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Abstract

In this paper, a concise survey of the literature on cyclostationarity is presented and includes an extensive

bibliography. The literature in all languages, in which a substantial amount of research has been published, is included.

Seminal contributions are identified as such. Citations are classified into 22 categories and listed in chronological order.

Both stochastic and nonstochastic approaches for signal analysis are treated. In the former, which is the classical one,

signals are modelled as realizations of stochastic processes. In the latter, signals are modelled as single functions of time

and statistical functions are defined through infinite-time averages instead of ensemble averages. Applications of

cyclostationarity in communications, signal processing, and many other research areas are considered.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many processes encountered in nature arise
from periodic phenomena. These processes,
although not periodic functions of time, give rise
to random data whose statistical characteristics
vary periodically with time and are called cyclosta-

tionary processes [2.5]. For example, in telecom-
munications, telemetry, radar, and sonar
applications, periodicity is due to modulation,
sampling, multiplexing, and coding operations. In
mechanics it is due, for example, to gear rotation.
In radio astronomy, periodicity results from
revolution and rotation of planets and on pulsa-
tion of stars. In econometrics, it is due to
seasonality; and in atmospheric science it is
due to rotation and revolution of the earth.
The relevance of the theory of cyclostationarity
to all these fields of study and more was first
proposed in [2.5].

Wide-sense cyclostationary stochastic processes
have autocorrelation functions that vary periodi-
cally with time. This function, under mild reg-
ularity conditions, can be expanded in a Fourier
series whose coefficients, referred to as cyclic

autocorrelation functions, depend on the lag para-
meter; the frequencies, called cycle frequencies, are
all multiples of the reciprocal of the period of
cyclostationarity [2.5]. Cyclostationary processes
have also been referred to as periodically correlated

processes [2.18,3.5]. More generally, if the frequen-
cies of the (generalized) Fourier series expansion of
the autocorrelation function are not commensu-
rate, that is, if the autocorrelation function is an
almost-periodic function of time, then the process
is said to be almost-cyclostationary [3.26] or,
equivalently, almost-periodically correlated [3.5].
The almost-periodicity property of the autocorre-
lation function is manifested in the frequency
domain as correlation among the spectral com-
ponents of the process that are separated by
amounts equal to the cycle frequencies. In contrast
to this, wide-sense stationary processes have
autocorrelation functions that are independent
of time, depending on only the lag para-
meter, and all distinct spectral components are
uncorrelated.
As an alternative, the presence of periodicity in

the underlying data-generating mechanism of a
phenomenon can be described without modelling
the available data as a sample path of a stochastic
process but, rather, by modelling it as a single
function of time [4.31]. Within this nonstochastic
framework, a time-series is said to exhibit second-
order cyclostationarity (in the wide sense), as first
defined in [2.8], if there exists a stable quadratic
time-invariant transformation of the time-series
that gives rise to finite-strength additive sinewave
components.
In this paper, a concise survey of the literature

(in all languages in which a substantial amount of
research has been published) on cyclostationarity
is presented and includes an extensive bibliography
and list of issued patents. Citations are classified
into 22 categories and listed, for each category, in
chronological order. In Section 2, general treat-
ments and tutorials on the theory of cyclostatio-
narity are cited. General properties of processes
and time-series are presented in Section 3. In
Section 4, the problem of estimating statistical
functions is addressed. Models for manufactured
and natural signals are considered in Sections 5
and 6, respectively. Communications systems and
related problems are treated in Sections 7–11.
Specifically, the analysis and design of commu-
nications systems is addressed in Section 7, the
problem of synchronization is addressed in Section
8, the estimation of signal parameters and wave-
forms is addressed in Section 9, the identification
and equalization of channels is addressed in
Section 10, and the signal detection and classifica-
tion problems and the problem of source separa-
tion are addressed in Section 11. Periodic
autoregressive (AR) and autoregressive moving-
average (ARMA) modelling and prediction are
treated in Section 12. In Section 13, theory and
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applications of higher-order cyclostationarity are
presented. We address applications to circuits,
systems, and control in Section 14, to acoustics
and mechanics in Section 15, to econometrics in
Section 16, and to biology in Section 17. Applica-
tions to the problems of level crossing and
queueing are addressed in Sections 18 and 19,
respectively. Cyclostationary random fields are
treated in Section 20. In Section 21, some classes
of nonstationary signals that extend the class of
almost-cyclostationary signals are considered. Fi-
nally, some miscellaneous references are listed
[22.1–22.8]. Further references only indirectly
related to cyclostationarity are [23.1–23.15].

To assist readers in ‘‘going to the source’’,
seminal contributions—if known— are identified
within the literature published in English. In some
cases, identified sources may have been preceded in
the literature of another language, most likely
Russian. For the most part, the subject of this
survey developed independently in the literature
published in English.
2. General treatments

General treatments on cyclostationarity are in
[2.1–2.18]. The first extensive treatments of the
theory of cyclostationary processes can be found
in the pioneering works of Hurd [2.1] and Gardner
[2.2]. In [4.13,2.5,2.11], the theory of second-order
cyclostationary processes is developed mainly with
reference to continuous-time stochastic processes,
but discrete-time is the focus in [4.13]. Discrete-
time processes are treated more generally in [2.17]
in a manner largely analogous to that in [2.5]. The
statistical characterization of cyclostationary time-
series in the nonstochastic framework is intro-
duced and treated in depth [2.6,2.8,2.12,2.14] with
reference to continuous-time signals and in [2.15]
for both continuous- and discrete-time signals.
The case of complex signals is introduced and
treated in depth in [2.8,2.9]. Finally, a rigorous
treatment of periodically correlated processes
within the framework of harmonizable processes
is given in [2.18].

The theory of higher-order cyclostationarity in
the nonstochastic framework is introduced in
[13.4,13.5], and treated in depth in [13.9,13.13,
13.14,13.17]. An analogous treatment for stochas-
tic processes is given in [13.10].
3. General properties and structure of stochastic

processes and time-series

3.1. Introduction

General properties of cyclostationary processes
(see [3.1–3.91]) are derived in terms of the Fourier
series expansion of the autocorrelation function.
The frequencies, called cycle frequencies, are
multiples of the reciprocal of the period of
cyclostationarity and the coefficients, referred to
as cyclic autocorrelation functions, are continuous
functions of the lag parameter. Cyclostationary
processes are characterized in the frequency
domain by the cyclic spectra, which are the Fourier
transforms of the cyclic autocorrelation functions.
The cyclic spectrum at a given cycle frequency
represents the density of correlation between two
spectral components of the process that are
separated by an amount equal to the cycle
frequency. Almost-cyclostationary processes have
autocorrelation functions that can be expressed in
a (generalized) Fourier series whose frequencies
are possibly incommensurate.
The first contributions to the analysis of the

general properties of cyclostationary stochastic
processes are in the Russian literature [3.1–3.3,
3.5,3.7–3.9]. The problem of spectral analysis is
mainly treated in [3.10,3.11,3.32,3.35,3.51,3.53,
3.61,3.68,3.69,3.80,3.88]. The stationarizing effects
of random shifts are examined in [3.20,3.26,3.57]
and the important impact of random shifts on
cyclo-ergodic properties is exposed in [2.15]. The
problem of filtering is considered in [3.9,3.13,3.67].
The mathematical link between the stochastic

and nonstochastic approaches, which was first
established in [2.5,2.12], is rigorously treated in
[3.87]. Wavelet analysis of cyclostationary pro-
cesses is addressed in [3.70,3.81].
For further-related references, see the general

treatments in [2.1,2.2,2.4–2.8,2.11–2.13,2.15,2.18],
and also [4.13,4.31,4.41,13.2,13.3,13.6,16.3,18.3,
21.9,21.14].
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3.2. Stochastic processes

3.2.1. Continuous-time processes

Let us consider a continuous-time real-valued
stochastic process fxðt;oÞ; t 2 R;o 2 Og, with ab-
breviated notation xðtÞ when this does not create
ambiguity, defined on a probability space
ðO;F;PÞ, where O is the sample space, equipped
with the s-field F, and P is a probability measure
defined on the elements of F.

The process xðtÞ is said to be Nth-order

cyclostationary in the strict sense [2.2,2.5] if its
Nth-order distribution function

Fxðtþt1Þ���xðtþtN�1ÞxðtÞðx1; . . . ; xN�1; xN Þ

9Pfxðtþ t1Þpx1; . . . ;xðtþ tN�1Þ

pxN�1; xðtÞpxNg ð3:1Þ

is periodic in t with some period, say T0:

Fxðtþt1þT0Þ���xðtþtN�1þT0ÞxðtþT0Þ
ðx1; . . . ; xN�1; xNÞ

¼ Fxðtþt1Þ���xðtþtN�1ÞxðtÞðx1; . . . ; xN�1; xNÞ

8t 2 R 8ðt1; . . . ; tN�1Þ 2 RN�1

8ðx1; . . . ; xN Þ 2 RN . ð3:2Þ

The process xðtÞ is said to be second-order

cyclostationary in the wide sense [2.2,2.5] if its
mean EfxðtÞg and autocorrelation function

Rxðt; tÞ9Efxðtþ tÞxðtÞg (3.3)

are periodic with some period, say T0:

Efxðtþ T0Þg ¼ EfxðtÞg, (3.4)

Rxðtþ T0; tÞ ¼ Rxðt; tÞ (3.5)

for all t and t. Therefore, by assuming that the
Fourier series expansion of Rxðt; tÞ is convergent
to Rxðt; tÞ, we can write

Rxðt; tÞ ¼
Xþ1

n¼�1

Rn=T0
x ðtÞej2pðn=T0Þt, (3.6)

where the Fourier coefficients

Rn=T0
x ðtÞ9

1

T0

Z T0=2

�T0=2
Rxðt; tÞe�j2pðn=T0Þt dt (3.7)

are referred to as cyclic autocorrelation functions

and the frequencies fn=T0gn2Z are called cycle
frequencies. Wide-sense cyclostationary processes
have also been called periodically correlated

processes (see e.g., [2.1,3.3,3.59]). As first shown
in [3.23], xðtÞ and its frequency-shifted version
xðtÞej2pnt=T0 are correlated. The wide-sense station-
ary processes are the special case of cyclostation-
ary processes for which Rn=T0

x ðtÞc0 only for
n ¼ 0. It can be shown that if xðtÞ is cyclosta-
tionary with period T0, then the stochastic process
xðtþ yÞ, where y is a random variable that is
uniformly distributed in ½0;T0Þ and is statistically
independent of xðtÞ, is wide sense stationary
[2.5,3.20,3.26,3.57].
A more general class of stochastic processes is

obtained if the autocorrelation function Rxðt; tÞ is
almost periodic in t for each t.
A function zðtÞ is said to be almost periodic if it is

the limit of a uniformly convergent sequence of
trigonometric polynomials in t [23.2,23.3,23.4,
Paragraphs 24–25,23.6,23.7, Part 5, 23.11]:

zðtÞ ¼
X
a2A

zae
j2pat, (3.8)

where A is a countable set, the frequencies a 2 A

are possibly incommensurate, and the coefficients
za are given by

za9hzðtÞe�j2patit

¼ lim
T!1

1

T

Z T=2

�T=2
zðtÞe�j2pat dt. ð3:9Þ

Such functions are called almost-periodic in the
sense of Bohr [23.3, Paragraphs 84–92] or,
equivalently, uniformly almost periodic in t in
the sense of Besicovitch [23.2, Chapter 1].
The process xðtÞ is said to be Nth-order almost-

cyclostationary in the strict sense [2.2,2.5] if its Nth-
order distribution function (3.1) is almost-periodic
in t. With reference to the autocorrelation proper-
ties, a continuous-time real-valued stochastic pro-
cess xðtÞ is said to be almost-cyclostationary (ACS)
in the wide sense [2.2,2.5,3.26] if its autocorrelation
function Rxðt; tÞ is an almost periodic function of t

(with frequencies not depending on t). Thus, it is
the limit of a uniformly convergent sequence of
trigonometric polynomials in t:

Rxðt; tÞ ¼
X
a2A

Ra
xðtÞe

j2pat, (3.10)
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where

Ra
xðtÞ9 lim

T!1

1

T

Z T=2

�T=2
Rxðt; tÞe�j2pat dt (3.11)

is the cyclic autocorrelation function at cycle
frequency a. As first shown in [3.26], if xðtÞ is an
ACS process, then the process xðtÞ and its
frequency-shifted version xðtÞej2pat are correlated
when a 2 A. Wide-sense almost-cyclostationary
processes have also been called almost-periodically

correlated processes (see e.g., [2.1,3.5,3.59]). The
wide-sense cyclostationary processes are obtained
as a special case of the ACS processes when A �

fn=T0gn2Z for some T0.
Let At be the set

At9fa 2 R : Ra
xðtÞa0g. (3.12)

In [3.59], it is shown that the ACS processes are
characterized by the following conditions:
(1)
 The set

A9
[
t2R

At (3.13)

is countable.

(2)
 The autocorrelation function Rxðt; tÞ is uni-

formly continuous in t and t.

(3)
 The time-averaged autocorrelation function

R0
xðtÞ9hRxðt; tÞit is continuous for t ¼ 0

(and, hence, for every t).

(4)
 The process is mean-square continuous, that is

sup
t2R

Efjxðtþ tÞ � xðtÞj2g ! 0 as t! 0.

