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Collaborative Cyclostationary Spectrum Sensing fo
Cognitive Radio Systems
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Abstract—This paper proposes an energy efficient collaborative parameters and operation mode accordingly. Spectrumrgensi
cyclostationary spectrum sensing approach for cognitive radio has to be done reliably in the face of propagation effects suc
systems. An existing statistical hypothesis test for the preseaof as shadowing and fading. Moreover, the level of interfeeenc

cyclostationarity is extended to multiple cyclic frequencies and d to th . | fth t tb
its asymptotic distributions are established. Collaborative test caused to the primary (legacy) users of the spectrum must be

statistics are proposed for the fusion of local test statistics of Maintained at a tolerable level. _ N
the secondary users, and a censoring technique in which only Different approaches for spectrum sensing for cognitive

informative test statistics are transmitted to the fusion center radio applications have been proposed, e.g. [2], [4]-[8fe T
(FC) during the collaborative detection is further proposed for commonly considered approaches are based on power spec-

improving energy efficiency in mobile applications. Moreover, . - - .
a technique for numerical approximation of the asymptotic trum estimation, energy detection, and cyclostationagyue

distribution of the censored FC test statistic is proposed. The detection. Power spectrum estimation may not work reliably
proposed tests are nonparametric in the sense that no assump-in the low SNR regime. Energy detection, on the other hand,

tions on data or noise distributions are required. In addition, is subject to uncertainty in noise and interference stegist
the tests allow dichotomizing between the desired signal and In addition, neither power spectrum estimation nor energy

interference. Simulation experiments are provided that show the detecti ble to disti ish th .
benefits of the proposed cyclostationary approach compared to YSt€CUON are able 1o distinguish among the primary user

energy detection, the importance of collaboration among spatially Signals, secondary user signals, or interference. Cyatlost
displaced secondary users for overcoming shadowing and fading ary detection allows classifying co-existing signals éxing

effects, as well as the reliable performance of the proposed cyclostationarity at different cyclic frequencies, refax as-

algorithms even in very low signal-to-noise ratio (SNR) regimes g\, 1yntions on noise statistics and has reliable performevee
and under strict communication rate constraints for collaboration . .
in the very low SNR regime.

overhead. . . . .
In this paper we propose an extension of the time-domain
constant false alarm rate (CFAR) test for the presence of
. INTRODUCTION second-order cyclostationarity of [7] to simultaneous o$e
) o multiple cyclic frequencies. Moreover, the maximum and sum
Wireless communication systems rely on the use of scarcg . ; . X
the cyclic autocorrelation test statistics over the icycl

resources, most notably the radio frequency spectrum. P€quencies of interest are considered. The proposedayuilti
dramatic increases in the number of wireless subscriblees, q : prop apu

L ) fcle detectors are based on the classical cyclic autoctiaela
advent of new applications and the continuous demand e<timator and its asymptotic properties. The method is non-
higher data rates call for flexible and efficient use of thé ymp prop X

(raauency spectrum. Coanitive radios have been praposad E{Jarametric in the sense that no assumptions on the noise and
q Y Sp - ~09 Proposed ap.ia distribution are required. The only essential assiompt

technology for dynamic spectrum allocation [1}-[3]. Cdgra re|quired is the knowledge of at least one cyclic frequency

radios sense the radio spectrum in order to find temporoe% the primary user’s signal. Under the null hypothesis the
and spatial spectral opportunities and adjust their tigiasc P Y gna.. yp

asymptotic distribution established provides an accusgte
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and fading effects. However, collaborative detection sub® differently.
may lead to substantial overhead traffic generated by theThe contributions of the paper are as follows. The paper
transmission of the observed data, local test statistics mmoposes a powerful energy efficient approach for spectrum
decisions to the FC. The amount of data transmitted showensing that combines cyclostationary detection and uder c
be minimized especially in mobile, battery operated teedsin laboration with censoring. Single user multicycle CFARtdes
due to stringent battery life constraints or when the cdntréor detecting the primary user signals are proposed. Reduce
channel has low capacity. complexity versions of the multicycle detectors are pregos

We further extend the single user multicycle tests proposad well. The proposed multicycle detectors are extended to
in this paper to accommodate collaboration among the sewcommodate collaboration among multiple secondary users
ondary users. The global decisions are made by combiniAgcensoring scheme reducing the amount of data transmitted
the local test statistics in a dedicated FC or in an ad-hatcollaborative detection of secondary users is propo§kd.
manner by the secondary users. The proposed tests alkmymptotic distributions of the test statistics under thdl n
simple decision making and threshold selection at the FRypothesis are established. The established asymptatic- di
Furthermore, in order to reduce the amount of data trartmitions are based on the asymptotics of the cyclic corcglati
mitted during collaborative detection, we propose a cengor estimators. Hence, the proposed tests are nonparametric in
scheme in which only informative test statistics are sent tbe sense that no assumptions on data or noise distributions
the FC. In addition to the test statistics, the only paramseteare required. Simulation experiments showing the benefits o
transmitted to the FC during the censoring process are tihe proposed cyclostationary approach compared to energy
communication rate constraints of the individual secopdadetection, the importance of collaboration among spatiall
users. We propose a comprehensive way of determining tiesplaced secondary users for overcoming shadowing and
censoring and detection thresholds given the communitatifading effects, as well as the reliable performance of the
and false alarm rate constraints. The proposed method ys epsoposed algorithms even in very low SNR regimes and under
to implement in practice and causes only minimal perforreanstrict communication rate constraints are provided.
loss compared to the uncensored approach even under veryhe paper is organized as follows. Novel single user mul-
strict communication rate constraints. ticycle detectors are proposed in Section Il. In particuliae

Multicycle detection has received considerable amount pfoblem is formulated as an hypothesis testing problem, and
attention in the past. Optimum and locally optimum multieyc corresponding generalized likelihood ratio tests (GLRA®
detectors have been proposed in [10], [11]. However, thedeveloped. The asymptotic distributions of the test gtesis
detectors cannot be implemented without the knowledge arfe also derived. In Section |1l the multicycle detectowes ex-
the signal phase. Moreover, they require an explicit assuntpnded to allow collaborative detection by multiple seamyd
tion on the noise distribution. Many suboptimum multicycleisers. Censoring of the test statistics transmitted to the F
detectors with different requirements and properties len is considered in Section IV. Simulations results in multipa
proposed in the literature. A comprehensive bibliography aadio environments are given in Section V, and the paper is
cyclostationary detection and cyclostationarity in gahés concluded in Section VI.
provided in [12].

