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Abstract—Spectrum sensing in a very low SNR environment
(less than -20 dB) is considered in this paper. We make use
of the noise rejection property of the cyclostationary spectrum.
The sensing algorithms are based on measurement of the cyclic
spectrum of the received signals. The statistics of the cyclic
spectrum of the stationary white Gaussian process are fully
analyzed for three measurement methods of the cyclic spectrum.
The application to IEEE 802.22 WRAN is presented and the
probability of false alarm is analytically derived. The operating
characteristic curves for the sensing algorithms are determined
from computer simulations using ATSC A/74 DTV signal cap-
tures as a test database.

I. INTRODUCTION

Recently, spectrum sensing in an environment with very
low signal to noise power ratio (SNR) is becoming an im-
portant topic because the operation is an essential function
of Cognitive Radio (CR) systems [1]. Under the charter of
an IEEE 802 standards committee, a working group named
IEEE 802.22 was established to develop a standard for a
Cognitive Radio-based PHY/MAC/air interface for use by
license-exempt devices on a non-interfering basis in spectrum
that has already been allocated to the TV Broadcast Service.
To implement Cognitive Radio without interference to the
licensed signal, the sensing tiger team of the IEEE 802.22
group specified the requirements of the spectrum sensing of
ATSC DTV signals: the miss detection probability (PMD)
should not exceed 0.1 subject to a 0.1 probability of false alarm
(PFA) when the SNR is -20.8 dB. In such a low SNR regime,
traditional signal detection methods, e.g., power detection, do
not work [2]. It is also very difficult for some signature based
sensing algorithms to achieve the stated requirements [3].
Spectrum sensing utilizing a signal’s cyclostationary property
is a possible candidate to achieve the sensing requirements
because of its noise rejection ability. It is known that the
stationary Gaussian process has a zero-valued cyclic spectrum
or spectrum correlation density function (SCD) [4] at nonzero
cyclic frequency. Therefore, we can detect the desired signal
by computing its cyclic spectrum provided that the signal is
cyclostationary such that its cyclic spectrum is not identically
zero at some nonzero cyclic frequency. In this paper, we make
use of this simple idea to develop a cyclostationarity based
spectrum sensing algorithm and apply it to perform spectrum
sensing in IEEE 802.22 WRAN.

Ideally, the cyclic spectrum of a stationary random noise

process should be zero. However, in practical computation,
the cyclic spectrum of a stationary random noise process is a
random process. Thus, the samples of the cyclic spectrum are
random variables and the detection performance will depend
on the behaviors of these random variables. Eventually, in
order to be able to detect a signal in a very low SNR
environment, we would like to make the variances of these
random variables as low as possible. The statistical behavior
of the measured cyclic spectrum depends on the measurement
method. There are only a limited number of methods in the
present literature to measure the cyclic spectrum [5]. There-
fore, the development of efficient and accurate algorithms
for cyclic spectrum analysis is an important topic of current
research.

This paper can be divided into two parts. The first part
presents a brief review of cyclostationary properties. Some
key equations for cyclostationarity are given in Section II.
Then, we will introduce three SCD measurement methods
and their digital implementation in Section III, followed by
statistical analysis of the SCD of the stationary white Gaussian
process. In the second part, we will describe how to apply
cyclostationarity to perform spectrum sensing based on its
noise rejection ability by measuring the cyclic spectrum of the
received signals in Section V. Then, the cyclostationary feature
of an ATSC DTV signal is derived and a suitable spectrum
sensing algorithm is given in Section VI. The operating
characteristic curves for the algorithms developed in this study
are determined using computer simulations and are presented
in Section VII. The test database consists of ATSC A/74 DTV
signal captures obtained from real-word field data. Finally, a
conclusion is given in Section VIII.

II. REVIEW OF CYCLOSTATIONARY PROPERTIES

In this section, we present a brief summary of some useful
equations relevant to cyclostationarity. Details of cyclosta-
tionary properties can be found in [4][6]. The cyclic auto-
correlation function of a stochastic process x(t) for a given
cyclic frequency α can be defined as follows:

Rα
x (τ) = lim

∆t→∞
1

∆t

∫ ∆t/2

−∆t/2

x(t + τ/2)x∗(t − τ/2)e−j2παtdt

(1)
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or

Rα
x (τ) = lim

∆t→∞
1

∆t

∫ ∆t/2

−∆t/2

u(t + τ/2)v∗(t − τ/2)dt (2)

where u(t) = x(t)e−jπαt and v(t) = x(t)e+jπαt are
frequency shifted versions of x(t) so that Rα

x (τ) can be
understood as the cross-correlation of u(t) and v(t). The cyclic
spectrum of x(t) for a given cyclic frequency α is defined as