(3.14)
More generally, a stochastic process xðtÞ is said to
exhibit cyclostationarity at cycle frequency a if
Ra

xðtÞc0 [2.5]. In such a case, the autocorrelation
function can be expressed as

Rxðt; tÞ ¼
X
a2A

Ra
xðtÞe

j2pat þ rxðt; tÞ, (3.15)

where the functionX
a2A

Ra
xðtÞe

j2pat

is not necessarily continuous in t and the term
rxðt; tÞ does not contain any finite-strength addi-
tive sinewave component:

hrxðt; tÞe�j2patit ¼ 0 8a 2 R. (3.16)

In the special case where limjtj!1 rxðt; tÞ ¼ 0, xðtÞ

is said to be asymptotically almost cyclostationary

[3.26].
Let us now consider the second-order (wide-

sense) characterization of ACS processes in the
frequency domain. Let

X ðf Þ9
Z
R

xðtÞe�j2pft dt (3.17)

be the stochastic process obtained from Fourier
transformation of the ACS process xðtÞ, where the
Fourier transform is assumed to exist, at least in
the sense of distributions (generalized functions)
[23.10], with probability 1. By using (3.10), in the
sense of distributions we obtain

EfX ðf 1ÞX
�ðf 2Þg ¼

X
a2A

Sa
xðf 1Þdðf 2 � f 1 þ aÞ,

(3.18)

where dð�Þ is the Dirac delta, superscript � is
complex conjugation, and

Sa
xðf Þ9

Z
R

Ra
xðtÞe

�j2pf t dt (3.19)

is referred to as the cyclic spectrum at cycle
frequency a. Therefore, for an ACS process,
correlation exists between spectral components
that are separated by amounts equal to the cycle
frequencies. The support in the ðf 1; f 2Þ plane of the
spectral correlation function E X ðf 1ÞX

�ðf 2Þ
� �

con-
sists of parallel lines with unity slope. The density
of spectral correlation on this support is described
by the cyclic spectra Sa

xðf Þ, a 2 A, which can be
expressed as [2.5]

Sa
xðf Þ ¼ lim

Df!0
lim

T!1

1

T

Z T=2

�T=2
EfDfX 1=Df ðt; f Þ

�X �1=Df ðt; f � aÞgdt, ð3:20Þ

where the order of the two limits cannot be
reversed, and

X Zðt; f Þ9
Z tþZ=2

t�Z=2
xðsÞe�j2pfs ds. (3.21)
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Therefore, the cyclic spectrum Sa
xðf Þ is also called

the spectral correlation density function. It repre-
sents the time-averaged statistical correlation (with
zero lag) of two spectral components at frequen-
cies f and f � a, as the bandwidth approaches
zero. For a ¼ 0, the cyclic spectrum reduces to the
power spectrum or spectral density function S0

xðf Þ

and (3.19) reduces to the Wiener–Khinchin Rela-

tion. Consequently, when (3.19) and (3.20) was
discovered in [2.5] it was dubbed the Cyclic

Wiener–Khinchin Relation.
In contrast, for wide-sense stationary processes

the autocorrelation function does not depend on t,

Efxðtþ tÞxðtÞg ¼ R0
xðtÞ (3.22)

and, equivalently, no correlation exists between
distinct spectral components,

EfX ðf 1ÞX
�ðf 2Þg ¼S0

xðf 1Þdðf 2 � f 1Þ. (3.23)

A covariance (or autocorrelation) function
Efxðt1Þx

�ðt2Þg is said to be harmonizable if it can
be expressed as

Efxðt1Þx
�ðt2Þg ¼

Z
R2

ej2pðf 1t1�f 2t2Þ dgðf 1; f 2Þ, (3.24)

where gðf 1; f 2Þ is a covariance of bounded varia-
tion on R� R and the integral is a Fourier–
Stieltjes transform [23.5]. Moreover, a second-
order stochastic process xðtÞ is said to be
harmonizable if there exists a second-order sto-
chastic process wðf Þ with covariance function
Efwðf 1Þw

�ðf 2Þg ¼ gðf 1; f 2Þ of bounded variation
on R� R such that

xðtÞ ¼

Z
R

ej2pft dwðf Þ (3.25)

with probability one. In [23.5], it is shown that a
necessary condition for a stochastic process to be
harmonizable is that it be second-order contin-
uous. Moreover, it is shown that a stochastic
process is harmonizable if and only if its covar-
iance is harmonizable. If a stochastic process
is harmonizable, in the sense of distributions
[23.10], we have dwðf Þ ¼ X ðf Þdf and dgðf 1; f 2Þ ¼

Efdwðf 1Þdw
�ðf 2Þg ¼ EfX ðf 1ÞX

�ðf 2Þgdf 1 df 2, and
wðf Þ is the indefinite integral of X ðf Þ or the
integrated Fourier transform of xðtÞ [23.4]. There-
fore, if the stochastic process is harmonizable and
ACS, then it follows that [2.1,2.18,3.59]

dgðf 1; f 2Þ ¼
X
a2A

Sa
xðf 1Þdðf 2 � f 1 þ aÞdf 1 df 2.

(3.26)

Finally, note that symmetric definitions of cyclic
autocorrelation function and cyclic spectrum have
been widely used (see, e.g., [2.5,2.8,2.11]). They are
linked to the asymmetric definitions (3.11) and
(3.20) by the relationships

lim
T!1

1

T

Z T=2

�T=2
Efxðtþ t=2Þxðt� t=2Þg

�e�j2pat dt ¼ Ra
xðtÞe

�jpat ð3:27Þ

and

lim
Df!0

lim
T!1

1

T

Z T=2

�T=2
Df EfX 1=Df ðt; f þ a=2Þ

�X �1=Df ðt; f � a=2Þgdt ¼Sa
xðf þ a=2Þ, ð3:28Þ

respectively.

3.2.2. Discrete-time processes

Let us consider a discrete-time real-valued
stochastic process fxðn;oÞ; n 2 Z;o 2 Og, with
abbreviated notation xðnÞ when this does not
create ambiguity. The stochastic process xðnÞ is
said to be second-order almost-cyclostationary in

the wide sense [2.2,2.5,4.13] if its autocorrelation
functioneRxðn;mÞ9EfxðnþmÞxðnÞg (3.29)

is an almost-periodic function of the discrete-time
parameter n. Thus, it can be expressed as

eRxðn;mÞ ¼
X
ea2eA eR

ea
xðmÞe

j2pean, (3.30)

where

eReaxðmÞ9 lim
N!1

1

2N þ 1

XN

n¼�N

eRxðn;mÞe
�j2pean

(3.31)

is the cyclic autocorrelation function at cycle

frequency ea and

eA9fea 2 ½�1
2
; 1
2
Þ : eReaxðmÞc0g (3.32)
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is a countable set. Note that the cyclic autocorre-

lation function eReaxðmÞ is periodic in ea with period

1. Thus, the sum in (3.30) can be equivalently

extended to the set eA19fea 2 ½0; 1Þ : eReaxðmÞc0g.

In general, the set eA (or fA1) contains possibly
incommensurate cycle frequencies ea. In the special

case where eA1 � f0; 1=N0; . . . ; ðN0 � 1Þ=N0g for
some integer N0, the autocorrelation functioneRxðn;mÞ is periodic in n with period N0 and the
process xðnÞ is said to be cyclostationary in the wide

sense. If N0 ¼ 1 then xðnÞ is wide-sense stationary.
LeteX ðnÞ9X

n2Z

xðnÞe�j2pnn (3.33)

be the stochastic process obtained from Fourier
transformation (in a generalized sense) of the ACS
process xðnÞ. By using (3.30), in the sense of
distributions it can be shown that [3.59]

Ef eX ðn1Þ eX �ðn2Þg
¼
X
ea2eA eSeaxðn1ÞX

‘2Z

dðn2 � n1 þ ea� ‘Þ, ð3:34Þ

where

eSeaxðnÞ9X
m2Z

eReaxðmÞe�j2pnm (3.35)

is the cyclic spectrum at cycle frequency ea. The
cyclic spectrum eSeaxðnÞ is periodic in both n and ea
with period 1.

In [3.3,4.41], it is shown that discrete-time
cyclostationary processes are harmonizable.

3.3. Time series

3.3.1. Continuous-time time series

A statistical analysis framework for time series
that is an alternative to the classical stochastic-
process framework is the fraction-of-time (FOT)
probability framework first introduced for ACS
time series in [2.5,2.8,2.12]; see also [2.15]. In the
FOT probability framework, signals are modelled
as single functions of time (time series) rather than
sample paths of stochastic processes. This ap-
proach turns out to be more appropriate when an
ensemble of realizations does not exist and would
have to be artificially introduced just to create a
mathematical model, that is, the stochastic pro-
cess. Such a model can be unnecessarily abstract
when there is only a single time series at hand.
In the FOT probability approach, probabilistic

parameters are defined through infinite-time
averages of a single time series (and functions of
this time series) rather than through expected
values or ensemble averages of a stochastic
process. Moreover, starting from this single time
series, a (possibly time varying) probability dis-
tribution function can be constructed and this
leads to an expectation operation and all the
associated familiar probabilistic concepts and
parameters, such as stationarity, cyclostationarity,
nonstationarity, independence, mean, variance,
moments, cumulants, etc. For comprehensive
treatments of the FOT probability framework see
[2.8,2.12,2.15] and, for more mathematical rigor
on foundations and existence proofs, see [23.15].
The extension of the Wold isomorphism to
cyclostationary sequences was first introduced in
[2.5], treated more in depth in [2.12], and finally—
with mathematical rigor—in [3.87].
The time-variant FOT probability framework is

based on the decomposition of functions of a time
series into their (possibly zero) almost-periodic
components and residual terms. Starting from
such a decomposition, the expectation operator is
defined. Specifically, for any finite-average-power
time series xðtÞ, let us consider the decomposition

xðtÞ9xapðtÞ þ xrðtÞ, (3.36)

where xapðtÞ is an almost-periodic function and
xrðtÞ a residual term not containing finite-strength
additive sinewave components; that is,

hxrðtÞe
�j2patit � 0 8a 2 R. (3.37)

The almost-periodic component extraction operator

Efagf�g is defined to be the operator that extracts all
the finite-strength additive sinewave components
of its argument, that is,

EfagfxðtÞg9xapðtÞ. (3.38)

Let xðtÞ, t 2 R, be a real-valued continuous-time
time series (a single function of time) and let us
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assume that the set G1 of frequencies (for every x)
of the almost-periodic component of the function
of t 1fxðtÞpxg is countable, where

1fxðtÞpxg9
1; t : xðtÞpx;

0; t : xðtÞ4x

(
(3.39)

is the indicator function of the set ft 2 R : xðtÞpxg.
In [2.12] it is shown that the function of x

F fagxðtÞðxÞ9Efagf1fxðtÞpxgg (3.40)

for any t is a valid cumulative distribution func-
tion except for the right-continuity property (in
the discontinuity points). That is, it has values
in ½0; 1�, is non decreasing, F fagxðtÞð�1Þ ¼ 0, and
F fagxðtÞðþ1Þ ¼ 1. Moreover, its derivative with res-
pect to x, denoted by f fagxðtÞðxÞ, is a valid probability
density function and, for any well-behaved func-
tion gð�Þ, it follows that

EfagfgðxðtÞÞg ¼

Z
R

gðxÞf fagxðtÞðxÞdx (3.41)

which reveals that Efagf�g is the expecta-
tion operator with respect to the distribution
function F fagxðtÞðxÞ for the time series xðtÞ. The
result (3.41), first introduced in [2.8], is referred
to as the fundamental theorem of temporal expecta-

tion, by analogy with the corresponding funda-
mental theorem of expectation from probability
theory.

For an almost-periodic signal xðtÞ, we have
xðtÞ � xapðtÞ and, hence,

EfagfxðtÞg ¼ xðtÞ. (3.42)

That is, the almost-periodic functions are the
deterministic signals in the FOT probability
framework. All the other signals are the random
signals. Note that the term ‘‘random’’ here is not

intended to be synonymous with ‘‘stochastic’’. In
fact, the adjective stochastic is adopted, as usual,
when an ensemble of realizations or sample paths
exists, whereas the adjective random is used in
reference to a single function of time.