Many of the collaborative detection techniques stem from|. SINGLE USERDETECTIONUSING MULTIPLE CYCLIC
distributed detection theory; see e.g. [13], [14]. Coliative FREQUENCIES
spectrum sensing methods based on energy detection havg
been proposed, e.g., in [5], [6]. In [15], [16] cooperatior}n
strategies using amphfy-gnd-forward (AF) prqtocol ha“?"” related to symbol rate, coding and guard periods, or carrier
proposed. _Cyclostatlor_1ar|ty b?SEd Collaboratl\_/e dmﬁd“?? frequency, for example. The cyclic frequencies present may
been previously conS|derepI n [17.] where binary deC|S|_or\1%ry depending on the waveforms used and on channel quality.
of the secondary users using cyclic detectors are combine In order to benefit from the rich information present in
Optimal tes_t threshplds at.the .FC and Fhe secondary us ﬁcal communication signals, we extend the time domain
are determined using an iterative algorithm. However, d & cond-order cyclostationarity test of [7] to multiple kyc

:O the _|te_rat|vebnflture Otfhth?: glgogtfg}n, multlplo? EXPEBSVtraquencies. In cognitive radio applications there tyfhca
ransmissions between the an € secondary USErs glits prior information about the primary user waveforms.

required. g/or example, the cyclic frequencies of the primary useraiign

ommunication signals typically exhibit cyclostationgtat
ultiple cyclic frequencies. These cyclic frequencies rbay

Censoring techniques have been previously proposed 8 at least some of them) are typically known since the

er;]ergy hefficient sefr;_spr netw&;rks;} in'[18], [lc?]t; an((:ij in [20 aveforms are carefully specified in a standard. Hence, we
where the energy efficiency Is further improved by or erhmgtassume the cyclic frequencies of the primary user signal to

node transmissions. Collaborative spectrum sensing veith Che known and focus on detecting the presence of the primary

soring for cognitive radios has been considered in [21] Wheﬁser signal rather than determining its cyclic frequencies

energy detection is combined with censoring and transomssi
of binary decisions. In this paper censoring is combinedh wit ) )

cyclostationary detection and secondary users transreit th- Hypothesis Testing

local test statistics instead of binary decisions. Henbe, t In the following a test for a number of time delays as
thresholds for detection and censoring must be determingdll as a set of cyclic frequencies of interest (e.g., for an
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orthogonal frequency division multiplex (OFDM) signal thevhere .., is the non-random true cyclic autocorrelation
cyclic frequencies of interest could be the symbol freqyeneector. Furthermore, under commonly assumed circumssance
and a few of its multiples) is constructed. The proposdile., when samples well separated in time are approximatel
tests are based on testing whether the expected value of ittdependentg,,...-) is asymptotically normally distributed, i.e.,
estimated cyclic autocorrelation is zero or not for the icycliim,, .. vMe b N(0,32,,.) Where 3, ., is the

zx(*)

frequencies of interest. Letl = {a,|n = 1,..., P} denote 2N x 2N asymptotic covariance matrix af,,.,. This result
the set of cyclic frequencies of interest and follows from [7] where the asymptotic normality of the cyli
R . autocorrelation estimator is established and the covegian
Prptr = |Re{R po (a1, m11)}, ... s Re{R o (o, 71,8, )},  of two cyclic autocorrelation estimates for arbitrary dgcl
. . frequencies and time delays is derived. Hence, the extensio
Im{R, (a1, m1,1)}, - Im{R,p0 (1, 71,8,) ), to the above case is straightforward as well.

The asymptotic covariance matriX, ., can be divided
Re Rm op,T ... Re Rm ap,T ’ into 2N, x 2Nz blocks, one block for each different cyclic
{Bazor (ap, Tra)} Bz (ap, e )} frequency paif«, 3). Note that(«, 3) is different from(3, «),
Im{]%m(*)(apﬁm)}’ .. 7Im{1%m(*)(ap7TP7Np)} although in practice symmetry can be used to reduce calcula-
tion. The2N, x 2Nz blocks X ., («, 8) can be calculated

@) < [7
denote al x 2N vector containing the real and imaginar)fa
parts of the estimated cyclic autocorrelations at the cycli RelQtP1 1, [Q-P
frequencies of interest stacked in a single vecfris the 2.0 (a,p) = 2 2 a,Be A
: T P zz ()L Q+P P-Ql|"™
number of cyclic frequencies in set and N = " | N, Imq=5=¢ Re{—
where N,,,n = 1,..., P, are the number of time delays (5)

for each different cyclic frequency in (1). That is, cycliowhere the(m,n)th entries of the two covariance matric€s
autocorrelations for each cyclic frequency may be caledlatand P are given by

for different time delays as well. The time delays are intege

valued and|r;,,| < M, Vi,n. The cyclic frequenciesu,, Qo p(m,n) =Sy ¢ (a+p,0), ©)
can take on real value in the interval [0,1). Compared to [7] Popg(m,n) =53 ¢ (a—p5,-0).

equation (1) is an extension of,,- to multiple cyclic
frequencies, each with a set of possibly distinct time dglay €€ f-,. £+, (a,w) andS7 4 (a,w) denote the nonconju-

In [7], the cyclic autocorrelation vectat,, ., is given by gated and conjugated cyclic spectrafdt, ) = x(t)a () (¢ + _
7), respectively. These spectra may be estimated, e.g., bg usi
= Re{f% o, )} Re{f% o (a, 7)) frequency smoothed cyclic periodograms as follows
1 (T2
Im{f%mm(a,ﬁ)},...,Im{Rm<*)(a,7'N)}]. Smean (Oé-i-ﬁ,ﬁ) = m Z W(S)
2) s=—(T—1)/2
_An estimate of the _(conjug_ate) cyclic autocorrelation - Fy (o — 2]\7;[8) (B + %) @)
R,.» (a,7) may be obtained using/ observations as
and
Ry ( Z )t + r)erIPmen 3 . @2
=t S (@=B-B)=—= > W)
frm frn ’
where z(t) denotes the received complex valued signak MT s=—(T—1)/2
the discrete time index)\/ is the number of observations, . 2ms 2rs
and () denotes an optional complex conjugation. The nota- F7 (et M =7 ) Ern (B ﬁ) (8)

tion covers both cyclic autocorrelation and conjugate icycl 4
autocorrelation with only one expression. It is assumed tHahere Fr(w) = S0, a(t)a™)(t + r)e™*t and W is a
z(t) has zero mean (in practice the mean can be estimaf@imalized spectral window of odd lengih
and subtracted from the signal). In addition, we assume theln the following the GLRT and its asymptotic distribution
signal to be sufficiently oversampled. Oversampling at ragée derived. We begin from the likelihood ratio and derive th
fs > 2N B, whereN is the order of cyclostationarity and GLRT statistic. Finally, we employ an asymptotic theorem to
is the monolateral signal bandwidth (i.e=B, B]), guarantees obtain the distributions under both hypotheses. The distri
that there is no aliasing in the cyclic frequency domain.  tions derived here are extensions to multiple cyclic fremies

In order to test for the presence of second-order cyclosf-the ones derived in [7]. The asymptotics for the singldicyc
tionarity at any of the cyclic frequencies of intereste .4 frequency situation derived in [7] are obtained as a special

simultaneously, the hypotheses are formulated as follows case. In addition, the distribution undéf, derived here is
more accurate than the one in [7]. As we will later explain,

Ho 2 Tppt0) = €440, @) the distribution unde#; provided in [7] is obtained from the
Hy T = Typn) + €pp), distribution derived here using a normal approximation.