Sα
x (f) =

∫ ∞

−∞
Rα

x (τ)e−j2πατdτ = Suv(f) (3)

where the second equality comes from (2). Thus, the cyclic
spectrum Sα

x (f) can also be understood as the cross-spectral
density of frequency shifted signals u(t) and v(t). In light of
this interpretation, the cyclic spectrum is also called a Spectral
Correlation Density (SCD) function. In this paper, we will use
the terms cyclic spectrum and SCD interchangeably.

III. MEASUREMENT OF SPECTRAL CORRELATION

A. Theoretical Expression

It can be shown that the cyclic spectrum is obtainable
from the following limit of temporally smoothed products of
spectral components described by the expression

Sα
x (f) = lim

∆f→0
lim

∆t→∞
1

∆t

∫ ∆t/2

−∆t/2

∆fX1/∆f (t, f + α/2)

·X∗
1/∆f (t, f − α/2)dt (4)

where X1/∆f (t, ν) is the short-term Fourier transform of x(t)
with center frequency ν and approximate bandwidth ∆f

X1/∆f (t, ν)
�
=

∫ t+1/2∆f

t−1/2∆f

x(λ)e−j2πνλdλ. (5)

It also can be shown that Sα
x (f) is given by the limit of

spectrally smoothed products of spectral components

Sα
x (f) = lim

∆f→0
lim

∆t→∞
1

∆f

∫ f+∆f/2

f−∆f/2

1
∆t

X∆t(t, ν + α/2)

·X∗
∆t(t, ν − α/2)dν (6)

where X∆t(t, f) is defined by (5) with 1/∆f being replaced
by ∆t. Equations (4) and (6) are provided in [5]. We give a
third method which is also based on spectrally smoothed prod-
ucts of spectral components. Let x(t, µ) denote the frequency
down-converted signal which has carrier frequency µ. Then,
the cyclic spectrum is given by

Sα
x (f) = lim

∆f→0
lim

∆t→∞
1

∆f

∫ f+∆f
2

f−∆f
2

1
∆t

X∆t(t, µ, f + α/2)

·X∗
∆t(t, µ, f − α/2)dµ (7)

where

X∆t(t, µ, ν)
�
=

∫ t+∆t/2

t−∆t/2

x(λ, µ)e−j2πνλdλ. (8)

Note that (6) and (7) are the same approach for the measure-
ment of spectral correlation. The cyclic spectrum is obtained
by spectrally smoothed products of spectral components. The
difference will be easily seen in their digital implementations.

B. Digital Implementation

The digital implementation of (4), (6) and (7) is based
on use of the fast Fourier transform (FFT) algorithm for
computation of a discrete-time/discrete-frequency counterpart
of the sliding-window complex Fourier transform of (5) and
(8). Note that in digital implementation, the frequency variable
f and cyclic frequency variable α should be a multiple of
Fs. The parameter Fs = 1/NTs is the frequency sampling
increment and Ts is the time-sampling increment. Let f = lFs

and α = 2DFs, the discrete-frequency smoothing method of
(6) is given by

Sα
x [l] =

1
(N − 1)Ts

1
M

(M−1)/2∑
ν=−(M−1)/2

X[l + D + ν]

·X∗[l − D + ν] (9)

where

X[ν] =
N−1∑
k=0

x[k]e−j2πνk/N (10)

which is the DFT of the sampled signal x[k] = x(kTs), and
M is the smoothing factor. The parameter N is the number of
time samples used in DFT. The frequency smoothing method
of (7) is given by

Sα
x [l] =

1
(N − 1)Ts

1
M

(M−1)/2∑
µ=−(M−1)/2

X[l + D,µ]

·X∗[l − D,µ] (11)

where

X[ν, µ] =
N−1∑
k=0

x[k, µ]e−j2πνk/N (12)

and x[k, µ] = x(kTs, fIF +µ·δf) is frequency down-converted
signal having carrier frequency fIF + µ · δf . The parameter
fIF is an intermediate frequency. Unless otherwise noted, here
x(t) is the frequency down-converted signal which has central
frequency fIF . Now, we can see the difference of (6) and (7)
in their digital implementations. For (6), spectral smoothing is
performed over nearby subcarriers of the DFT output given by
(10), and therefore, it is called a discrete-frequency smoothing
method. As for (7), spectral smoothing is performed over the
same subcarrier of the DFT output of down-converted signals
which have slightly different carrier frequencies given by (12).
Therefore, by controlling the parameter δf , we can obtain
more precise frequency resolution without increasing the DFT
size. The discrete-time average method is given by