Analogously, a second-order characterization
for the real-valued time series xðtÞ can be obtained
by using the almost-periodic component extraction
operator as the expectation operator. Specifically,
let us assume that the set G2 of frequencies (for
every x1; x2 and t) of the almost-periodic compo-
nent of the function of t 1fxðtþtÞpx1g1fxðtÞpx2g is
countable. Then, the function of x1 and x2

F fagxðtþtÞxðtÞðx1; x2Þ

9Efagf1fxðtþtÞpx1g1fxðtÞpx2gg ð3:43Þ

is a valid second-order joint cumulative distribu-
tion function for every fixed t and t, except for the
right-continuity property (in the discontinuity
points) with respect to x1 and x2. Moreover, the
second-order derivative, with respect to x1 and x2,
of F fagxðtþtÞxðtÞðx1; x2Þ, denoted by f fagxðtþtÞxðtÞðx1; x2Þ, is
a valid second-order joint probability density
function [2.12]. Furthermore, it can be shown that
the function

Rxðt; tÞ9Efagfxðtþ tÞxðtÞg (3.44)

is a valid autocorrelation function and can be
characterized by

Rxðt; tÞ ¼
Z
R2

x1x2f
fag
xðtþtÞxðtÞðx1; x2Þdx1 dx2

¼
X
a2A

Ra
xðtÞe

j2pat, ð3:45Þ

where A is a countable set and

Ra
xðtÞ9hxðtþ tÞxðtÞe�j2patit (3.46)

is the (nonstochastic) cyclic autocorrelation func-

tion at cycle frequency a ða 2 RÞ.
The classification of the kind of nonstationarity

of a time series is made on the basis of the elements
contained in the set A. In general, the set A can
contain incommensurate cycle frequencies a and,
in such a case, the time series is said to be wide-

sense almost cyclostationary. In the special case
where A � fk=T0gk2Z the time series xðtÞ is said to
be wide-sense cyclostationary. If the set A contains
only the element a ¼ 0, then the time series xðtÞ is
said to be wide-sense stationary.
Finally, note that the periodic component with

period T0 of an almost-periodic time series (or lag
product time series) zðtÞ can be extracted by
exploiting the synchronized averaging identity
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introduced in [2.5,2.8]:Xþ1
k¼�1

zk=T0
ej2pðk=T0Þt

¼ lim
N!1

1

2N þ 1

XN

n¼�N

zðt� nT0Þ, ð3:47Þ

where the Fourier coefficients zk=T0
are defined

according to (3.9).
ACS time series are characterized in the spectral

domain by the (nonstochastic) cyclic spectrum or
spectral correlation density function at cycle fre-
quency a:

Sa
xðf Þ9 lim

Df!0
lim

T!1

1

T

Z T=2

�T=2
Df

�X 1=Df ðt; f ÞX
�
1=Df ðt; f � aÞdt, ð3:48Þ

where X 1=Df ðt; f Þ is defined according to (3.21) and
the order of the two limits cannot be reversed. The
Cyclic Wiener Relation introduced in [2.8]

Sa
xðf Þ ¼

Z
R

Ra
xðtÞe

�j2pf t dt (3.49)

links the cyclic autocorrelation function to the
cyclic spectrum. This relation generalizes that for
a ¼ 0, which was first dubbed the Wiener Relation

in [2.5] to distinguish it from the Khinchin Relation

(3.19), which is frequently called the Wiener–

Khinchin Relation.

3.3.2. Discrete-time time series

The characterization of discrete-time time series
(sequences) is similar to that of continuous-time
time series. We consider here only the wide-sense
second-order characterization.

Let xðnÞ, n 2 Z, be a real-valued discrete-time
time series. Let us assume that the set eG2 of
frequencies (for every x1; x2 and m) of the almost-
periodic component of the function of
n 1fxðnþmÞpx1g1fxðnÞpx2g is countable. Then, the
function of x1 and x2

F f
eag
xðnþmÞxðnÞðx1; x2Þ

9Efeagf1fxðnþmÞpx1g1fxðnÞpx2gg ð3:50Þ

is a valid second-order joint cumulative distribu-
tion function for every fixed n and m, except for
the right-continuity property (in the discontinuity
points) with respect to x1 and x2. In (3.50), Efeagf�g
denotes the discrete-time almost-periodic compo-
nent extraction operator, which is defined analo-
gously to its continuous-time counterpart. The
second-order derivative with respect to x1 and x2

of F f
eag
xðnþmÞxðnÞðx1; x2Þ, denoted by f f

eag
xðnþmÞxðnÞðx1; x2Þ,

is a valid second-order joint probability density
function [2.12]. Furthermore, it can be shown that
the function

eRxðn;mÞ9EfeagfxðnþmÞxðnÞg (3.51)

is a valid autocorrelation function and can be
characterized by

eRxðn;mÞ ¼

Z
R2

x1x2f
feag
xðnþmÞxðnÞðx1; x2Þdx1 dx2

¼
X
ea2eA eReaxðmÞej2pean, ð3:52Þ

where

eA9fea 2 ½�1
2
; 1
2
Þ : eReaxðmÞc0g (3.53)

is a countable set and

eReaxðmÞ9 lim
N!1

1

2N þ 1

XN

n¼�N

xðnþmÞxðnÞe�j2pean

(3.54)

is the (nonstochastic) discrete-time cyclic autocor-

relation function at cycle frequency ea.
Obviously, as in the stochastic framework, the

cyclic autocorrelation function eReaxðmÞ is periodic inea with period 1. Thus, the sum in (3.52) can be

equivalently extended to the set eA19fea 2 ½0; 1Þ :eReaxðmÞc0g. Moreover, as in the continuous-time

case, the classification of the kind of nonstationarity
of discrete-time time series is made on the basis of

the elements contained in set eA. That is, in general,

set eA can contain incommensurate cycle frequenciesea and, in such a case, the time series is said to be
wide-sense almost cyclostationary. In the special case
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where eA1 � f0; 1=N0; . . . ; ðN0 � 1Þ=N0g for some
integer N0, the time series xðnÞ is said to be wide-

sense cyclostationary. If the set eA contains only the
element ea ¼ 0, then the time series xðnÞ is said to be
wide-sense stationary.

Discrete-time ACS time series are characterized
in the spectral domain by the (nonstochastic)
cyclic spectrum or spectral correlation density

function at cycle frequency ea:
eSeaxðnÞ9 lim

Dn!0
lim

N!1

1

2N þ 1

XN

n¼�N

Dn

�X b1=Dncðn; nÞX
�
b1=Dncðn; n� eaÞ, ð3:55Þ

where

X 2Mþ1ðn; nÞ9
XnþM

k¼n�M

xðkÞe�j2pnk (3.56)

and b�c denotes the closest odd integer. The Cyclic

Wiener relation [2.5]

eSeaxðnÞ ¼X
m2Z

eReaxðmÞe�j2pnm (3.57)

links the cyclic autocorrelation function to the
cyclic spectrum.

3.4. Link between the stochastic and fraction-of-

time approaches

In the time-variant nonstochastic framework
(for ACS time series), the almost-periodic func-
tions play the same role as that played by the
deterministic functions in the stochastic-process
framework, and the expectation operator is the
almost-periodic component extraction operator.
Therefore, in the case of processes exhibiting
suitable ergodicity properties, results derived in
the FOT probability approach for time series can
be interpreted in the classical stochastic process
framework by substituting, in place of the almost-
periodic component extraction operator Efagf�g,
the statistical expectation operator Ef�g. In fact, by
assuming that fxðt;oÞ; t 2 R;o 2 Og is a stochastic
process satisfying appropriate ergodicity proper-
ties (see Section 4), the stochastic and FOT
autocorrelation functions are identical for almost
all sample paths xðtÞ,

Rxðt; tÞ9Efxðtþ tÞxðtÞg

¼ Efagfxðtþ tÞxðtÞg9Rxðt; tÞ ð3:58Þ

and, hence, so too are their cyclic components and
frequency-domain counterparts,

Ra
xðtÞ ¼ Ra

xðtÞ, (3.59)

Sa
xðf Þ ¼ Sa

xðf Þ. (3.60)

Analogous equivalences hold in the discrete-time
case.
The link between the two approaches is treated

in depth in [2.5,2.8,2.9,2.11,2.12,2.15,3.87,4.31,
23.15]. In the following, most results are presented
in the FOT probability framework.

3.5. Complex processes and time series

The case of complex-valued processes and time
series, first treated in depth in [2.9], is extensively
treated in [2.6,2.8,3.43,13.13,13.14,13.20,13.25].
Several results with reference to higher-order
statistics are reported in Section 13.
Let xðtÞ be a zero-mean complex-valued con-

tinuous-time time series. Its wide-sense character-
ization can be made in terms of the two second-
order moments

Rxx� ðt; tÞ9Efagfxðtþ tÞx�ðtÞg

¼
X

a2Axx�

Ra
xx� ðtÞe

j2pat, ð3:61Þ

Rxxðt; tÞ9Efagfxðtþ tÞxðtÞg

¼
X
b2Axx

Rb
xxðtÞe

j2pbt ð3:62Þ

which are called the autocorrelation function and
conjugate autocorrelation function, respectively.
The Fourier coefficients

Ra
xx� ðtÞ9hxðtþ tÞx�ðtÞe�j2patit, (3.63)

Rb
xxðtÞ9hxðtþ tÞxðtÞe�j2pbtit (3.64)
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are referred to as the cyclic autocorrelation function

at cycle frequency a and the conjugate cyclic

autocorrelation function at conjugate cycle fre-

quency b, respectively. The Fourier transforms of
the cyclic autocorrelation function and conjugate
cyclic autocorrelation function

Sa
xx� ðf Þ9

Z
R

Ra
xx� ðtÞe

�j2pf t dt, (3.65)

Sb
xxðf Þ9

Z
R

Rb
xxðf Þe

�j2pf t dt (3.66)

are called the cyclic spectrum and the conjugate

cyclic spectrum, respectively.
Let us denote by the superscript ð�Þ an optional

complex conjugation. In the following, when it
does not create ambiguity, both functions
defined in (3.63) and (3.64) are simultaneously
represented by

Ra
xxð�Þ
ðtÞ9 xðtþ tÞxð�ÞðtÞe�j2pat

� �
t
; a 2 Axxð�Þ .

(3.67)

Analogously, both functions defined in (3.65) and
(3.66) are simultaneously represented by

Sa
xxð�Þ
ðf Þ9

Z
R

Ra
xxð�Þ
ðtÞe�j2pf t dt. (3.68)

It should be noted that, in [2.6,2.8,2.9], for
example, a different conjugation notation in the
subscripts is adopted to denote the autocorrelation
and the conjugate autocorrelation function. Spe-
cifically, Rxxðt; tÞ ¼ Efagfxðtþ t=2Þx�ðt� t=2Þg and
Rxx� ðt; tÞ ¼ Efagfxðtþ t=2Þxðt� t=2Þg. Moreover,
an analogous notation is adopted in these refer-
ences and others for the (conjugate) cyclic auto-
correlation function and the (conjugate) cyclic
spectrum.

3.6. Linear filtering

The linear almost-periodically time-variant fil-
tering of ACS signals introduced in [2.2] and
followed by [2.5] for cyclostationary processes and
generalized in [2.8,2.9] to ACS signals, is also
considered in follow-on work in [7.60,9.51,13.9,
13.14,13.20] as well as the early Russian work in
[3.9]. Properties of linear periodically time-varying
systems are analyzed in [23.8,23.12,23.13,23.14].
More general time-variant linear filtering is ad-
dressed in [21.10,21.11].

3.6.1. Structure of linear almost-periodically time-

variant systems

A linear time-variant system with input xðtÞ,
output yðtÞ, impulse-response function hðt; uÞ, and
input–output relation

yðtÞ ¼

Z
R

hðt; uÞxðuÞdu (3.69)

is said to be linear almost-periodically time-variant
(LAPTV) if the impulse-response function admits
the Fourier series expansion

hðt; uÞ ¼
X
s2G

hsðt� uÞej2psu, (3.70)

where G is a countable set.
By substituting (3.70) into (3.69) we see that the

output yðtÞ can be expressed in the two equivalent
forms [2.8,9.51]:

yðtÞ ¼
X
s2G

hsðtÞ � ½xðtÞe
j2pst� (3.71a)

¼
X
s2G

½gsðtÞ � xðtÞ�ej2pst, (3.71b)

where

gsðtÞ9hsðtÞe
�j2pst. (3.72)

From (3.71a) it follows that a LAPTV systems
performs a linear time-invariant filtering of
frequency-shifted version of the input signal.
For this reason LAPTV filtering is also referred
to as frequency-shift (FRESH) filtering [7.31].
Equivalently, from (3.71b) it follows that a
LAPTV systems performs a frequency shift
of linear time-invariant filtered versions of the
input.
In the special case for which G � fk=T0gk2Z for

some period T0, the system is said to be linear
periodically time-variant (LPTV). If G contains
only the element s ¼ 0, then the system is linear
time-invariant (LTI).

3.6.2. Input/output relations in terms of cyclic

statistics

Let xiðtÞ, i ¼ 1; 2, t 2 R, be two possibly-
complex ACS continuous-time time series with
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second-order (conjugate) cross-correlation func-
tion

R
x1x
ð�Þ

2

ðt; tÞ9Efagfx1ðtþ tÞxð�Þ2 ðtÞg

¼
X
a2A12

Ra
x1x
ð�Þ

2

ðtÞej2pat, ð3:73Þ

where

Ra
x1x
ð�Þ

2

ðtÞ9hx1ðtþ tÞxð�Þ2 ðtÞe
�j2patit (3.74)

is the (conjugate) cyclic cross-correlation between
x1 and x2 at cycle frequency a and

A129fa 2 R : Ra
x1x
ð�Þ

2

ðtÞc0g (3.75)

is a countable set. If the set A12 contains at
least one nonzero element, then the time series
x1ðtÞ and x2ðtÞ are said to be jointly ACS. Note
that, in general, set A12 depends on whether ð�Þ
is conjugation or not and can be different from
the sets A11 and A22 (both defined according to
(3.75)).