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 16, 2009 at 00:58 from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

B. Generalized Likelihood Ratio Test (GLRT) from (13) with a normal approximation and assuming that

2 )
Using the asymptotic normality of ..., the likelihood M7ex)X, 7, > N. Note that this may not be a very
ratio (LR) is given by (note that there is only one obsenatig’€asonable assumption in the low SNR regime when the value

of 7)) of MT’me;;(*)TfI(*) can be relatively small compared to
o N. '
A= f(’:m<*>|H1) The CFAR test is now defined as follows. Accefdy if
f (o |Ho) T, > 7, wherey is the test threshold chosen so that =

eXp(—%M(’fm(*) - ?‘xm<*>)2;wl(*>(fmx<*> — 7)) P(Tpwo > v|Hp), andpy, is the false alarm rate parameter.
= )
()

N exp(—g M7y B 7 _ . .
(9 D. Computationally Efficient Test Statistics
The generalized likelihood ratio (GLR) is obtained by The Fourier coefficients of a wide-sense stationary random
substituting?, ., for r._, and3}. ., for $. ., i.e process for different frequencies are asymptotically argzo
v v e wEh lated [22]. Moreover, the Fourier coefficients of a Gaussian
- 1 N . . .
A= exp fo'me;j(*)ﬁfz(*) . (10) ranQom process are asymptotlcally |ndepenQent. Slncg the
2 cyclic autocorrelation estimates are the Fourier coeffisie
The final generalized log-likelihood ratio test statistic i©f the autocorrelation function, they are asymptotically- u
obtained by taking the logarithm and multiplying the resuﬁorrelate(_j for dn‘f(_arent cyclic fre.quen.mes. Under theInul
by 2, ie. hypothesis there is no cyclostationarity present. Thus, th
~ . cyclic correlation estimates at different cyclic frequiesc
Towr =2InA = M7, 217l ). (11) (i.e., the Fourier coefficients) are asymptotically unetated.

In case setd contains only one cyclic frequency then the tes'flence' under the null hypothesks, ., is @ block-diagonal

statistic in (11) reduces to the test statistic in [7]. matrix. Consequently, the test statistic in (11) simplifies

Ds =T = Z Tp0 (@), (14)
C. Asymptotic Distribution of the GLR Test Statistic acA
In order to derive the asymptotic distribution of the GLRVhereZ ., () denotes the cyclostationary test statistic cal-
test statistic, the following theorem is employed [23]: culated for single cyclic frequency in the set of cyclic

Theorem 1:Let  ~ N(u, V), where V is p x p non- frequencies of interesti. Note that the asymptotic distribution

singular, suppose that the realk p matrix A is symmetric, Under the null hypothesis remains the same. N
and letr(A) denote its rank. Then the quadratic fommz” Using (14) instead of (11) is computationally more efficient
follows a chi-square distribution if and only AV is idempo- especially if the number of cyclic frequencies of interesthe

tent, in which casecAz” hasr(A) degrees of freedom andSetA is large (more than 3 or 4). However, since the whole
noncentrality parametezApu” . correlation structure of the signal is not taken into actoun

Here ¢ = +/M#,, p = 0 under H, and the detgction perfor.mance may degrade. Qn the other. haqd,
po= ﬁM,rmf*) under H,, V. = ¥, and A = dependlng on the_5|gnal and _employed cycl_lc frquenmes, in
2:}(*)_ Since Ef}(*) is mean-square sense convergent mhe high SNR regime th_e cyclic auto_correlatlon estimates fo
G ) m.s.s. 1 . " different cyclic frequencies may be linearly dependenth#

e, limy oo X ", = Y oy limpy oo AV = ) ) X )

] o, P oy full correlation structure is taken into account this maysms
limas oo 357 0 Bgper = B gp = I and thus the proplems in the detection since it may make the estimated
matrix product is asymptotically idempotent. The converg® ¢oyariance matrix rank deficient. This problem may be awbide
in probability follows from application of a CraenrWold py removing one of the linearly dependent parameters. In
device (e.g., [24, p. 147]) and from the fact that convergengyactice, as will be demonstrated in the simulation section
in the mean-square implies convergence in probability.déen there is not a significant difference in detection perforogan

from Theorem 1 it follows that undefo between the full and simplified models.
. D o The multicycle detector of (11) and the multicycle sum
A}linoo Toato = XN, (12)  detector of (14) are best suited for situations where thagmy

signal has multiple strong cyclic frequencies. That is, the

and underff; we can approximately write for large/ primary signal exhibits significant spectral correlatidrireese

T ~ X%N(Mr:mc(*)2;:(*)7451-(*))7 (13) cyclic frequencies. Otherwise the performance may detgo
» since each test statistic for different cyclic frequenayréases
whereN = 5", _; Ny. the number of degrees of freedom of the asymptotic distrib-

That is, under the null hypothesi, ..., is asymptotically ytion. Consequently, including cyclic frequencies thatrun
(central) chi-square distributed with'V' degrees of freedom provide substantial contribution is not beneficial.
and under the alternative hypothesis non-central chifequa Another interesting test statistic is obtained by caléntat
distributed with2N degrees of freedom and non-centralitthe maximum of the cyclostationary test statistic over tae s
parametetMr,, 3 r! . of cyclic frequencies of interest, i.e.,

The normal distribution approximation undef; for
the single cyclic frequency case derived in [7] follows D = glg}ﬂw(a)- (15)
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Finding the maximum over the cyclic frequencies of interest In addition, the following maximization test statistic is
may prove to be useful if the cyclic frequencies are due froposed:
different signal properties or if the primary user systens ha L .
multiple alternating operation modes that result in défar D1 = maXZT(ZL)(Q)- (19)
’ acA zz
cyclic frequencies. For example, adaptive modulation and i=1
coding may lead to such signals. Under the conditional independence assumption the asymp-
Under the null hypothesis the asymptotic cumulative distriotic distribution of the test statisti@;, in (18) is x3n ;.
bution function (cdf) ofD,, is given by under the null hypothesis. This is due to the fact that the
p N1 . sum of independent chi-square random variables is also a
Pp(z, P, {N;)} ) = H (1 _ /2 Z (z/2) ) . (16) chi-square random variable whose degre_es of freedom is the
n! sum of the degrees of freedom of the independent random

i=1 n=0

o ) P variables. The cumulative distribution function®f,, ;, in (19)
The null hypothesis is rejected Hp (z, P, {Ni}i—1) > 1= g (D, ;. P, {N,L}” ) under the null hypothesis whefe
Dfa Wherepfa is the fglse alarm rate qnﬂ is the _numb_er of is the number of tested cyclic frequencies.
tested cyclic frequencies. See Appendix for detailed d60m. A censoring scheme for reducing the amount of transmitted

data, taking into account the relevance of the information
Ill. COLLABORATIVE DETECTION provided by secondary users as well as how to deal with
In cognitive radio systems, there are typically multipleommunication rate constraints, will be introduced in the
spatially distributed secondary users that are trying td firfollowing section.
underutilized spectrum, i.e., spectral holes. User cajmer
can be realized in a number of different ways. All the |V. COLLABORATIVE DETECTIONWITH CENSORING

secondary users may sense th(_a entire _band of mter_est, OF fly a collaborative spectrum sensing scheme the transmissio
order to reduce power consumption monitor just a p"’“t'adb"’mof the spectrum sensing results by the secondary users to an