Sα
x [l] =

1
(N − 1)Ts

1
KM

KM−1∑
u=0

Xu[l + D] · X∗
u[l − D] (13)

where

Xu[ν] =
N−1∑
k=0

xu[k]e−j2πνk/N (14)

which is the DFT of the sliding sampled signal xu[k] =
x(u(N−1)Ts

K +kTs) The parameter K is the block overlapping

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

3134

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 16, 2009 at 00:51 from IEEE Xplore.  Restrictions apply.



factor. If K is 1, all data segments are non-overlapping. For
more details about the measurement of a cyclic spectrum, the
reader is referred to [5].

IV. STATISTICAL ANALYSIS OF THE MEASURED AWGN
SCD

A. Probability Distribution Function of the Computed AWGN
SCD Using Equation (9)

Upon substituting x(t) with w(t) which is a white Gaussian
process, we will obtain the SCD of an additive white Gaussian
noise (AWGN) The corresponding short-term Fourier trans-
form of AWGN is denoted as W [ν], W [ν, µ] and Wu[ν] in
(10), (12) and (14). We know that w[k] are independently
and identically distributed (i.i.d.) Gaussian random variables
with zero-mean and variance σ2. It can be easily shown that
W [ν], ν = 0, 1, . . . , N−1 are circularly symmetric i.i.d. com-
plex Gaussian random variables with zero-mean and variance
Nσ2. In (9), the random variable W [l+D+ν]W ∗[l−D+ν] has
zero-mean while its real and imaginary parts are uncorrelated
and have the same variance N2σ4/2. Then, by the Central
Limit Theorem, for sufficiently large M

lim
M→∞

Sα
w[l] → CN(0,

N2

(N − 1)2T 2
s

σ4

M
) (15)

where CN(µ, σ2) represents the circularly symmetric com-
plex Gaussian distribution with mean µ and variance σ2.
We can easily determine that the random vectors Sα

w =
[Sα

w[0], . . . Sα
w[N − 1]] are jointly circular symmetric complex

Gaussian with zero-mean and possess the covariance matrix

Cov(Sα
w) = E[Sα

wSα
w

H ] = TS (16)

where TS is a Toeplitz matrix having the entries

TS
mn =

{
M−|m−n|

M2
N2σ4

(N−1)2T 2
s

|m − n| < M

0 |m − n| ≥ M.
(17)

B. Probability Distribution Function of the Computed AWGN
SCD Using Equation (11)

In (11), the random variables X[l, µ] for different µ are not
necessarily independent. However, they are almost indepen-
dent for sufficiently large difference in frequency index µ or
subcarrier index l. Therefore, we assume, for ease of analysis,
that they are independent. The resulting distribution yields a
good approximation. As a result, it can be easily shown that the
distribution of Sα

w[l] is given by (15) for sufficiently large M.
Furthermore, by appropriately choosing δf , random variables,
Sα

w[l]’s, are nearly independent.

C. Probability Distribution Function of the Computed AWGN
SCD Using Equation (13)

First, we should note that, for the random variables corre-
sponding to the same frequency subcarrier, Wu[ν] and Wr[ν]
are not independent for |u− r| < K because they are Fourier
transformed by overlapping AWGN samples. However, for the
random variables taken from different frequency of Wu[ν] and
Wr[ω] are always independent. Let ZD

u [l] = Wu[l+D]W ∗
u [l−

D], note again that the complex random variable ZD
u [l] has

zero-mean, variance Nσ2, and most important of all, its real
part and imaginary part are uncorrelated. Define the random
vector ZD[l] = [ZD