Let us consider now two linear LAPTV systems
whose impulse-response functions admit the Four-
ier series expansions

hiðt; uÞ ¼
X
si2Gi

hsi
ðt� uÞej2psiu; i ¼ 1; 2. (3.76)

The (conjugate) cross-correlation of the outputs

yiðtÞ ¼

Z
R

hiðt; uÞxiðuÞdu; i ¼ 1; 2 (3.77)

is given by

R
y1y
ð�Þ

2

ðt; tÞ9Efagfy1ðtþ tÞyð�Þ2 ðtÞg

¼
X
a2A12

X
s12G1

X
s22G2

½Ra
x1x
ð�Þ

2

ðtÞej2ps1t�

�
t

r
aþs1þð�Þs2
s1s2ð�Þ

ðtÞej2pðaþs1þð�Þs2Þt, ð3:78Þ

where �t denotes convolution with respect to t, ð�Þ
is an optional minus sign that is linked to ð�Þ, and

r
g
s1s2ð�Þ

ðtÞ9
Z
R

hs1ðtþ sÞhð�Þs2 ðsÞe
�j2pgs ds. (3.79)

Thus,

R
b

y1y
ð�Þ

2

ðtÞ9hy1ðtþ tÞyð�Þ2 ðtÞe
�j2pbtit

¼
X
s12G1

X
s22G2

½R
b�s1�ð�Þs2
x1x
ð�Þ

2

ðtÞej2ps1t�

�
t

r
b
s1s2ð�Þ

ðtÞ, ð3:80Þ
S
b

y1y
ð�Þ

2

ðf Þ9
Z
R

R
b

y1y
ð�Þ

2

ðtÞe�j2pf t dt

¼
X
s12G1

X
s22G2

S
b�s1�ð�Þs2
x1x
ð�Þ

2

ðf � s1Þ

�Hs1ðf ÞH
ð�Þ
s2
ðð�Þðb� f ÞÞ, ð3:81Þ

where

Hsi
ðf Þ9

Z
R

hsi
ðtÞe�j2pf t dt (3.82)

and, in the sums in (3.80) and (3.81), only those
s1 2 G1 and s2 2 G2 such that b� s1 � ð�Þs2 2
A12 give nonzero contribution.
Eqs. (3.80) and (3.81) can be specialized to

several cases of interest. For example, if
x1 ¼ x2 ¼ x, h1 ¼ h2 ¼ h, y1 ¼ y2 ¼ y, and ð�Þ is
conjugation, then we obtain the input–output
relations for LAPTV systems in terms of cyclic
autocorrelation functions and cyclic spectra:

R
b
yy� ðtÞ ¼

X
s12G

X
s22G

½R
b�s1þs2
xx� ðtÞej2ps1t�

�
t

r
b
12ðtÞ, ð3:83Þ

S
b
yy� ðf Þ ¼

X
s12G

X
s22G

S
b�s1þs2
xx� ðf � s1Þ

�Hs1 ðf ÞH
�
s2
ðf � bÞ, ð3:84Þ

where

r
b
12ðtÞ9

Z
R

hs1 ðtþ sÞh�s2ðsÞe
�j2pbs ds. (3.85)

For further examples and applications, see Sec-
tions 7 and 10.

3.7. Product modulation

Let xðtÞ and cðtÞ be two ACS signals with
(conjugate) autocorrelation functions

Rxxð�Þ ðt; tÞ ¼
X

ax2Axxð�Þ

Rax

xxð�Þ
ðtÞej2paxt, (3.86)

Rccð�Þ ðt; tÞ ¼
X

ac2A
ccð�Þ

Rac

ccð�Þ
ðtÞej2pact. (3.87)

If xðtÞ and cðtÞ are statistically independent in the
FOT probability sense, then their joint probability
density function factors into the product of the
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marginal probability densities [2.8,2.9,2.12] and
the (conjugate) autocorrelation functions of the
product waveform

yðtÞ ¼ cðtÞxðtÞ (3.88)

also factor,

Ryyð�Þ ðt; tÞ ¼ Rccð�Þ ðt; tÞRxxð�Þ ðt; tÞ. (3.89)

Therefore, the (conjugate) cyclic autocorrelation
function and the (conjugate) cyclic spectrum of
yðtÞ are [2.5,2.8]:

Ra
yyð�Þ
ðtÞ ¼

X
ax2A

xxð�Þ

Rax

xxð�Þ
ðtÞRa�ax

ccð�Þ
ðtÞ, (3.90)

Sa
yyð�Þ
ðf Þ ¼

X
ax2Axxð�Þ

Z
R

Sax

xxð�Þ
ðlÞSa�ax

ccð�Þ
ðf � lÞdl,

(3.91)

where, in the sums, only those (conjugate) cycle
frequencies ax such that a� ax 2 Accð�Þ give non-
zero contribution.

Observe that, if cðtÞ is an almost-periodic
function

cðtÞ ¼
X
g2G

cge
j2pgt, (3.92)

then

Rccð�Þ ðt; tÞ ¼ cðtþ tÞcð�ÞðtÞ

¼
X
g12G

X
g22G

cg1cð�Þg2 e
ð�Þj2pg2t

�ej2pðg1þð�Þg2Þt ð3:93Þ

and

Ra
ccð�Þ
ðtÞ ¼

X
g2G

cgc
ð�Þ

ð�Þða�gÞe
j2pða�gÞt, (3.94)

Sa
ccð�Þ
ðf Þ ¼

X
g2G

cgc
ð�Þ

ð�Þða�gÞdðf þ g� aÞ. (3.95)

3.8. Supports of cyclic spectra of band limited

signals

By specializing (3.81) to the case x1 ¼ x2 ¼ x,
h1 ¼ h2 ¼ h (LTI), and y1 ¼ y2 ¼ y, we obtain

Sa
yyð�Þ
ðf Þ ¼ Sa

xxð�Þ
ðf ÞHðf ÞH ð�Þðð�Þða� f ÞÞ. (3.96)
From (3.96) it follows that the support in the ða; f Þ
plane of the (conjugate) cyclic spectrum of yðtÞ is
such that

supp½Sa
yyð�Þ
ðf Þ�9fða; f Þ 2 R� R : Sa

yyð�Þ
ðf Þa0g

� fða; f Þ 2 R� R : Hðf Þ

�H ð�Þðð�Þða� f ÞÞa0g. ð3:97Þ

Let xðtÞ be a strictly band-limited low-pass signal
with monolateral bandwidth B; that is, S0

xx� ðf Þ � 0
for feð�B;BÞ. Then,

xðtÞ � xðtÞ � hLPFðtÞ, (3.98)

where hLPFðtÞ is the impulse-response function of
the ideal low-pass filter with harmonic-response
function:

HLPFðf Þ ¼ rect
f

2B

� �
9

1; jf jpB;

0; jf j4B:

(
(3.99)

Accounting for (3.97), we have (see Fig. 1)

supp½Sa
xxð�Þ
ðf Þ� � fða; f Þ 2 R� R : HLPFðf Þ

�HLPFðf � aÞa0g, ð3:100Þ

where the fact that rectðf Þ is real and even is
used.
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Let xðtÞ be a strictly band-limited high-pass
signal; that is, S0

xx� ðf Þ � 0 for f 2 ð�b; bÞ. Then,

xðtÞ � xðtÞ � hHPFðtÞ, (3.101)

where hHPFðtÞ is the impulse-response function of
the ideal high-pass filter with harmonic-response
function

HHPFðf Þ ¼ 1� rect
f

2b

� �
. (3.102)

From (3.97), we have (see Fig. 2)

supp½Sa
xxð�Þ
ðf Þ� � fða; f Þ 2 R� R : HHPFðf Þ

�HHPFðf � aÞa0g. ð3:103Þ

Finally, let xðtÞ be a strictly band-limited band-
pass signal; that is, S0

xx� ðf Þ � 0 for feð�B;�bÞ[

ðb;BÞ, where 0oboB. Then,

xðtÞ � xðtÞ � hBPFðtÞ, (3.104)

where hBPFðtÞ is the impulse-response function of
the ideal band-pass filter with harmonic-response
function

HBPFðf Þ ¼ HLPFðf ÞHHPFðf Þ, (3.105)

where HLPFðf Þ and HHPFðf Þ are given by (3.99)
and (3.102), respectively. Therefore, accounting
b−b

2b

−2b

f

�

Fig. 2. Cyclic-spectrum support of a high-pass signal.
for (3.97), we have (see Fig. 3)

supp½Sa
xxð�Þ
ðf Þ�

� fða; f Þ 2 R� R : HBPFðf ÞHBPFðf � aÞa0g

¼ fða; f Þ 2 R� R : HLPFðf ÞHLPFðf � aÞa0g

\ fða; f Þ 2 R� R : HHPFðf Þ

�HHPFðf � aÞa0g. ð3:106Þ

It is noted that supports for symmetric definitions
of cyclic spectra (3.28) are reported in [2.6,2.8].

3.9. Sampling and aliasing

Let xðnÞ be the sequence obtained by uniformly
sampling, with period T s ¼ 1=f s, the continuous-
time signal xaðtÞ:

xðnÞ9xaðtÞjt¼nTs
. (3.107)

The (conjugate) autocorrelation function of the
discrete-time signal xðnÞ can be shown to be the
sampled version of the (conjugate) autocorrelation
function of the continuous-time signal xaðtÞ:

EfeagfxðnþmÞxð�ÞðnÞg

¼ Efagfxaðtþ tÞxaðtÞgjt¼nTs;t¼mTs
. ð3:108Þ
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However, the (conjugate) cyclic autocorrelation
functions of xðnÞ are not sampled versions of the
(conjugate) cyclic autocorrelation functions of
xaðtÞ because of the presence of aliasing in the
cycle-frequency domain. Consequently, for the
(conjugate) cyclic spectra, aliasing in both the
spectral-frequency and cycle-frequency domains
occurs. Specifically, the (conjugate) cyclic auto-
correlation functions and the (conjugate) cyclic
spectra of xðnÞ can be expressed in terms of the
(conjugate) cyclic autocorrelation functions and
the (conjugate) cyclic spectra of xaðtÞ by the
relations [2.5,2.8,13.20,13.23]:

eReaxxð�Þ ðmÞ ¼
X
p2Z

R
a�pf s

xax
ð�Þ
a

ðtÞjt¼mT s;a¼eaf s
, (3.109)

eSeaxxð�Þ ðnÞ ¼
1

T s

X
p2Z

X
q2Z

S
a�pf s

xax
ð�Þ
a

ðf � qf sÞjf¼nf s;a¼eaf s
.

(3.110)

Let xðtÞ be a strictly band-limited low-pass signal
with monolateral bandwidth B. From (3.100), it
follows that

supp½Sa
xxð�Þ
ðf Þ�

� fða; f Þ 2 R� R : jf jpB; ja� f jpBg

� fða; f Þ 2 R� R : jf jpB; jajp2Bg. ð3:111Þ

Thus, the support of each replica in (3.110) is
contained in the set

fða; f Þ 2 R� R : jf � qf sjpB; ja� pf sjp2Bg

and, consequently, a sufficient condition for
assuring that the replicas in (3.110) do not
overlap is

f sX4B. (3.112)

In such a case, only the replica with p ¼ 0 gives
nonzero contribution in the base support region
in (3.109) and (3.110). Thus, the (conjugate)
cyclic autocorrelation functions and the cyclic
spectra of the continuous-time signal xaðtÞ are
amplitude- and/or time- or frequency-scaled ver-
sions of the (conjugate) cyclic autocorrelation
functions and cyclic spectra of the discrete-time
signal xðnÞ [13.20]:

Ra
xax
ð�Þ
a

ðtÞjt¼mTs
¼

eReaxxð�Þ ðmÞjea¼a=f s
; jajp

f s

2
;

0 otherwise;

8><>:
ð3:113Þ

Sa
xax
ð�Þ
a

ðf Þ

¼
T s
eSeaxxð�Þ ðnÞjn¼f =f s;ea¼a=f s

; jajp f s
2
; jf jp f s

2
;

0 otherwise:

8<:
ð3:114Þ

The discrete-time signal obtained by sampling,
with period T s, a cyclostationary continuous-time
signal with cyclostationarity period T0 ¼ KT s, K

integer, is a discrete-time cyclostationary signal
with cyclostationarity period K. If, however,
T0 ¼ KT s þ �, with 0o�oT s and � incommensu-
rate with T s, then the discrete-time signal is
almost-cyclostationary [13.23]. In [3.44], common
pitfalls arising in the application of the stationary
signal theory to time sampled cyclostationary
signals are examined.

3.10. Representations by stationary components

3.10.1. Continuous-time processes and time series

A continuous-time wide-sense cyclostationary
signal (process or time-series) xðtÞ can be expressed
in terms of singularly and jointly wide-
sense stationary signals with non-overlapping
spectral bands [2.5,3.22,3.23,3.77,4.41]. That is,
if T0 is the period of cyclostationarity, and we
define

exkðtÞ9½xðtÞe�j2pðk=T0Þt� � h0ðtÞ, (3.115)

where h0ðtÞ9ð1=T0Þ sincðt=T0Þ is the impulse-
response function of an ideal low-pass filter
with monolateral bandwidth 1=ð2T0Þ, then
xðtÞ can be expressed by the harmonic series

representation:

xðtÞ ¼
Xþ1

k¼�1

exkðtÞe
j2pðk=T0Þt, (3.116)
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where

Efagfexkðtþ tÞex�hðtÞg
¼

Z 1=ð2 T0Þ

�1=ð2 T0Þ

S
ðh�kÞ=T0
xx� f þ

k

T0

� �
ej2pf t df ð3:117Þ

which is independent of t. This result reflects the
fact that the Fourier transforms eX kðf Þ of the
signals exkðtÞ have non-overlapping support of
width 1=T0

eX k f �
k

T0

� �
¼

X ðf Þ; jf � k=T0jp1=ð2T0Þ;

0 otherwise;

(
ð3:118Þ

therefore, since only spectral components of xðtÞ

with frequencies separated by an integer multiple
of 1=T0 can be correlated, then the only pairs of
spectral components in exkðtÞ and exhðtÞ that can be
correlated are those with the same frequency f.
Thus, there is no spectral cross-correlation at
distinct frequencies in exkðtÞ and exhðtÞ.