In the latter case each secondary user SENses a certqin‘ paﬂﬁ. or other secondary users in ad-hoc scenarios generates
the spectrum, and then shares the acquired information W&J stantial overhead traffic. A significant reduction in the

other_ users (r)]rfan FC. W'l;h rr;u[[ttlwpled_spatl_?lly d_lstrlbutz(;fs amount of data transmitted may be achieved by transmitting
Sensing each irequency band, the GIVETsity gains necessary, ly the relevant or informative test statistics to the FC or
mitigating the shadowing and fading effects can he achleve[ e other users. This operation is called censoring. Itaeslu

Here, the focus is on collaboration of a group of secondaﬁ;{e energy consumption of the secondary user terminalg sinc

uslers gg_fenstln%the samedfre?ugr;)cy bar;cé th i fewer terminals are transmitting at any given time. In the
na: kl |or: 0 being cooorl rl]nae yan 'tr,1 (tecochipia '38 lowing a censoring strategy for cyclostationarity bése
Mmay take place in an ad-noc manner without a dedicatgge v,y sensing under communication rate constraints is

FC, i.e., the secondary users distribute their local qaedti roposed. Censoring has been employed in energy efficient
information to all the other users and each user perforrggnsor networks in [18], [19]

It:f r]:‘zSItcimn Igcily.”?ere |tn:js rassurr;ed rt]gartn al? FC dcollieicts Let L denote the total number of collaborating secondary
ormation from allL, Secondary USers and makes a deciSIQq ¢ ang¢ denote the number of users transmitting their test
about whether the frequency band is available or not. Ea;

: . X Sthtistics to the FC or the user making the decision. Each use
secondary user sends a quantized version of its local spectr.

. o is assigned a separate communication rate constraint define
sensing statistics (such as the LR) to the FC. In the case g/a 9 P

very coarse quantization, binary local decision may be.sen @

Assuming that the secondary users are independent diyen p (7;9@ >t

or Hy, the optimal fusion rule is the LR test over the received
local LRsA;: wherek; € [0,1] is the communication rate constraint of user

L 1 andt; is the upper limit of the censoring (no-send) region of
Ap=]]A (17) the useri. That is, each user will transmit its test statistic to
i=1 the FC only if its value is abovg wheret; is chosen such that
In case the secondary users send binary decisions, the surthefprobability of the usertransmitting the test statistic to the
ones may be calculated and compared to a threshold. Her&GunderH, is ;. This type of strategy in which each user
simple way of making the decision using GLRs is considereid. assigned a separate communication rate constraint leas be
Note that due to using GLRs optimality cannot be claimed.suggested in [19] for censoring in sensor networks. Thecghoi
Equivalently to the product of the LRs, (17) can be writters natural in a scenario where the secondary user termirals m
as the sum of log-LRs. Hence, the following test statistic Isave very different capabilities for data transmission.réAo

H0>§I€i7i_].,...,L, (20)

obtained: . over, the threshold valuesneeded to meet the communication
T Z 70) (18) rate constraints can easily be selected independent_ly dy th
L za () secondary users. Recall that under the null hypoth&gishe

=t test statisticz;(;)(*) in (20) is asymptoticallyy3, distributed.

WhereT;Q*) is either the full correlation test statistic in (11)However, the threshold values (or the communication rate
or the simplified sum test statistic in (14) of user constraints) must be communicated to the FC. Note that the
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maximum achievable false alarm rate without randomizatiavhere the probabilities of different values &f are obtained
for this strategy is given by — Hle(l — Ky). by enumerating all possible combinations and computing the
The test statistic of the proposed censoring test is given t8spective probabilities. In case all the secondary usave h
« equal communication rate constraints, ie.= x;, Vi, then

_ L-K LK the probabilities are given by
D=3 T, + > di=Dix+ Y di (21)
i=1 i=1

i= L -

' p(K = k|Ho) = (k)nk(l — ), (24)
where the latter sum corresponds to the generalized log-LRs

in the no-send region. The idea is that the test statistitkeof  Now let us consider only the ternfs'(”( , of the first sum
secondary users not transmitting are replaced by a constan . . et )
value denoted byl;. Here, the value chosen fat; is the n {21)' The probability density function (pdf) ¢f = 7,

zz(*)
conditional mean of the local generalized log-LR of thie at the FC is given by a truncated chi-square pdf, i.e.,

user (i.e., the test statistﬂfx(;)(*>) in the no-send region under oNIg ) — L 1 N-1,u/2 > ¢ (25
H,. ie. 9(y,2N|Ho) = 7 —Gw T sy >t (25)
@ @ . where 2N is the number of degrees of freedom ah¢d)

di = E {7;06(*) T o <ti, HO] , i=1,....,L. (22) denotes the gamma function. The censoring threshold tfie.,

upper limit of the censoring region) is denoted bgnd G(+)
Since T(i)(*) is under the null hypothesig?2, distributed denotes the cumulative distribution function of the chirae

random variable, the value f is easily obtained at the Fc distribution. Fory < ¢, g(y, 2N |Hy) = 0.

using the threshold; (that is defined by the communication Determining the distribution of a sum of truncated chi-
rate constraink;, see (20)). Thus, there is no need to transn¥guare distributed random variables in a closed form is very
d;. The communication rate Constraia{is the 0n|y parameter difficult. Here, the fact that the cumulative distributiamttion
transmitted to the FC. may be obtained by inverting the characteristic function is

Determining the value of; can be considered as quantiza8mPloyed to approximate the distribution numerically. One
tion to only one value. In other words, the whole distribatioform of the inversion theorem between the characteristic
of values in the no-send region is represented by a singlevalfunction @(-) and the cumulative distribution functiof'()
With this analogy it is obvious that choosing the conditiondS given by [25]
mean as the value fai; is optimal in the minimum mean- 1 © B(w)
square error (MMSE) sense. Finally, note that although the F(y) = 5 */

value ofd; is constant and can be set offline, the value of the ) i )
second sum in (21) is a random variable sificds random. Where;j denotes the imaginary unit. Before the actual method

Hence, the second sum cannot be included in the test theesHnployed for the numerical inversion of the characteristic

if a single threshold is used for alt . funqtiqn .is pr(_asented, the characteristic function of test t
Here only FC test statistics based on summation of local tS&tistic is derived. _ . _

statistics of the secondary users are employed. Maxiroizati 1 h€ characteristic function of a random variabie is

over the cyclic frequencies of interest at the FC requir(9§f'”Gd by

transmission of test statistics for all cyclic frequencighus, ®(w) = Elexp(jwy)]; (27)

It g_en_eratesP tlme_s more data than summanon ba§ed te\ﬁfhereE[‘] denotes the expectation operator. The characteristic
statistics whereP” is the number of cyclic frequencies Of¢ncion always exists. Moreover, it uniquely defines the

interest. distribution of the random variable.

_ To summarize, apart from the secondary user test statiSyging (27) the characteristic function of the truncated chi
tics exceeding the censoring thresholds, the only add’t'o%quare pdf is defined by

information that has to be transmitted to the FC during the -
censoring process is the set of communication rate contgrai Dy (w) = / exp(jwy)g(y, 2N |Ho)dy. (28)
k; (or alternatively the censoring thresholdy. Moreover, t
each communication rate constraint has to be transmitted ysing repeated integration by parts the following result is
only once when the cooperation is initiated and afterward$ained as
only whenever it is changed. N

Censoring affects the distribution of the global test stati Br(w) = 1 ( 1 9—N+nN-n
at the FC or secondary user where the statistics are combined 1-G(t) (N —n)!

meiju)ydw, (26)

Essentially, the task is to determine the distribution oums " (29)
of truncated chi-square distributed random variables. (1= 2jw) " exp(—(1 — 2jw)t/2) |.