0 [l], ZD
1 [l], . . . , ZD

KM−1[l]], then ZD[l] is
zero-mean with covariance matrix

Cov(ZD[l]) = E[ZD[l]ZD[l]
H

] = TZ (18)

where TZ is a Toeplitz matrix having the entries

TZ
mn =

{
(1 − |m−n|

K )2N2σ4e(m,n) |m − n| < K

0 |m − n| ≥ K
(19)

where e(m,n) = e−j4πD(m−n)/K . We can write (13) as

Sα
w[l] =

1
(N − 1)Ts

1
KM

KM−1∑
u=0

ZD
u [l] (20)

and the variance of Sα
w[l] is

V ar(Sα
w[l]) =

1
(N − 1)2T 2

s

1
(KM)2

∑
m

∑
n

TZ
mn

=
1

(KM)2
N2σ4

(N − 1)2T 2
s

·(KM +
K−1∑
i=1

(KM − i)(1 − i

K
) · 2cos(4iπD/K))

(21)

Then, by the Central Limit Theorem for the case of dependent
random variables,

lim
KM→∞

Sα
w[l]√

V AR(Sα
w[l])

→ CN(0, 1). (22)

Fortunately, the random variables associated with different
carriers of Sα

w[l] are independent. Hence, the random vector
Sα

w = [Sα
w[0], . . . Sα

w[N − 1]] obtained by using the discrete-
time average method consists of i.i.d. circularly symmetric
complex Gaussian random variables having zero-mean and
variance given by (21).

D. Discussion

1) Computing SCD by discrete-frequency smoothing
method, (9), usually needs a large FFT size which
increases overall complexity. We can see from (17) that
the random variables of the measured SCD of AWGN
noise are dependent. This is an unwanted property and
contradictory to the true SCD of AWGN. The inherent
dependence of the SCD is also an undesired property
in the detection of signal. For example, we may use
the maximum of the moving average amplitude of the
measured SCD as our decision statistic. The dependence
of the random variables of SCD means that large values
of the moving average could occur with high probability
for AWGN noise. On the other hand, the random vari-
ables of the measured SCD of AWGN noise obtained by
using the other two methods are independent or nearly
independent.
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2) The variance of the measured SCD of AWGN using
discrete-time average method, (13), is given by (21). We
can see that if the ratio of D/K is 1/2 or integers, then the
cosine term becomes 1. As a consequence, the variance
of the SCD is approximately the same as the variance
of the power spectrum density which means the SCD
of AWGN is not approaching zero. This is the cycle
leakage effect described in [5] and is revealed here in
(21). Therefore, we have to increase the block-overlap
parameter K to avoid cycle leakage effect. However,
increasing K results in larger complexity.

3) The computed SCD of AWGN using (11) has the best
property that the random variables of different frequency
subcarriers are almost independent and there is no cycle
leakage effect. However, by using (11) to compute SCD,
we have to do down conversion for many times which
results large complexity.

In the application of signal detection or spectrum sensing
in the presence of AWGN noise, based on the discussion
above, we find that the SCD of AWGN measured by three
different methods has some drawbacks. The features of cyclic
spectrum of the transmitted signal are also different for these
three methods. Therefore, we should choose one of the three
methods that offers the best tradeoff between needed features
and unwanted properties.

V. GENERAL SPECTRUM SENSING SYSTEM MODEL

In most communication systems, spectrum sensing is related
to the detection of the existence of a specific signal in the pres-
ence of AWGN noise. Let x(t) be the transmitted continuous
time signal, and it encounters a linear time-invariant channel
denoted by h(t). Then, the channel output is corrupted by an
AWGN noise w(t). The received signal y(t) is therefore given
by

y(t) = x(t) ⊗ h(t) + w(t) (23)

where w(t) is a a white Gaussian process with zero-mean and
its cyclic auto-correlation function is given as

Rα
w(τ) =

{
σ2δ(τ), α = 0

0, α �= 0.
(24)

In [6], stationary signals are divided into two categories. Those
stationary signals with Rα

x (τ) �= 0 for some α �= 0 are called
cyclostationary and those stationary signals with Rα

x (τ) = 0
for all α �= 0 are referred to as purely stationary. Thus, AWGN
is a purely stationary signal. It is shown in [6] that when a
signal x(t) undergoes an LTI transformation (z(t) = x(t) ⊗
h(t)), the input SCD and output SCD are related as

Sα
z (f) = H(f + α/2)H∗(f − α/2)Sα

x (f). (25)

The function H(f) is the frequency response of the channel
impulse response. This relationship can be easily understood
by considering the SCD as being the cross-spectrum of the
spectral components of x(t) at frequencies f ± α/2 and
these two spectral components are scaled by H(f ± α/2)
after passing through an LTI channel. Finally, since in (23)

z(t) = x(t) ⊗ h(t) and w(t) are independent, the cyclic
spectrum of the received signal y(t) is

Sα
y (f) = Sα

z (f) + Sα
w(f)

=

{
Sz(f) + Sw(f) α = 0

Sα
z (f) α �= 0

(26)

and therefore, we have

Sα
y (f) = H(f + α/2)H∗(f − α/2)Sα

x (f), α �= 0. (27)

The importance of (26) is that cyclostationary properties
provide a way to separate cyclostationary signals from random
noise which is purely stationary. As long as the SCD of
the received signal is not identically zero, we can perform
spectrum sensing by measuring the cyclic spectrum of the
received signal.