It follows that a continuous-time wide-sense
cyclostationary scalar signal xðtÞ is equivalent to
the infinite-dimensional vector-valued wide-sense
stationary signal

½. . . ; ex�kðtÞ; . . . ; ex�1ðtÞ; ex0ðtÞ; ex1ðtÞ; . . . ; exkðtÞ; . . .�.

Another representation of a cyclostationary signal
by stationary components is the translation series

representation in terms of any complete orthonor-
mal set of basis functions [3.23]. One example uses
the Karhunen–Loève expansion of the cyclosta-
tionary signal xðtÞ on the intervals t 2 ½nT0; ðnþ
1ÞT0Þ for all integers n, where T0 is the period of
cyclostationarity.

A harmonic series representation can also be
obtained for an ACS process xðtÞ, provided that it
belongs to the sub-class of the almost-periodically
unitary processes [3.65]. In this case,

xðtÞ ¼
Xþ1

k¼�1

exkðtÞe
j2plkt, (3.119)

where the frequencies lk are possibly incommen-
surate and the processes exkðtÞ are singularly and
jointly wide-sense stationary but not necessarily
band limited. No translation series representation
with stationary components has been demon-
strated to exist for ACS processes.
3.10.2. Discrete-time processes and time series

A discrete-time wide-sense cyclostationary sig-
nal (process or time-series) xðnÞ can be expressed in
terms of a finite number of singularly and jointly
wide-sense stationary signals exkðnÞ with non over-
lapping bands [2.1,2.5,2.17,4.41,12.3,12.30]. That
is, if N0 is the period of cyclostationarity, and we
define

exkðnÞ9½xðnÞe�j2pðk=N0Þn� � h0ðnÞ, (3.120)

where h0ðnÞ9ð1=N0Þ sincðn=N0Þ is the ideal low-
pass filter with monolateral bandwidth 1=ð2N0Þ,
then xðnÞ can be expressed by the harmonic series

representation:

xðnÞ ¼
XN0�1

k¼0

exkðnÞe
j2pðk=N0Þn. (3.121)

Therefore, a discrete-time wide-sense cyclostation-
ary scalar signal xðnÞ is equivalent to the N0-
dimensional vector-valued wide-sense stationary
signal

½ex0ðnÞ; ex1ðnÞ; . . . ; exN0�1ðnÞ�.

A further decomposition of a discrete-time cyclos-
tationary signal can be obtained in terms of sub-
sampled components. Let xðnÞ be a discrete-time
real-valued wide-sense cyclostationary time-series
with period N0. The sub-sampled (or decimated)
time-series:

xiðnÞ9xðnN0 þ iÞ; i ¼ 0; . . . ;N0 � 1 (3.122)

constitute what is called the polyphase decomposi-

tion of xðnÞ. Given the set of time series xiðnÞ,
i ¼ 0; . . . ;N0 � 1, the original signal xðnÞ can be
reconstructed by using the synthesis formula:

xðnÞ ¼
XN0�1

i¼0

X
‘2Z

xið‘Þdn�i�‘N0
, (3.123)

where dg is the Kronecker delta (dg ¼ 1 for g ¼ 0
and dg ¼ 0 for ga0). The signal xðnÞ is wide-
sense cyclostationary with period N0 if and
only if the set of sub-sampled xiðnÞ are jointly
wide-sense stationary [3.3]. In fact, due to the
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cyclostationarity of xðnÞ:

EfagfxiðnþmÞxkðnÞg

¼ EfagfxððnþmÞN0 þ iÞxðnN0 þ kÞg

¼ EfagfxðmN0 þ iÞxðkÞg, ð3:124Þ

which is independent of n.
4. Ergodic properties and measurement of

characteristics

4.1. Estimation of the cyclic autocorrelation

function and the cyclic spectrum

Ergodic properties and measurements of char-
acteristics are treated in [4.1–4.61]. Consistent
estimates of second-order statistical functions of
an ACS stochastic process can be obtained provided
that the stochastic process has finite or ‘‘effectively
finite’’ memory. Such a property is generally
expressed in terms of mixing conditions or summa-
bility of second- and fourth-order cumulants. Under
such mixing conditions, the cyclic correlogram

Ra
xðt; t0;TÞ9

1

T

Z t0þT=2

t0�T=2
xðtþ tÞxðtÞe�j2pat dt (4.1)

is a consistent estimator of the cyclic autocorrelation
function Ra

xðtÞ (see (3.11)). Moreover,ffiffiffiffi
T
p
½Ra

xðt; t0;TÞ �Ra
xðtÞ�

is an asymptotically (T !1) zero-mean complex
normal random variable for each t and t0.
Consistency for estimators of the cyclic autocorrela-
tion function for cyclostationary and/or ACS
processes has been addressed in [2.1,3.1,4.3,4.13,
4.15,4.23,4.24,4.36,4.42,13.18]. The first treatment
for ACS processes is in [4.13].

In the frequency domain, the cyclic periodogram

Iaxðt; f Þ9
1

T
X T ðt; f ÞX

�
T ðt; f � aÞ, (4.2)

where X T ðt; lÞ is defined according to (3.21), is
an asymptotically unbiased but not consistent
estimator of the cyclic spectrum Sa

xðf Þ (see (3.19)
and (3.20)). However, under the above-men-
tioned mixing conditions, the frequency-smoothed
cyclic periodogram

Sa
xT
ðt0; f ÞDf

9
1

Df

Z fþDf =2

f�Df =2

1

T
X T ðt0; lÞX �T ðt0; l� aÞdl ð4:3Þ

is a consistent estimator of the cyclic spectrum
Sa

xðf Þ. Moreover,ffiffiffiffiffiffiffiffiffiffiffi
T Df

p
½Sa

xT
ðt; f ÞDf �Sa

xðf Þ�

is an asymptotically (T !1, Df ! 0, with
T Df !1) zero-mean complex normal random
variable for each f and t0. The first detailed study
of the variance of estimators of the cyclic spectrum
is given in [2.8] and is based on the FOT
framework. Consistency for estimators of the
cyclic spectrum has been addressed in [2.1,4.14,
4.20,4.30,4.35,4.43,4.44,4.55,4.59,13.12].
In [2.5,2.8,4.17], it is shown that the time-

smoothed cyclic periodogram:

Sa
x1=Df
ðt; f ÞT9

1

T

Z tþT=2

t�T=2
Df

�X 1=Df ðs; f ÞX
�
1=Df ðs; f � aÞds ð4:4Þ

is asymptotically equivalent to the frequency
smoothed cyclic periodogram in the sense that

lim
Df!0

lim
T!1

Sa
xT
ðt; f ÞDf

¼ lim
Df!0

lim
T!1

Sa
x1=Df
ðt; f ÞT , ð4:5Þ

where the order of the two limits on each side
cannot be reversed. Note that both the time-
smoothed and frequency-smoothed cyclic period-
ograms exhibit spectral frequency resolution on
the order of Df and a cycle frequency resolution
on the order of 1=T [4.17]. The problem of cyclic
leakage in the estimate of a cyclic statistic at cycle
frequency a arising from cyclic statistics at cycle
frequencies different from a, first observed in [2.8],
is addressed in [2.8,2.9,4.17]. In particular, it is
shown that a strong stationary spectrally over-
lapping noise component added to a cyclostation-
ary signal degrades the performance (bias and
variance) of the estimators of cyclic statistics at
nonzero cycle frequencies because of the leakage
from the zero cycle frequency.
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Fig. 4. Spectral correlation analyzer.
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A spectral correlation analyzer can be realized
by frequency shifting the signal xðtÞ by two
amounts differing by a, passing such frequency-
shifted versions through two low-pass filters hDf ðtÞ

with bandwidth Df and unity pass-band height,
and then correlating the output signals (see Fig. 4).
The spectral correlation density function Sa

xðf Þ is
obtained by normalizing the output by Df , and
taking the limit as the correlation time T !1

and the bandwidth Df ! 0, in this order [4.17].
Reliable spectral estimates with reduced com-

putational requirements can be obtained by using
nonlinear transformations of the data [4.39,4.51].
Strict-sense ergodic properties of ACS processes,
referred to as cycloergodicity in the strict sense,
were first treated in depth in [4.13]; see also [2.15].
A survey of estimation problems is given in [4.41].
Cyclostationary feature measurements in the non-
stochastic approach are treated in considerable
depth in [4.17] and also in [4.31]. Problems arising
from the presence of jitter in measurements are
addressed in [4.53,4.61]. Computationally efficient
digital implementations of cyclic spectrum analy-
zers are developed and analyzed in [4.25,4.32,
4.38,4.45,4.48].

For measurements of cyclic higher-order statis-
tics see [4.50,4.56,4.57,13.7,13.9,13.12,13.14,13.18,
13.29].

For further references, see the general treat-
ments [2.1,2.2,2.5,2.8,2.9,2.11,2.15,2.18] and also
see [3.22,3.35,3.39,3.59,3.72,11.10,11.13,11.20,12.49,
12.51]. Measurements on cyclostationary random
fields are treated in [20.3,20.5]. The problem of
measurement of statistical functions for more
general classes of nonstationary signals is considered
in [21.1,21.5,21.12,21.14,21.15].
4.2. Two alternative approaches to the analysis of

measurements on time series

In the FOT probability approach, probabilistic
parameters are defined through infinite-time
averages of functions of a single time series (such
as products of time- and frequency-shifted ver-
sions of the time series) rather than through
expected values or ensemble averages of a stochas-
tic process. Estimators of the FOT probabilistic
parameters are obtained by considering finite-time
averages of the same quantities involved in the
infinite-time averages. Therefore, assuming the
above-mentioned limits exist (that is, the infinite-
time averages exist), their asymptotic estimators
converge by definition to the true values, which are
exactly the infinite-time averages, without the
necessity of requiring ergodicity properties as in
the stochastic process framework. Thus, in the
FOT probability framework, the kind of conver-
gence of the estimators to be considered as the
data-record length approaches infinity is the
convergence of the function sequence of the
finite-time averages (indexed by the data-record
length). Therefore, unlike the stochastic process
framework where convergence must be defined, for
example, in the ‘‘stochastic mean-square sense’’
[3.59,4.41,13.18,13.26] or ‘‘almost sure sense’’
[4.35,4.56] or ‘‘in distribution’’, the convergence
in the FOT probability framework must be
considered ‘‘pointwise’’, in the ‘‘temporal mean-
square sense’’ [2.8,2.9,2.31], or in the ‘‘sense of
generalized functions (distributions)’’ [23.9].
By following the guidelines in [2.8,2.9,23.1], let

us consider the convergence of time series in the
temporal mean-square sense (t.m.s.s.). Given a
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time series zðtÞ (such as a lag product of another
time series), we define

zbðtÞT9
1

T

Z tþT=2

t�T=2
zðuÞe�j2pbu du, (4.6)

zb9 lim
T!1

1

T

Z þT=2

�T=2
zðuÞe�j2pbu du (4.7)

and we assume that

lim
T!1

zbðtÞT ¼ zb ðt:m:s:s:Þ 8b 2 R, (4.8)

that is,

lim
T!1
hjzbðtÞT � zbj

2it ¼ 0 8b 2 R. (4.9)

It can be shown that, if the time series zðtÞ has
finite-average-power (i.e., hjzðtÞj2ito1), then the
set B9fb 2 R : zba0g is countable, the seriesP

b2B jzbj
2 is summable [2.9] and, accounting for

(4.8), it follows that

lim
T!1

X
b2B

zbðtÞTe
j2pbt ¼

X
b2B

zbe
j2pbt ðt:m:s:s:Þ.

(4.10)

The magnitude and phase of zb are the amplitude
and phase of the finite-strength additive complex
sinewave with frequency b contained in the time
series zðtÞ. Moreover, the right-hand side in (4.10)
is just the almost-periodic component contained in
the time series zðtÞ.

The function zbðtÞT is an estimator of zb based
on the observation fzðuÞ; u 2 ½t� T=2; tþ T=2�g. It
is worthwhile to emphasize that, in the FOT
probability framework, probabilistic functions are
defined in terms of the almost-periodic component
extraction operation, which plays the same role as
that played by the statistical expectation operation
in the stochastic process framework [2.8,2.15].
Therefore,

biasfzbðtÞT g9EfagfzbðtÞT g � zb

’ hzbðtÞT it � zb, ð4:11Þ

varfzbðtÞT g9EfagfjzbðtÞT � EfagfzbðtÞT gj
2g

’ hjzbðtÞT � hzbðtÞT itj
2it, ð4:12Þ
where the approximation becomes exact equality
in the limit as T !1. Thus, unlike the stochastic
process framework where the variance accounts
for fluctuations of the estimates over the ensemble
of sample paths, in the FOT probability frame-
work the variance accounts for the fluctuations of
the estimates in the time parameter t, viz., the
central point of the finite-length time series
segment adopted for the estimation. Therefore,
the assumption that the estimator asymptotically
approaches the true value (the infinite-time aver-
age) in the mean-square sense is equivalent to the
statement that the estimator is mean-square
consistent in the FOT probability sense. In fact,
from (4.9), (4.11), and (4.12) it follows that

hjzbðtÞT � zbj
2it ’ varfzbðtÞT g

þ jbiasfzbðtÞT gj
2 ð4:13Þ

and this approximation become exact as T !1.
In such a case, estimates obtained by using
different time segments asymptotically do not
depend on the central point of the segment.
5. Manufactured signals: modelling and analysis

5.1. General aspects

Cyclostationarity in manmade communications
signals is due to signal processing operations used
in the construction and/or subsequent processing
of the signal, such as modulation, sampling,
scanning, multiplexing and coding operations
[5.1–5.23].
The analytical cyclic spectral analysis of math-

ematical models of analog and digitally modulated
signals was first carried out in [2.5] for stochastic
processes and in [5.9,5.10] for nonstochastic time
series. The effects of multiplexing are considered in
[5.13]. Continuous-phase frequency-modulated
signals are treated in [5.12,5.18,5.19,5.23]. The
effects of timing jitter on the cyclostationarity
properties of communications signals are ad-
dressed in [2.8,5.17,5.21].
On this general subject, see the general treat-

ments [2.5,2.8,2.9,2.11,2.13], and also see [2.15,
6.11,7.22].
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Fig. 5. (a) Magnitude of the cyclic autocorrelation function

Ra
xðtÞ, as a function of a and t, and (b) magnitude of the cyclic

spectrum Sa
xðf Þ, as a function of a and f, for the DSB-AM signal

(5.1).
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5.2. Examples of communication signals

In this section, two fundamental examples of
cyclostationary communication signals are con-
sidered and their wide-sense cyclic statistics are
described. The derivations of the cyclic statistics
can be accomplished by using the results of
Sections 3.6 and 3.7. Then a third example of a
more sophisticated communication signal is con-
sidered.