The distribution of the test statisti®;, can be defined using
conditional distributions as follows: Since the individual test statistict;(;*) are independent,

the characteristic function of the first sum in (21) (i.e.e th

L
p(DL|Ho) = ZP(DLU( =k, Ho)p(K = k|Hy), (23) characteristic function ofDg) factors to a product of the
=0 characteristic functions of the individual test statistidhat
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is, the characteristic function dPx for a given K = k is Since the test statistics of the secondary users are indeptn

given by the mean and variance of the FC test statistic are obtained by
k summing the mean and variances of the secondary user test
Pp, (w) = H 7, (w). (30) statistics, respectively. Note that for the mean of the R te
i=1

statistic the termZiL:_lk d; in (21) has to be added as well.

For equal communication rate constraints among the sddle variance does not change since theare non-random.
ondary users, the characteristic function @f, for a given Finally, the characteristic function of a normalized vht&a
K =k is given by Z = (Y—p)/ois given by® 7 (w) = exp(—jwp/0) Py (w/0).
The distributionsp(D|K = k, Hy) can be approximated
Op, (w) = r(w)". (31) by using (32). The combined distributiognD;|H,) is ob-
tained by multiplying the conditional distributions wittnet
probabilities of different values oK. The distribution values
between the FFT points can be interpolated.

Finally, the characteristic function @/, for a givenK = k
is given by ®p, (w) = exp(jw Zf:_lk d;)®p, (w). The result
follows directly from (27) since the; are non-random. In order to obtain a desired false alarm ratg,, a single

The dis_tributi(_)nSp(Z_)L\K = k. Ho) can _be app_roximated test thresholdy may be set using the following equation
by numerically inverting the characteristic function. Eea
Fourier-series method introduced in [26] for numericaleinv Pra = p(Dr > v[Ho). (35)

sion of the characteristic function is employed. The chos , , .
method is very simple and easy to use. Although there ex%?ternatwely, different thresholds may be used for didfer

- Yalues of the number of received test statisficsThe desired
many more sophisticated and accurate methods, the acCUtALY, ~iarm rate is obtained if the thresholds & = 1 I
of the chosen method is more than sufficient for the appboati A

at hand. For a comprehensive review of Fourier-series rdethosatley the following condition:

for numerical inversion of characteristic functions, Laqs L

transforms, and generating functions, see [27]. Pra=Y_p(Dr > w|K =k, Ho)p(K = k|Ho).  (36)
The value of cumulative distribution functiof'(y) of a k=1

random variableY” with zero mean and unit variance can bén the above expression, it is assumed that if none of the

approximated by [26] users transmits, the decision is alwal/g. For example, the

thresholdsy, may be chosen such tha(D; > ~,|K =

H-1
Fly) ~ 1om T Ly (1) oy (32) k,Ho) = pya/ Zﬁzlp(K = k|Ho), vk. Furthermore, the
2 27 et 2mwjv ’ CFAR property is guaranteed also if the thresholds are d&fine
V#£0 by p(Dr, > x| K = k, Hy) = py,. This is a non-optimal strat-

. . tm if the total number of coll ratin r
where @y () denotes the characteristic function ®f. The ey but may be used € totai nu b? otco aborating users
is not known (note that the communication rate constraints

distribution is approximated a&H — 1 different points.n is . : TR
a constant chosen such that the full range of the distributits)tIII need to be known). In that case the combined distrauti

is represented (i.e., values f(y) include both 0 and 1). p(fgi‘tfé%)alddﬁgjibrl‘Jct’ito;‘a‘(’; ﬁ‘;(b_ekcic‘;':idres'gﬁg doﬂ'é’tethe
In order to be able to use the fast-Fourier transform (FF PLZLI =5, o 9 )

. . t in thi itis n ry t = j, Sin h
to calculate the sum in (32) the poingsare chosen as the a this case it Is necessary to uge= 0,Vi, since the

. S number of users not transmitting is not known.
Fourier frequencies, i.ey, = 2n(k — H)/(2n(H — 1)), k = o :
I 2H — 1. Note that the undefined value for index- 0 In case the communication rate constraints are chosen equal

. for each secondary user, i.es, = k;,Vi, the amount of
has to be excluded from the final sum. : 7 . .
. required computation is considerably reduced. If the comimu

ith d unit vari the test statistic h Cation rate constraints are not equal, the approximatiahef
With & mean zero and unit vanance, e test stausiic as(f%tributionSp(DﬂK = k, Hy) means that the Fourier-series

be normalized as weII._ T_he mean and varlance can pe cay proximation has to be done for all different combinations
ca(lnc)ulated by differentiating the characteristic funetisince of different users transmitting (and then combining thescdf
®,7(0) = j"E[y"] and the variance® = E[y*] — E[y]*. using their respective probabilities). Hence, from a peatt
The mean and variance of a truncated chi-square d'smbu&%int of view it is advisable to limit the number of different
random variabl&” with pdf defined by (25) are given by .y munication rate constraints the secondary users caatsel
1 N (2n +1) in o_rder to reduc_e the number of different combin_ations.
p=1= 0] Z (N n)'Q‘NJ“"tN‘”e‘f/Q, (33) Finally, we point out that the proposed censoring scheme
= ' may be directly applied also to other test statistics that ar
under the null hypothesis chi-square distributed, suchhas t
energy detector.

—

n

and

N
1 1
2 —N+4+ny;N—n —t/2
e — E —2 t :
o TG 2- ((N ) e | V. SIMULATION !EXAMP.LES | . |
n=1 The primary user signal considered in the simulations is the

- (4n(n +1) +4nt+t2)> — u2. (34) OFDM signal. OFDM is employed by many of the current
as well as future wireless communications systems. OFDM
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[

based systems include 3GPP Long term evolution (LTE),
IEEE 802.11a/g Wireless local area networks (WLAN), Digital ~_oef ~ 10%0samples st
video broadcasting (DVB) standards DVB-T and DVB-H, as T 08l 400 samples
well as IEEE 802.16 and WiMax Wireless metropolitan area é o7l 74 400 samples
networks (MAN), for example. A baseband OFDM signal is E:'O_G? ,,5’/,?// 1000 samples
given by g . ,'/

et & , g 0.4t 4

z(t) = Z Z Cn,lg(t _ ZTS)GJ(%r/NL-)n(tflTS) (37) % | / Siaion

n=0 l=—co g ol ) / - - Simulation, T, (D)
whereN, is the number of subcarriers; is the symbol length, o . ! —— Theoretical
g(t) denotes the rectangular pulse of lendgth andc, s odf.-~
denote the data symbols. The symbol length is giver by % 5 10 15 20 25
Ty + T, whereTy is the length of the useful symbol data and x