VI. APPLICATION TO IEEE 802.22 WRAN

According to [7], ATSC DTV signals are vestigial sideband
(VSB) modulated. Before VSB modulation, a constant of 1.25
is added to the 8-level pulse amplitude modulated (8-PAM)
signal. Therefore, there is a strong pilot tone on the power
spectrum density (PSD) of the ATSC DTV signal. Let z(t)
be this pilot tone signal which is a sinusoidal signal in the
time domain and further assume that this strong pilot tone is
located at frequency f0 , i.e.,

z(t) =
√

2P cos (2πf0t + θ) ⊗ h(t) (28)

where P and θ are the power and the initial phase of the
sinusoidal function respectively. The function h(t) is the
channel impulse response. The received signal must contain
the signal

y(t) = z(t)ej2πf∆t + w(t) (29)

where w(t) is stationary additive white Gaussian noise and
f∆ is the amount of frequency offset in the unit of Hz. The
cyclic spectrum of the received signal must contain the cyclic
spectrum of y(t) which is given by (26) and (27) where

Sα
y (f) =

P

2
[δ(f−f0−f∆)+δ(f+f0+f∆)]|H(f)|2+σ2 (30)

for α = 0 and

Sα
y (f) =

P

2
δ(f)H(f − f0 − f∆)H∗(f + f0 + f∆) (31)

for α = ±2(f0 + f∆).

A. Cyclostationary Feature Detector

Figure 1 illustrates the overall procedure of the cyclostation-
ary feature detector. Following [8], the capture data is filtered
by a 6 MHz bandpass filer and power scaled so that the signal
x[n] has preset desired signal power. Then a 6 MHz bandpass
noise is added to form the experimental data y[n]. Note that
the bandpass noise is still purely stationary. Because we would
like to detect the pilot tone in the cyclic spectrum, we can
filter out those frequency components other than the pilot
tone. Therefore, we apply a narrow bandpass filter to obtain
a small band which contains the pilot tone and then perform
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Fig. 1. System implementation of the cyclostationary feature detector.

a D times decimation to reduce the sampling rate in order
to reduce the computational complexity. Finally, we compute
the cyclostationary feature and make the decision regarding
the presence of a signal based on this feature. We will use
the frequency average method, (11), to compute the SCD of
the received signal because it is the best method to compute
SCD which contains pilot tones. According to (31), the pilot
tone appears in zero frequency of the cyclic spectrum. Thus,
we compute the zero frequency component of cyclic spectra
for several cyclic frequencies and use their maximum value as
decision statistic

T = max
α

|Sα
y [0]|. (32)

B. False Alarm Calculation

Hypothesis H0 corresponds to the presence of noise only,
i.e., y[n] = w[n]. The random variables Sα

w[0] obtained
by using the frequency average method, (11), are nearly
i.i.d. circularly symmetric complex Gaussian random variables
having zero-mean and variance given by (15). Denote the
variance obtained by (15) as σ2

S , It can be easily shown that
the cumulative distribution function of T is given by

FT (t : H0) =
(∫ t

0

2u

σ2
S

e
− u2

σ2
S du

)L

(33)

where L is the number of observed cyclic frequencies. Then,
for a particular value of false alarm probability (PFA), the
corresponding threshold γ can be found from

PFA = 1 − FT (γ : H0). (34)

Finally, after some straightforward calculation, we have

γ = ρ

(
σ2

S ln
1

1 − (1 − PFA)1/L

)1/2

. (35)

where ρ is an heuristic adjusting factor added artificially to
account for the approximation mentioned in Section IV-B.