5.2.1. Double side-band amplitude-modulated

signal

Let xðtÞ be the (real-valued) double side-band
amplitude-modulated (DSB-AM) signal:

xðtÞ9sðtÞ cosð2pf 0tþ f0Þ. (5.1)

The cyclic autocorrelation function and cyclic
spectrum of xðtÞ are [5.9]:

Ra
xðtÞ ¼

1
2

Ra
s ðtÞ cos ð2pf 0tÞ

þ 1
4
fRaþ2f 0

s ðtÞe�j2pf 0te�j2f0

þ Ra�2f 0
s ðtÞej2pf 0tej2f0g, ð5:2Þ

Sa
xðf Þ ¼

1
4
fSa

s ðf � f 0Þ þ Sa
s ðf þ f 0Þ

þ Saþ2f 0
s ðf þ f 0Þe

�j2f0

þ Sa�2f 0
s ðf � f 0Þe

j2f0g, ð5:3Þ

respectively. If sðtÞ is a wide-sense stationary signal
then Ra

s ðtÞ ¼ R0
s ðtÞda and

Ra
xðtÞ ¼

1
2

R0
s ðtÞ cosð2pf 0tÞ; a ¼ 0;

1
4

R0
s ðtÞe

	j2pf 0te	j2f0 ; a ¼ 	2f 0;

0 otherwise;

8><>:
(5.4)

Sa
xðf Þ ¼

1
4
fS0

s ðf � f 0Þ þ S0
s ðf þ f 0Þg; a ¼ 0;

1
4

S0
s ðf 
 f 0Þe

	j2f0 ; a ¼ 	2f 0;

0 otherwise:

8><>:
(5.5)

Thus, xðtÞ is cyclostationary with period 1=ð2 f 0Þ.
In Fig. 5(a) the magnitude of the cyclic

autocorrelation function Ra
xðtÞ, as a function of a
and t, and in Fig. 5(b) the magnitude of the cyclic
spectrum Sa

xðf Þ, as a function of a and f, are
reported for the DSB-AM signal (5.1) with
stationary modulating signal sðtÞ having triangular
autocorrelation function.

5.2.2. Pulse-amplitude-modulated signal

Let xðtÞ be the complex-valued pulse-amplitude
modulated (PAM) signal:

xðtÞ9
X
k2Z

akqðt� kT0Þ, (5.6)

where qðtÞ is a complex-valued square integrable
pulse and fakgk2Z, ak 2 C, is an ACS sequence
whose cyclostationarity is possibly induced by
framing, multiplexing, or coding [13.21].
The (conjugate) cyclic autocorrelation fun-

ction and (conjugate) cyclic spectrum of xðtÞ
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Fig. 6. (a) Magnitude of the cyclic autocorrelation function

Ra
xðtÞ, as a function of a and t, and (b) magnitude of the cyclic

spectrum Sa
xðf Þ, as a function of a and f, for the PAM signal

(5.6).
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are [5.9,5.10]:

Ra
xxð�Þ
ðtÞ ¼

1

T0

X
m2Z

½ eReaaað�Þ ðmÞ�ea¼aT0

�ra
qqð�Þ
ðt�mT0Þ, ð5:7Þ

Sa
xxð�Þ
ðf Þ ¼

1

T0
½eSeaaað�Þ ðnÞ�n¼fT0;ea¼aT0

�Qðf ÞQð�Þðð�Þða� f ÞÞ, ð5:8Þ

respectively, where

eReaaað�Þ ðmÞ9 lim
N!1

1

2N þ 1

XN

k¼�N

akþma
ð�Þ

k e�j2peak,

(5.9)

eSeaaað�Þ ðnÞ9
X
m2Z

eReaaað�Þ ðmÞe
�j2pnm (5.10)

are the (conjugate) cyclic autocorrelation function
and the (conjugate) cyclic spectrum, respectively,
of the sequence fakgk2Z,

Qðf Þ9
Z
R

qðtÞe�j2pft dt (5.11)

and

ra
qqð�Þ
ðtÞ9qðtÞ � ½qð�Þð�tÞej2pat�

¼

Z
R

qðtþ tÞqð�ÞðtÞe�j2pat dt. ð5:12Þ

If the sequence fakgk2Z is wide-sense stationary
and white, then

eReaaa� ðmÞ ¼
eR0

aa� ð0Þdðeamod 1Þ
dm, (5.13)

where mod denotes the modulo operation. In this
case, the cyclic autocorrelation function and the
cyclic spectrum of xðtÞ become

Ra
xx� ðtÞ ¼

eR0

aa� ð0Þ

T0
dðaT0 mod 1Þr

a
qq� ðtÞ, (5.14)

Sa
xx� ðf Þ ¼

eR0

aa� ð0Þ

T0
dðaT0 mod 1ÞQðf ÞQ

�ðf � aÞ,

(5.15)

respectively. Thus, xðtÞ exhibits cyclostationarity
with cycle frequencies a ¼ k=T0, k 2 Z; that is, xðtÞ

is cyclostationary with period T0.
In Fig. 6(a) the magnitude of the cyclic
autocorrelation function Ra

xðtÞ, as a function of a
and t, and in Fig. 6(b) the magnitude of the cyclic
spectrum Sa

xðf Þ, as a function of a and f, are
reported for the PAM signal (5.6) with stationary
modulating sequence fakgk2Z, and rectangular
pulse qðtÞ9rectððt� T0=2Þ=T0Þ. In this case,
(5.12) reduces to

raqqðtÞ ¼ e�jpaðT0�tÞ rect
t

2T0

� �
� 1�

jtj
T0

� �
T0 sincðaðT0 � jtjÞÞ. ð5:16Þ
5.2.3. Direct-sequence spread-spectrum signal

Let xðtÞ be the direct-sequence spread-spectrum
(DS-SS) baseband PAM signal

xðtÞ9
X
k2Z

akqðt� kT0Þ, (5.17)
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where fakgk2Z, ak 2 C, is an ACS sequence, T0 is
the symbol period, and

qðtÞ9
XNc�1

n¼0

cnpðt� nTcÞ (5.18)

is the spreading waveform. In (5.18), fc0; . . . ;
cNc�1g is the Nc-length spreading sequence (code)
with cn 2 C, and Tc is the chip period such that
T0 ¼ NcTc.

The (conjugate) cyclic autocorrelation function
and (conjugate) cyclic spectrum of xðtÞ are
[2.8,8.24]:

Ra
xxð�Þ
ðtÞ ¼

1

T0

X
m2Z

½ eReaaað�Þ ðmÞ�ea¼aT0

�ra
ppð�Þ
ðt�mT0Þ � ga

ccð�Þ
ðtÞ, ð5:19Þ

Sa
xxð�Þ
ðf Þ ¼

1

T0
½eSeaaað�Þ ðnÞ�n¼fT0;ea¼aT0

�Pðf ÞPð�Þðð�Þða� f ÞÞ

�eGeaccð�Þ ðnÞjn¼fTc ;ea¼aTc
, ð5:20Þ

where

ga
ccð�Þ
ðtÞ9

XNc�1

n1¼0

XNc�1

n2¼0

cn1cð�Þn2
e�j2pan2Tc

�dðt� ðn1 � n2ÞTcÞ ð5:21Þ

and

eGeaccð�Þ ðnÞ9CðnÞCð�Þðð�Þðea� nÞÞ (5.22)

with

CðnÞ9
XNc�1

n¼0

cne
�j2pnn. (5.23)
6. Natural signals: modelling and analysis

Cyclostationarity occurs in data arising from a
variety of natural (not man-made) phenomena due
to the presence of periodic mechanisms in the
phenomena [6.1–6.27]. In climatology and atmo-
spheric science, cyclostationarity is due to rotation
and revolution of the earth [6.1,6.2,6.9,6.12,6.13,
6.21–6.24]. Applications in hydrology are consid-
ered in [6.3,6.11,6.14,6.16,6.17,6.19,6.25,6.26]; for
periodic ARMA modelling and the predic-
tion problem in hydrology, see [12.16,12.20,12.21,
12.23]; for the modelling of ocean waves as a
two-dimensional cyclostationary random field
see [20.1].
A patent on a speech recognition technique

exploiting cyclostationarity is [6.27].
7. Communications systems: analysis and design

7.1. General aspects

Cyclostationarity properties of modulated sig-
nals can be suitably exploited in the analysis and
design of communications systems (see [7.1–7.101])
since the signals involved are typically ACS (see
Section 5).
The cyclostationary nature of interference in

communications systems is characterized in
[7.5,7.6,7.8,7.9,7.18,7.25,7.47,7.98]. The problem
of optimum filtering (cyclic Wiener filtering) of
ACS signals is addressed in Section 7.2.
The problems of synchronization, signal para-

meter and waveform estimation, channel identifi-
cation and equalization, and signal detection and
classification are treated in Sections 8–11.
On the analysis and design of communications

systems, see the general treatments [2.5,2.8,
2.11,2.13], and also see [3.23,3.47,5.9,5.10,5.14,
10.7,22.8].

7.2. Cyclic Wiener filtering

The problem of optimum linear filtering consists
of designing the linear transformation of the data
xðtÞ that minimizes the mean-squared error of the
filter output relative to a desired signal, say dðtÞ. In
the case of complex data, the optimum filter is
obtained by processing both xðtÞ and x�ðtÞ, leading
to the linear-conjugate-linear (LCL) structure
[2.8,2.9]. If dðtÞ and xðtÞ are jointly ACS signals,
the optimum filtering is referred to (as first
suggested in [7.31]) as cyclic Wiener filtering (and
also frequency-shift (FRESH) filtering). FRESH
filtering consists of periodically or almost-periodi-
cally time-variant filtering of xðtÞ and x�ðtÞ and
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adding the results, where the frequency shifts are
chosen in accordance with the cycle frequencies of
xðtÞ and dðtÞ (e.g., cycle frequencies of the signal of
interest and interference, xðtÞ ¼ dðtÞ þ nðtÞ where
nðtÞ is the interference) [7.19,7.21,7.31]. The
problem of optimum LPTV and LAPTV filtering
was first addressed in [2.2,3.23] and, in terms of
cyclic autocorrelations and cyclic spectra in
[2.5,2.8].

LetbdðtÞ9yðtÞ þ ycðtÞ

¼

Z
R

hðt; uÞxðuÞduþ

Z
R

hc
ðt; uÞx�ðuÞdu ð7:1Þ

be the LCL estimate of the desired signal dðtÞ

obtained from the data xðtÞ. To minimize the
mean-squared error

EfagfjbdðtÞ � dðtÞj2g (7.2)

a necessary and sufficient condition is that the
error signal be orthogonal to the data (orthogon-
ality condition [2.5]); that is,

Efagf½bdðtþ tÞ � dðtþ tÞ�x�ðtÞg ¼ 0

8t 2 R 8t 2 R, ð7:3aÞ

Efagf½bdðtþ tÞ � dðtþ tÞ�xðtÞg ¼ 0

8t 2 R 8t 2 R. ð7:3bÞ

If xðtÞ and dðtÞ are singularly and jointly ACS,

Efagfxðtþ tÞxð�ÞðtÞg ¼
X

a2Axxð�Þ

Ra
xxð�Þ
ðtÞej2pat, (7.4)

Efagfdðtþ tÞxð�ÞðtÞg ¼
X

g2F
dxð�Þ

R
g
dxð�Þ
ðtÞej2pgt, (7.5)

then it follows that the optimum filters are
LAPTV:

hðt; uÞ ¼
X
s2G

hsðt� uÞej2psu, (7.6)

hc
ðt; uÞ ¼

X
Z2Gc

hc
Zðt� uÞej2pZu. (7.7)

By substituting (7.1), (7.6), and (7.7) into (7.3a)
and (7.3b), we obtain the system of simultaneous
filter design [7.31,9.51]:X
s2G

ej2pst½Rg�s
xx� ðtÞ � hsðtÞ�

þ
X
Z2Gc

ej2pZt½RZ�g
xx ðtÞ

�
� hc

ZðtÞ�

¼ R
g
dx�
ðtÞ 8g 2 F dx� , ð7:8aÞX

s2G

ej2pst½Rg�s
xx ðtÞ � hsðtÞ�

þ
X
Z2Gc

ej2pZt½R
Z�g
xx� ðtÞ

�
� hc

ZðtÞ�

¼ R
g
dxðtÞ 8g 2 F dx, ð7:8bÞ

where the fact that R
b
x�x� ðtÞ ¼ R�bxx ðtÞ

� and
Ra

x�xðtÞ ¼ R�axx� ðtÞ
� is used and, in (7.8a), for each

g 2 F dx� , the sums are extended to all frequency
shifts s 2 G and Z 2 Gc such that g� s 2 Axx� and
Z� g 2 Axx; and, in (7.8b), for each g 2 F dx, the
sums are extended to all frequency shifts s 2 G

and Z 2 Gc such that g� s 2 Axx and Z� g 2 Axx� .
Eqs. (7.8a) and (7.8b) can be re-expressed in the

frequency domain:X
s2G

S
g�s
xx� ðf � sÞHsðf � sÞ

þ
X
Z2Gc

SZ�g
xx ðZ� f Þ�Hc

Zðf � ZÞ

¼ S
g
dx�
ðf Þ 8g 2 Fdx� , ð7:9aÞX

s2G

Sg�s
xx ðf � sÞHsðf � sÞ

þ
X
Z2Gc

S
Z�g
xx� ðZ� f Þ�Hc

Zðf � ZÞ

¼ S
g
dxðf Þ 8g 2 Fdx, ð7:9bÞ

where Hsðf Þ and Hc
Zðf Þ are the Fourier transforms

of hsðtÞ and hc
ZðtÞ, respectively.