Tep the Ipfr_]gth of the (?yC“C prefix. . . _Figure 1. Comparison of theoretical and simulated cdfs fortevlaussian
In addition to possibly other cyclic frequencies, a cycligoise (i.e., undetHy) for 2 different number of samples. As the number

prefix OFDM signal exhibits cyclostationarity at the integeof samples increases the accuracy of the theoretic asymptistigbution

muliples of the symbol rate — /T, — 0. =1,-£2.... In  [1OVe, Ihe detctorsuse 2 andom oyl recuences o (e

the following simulation experiments the single cycle dete

employs the cyclic frequency of /T while the multicycle

detectors employ /T, and2/T;. Furthermore, if not otherwise slightly more samples for the asymptotic distribution tddcho

mentioned all the detectors use two time lag®,. That is, true in the upper tail of the distribution.

the detectors assume the knowledge of the symbol frequencyrig. 2 compares theoretical and simulated performance

and the useful symbol length. The cyclic autocorrelation @urves for a WLAN OFDM signal in additive white Gaussian

the OFDM signal has a peak for the above time lags [8]. noise (AWGN) for 3 different number of samples. The number
The cyclic spectrum estimates were calculated usingohsubcarriersNgpr = 64 of which N,.. = 52 are occupied,

length 2049 Kaiser window with3 parameter of 10. The and the cyclic prefix lengttV,,, = 16. The subcarrier modula-

Fourier-series method for approximating the cdfs of thed4t t tion is QPSK (quadrature phase shift keying). The falsemalar

statistics after censoring employs the parameter vajue$).5 rateps, = 0.01. The signal was sampled at the Nyquist rate;

and H = 1000 (see (32) and the explanation after it). Théhat is, the oversampling factor with respect to the symats r

plotted simulation curves are averages over 1000 expetsmefs Nrrr + N.,. The accuracy of the theoretical asymptotic
Detection performance is measured as a function of tBéstribution improves as the number of samples increades. T

SNR. The SNR in dB is defined by asymptotics start to hold very accurately when the number of

samples approaches 12000. The number of samples required
(38) for the asymptotic distribution to hold true depends also on
the signal and its characteristics and the sampling ratée No

whereo? ando? are the powers of the transmitted signal anfiat the fact that the asymptotic distributions undérdo not

the noise, respectively. The channels are normalized te h&fcessarily hold true for small number of samples does not
an expected channel gain of one. In all of the simulations tH&an that the algorithm cannot be used if the sample SIze 1S
secondary users experience independent channels (ding fa Ot 1arge enough. Merely, the performance cannot be prslict
and shadowing) and receiver noises. However, the statisttSind the theoretical curves. The more important factor is

of the fading, shadowing, and noise processes are identitlf accuracy of the asymptotic distribution undés which
among secondary users. holds true for far less number of samples (roughly 1000)s Thi

guarantees the CFAR nature of the algorithm.

|

0—4/

SNR(dB) = 10log;,

3N

ag

A. Theoretical Analysis vs. Simulation Results B. Multicycle and Collaborative Detection

Fig. 1 illustrates the accuracy of the asymptotic distitout ~ Fig. 3 depicts the performance of the proposed multicycle
under the null hypothesis in (12) for the multicycle detestodetectors as a function of the SNR for a DVB-T (Digital video
in (11) and (14). In the figure the theoretical cdf of théroadcasting, Terrestrial television) signal in (a) AWGNdan
x5 distribution with N = 4 and simulated empirical cdfs (b) frequency flat Rayleigh fading channels. The DVB-T slgna
for white Gaussian noise for 2 different number of samplgmrameters are as followsVgrr = 8192, N, = 6817,
have been plotted. Already with 1000 samples the accuracyasfd N, = 1024. The subcarrier modulation is 64-QAM
the asymptotic distribution is very good. The accuracy @f tHquadrature amplitude modulation). The length of the digna
asymptotic distribution for the simplified sum test statiss is 3 OFDM symbols4 3 ms). The signal was sampled at the
slightly worse with 1000 samples in the most important regid\yquist rate; that is, the oversampling factor with resgect
for detection, the upper tail of the distribution, than fbet the symbol rate iSVppr + N¢p. Thus, the number of samples
test statistic that takes the correlations between thereéiftt is 3 x (Nppr + N.p) = 27648 samples. The same sampling
cyclic frequencies into account. The sum test statisticireg strategy is used in all of the following simulations as well.
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Figure 2. Comparison of theoretical and simulated performancees for a
WLAN OFDM signal in AWGN for 3 different signal lengths. As theimber p,, =0.01

of samples increases the accuracy of the theoretic asympuisticbution 1 _ PR
improves. The theoretical and simulation curves practicalserlap with ,"
12000 samples. The signal lengths in time are 0.2 ms, 0.4 ms, &nahs). 0.9F S V¥ ]
The detectors use 2 cyclic frequencies and one time delayl énudz p7. 0sl e & 1
The theoretical curves have been obtained using the digtiibin (13). ’ i /7
§o07r ! 1
g 1 i
g 0or ' | 10SUs, 2¢fs, T
The figures show that in order to obtain reliable perfor- 5 .| ! — U Cfs’ L
. . . . . / Y/ p— | 2 T (D
mance in challenging propagation environments, collaimra 2 ! : lg 235 Zcfs' DL( )
. o L ! - s, 2 cfs,
among secondary users is necessary. The performance for a §0.4 ) 10SUs 16f T mL
single secondary user operating alone is significantly &ors o 03r i e 1sU Z’Cfs T t
in Rayleigh fading channel than in AWGN. Collaboration 0.2t .-1SU,2cfs, D,
among secondary users brings the overall detection perfor- .| V') & ~v- 18U, 2¢fs, D_
mance in Rayleigh fading on the same level with the overall ” ‘ [ A1suadhT
collaborative detection performance in AWGN. Collabonatio -30 -25 -20 15 —1gNR(ag) 0 5 10
. . . . . . verage
provides spatial diversity and thus reduces the impactdnéa (b) Frequency flat Rayleigh fading

on the overall detection performance. That is, the prohgbil

that every secondary user is simultaneously in a deep fadeiggire 3. Probability of detection vs. SNR (dB) for a DVB-Tgsal in
smaller as the number of spatially displaced secondarysus@t) AWGN and (b) frequency flat Rayleigh fading channels. gwration
among secondary users improves performance through divdtsitytigates

increases. Using multiple cyclic frequencies further iQW8S  the effects of fading. Using multiple frequencies further ioyes the detection

the performance. The performance improvement is 1-2 di®rformance. (SU = secondary user, cf = cyclic frequency)

The gain obtained from collaboration is far greater. In &ddj

it can be seen that taking into account the full correlationcs

:Ere Eet\tlveenfestmates ﬁ't dlﬁerentﬂ::ycllc ffrequenmes(zjlgfas frequencies in total). The obtained noise power estimate is
€ besl performance. However, the periormance di eren&(?mloyed in the energy detector to make it a CFAR detector.

to the best. S”f“.p"f'ed mult|cy_cle detecmf’ thg sum_detect addition, we consider the energy detector with known @ois

D,, is not significant. Hence, in the following simulations th‘?:)ower and noise uncertainty denoted Ayin dB (i.e., noise

multicycle detectors are all sum detectors. power+ A).
_ ) Fig. 4 depicts the performance of the detectors for the
C. Comparison to Energy Detection primary user signal as a function of the SNR. The energy