VII. SIMULATION RESULTS

In Fig. 1, the real-valued DTV signal capture data r[n] are
obtained by sampling DTV channels at a rate of 21.524476
MHz, which is 2X over-sampled and then down converted to
have a carrier frequency equal to 5.38 MHz [9][10]. Because
the pilot tone of the capture data is located around 2.69 MHz.
The parameter fω in Fig. 1 is (2.69-fIF ) MHz. The bandpass
filter used to filter the pilot tone has a bandwidth of 40 KHz
and fIF is 17 KHz. The decimation factor is 200 and the
decimation filter is a 50 KHz low-pass filter. The size of FFT
is 2048. The parameter M in (11) is 5 and f∆ is set to be half

of the subcarrier spacing divided by M. The file names of the
ATSC DTV signal captures and their corresponding symbols
in the simulation figures are listed in Table 1. Figures 2 and
3 show the spectrum sensing performance for PFA = 0.1
and PFA = 0.01. Both of these simulations use 19.03 ms of
sensing time. We can see from Fig’s. 2 and 3 that for average
detection performance to achieve PMD=0.1, when PFA=0.1,
the needed SNR is -25 dB and when PFA=0.01, the needed
SNR is -24.3 dB. It means that the proposed algorithm is
not sensitive to a change in the PFA (threshold). This is a
good feature of the proposed algorithm. Figure 4 shows the
spectrum sensing performance for PFA = 0.1, and the noise
uncertainty equals 1 dB. A 1 dB noise uncertainty means that
instead of knowing the exact value of the noise PSD, it has
a range of ± 1 dB. For the discussion of noise uncertainty,
interested readers are referred to [11]. We use the worst case
scenario, i.e, the PSD of noise is -95.2185 dBm at room
temperature, and we assume that the PSD of noise is -94.2185
dBm to calculate the decision threshold. We can see that with
1 dB of noise uncertainty, for average detection performance to
achieve PMD=0.1, when PFA=0.1, the needed SNR is -23 dB
which reveals that the proposed spectrum sensing algorithm
is not sensitive to the noise uncertainty. As for comparison to
the other detectors being proposed for IEEE 802.22 WRAN,
the best detector in [3] can achieve PMD = 0.1 subject
to PFA = 0.1 when SNR=-13 dB and the sensing time is
90 ms. In [12], the proposed detector can achieve the same
performance when SNR=-14 dB and the sensing time is 290.4
ms. Therefore, the proposed detector obviously outperforms
the detectors in [3] and [12]. It should be noted that the
complexity of the proposed algorithm is relatively less than
the detectors proposed in [3] and [12].

VIII. CONCLUSION

In this paper, we show how to make use of the noise
rejection property of the cyclostationary spectrum to per-
form spectrum sensing in very low SNR environments. The
statistical behavior of the estimated cyclic spectrum of a
stationary Gaussian process are fully analyzed. The spectrum
sensing algorithm for IEEE 802.22 WRAN is developed in
detail as well as the calculation of the false alarm rate. The
simulation results show that the proposed detector can achieve
PMD = 0.1 subject to PFA = 0.1 when SNR = -25 dB
and the sensing time is 19.03 ms. The proposed detector is
not sensitive to either changes in PFA or noise uncertainty.
Furthermore, the proposed algorithm outperforms the existing
signature based sensing algorithms.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

3137

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 16, 2009 at 00:51 from IEEE Xplore.  Restrictions apply.



−35 −30 −25 −20
10

−3

10
−2

10
−1

10
0

SNR (dB)

P
M

D

 

 

A

B

C

D

E

F

G

H

I

J

K

L

Average

Fig. 2. Spectrum sensing performance of the cyclostationary feature detector,
PFA = 0.1 and the sensing time=19.03 ms.
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Fig. 3. Spectrum sensing performance of the cyclostationary feature detector,
PFA = 0.01 and the sensing time=19.03 ms.

Symbol ATSC DTV Capture Date File Name

A WAS 3 27 06022000 REF

B WAS 311 36 06052000 REF

C WAS 06 34 06092000 REF

D WAS 311 48 06052000 REF

E WAS 51 35 05242000 REF

E WAS 68 36 05232000 REF

F WAS 86 48 07122000 REF

G WAS 311 35 06052000 REF

I WAS 47 48 06132000 opt

J WAS 32 48 06012000 OPT

K WAS 49 34 06142000 opt

L WAS 49 39 06142000 opt

Ave Average

TABLE I
ATSC DTV CAPTURE DATE FILE NAMES AND ITS CORRESPONDING

SYMBOL IN THE FIGURES.
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Fig. 4. Spectrum sensing performance of the cyclostationary feature detector,
PFA = 0.1, noise uncertainty = 1 dB and the sensing time=19.03 ms.
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