of

q-th group is

Ĩq =
1
T

q′+L−1∑

υ=q′
XT (f + α/2 + υFs)

× X∗
T (f − α/2 + υFs) (12)

where q′ = (L − P )q − (M − 1)/2 is the start
subscript of frequency sample for each group. Then
weight factors are applied for averaging over Q groups.
Let wRe = [wRe,1, ..., wRe,q, ...wRe,Q] and wIm =
[wIm,1, ..., wIm,q, ...wIm,Q] represent weight factors for
real and imaginary parts of spectral correlation of Q groups
respectively. Weight factors for real parts are provided by

wRe,q =
(Re{Ĩq})2∑Q
q=1(Re{Ĩq})2

(13)

For imaginary parts, weight factors can be obtained in a
similar way. The improved cyclic spectrum estimator can
be expressed as

Ŝα
x (f) = wĨT (14)

where

Ĩ = [ĨRe, jĨIm]
= [Re{Ĩ1}, ..., Re{ĨQ}, jIm{Ĩ1}, ..., jIm{ĨQ}]

Note that weight factor for each group is set in proportion
to its spectral correlation. Low correlation leads to high
possibility of presence of frequency bin cut off and relates
to a low weight factor.

3.3. Cyclic Spectrum Detector for Partial
Interception of spectrum

When signal spectrum is intercepted partly, location of
cyclic spectrum are unknown to CR. Thus to detect cyclo-
stationary feature at specific (f, α) is not feasible. We need
to identify location of cyclic spectrum. We search for max-
imum spectral correlation at certain cyclic frequency over
(fstart, fend) with search interval Δf according to

k̂ = arg max
0<k≤K

[|Sα
x (fk)|] (15)

where fk denotes k-th frequency bin. From equation (15),
we can also obtain several locations with higher spectral
correlation.

Let a test vector for K ′ frequency bins at certain α is
composed of

ŝα
x = [Re{Ŝα

x (fk,1)}, ..., Re{Ŝα
x (fk,K′)},

Im{Ŝα
x (fk,1)}, ..., Im{Ŝα

x (fk,K′)}] (16)
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Given that the hypothesis H0 represents the case where x(t)
does not exhibit cyclostationarity with the cyclic frequency
α and H1 represents the case where x(t) does exhibit cyclo-
stationarity, the following binary hypothesis testing prob-
lem can be formulated:

H0 : ∀{fk̂,n}K′
n=1 ⇒ ŝα

x = Δα
x

H1 : for some {fk̂,n}K′
n=1 ⇒ ŝα

x = sα
x + Δα

x

where Δ is the asymptotically normal distributed estima-
tion error vector. The asymptotic complex normality of ŝα

x

[1] allows the formulation of the following generalized like-
lihood function as the test statistic for the binary hypothesis
test:

T = ŝα
xΣ̂−1

x ŝα(T )
x (17)

where Σ̂x denotes estimated covariance matrix of ŝα
x [1].

Under null hypothesis, the distribution of the test statistic
converges asymptotically to a central χ2 distribution with
2K ′ degrees of freedom. Therefore, for a given false alarm
probability Pf , we can obtain threshold from χ2 distribu-
tion table and decide presence of cyclostationarity.

4. Simulation Results

In the following, the confidence of the proposed method
has been investigated. OFDM signals are generated us-
ing quadrature phase shift keying (QPSK) modulated ran-
dom data symbol. A 16-bin IFFT is used for the simplicity
of analysis with subcarrier separation 1kHz. Center fre-
quency of bandpass OFDM signal is 25kHz. Passband and
bandwidth of BPF are (fL < f < fH) and Bw = 18kHz.
The width of intercepted spectrum can be adjust by chang-
ing passband of BPF.

Fig.3 and Fig.4 illustrate the cyclic spectrum present re-
gion when signal spectrum is fully captured and is partly
intercepted respectively. For symmetry of cyclic spec-
trum, only α > 0 are presented. We can observe that the
cyclic spectrum present region is deformed or vanish mov-
ing along f axis as signal spectrum is discarded.

Fig.5 compares performance of improved estimator with
conventional one and relationship between detection prob-
ability and SNR is plotted. Specific frequency location
f = 8kHz, α = Fd = 1kHz is chosen. L = 25 is selected
for smoothing window with overlapped length P = L − 1.
Passband of BPF is set to be (2kHz, 20kHz). The detec-
tion performance improves by the proposed estimator as ex-
pected for partial spectrum interception.

Fig.6 shows the detection reliability at different cyclic
frequencies, α = Fd, 2Fd. Two set of passbands
(7kHz, 25kHz) and (2kHz, 20kHz)are chosen for com-
parison. We can also note the performance improvement by
our proposed estimator. And feature at α = 2Fd can be
harder to detect than α = Fd when signal spectrum is dis-
carded too much. Therefore, we should choose smaller α to
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Figure 3. the cyclic spectrum present region
when signal spectrum is fully captured
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Figure 4. the cyclic spectrum present region
when signal spectrum is partly intercepted

detect for partial spectrum interception.
Fig.7 indicates performance of proposed detection

method. fstart and fend are set to be 4kHz and
8kHz. And Δf = 500Hz. Passband (2kHz, 20kHz),
(4kHz, 22kHz), (7kHz, 25kHz) and (12kHz, 30kHz)
are considered. Similar performance can be observed when
enough spectrum is intercepted. However performance de-
creases as captured spectrum reduces. Moreover, compared
to detection at certain location, performance is more reliable
considering multiple locations.

5. Conclusion

In this paper, a signal model for partial spectrum inter-
ception is presented. The effects on cyclostationary feature
are exploited and cyclic spectrum present region is defined.
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Figure 5. Pd vs SNR for comparing perfor-
mance of improved estimator with conven-
tional one

Figure 6. Pd vs SNR for comparing perfor-
mance at different cyclic frequencies

An improved cyclic spectrum estimator based on weighting
and its detection strategy for unknown feature location are
proposed. Simulation results verify that variation of cyclic
spectrum coincides with our analysis. And improved detec-
tion performance is demonstrated. Smaller cyclic frequency
exhibits more reliable performance when spectrum partly
intercepted. By searching feature over a frequency range,
detection performance can be enhanced desirably.
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