Applications of FRESH filtering to interference
suppression have been considered in [7.56,7.58,
7.68,7.73,7.76,7.77,7.79–7.81,7.85,7.94,7.98].
Adaptive FRESH filtering is addressed in [7.11,
7.14,7.19,7.20,7.21,7.23,7.24,7.27,7.30,7.46,7.57,7.69,
7.74,7.75,7.81].
Cyclic Wiener filtering or FRESH filtering can

be recognized to be linked to FSE’s, RAKE filters,
adaptive demodulators, and LMMSE despreaders
for recovery of baseband symbol data from PAM,
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GMSK/GFSK, and DSSS signals, and for separa-
tion of baseband symbol streams in overlapped
signal environments, as well as multicarrier or
direct frequency diversity spread spectrum systems
for adaptive transmission and combining. In
particular, on blind and nonblind adaptive demo-
dulation of PAM signals and LMMSE blind
despreading of short-code DSSS/CDMA signals
using FSE’s and RAKE filtering structures, see
[7.12,7.15–7.17,7.28,7.29,7.36,7.38,7.39,7.44,7.48,
7.50,7.51,7.53,7.59,7.61,7.65–7.67]. On direct fre-
quency-diverse multicarrier transceivers, see
[7.32–7.34,7.52].

Patents of inventions for the analysis and design
of communications systems exploiting cyclostatio-
narity are [7.35,7.37,7.42,7.45,7.70,7.83,7.86,7.87,
7.92,7.95,7.96,7.99–7.101]. Patents of inventions
exploiting the FRESH filtering are [7.55,7.93].
8. Synchronization

8.1. Spectral line generation

Let xðtÞ be a real-valued second-order wide-
sense ACS time series. According to the results of
Section 3.3, the second-order lag product xðtþ

tÞxðtÞ can be decomposed into the sum of its
almost-periodic component and a residual term
‘xðt; tÞ not containing any finite-strength additive
sinewave component (see (3.44) and (3.46)):

xðtþ tÞxðtÞ ¼ Efagfxðtþ tÞxðtÞg þ ‘xðt; tÞ

¼
X
a2A

Ra
xðtÞe

j2pat þ ‘xðt; tÞ, ð8:1Þ

where

h‘xðt; tÞe�j2patit � 0 8a 2 R. (8.2)

For communications signals, the cycle frequen-
cies a 2 A are related to parameters such as
sinewave carrier frequency, pulse rate, symbol
rate, frame rate, sampling frequency, etc. (see
Section 5). Therefore, the extraction of the almost-
periodic component in (8.1) leads to a signal
suitable for synchronization purposes. For exam-
ple, if xðtÞ is the binary PAM signal defined in (5.6)
with qðtÞ real and duration limited to an interval
strictly less than T0, and ak 2 f�1; 1g, then it
follows that

x2ðtÞ ¼
X
k2Z

q2ðt� kT0Þ (8.3)

and ‘xðt; 0Þ ¼ 0. Therefore, the synchronization
signal x2ðtÞ is periodic with period T0.
More generally, by definition, ACS signals

enable spectral lines to be generated by passage
through a stable nonlinear time-invariant trans-
formation (see Sections 10.4 and 13). That is,
quadratic or higher-order nonlinear time-invariant
transformations of an ACS signal give rise to time
series containing finite-strength additive sinewave
components whose frequencies are the second or
higher-order cycle frequencies of the original
signal. All synchronization schemes can be recog-
nized to exploit the second- or higher-order
cyclostationarity features of signals [8.13]. Cyclo-
stationarity properties are exploited for synchro-
nization in [8.1–8.36].
The spectral analysis of timing waveforms with

re-generated spectral lines is treated in
[8.1,8.8,8.11,8.13–8.15]. Phase-lock loops are ana-
lyzed in [8.2,8.5–8.7]. Blind or non-data-aided
synchronization algorithms are described in
[8.20–8.26,8.28–8.33,8.35,8.36]. See also [2.8,5.1].
Patents on synchronization techniques exploit-

ing cyclostationarity are [8.17,8.27,8.34].
9. Signal parameter and waveform estimation

Cyclostationarity properties can be exploited to
design signal selective algorithms for signal para-
meter and waveform estimation [9.1–9.100]. In
fact, if the desired and interfering signals have
different cyclic parameters such as carrier fre-
quency or baud rate, then they exhibit cyclosta-
tionarity at different cycle frequencies and,
consequently, parameters of the desired signal
can be extracted by estimating cyclic statistics of
the received data, consisting of desired signal plus
interfering signal, at a cycle frequency exhibited by
the desired signal but not by the interference.
This signal selectivity by exploitation of cyclosta-
tionarity was first suggested in [4.8]. Parameters
that can be estimated in the presence of inter-
ference and/or high noise include carrier frequency
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and phase, pulse rate and phase, signal power
level, modulation indices, bandwidths, time- and
frequency-difference of arrival, direction of arri-
val, and so on.

Signal selective time-difference-of-arrival esti-
mation algorithms are considered in [9.11,9.12,
9.19,9.31,9.33,9.36–9.38,9.54,9.56,9.72,9.75,9.83].
In [9.84,9.90], both time-difference-of-arrival and
frequency-difference-of arrival are estimated. Ar-
ray processing problems, including spatial filtering
and direction finding, are treated in [7.15,9.7,9.9,
9.10,9.15,9.17,9.18,9.20–9.22,9.26–9.30,9.32,9.34,
9.39–9.44,9.47–9.50,9.53,9.57–9.65,9.68,9.73,9.74,
9.79,9.80,9.82,9.86–9.88,9.91,9.94,9.95,9.97,9.99,9.100].

The polynomial-phase signal parameter estima-
tion is addressed in [9.67,9.71,9.78,9.93]. Harmo-
nics in additive and multiplicative noise are
considered in [9.55,9.66,9.69,9.70,9.76,9.77]. But,
there are difficulties in application of some of this
work—difficulties associated with lack of ergodic
properties of stochastic-process models adopted
for polynomial-phase signals and signals with
coupled harmonics.

On this subject see the general treatments
[2.2,2.5,2.8,2.9,2.11], and also see [3.23,3.60,5.12,
7.1,7.2,7.7,7.19,7.21,7.24,8.24,11.1,21.6].

Patents of inventions on signal parameter and
waveform estimation exploiting cyclostationarity
are [9.16,9.45,9.46,9.52,9.81,9.96].
10. Channel identification and equalization

10.1. General aspects

Cyclostationarity-based techniques have been
exploited for channel identification and equaliza-
tion [10.1–10.57]. Linear and nonlinear systems,
and time-invariant, periodically and almost-peri-
odically time-variant systems, have been consid-
ered. Also, techniques for noisy input/output
measurement, and blind adaptation algorithms,
have been developed for LTI systems.

On this subject see the general treatments
[2.2,2.5,2.8,2.9,2.11], and also see [7.25,10.36,8.24,
9.59,13.20,13.28,14.11].
Patents of inventions on blind system identifica-
tion exploiting cyclostationarity are [10.3,10.6,
10.10,10.11,10.39,10.56].

10.2. LTI-system identification with noisy-

measurements

Cyclostationarity-based techniques can be
exploited in channel identification and equaliza-
tion problems in order to separate the desired and
disturbance contributions in noisy input/output
measurements, provided that there is at least one
cycle frequency of the desired signal that is not
shared by the disturbance.
Let us consider the problem of estimating the

impulse-response function hðtÞ or, equivalently, the
harmonic-response function:

Hðf Þ9
Z
R

hðtÞe�j2pft dt (10.1)

of an LTI system with input/output relation

yðtÞ ¼ hðtÞ � xðtÞ (10.2)

on the basis of the observed noisy signals vðtÞ and
zðtÞ

vðtÞ ¼ xðtÞ þ nðtÞ, (10.3)

zðtÞ ¼ yðtÞ þmðtÞ, (10.4)

where xðtÞ, nðtÞ, and mðtÞ are zero-mean time
series.
By assuming x1 ¼ x2 ¼ x, y1 ¼ y, y2 ¼ x, h1 ¼ h

(LTI), and h2 ¼ d in (3.77), and choosing ð�Þ to be
conjugation, (3.81) specializes to

Sa
yx� ðf Þ ¼ Sa

xx� ðf ÞHðf Þ. (10.5)

Therefore, from the model (10.3) and (10.4), we
obtain

Sa
vv� ðf Þ ¼ Sa

xx� ðf Þ þ Sa
nn� ðf Þ, (10.6)

Sa
zv� ðf Þ ¼ Sa

yx� ðf Þ þ Sa
mn� ðf Þ

¼ Sa
xx� ðf ÞHðf Þ þ Sa

mn� ðf Þ ð10:7Þ

provided that xðtÞ is uncorrelated with both nðtÞ

and mðtÞ.
Eqs. (10.6) and (10.7) reveal the ability of

cyclostationarity-based algorithms to be signal
selective. In fact, under the assumption that nðtÞ
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does not exhibit cyclostationarity at cycle fre-
quency a (i.e., Sa

nn� ðf Þ � 0) and nðtÞ and mðtÞ do
not exhibit joint cyclostationarity with cycle
frequency a (i.e., Sa

mn� ðf Þ � 0), the harmonic-
response function for the system is given by

Hðf Þ ¼
Sa

yx� ðf Þ

Sa
xx� ðf Þ

¼
Sa

zv� ðf Þ

Sa
vv� ðf Þ

. (10.8)

That is, Hðf Þ can be expressed in terms of the
cyclic spectra of the noisy input and output
signals. Therefore, (10.8) provides a system identi-
fication formula that is intrinsically immune to the
effects of noise and interference as first observed in
[2.8,10.5]. Thus, this identification method is
highly tolerant to disturbances in practice, pro-
vided that a sufficiently long integration time is
used for the cyclic spectral estimates.

The identification of LTI systems based on noisy
input/output measurements is considered in [2.5,
2.8,9.11,9.12,9.36,9.37,10.5,10.12,10.14,10.18,10.20,
10.24,10.55].

10.3. Blind LTI-system identification and

equalization

By specializing (3.84) to the case of the LTI
system (10.2), we get

Sa
yy� ðf Þ ¼ Sa

xx� ðf ÞHðf ÞH
�ðf � aÞ (10.9)

which, for a ¼ 0, reduces to the input/output
relationship in terms of power spectra:

S0
yy� ðf Þ ¼ S0

xx� ðf ÞjHðf Þj
2. (10.10)

From (10.9) and (10.10) it follows that input/output
relationships for LTI systems in terms of cyclic
statistics, unlike those in terms of autocorrelation
functions and power spectra, preserve phase in-
formation of the harmonic-response function Hðf Þ.
Thus, cyclostationarity properties of the output
signal are suitable to be exploited for recovering
both phase and magnitude of the system harmonic-
response function as first observed in [10.7].

Cyclostationarity properties are exploited for
blind identification (without measurements of the
system input) of linear systems and for blind
equalization techniques in [9.59,10.1,10.7,10.15,
10.16,10.19,10.21,10.22,10.25,10.26,10.28–10.33,
10.36–10.38,10.42–10.45,10.47,10.48,10.50–10.53].
10.4. Nonlinear-system identification

Let yðtÞ the output signal of a Volterra system
excited by the input signal xðtÞ:

yðtÞ ¼
Xþ1
n¼1

Z
Rn

knðt1; . . . ; tnÞxðtþ t1Þ � � �

xðtþ tnÞdt1 � � � dtn. ð10:11Þ

Accounting for the results of Sections 3.3 and 13,
the input lag-product waveform can be decom-
posed into the sum of an almost-periodic compo-
nent, referred to as the temporal moment function,
and a residual term not containing any finite-
strength additive sinewave component (see (13.3)):

xðtþ t1Þ � � � xðtþ tnÞ ¼
X
a2Ax

Ra
xðsÞe

j2pat þ ‘xðt; sÞ.