In the following we will compare the proposed cyclic detecdetector outperforms the cyclic detector when the noisegpow
tors to energy detector in AWGN. The primary user signal is known perfectly. However, with 1 dB noise uncertaintyréhe
an IEEE 802.11a/g WLAN OFDM signal. The primary useis roughly a 5 dB performance gap between the cyclic detector
signal parameters are as followdrrr = 64, N,.. = 52, and the energy detector. Moreover, due to the noise unortai
and N., = 16. The subcarrier modulation is 64-QAM. Thethe performance of the energy detector does not improve if
sensing time is 1 ms (= 20000 samples). the number of samples increases. This behavior is predicted

We have implemented an energy detector that estimates liyethe SNR wall [28]. That is, due to the noise uncertainty
noise power from the guard bands. In order to obtain toleranihe energy detector cannot distinguish the weak primary use
against carrier frequency offsets and leakage from thelggss signal from slightly higher noise power. Consequently, the
occupied spectrum, we employ a noise power estimator theatergy detector is very susceptible to noise uncertaiines
estimates the average power in 3 of the unoccupied subcartieus its performance is dictated by the accuracy of the noise
frequencies at both ends of the spectrum (i.e. 6 subcarmmwer estimate. This is demonstrated by the CFAR energy
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Figure 4. Probability of detection vs. SNR for a WLAN OFDM sajrin ~ Figure 5. Probability of detection vs. SNR for a WLAN OFDM sigrin
AWGN. Noise estimation from the guard bands suffers from uaggy that AWGN. The interfering signal is an OFDM signal with differeayclic
reduces the reliability of the CFAR energy detector. Thesaaincertainty frequencies and a narrower bandwidth (1/7th of the primamgr wsgnal
scaled CFAR energy detector has roughly the same performante ayclic bandwidth). The SNR of the interfering signal is -5 dB. Thergy detector
detector. That is, in this example, the noise uncertainty rneidéss than 0.18 has no means for distinguishing between the primary user Iseyma the
dB in order to have equal performance to the cyclic detectoreldver, noise interference. Hence, it will either always detect the pneseof the primary
uncertainty makes robust energy detection impossible begertdin SNR as user even if only the interfering signal is present or berigsd by the SNR
predicted by the SNR wall. (ED = Energy detector) wall depending on the SNR of the interfering signal comparethée noise
uncertainty.

detector. It can be seen that if there is even minor unceytain only a roughly 1-2 dB performance loss compared to the case
the noise power estimation, the CFAR energy detector canigiere interference is not present.

limit the false alarm rate reliably or obtain the same débact Energy detection has no means of distinguishing among
performance as the energy detector with exactly known noiggferent signals. It is intended for detecting random sign
power. We have experimentally determined from a pure noige noise and it does not exploit any knowledge of signal
signal that the uncertainty in noise power estimation f@& thyaveforms. In cognitive radio applications we are operatin
false alarm rate 0.01 in this case is roughly 0.18 dB. That i, frequency bands where interference, not just noise, is
adding this uncertainty to the estimated noise power resulfequently present. Examples of common interference ssurc
in a false alarm rate of 0.01. Using this uncertainty to scalge ultra-wideband devices, other secondary users, device
the noise power estimate the performance of the CFAR enefgydevice communication, leakage from adjacent chanrels a
detector is roughly on the same level with the cyclic detectque|| as electrical devices with electromechanical switche
This shows that the noise uncertainty must be less than Odgclostationary detection provides means for distingaigh

dB in this scenario for the CFAR energy detector to obtain thg@nong primary users, secondary users, and interference.
same performance as the cyclic detector. However, thisrexpe

ment assumes a white noise spectrum without any interferenc _ _ _ _
Practically all communication bands are interferencetthin D. Collaborative Detection With Censoring

their capacity. In interference limited communicationichels  Fig. 6 illustrates the performance of the censoring testdas
it is hard to estimate the noise power reliably. In [29] @ 1 dBn two cyclic frequencies for different communication rate
noise uncertainty is considered to be a typical value withogonstraints. The test signal is a WLAN OFDM signal with the
considering interference. If interference is taken intocamt following parametersNppr = 64, N, = 52, andN,, = 16.
the noise uncertainty may be significantly higher than 1 dBThe subcarrier modulation is 64-QAM, the signal length i6 10
Fig. 5 depicts the performance of the detectors in the pré3FDM symbols (= 8000 samples = 0.4 ms), and the channel
ence of one interfering signal. The interfering signal isther is a frequency flat Rayleigh fading channel.
OFDM signal Nrrr = 32, Noce = 32, N = 8, QPSK) It can be seen from the figure that the performance loss due
with different cyclic frequencies and a narrower bandwidtto censoring is minor even under very strict communication
(1/7th of the bandwidth of the primary user signal). The SNRate constraints.
of the interference is -5 dB. Since the energy detector is notFig. 7 shows the number of users transmitting their test
able to distinguish between the primary user signal and thmtistics to the FC as a function of SNR under different
interference, it will either always detect the presencehef t communication rate constraints. The reductions in tragsmi
primary user regardless of the SNR of the primary user sigreabns are largest at low SNRs. At moderate-to-high SNRs
or if the SNR of the interfering signal is low enough comparechore users start to “detect” the presence of the primary. user
to the noise uncertainty it will suffer from the SNR wallThe value of their local test statistic increases and besome
behavior. The cyclic detector is able to distinguish betwte  informative by indicating the possible presence of the prim
primary user and interfering signals and consequentlyessiff user and consequently they transmit their test statistiche
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with wavelength A experiences a frequency shift given by
Af =v/X=wv/c- f wherev is the speed of the transmitter
relative to the receiver¢ is the speed of the light, and
is the frequency of the sinusoidal waveform. The change in
symbol frequencies is proportional to the ratio of the sgeed
as well, i.e., Aa = v/c - «. For example, for a DVB-T
system in 8K mode with a cyclic prefix of 1/8 of the useful
symbol data, the symbol frequency is approximately 1 kHz.
Hence, for a relative speed of 300 m/s the change in symbol
frequency is roughlyt0~2 Hz. In addition, oscillator mismatch
between the transmitter and receiver may cause a frequency
offset. In practice instead of a single frequency shift the
06 \ \ \ \ \ signal experiences a complete Doppler spread. That is, each
-14 -13 -12 -11 -10 -9 -8 -7 . . . .
Average SNR (dB) propagation path experiences a different Doppler shift.
Two test signals are employed: 3GPP LTE (Long term

Figure 6. Probability of detection vs. SNR (dB) for a WLAN sinin  eyo|ytion) [30] and DVB-T OFDM signals. The LTE signal
frequency flat Rayleigh fading channel for different commatian rate

constraints. The number of collaborating users is 10. Théopeance with Parameters are as fOHO_WNFFT = _512:_ Noce = 300, and _
censoring is close to optimal even under very strict commuioicatate N, = 36. The subcarrier modulation is QPSK, the carrier

constraints. frequency is 2.5 GHz, and the length of the LTE signal is
14 OFDM symbols (= 7672 samples 1 ms). The DVB-

T signal parameters areNppr = 8192, N,.. = 6817,
and N., = 1024. The subcarrier modulation is 64-QAM,
the carrier frequency is 750 MHz, and the length of the
DVB-T signal is 3 OFDM symbols (= 27648 samples 3
ms). Multicycle sum detectors are employed. The detecBon i
performed at the cyclic frequencies of the original trarttei
signal (i.e., without Doppler effect).

Fig. 8 depicts the performance as a function of the SNR
for (a) the LTE signal in the 3GPP typical urban multipath
channel TUx AT = 130.2 ns) [31] and (b) the DVB-T signal
in ETSI EN 300 744 V1.5.1 (2004-11) [32] Rayleigh fading
‘ ‘ ‘ channel for different mobile speeds. The employed Rayleigh
-2 -2 Av—elrgge SNR—ég) -5 0 fading has the Jakes’ Doppler spectrum generated using the

model in [33]. It can be seen that the detectors are relgtivel
Figure 7. Average number of users transmitting the test tatis the FC  insensitive to Doppler effects. There is performance loss i
VS. SN_R_for diff_erent com_ml_mication rate constrai_nts. The remds users the case of the DVB-T signal. However, it is signiﬁcant 0n|y
gg%%nﬁ'iggﬁghne'rraiséosrf;tgiftss_t° the FC are as imposechbyréspective o a1y high mobile speeds. Such high speeds are not very
realistic in practical cognitive radio applications. Th¥ BT
signal has longer symbol length than the LTE signal, and thus
FC. The very low SNR regime corresponds to the situatidghsuffers more from the time selectivity of the channel.
when the primary user is not present as well. Hence, we can
see that the transmission rates undgy are as imposed by
the communication rate constraints. Since the null hypmishe
situation is the most likely situation in practice, sigraiic [N the next simulation, in addition to a Rayleigh fading

savings in overall transmission rates are obtained. multipath channel, a log-normal shadowing process is in-
cluded. The shadowing among secondary users is assumed to

be independent.

E. Doppler Effect Fig. 9 illustrates the performance for an LTE signal in the

In this section the goal is to determine the effects FGPP typical urban multipath channel TUAT = 130.2
carrier frequency shifts and the subsequent change inccyais) [31] with a mobile speed of 3 km/h and log-normal
frequencies due to the Doppler effect on the performance sifadowing. The log-normal shadowing process has a zero
the cyclic detectors. In order to study these effects, Dapplmean and a standard deviation of 6 dB. These parameters have
spread due to the mobility of the receiver (and/or trangmitt been chosen to model a small-area shadowing process. The
is introduced to the channel. In addition, the symbol per#od signal parameters are as followSyzpr = 512, N,.. = 300,
changed proportionally to the maximum Doppler frequencyand V., = 36. The subcarrier modulation is QPSK, and the

Doppler effects are caused by the relative motion of tHength of the signal is 14 OFDM symbols (= 7672 samples
transmitter and receiver as well as by their relative motitth ~ 1 ms). All the detectors are multicycle sum detectors. All
respect to the reflectors. A sinusoidal transmitted waweforsecondary users have equal communication rate constraints
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' ] formance gain. Shadowing should be viewed as an additional

) loss on top of the distance dependent attenuation. Herese th

B | results should be viewed as showing the performance for a

e ' ] given average receiver SNR where the average SNR depends
~ on the path loss that includes both the distance dependent
! ] attenuation as well as the average shadowing loss. The more
gentle slope of the performance curves is due to the vaniatio
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of the received signal power caused by the shadowing process
0.1+
=5 220 15 10 - 0 VI. CONCLUSION
Average SNR (dB) In this paper cyclostationary spectrum sensing of primary
(b) DVB-T users in a cognitive radio system has been considered. Vée hav

Figure 8. Probability of detection vs. SNR (dB) for () an LEEnal in Proposed single user multicycle CFAR detectors and extende
3GPP Typical Urban Rayleigh fading channel and (b) a DVBgnal in them to accommodate user collaboration. Moreover, we have
TS 00 T4 YL ot 1) Rt eing chameld6rent - proposed a censoring techrique fo reccing energy consump
tion and the number of transmissions of local test stasistic
during collaboration. Unlike energy detection the prombse
, ) ) i cyclostationary approach is able to distinguish among g@nym
Fig. 9 shows that shadowing along with fading effects can bers secondary users, and interference. Furthermaseat
effectively mitigated through collaboration among se@yd g,sceptible to noise uncertainty. Moreover, it is honpataim
users. Moreover, collaboration is practically a must ineord;, the sense that no assumptions on data or noise distnitsutio
to obtain reliable performance under shadowing and fading, required.
effects. In practice, the shadowing processes may be at&tel  cgjjaporation among secondary users is essential for miti-
among thg secondary users. Thus, the performance gain fr, Ming the effects of shadowing and fading, and conseguent|
collaboration may be reduced as well. Consequently, tRortening the detection time. However, collaborationegen
importance of spatial diversity among the secondary UserSies reporting overhead that increases transmissions evy th
emphasized. secondary users. In mobile applications battery life isratéd
Fig. 9 also shows that censoring works extremely well ifesource that has to be conserved. A censoring scheme in
shadowed environments compared to the uncensored approgffich only informative test statistics are transmitted he t
The performance with strict communication rate constraifiC has been proposed. The proposed censoring scheme has
x = 0.01 is even slightly better in the low SNR regime inbeen seen as a viable approach for significantly reducing the
this case. reporting overhead without sacrificing the performancesrEv
Medium-scale variation of the received signal power is contnder very strict constraints on communication rates only a
monly attributed to shadowing. Comparing Fig. 9 to previousinor performance loss has been observed.
figures (especially Fig. 8(a)) one might falsely concludatth In summary, the proposed method combining cyclostation-
shadowing may produce performance gain. However, sinagy detection and user collaboration with censoring presid
shadowing is caused by obstruction of buildings, treeg@adel, a powerful energy efficient approach for spectrum sensing in
and other obstacles it cannot be expected to produce any peagnitive radio systems.
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APPENDIX

In the following the distribution of the maximum of
independent (central) chi-square random variables ivelkri [7]
It is assumed that the chi-square random variables have
2N1,2N,, ..., 2Ny degrees of freedom, respectively. The CUg)
mulative distribution function of the chi-square disttiioun
with 2N degrees of freedom is given by

(N, z/2)
['(N) [10]

where y(k, z) is the lower incomplete gamma function and

I'(k) is the ordinary gamma function. For a positive integer

6]

El

F(z,2N) = (39)

11
the following identities hold: (]
12
D(k) = (k1)L 4o "
k=1
_ —z z (13]
v(k,z) =T(k)— (k—1)e nzz:o - (41)

Hence, the cumulative distribution function of the chi-aopi 14
distribution with2N degrees of freedom is given by

= w2 -
F(z,2N)=1—¢""2%" - (42)
n— [16]

The cumulative distribution function of the maximum @f
independent random variables is the product of the curwvelati7)
distribution functions of the individual random variablEace

< a) = cxg <
p(i:rrllft;i ,Eisa) xa < a) 8]

<a
<a)-

op(za < a)

p(z1
p(x1
d [19]
Hp(%‘ < a).
i=1

. . . . [20]
Hence, the cumulative distribution function of the maximum

of d (central) chi-square random variables Wil , ..., 2Ny
degrees of freedom respectively is given by

[21]
- N~ @/
Pp(z,d, {N:}{,) = H 1—e®/? Z ) (43)
i=1 n=0 : [22]
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