(10.12)

Thus, identification and equalization techniques
for Volterra systems excited by ACS signals make
use of higher-order cyclostationarity properties. In
fact, there are potentially substantial advantages
to using cyclostationary input signals, relative to
stationary input signals, for purposes of Volterra
system modelling and identification as first ob-
served in [10.13].
Both time-invariant and almost-periodically

time-variant nonlinear systems are treated in
[10.4,10.8,10.13,10.23,10.35,10.41,10.46,13.16].
11. Signal detection and classification, and source

separation

Signal detection techniques designed for cyclos-
tationary signals take account of the periodicity or
almost periodicity of the signal autocorrelation
function [11.1–11.39]. Single-cycle and multicycle
detectors exploit one or multiple cycle frequencies,
respectively. The detection problem for additive
Gaussian noise is addressed in [11.2,11.5,11.7,
11.9–11.11,11.15,11.19,11.21,11.26,11.27,11.32],
and for non-Gaussian noise, in [11.16,11.18,
11.24,11.25]. The problem of signal detection in
cyclostationary noise is treated in [11.2,11.8,
11.12,11.17]. Tests for the presence of cyclostatio-
narity are proposed in [11.14,11.20,11.31,12.31] by



ARTICLE IN PRESS

W.A. Gardner et al. / Signal Processing 86 (2006) 639–697666
exploiting the asymptotic properties of the cyclic
correlogram and in [11.6,11.13] by exploiting the
properties of the support of the spectral correla-
tion function. Modulation classification techni-
ques are proposed in [11.23,11.28–11.30]; see also
[13.22]. The problem of cyclostationary source
separation is considered in [11.34,11.35,11.37,
11.39].

On this subject see the general treatments
[2.5,2.11,2.13], and also see [3.60,7.72,7.74,9.13,
9.14,9.19,11.11,13.30,13.31].

Patents on detection and signal recognition
exploiting cyclostationarity are [11.22,11.36,11.38].

See also the URL http://www.sspi-tech.
com for information on general purpose, auto-
matic, communication-signal classification software
systems.
12. Periodic AR and ARMA modelling and

prediction

Periodic autoregressive (AR) and autoregressive
moving average (ARMA) (discrete-time) systems
are characterized by input/output relationships
described by difference equations with periodically
time-varying coefficients and system orders
[12.36,12.37]:

XPðnÞ
k¼0

akðnÞyðn� kÞ ¼
XQðnÞ
m¼0

bmðnÞxðn�mÞ, (12.1)

where xðnÞ and yðnÞ are the input and output
signals, respectively, and the coefficients akðnÞ and
bmðnÞ and the orders PðnÞ and QðnÞ are periodic
functions with the same period N0. Thus, periodic
ARMA systems are a special case of discrete-time
periodically time-varying systems. When they are
excited by a stationary or cyclostationary input
signal xðnÞ, they give rise to a cyclostationary
output signal yðnÞ. When they are excited by an
almost-cyclostationary input signal, they give rise
to an almost-cyclostationary output signal. The
problem of fitting an AR model to data yðnÞ is
equivalent to the problem of solving for a linear
predictor for yðnÞ, where xðnÞ is the model-fitting-
error time series.
Periodic AR and ARMA systems are treated in
[12.1–12.53]. The modelling and prediction pro-
blem is treated in [12.1–12.8,12.12–12.16,12.19,
12.21,12.23–12.26,12.28–12.30,12.32,12.34–12.37,
12.41,12.43,12.45,12.46,12.50,12.52]. The para-
meter estimation problem is addressed in [12.9,
12.11,12.17,12.22,12.27,12.31,12.36,12.38–12.40,
12.47–12.49,12.51].
On the subject of periodic AR and ARMA

modelling and prediction, see the general treat-
ments [2.5,2.8,2.11,2.13], and also see [3.30,3.69,
14.23,15.3] for the prediction problem; [4.3,4.5,
4.12,4.27,4.29] for the parameter estimation pro-
blem; [6.2,6.9,6.13,6.16] for modelling of atmo-
spheric and hydrologic signals; [16.1,16.2,16.5,
16.7] for applications to econometrics; and [21.4]
for application to modelling helicopter noise.
13. Higher-order statistics

13.1. Introduction

As first defined in [13.4], a signal xðtÞ is said to
exhibit higher-order cyclostationarity (HOCS) if
there exists a homogeneous non-linear transfor-
mation of xðtÞ of order greater than two such that
the output of this transformation contains finite-
strength additive sinewave components. Motiva-
tions to study HOCS properties of signals include
the following:
(1)
 Signals not exhibiting second-order cyclosta-
tionarity can exhibit HOCS [13.13].
(2)
 Narrow-band filtering can destroy second-
order (wide-sense) cyclostationarity. In fact,
let us consider the input/output relationship
for LTI systems in terms of cyclic spectra
(10.9). If the bandwidth of Hðf Þ is smaller than
the smallest nonzero second-order cycle fre-
quency of the input signal xðtÞ, then the output
signal yðtÞ does not exhibit second-order wide-
sense cyclostationarity. The signal yðtÞ, how-
ever, can exhibit HOCS (see also [3.13]).
(3)
 The exploitation of HOCS can be useful for
signal classification [13.22]. Specifically, differ-
ent communication signals, even if they
exhibit the same second-order cyclostationarity

http://www.sspi-tech.com
http://www.sspi-tech.com
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properties, can exhibit different cyclic features
of higher order. Moreover, different behaviors
can be obtained for different conjugation
configurations [13.9,13.14,13.17].
(4)
 Exploitation of HOCS can be useful for many
estimation problems, as outlined below.
On the subject of higher-order cyclostationarity
and its applications see [13.1–13.31]; in addition,
see [3.81] for the wavelet decomposition; [4.56] for
estimation issues; [5.23] for the cyclic higher-order
properties of CPM signals; [7.74] for blind
adaptive detection; [8.8] for the spectral analysis
of PAM signals; [9.55,9.61,9.67,9.69–9.71,9.80,
9.85,9.93,9.99] for application to signal parameter
and waveform estimation; [10.13,10.23,10.24,
10.34,10.40,10.41,10.46] for applications to non-
linear system identification and equalization;
[11.20] for applications to signal detection;
[11.28–11.30] for applications to signal classifica-
tion; [11.34] for applications to source sepa-
ration; [15.18,15.21,15.23] for applications in
acoustics and mechanics; [21.9–21.11,21.13] for
the higher-order characterization of generalized
almost-cyclostationary signals.

13.2. Higher-order cyclic statistics

In this section, cyclic higher-order (joint) statis-
tics for both continuous-time and discrete-time
time series are presented in the FOT probability
framework as first introduced for continuous time
in [13.4,13.5] and developed in [13.9,13.13,13.14,
13.17], and, for discrete and continuous time, in
[13.20]. For treatments within the stochastic
framework, see [13.10,13.12,13.15,13.18,13.26] or
extend to higher-order statistics the link between
the two frameworks discussed in Section 3.4.

13.2.1. Continuous-time time series

Let us consider the column vector
xðtÞ9½xð�Þ11 ðtÞ; . . . ;x

ð�ÞN
N ðtÞ�T whose components

are N not necessarily distinct complex-valued
continuous-time time-series and ð�Þk represents
optional complex conjugation of the kth signal
xkðtÞ. The N time-series exhibit joint Nth-order
wide-sense cyclostationarity with cycle frequency
aa0 if at least one of the Nth-order cyclic temporal
cross-moment functions (CTCMFs)

Ra
xðsÞ9

YN
k¼1

x
ð�Þk
k ðtþ tkÞe

�j2pat

* +
t

, (13.1)

where s9½t1; . . . ; tN �
T is not identically zero. Thus,

N time series exhibit wide-sense joint Nth-order
cyclostationarity with cycle frequency aa0 if, for
some s, the lag product waveform

Lxðt; sÞ9
YN
k¼1

x
ð�Þk
k ðtþ tkÞ (13.2)

contains a finite-strength additive sinewave com-
ponent with frequency a, whose amplitude and
phase are the magnitude and phase of Ra

xðsÞ,
respectively.
The Nth-oder temporal cross-moment function

(TCMF) is defined by

Rxðt; sÞ9EfagfLxðt; sÞg

¼
X
a2Ax

Ra
xðsÞe

j2pat ð13:3Þ

where Ax is the countable set (not depending on s)
of the Nth-order cycle frequencies of the time
series x

ð�Þ1
1 ðtþ t1Þ; . . . ;x

ð�ÞN
N ðtþ tNÞ (for the given

conjugation configuration).
The N-dimensional Fourier transform of the

CTCMF

Sa
xðf Þ9

Z
RN

Ra
xðsÞe

�j2pf Ts ds, (13.4)

where f 9½f 1; . . . ; f N �
T, is called the Nth-order

cyclic spectral cross-moment function (CSCMF)
and can be written as

Sa
xðf Þ ¼ Sa

xðf
0
Þdðf T1� aÞ, (13.5)

where 1 is the vector ½1; . . . ; 1�T, and prime denotes
the operator that transforms a vector
u9½u1; . . . ; uK �

T into the reduced-dimension ver-
sion u09½u1; . . . ; uK�1�

T. The function Sa
xðf
0
Þ, re-

ferred to as the reduced-dimension CSCMF (RD-
CSCMF), can be expressed as

Sa
xðf
0
Þ ¼

Z
RN�1

Ra
xðs
0Þe�j2pf

0Ts0 ds0, (13.6)
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where

Ra
xðs
0Þ9Ra

xðsÞjtN¼0
(13.7)

is the reduced-dimension CTCMF (RD-CTCMF).
The RD-CSCMF can also be expressed as

Sa
xðf
0
Þ ¼ lim

T!1
lim

Z!1

1

Z

Z tþZ=2

t�Z=2

1

T

�X
ð�ÞN
N ;T ðu; ð�ÞNða� f

0T1ÞÞ

�
YN�1
k¼1

X
ð�Þk
k;T ðu; ð�Þkf kÞdu, ð13:8Þ

where

X k;T ðt; f kÞ9
Z tþT=2

t�T=2
xkðsÞe

�j2pf ks ds (13.9)

and ð�Þk denotes an optional minus sign that is
linked to the optional conjugation ð�Þk. Eq. (13.8)
reveals that N time-series exhibit joint Nth-order
wide-sense cyclostationarity with cycle frequency a
(i.e., Ra

xðsÞc0 or, equivalently, Sa
xðf
0
Þc0) if and

only if the Nth-order temporal cross-moment of
their spectral components at frequencies f k, whose
sum is equal to a, is nonzero. In fact, by using

hBðtÞ9B rectðBtÞ (13.10)

with B91=T and rectðtÞ ¼ 1 if jtjp1
2 and rectðtÞ ¼

0 if jtj41
2
, Eq. (13.8) can be re-written as

Sa
xðf
0
Þ ¼ lim

B!0
lim

Z!1

1

Z

Z tþZ=2

t�Z=2

1

BN�1
½ðx
ð�ÞN
N ðuÞ

�e�j2pða�f
0T1ÞuÞ � hBðuÞ�

�
YN�1
k¼1

½ðx
ð�Þk
k ðuÞe

�j2pf kuÞ � hBðuÞ�du ð13:11Þ

which is the Nth-order temporal cross-moment of
low-pass-filtered versions of the frequency-shifted
signals x

ð�Þk
k ðtÞe

�j2pf kt when the sum of the fre-
quency shifts is equal to a and the bandwidth B

approaches zero. Such a property is the general-
ization to the order N42 of the spectral correla-
tion property of signals that exhibit second-order
cyclostationarity. Moreover, relation (13.4) be-
tween the Nth-order cyclic spectral moment
function (13.5), (13.8) and Nth-order cyclic tem-
poral moment (13.1) is, at first pointed out in
[13.4], the Nth-order generalization of the Cyclic

Wiener Relation.
Let us note that in general the function Ra

xðs
0Þ is

not absolutely integrable because it does not in
general decay as ks0k ! 1, but rather it oscillates.
Thus, Sa

xðf
0
Þ can contain impulses and, conse-

quently, Sa
xðf Þ can contain products of impulses.

In [13.13], it is shown that the RD-CSCMF Sb
xðf
0
Þ

can contain impulsive terms if the vector f with
f N ¼ b�

PN�1
k¼1 f k lies on the b-submanifold; i.e.,

if there exists at least one partition fm1; . . . ;mpg of
f1; . . . ;Ng with p41 such that each sum ami

¼P
k2mi

f k is a jmijth-order cycle frequency of xðtÞ,
where jmij is the number of elements in mi.
In the spectral-frequency domain, a well-be-

haved function can be introduced starting from the
Nth-order temporal cross-cumulant function
(TCCF):

Cxðt; sÞ9cumfx
ð�Þk
k ðtþ tkÞ; k ¼ 1; . . . ;Ng

¼ ð�jÞN
@N

@o1 � � � @oN

loge

Efag exp j
XN

k¼1

okx
ð�Þk
k ðtþ tkÞ

" #( )�����
x¼0

¼
X
P

ð�1Þp�1ðp� 1Þ!
Yp

i¼1

Rxmi
ðt; smi
Þ

" #
,

ð13:12Þ

where x9½o1; . . . ;oN �
T, P is the set of distinct

partitions of f1; . . . ;Ng, each constituted by the
subsets fmi; i ¼ 1; . . . ; pg, xmi

is the jmij-dimen-
sional vector whose components are those of x
having indices in mi. In (13.12), the almost-periodic
component extraction operator Efagf�g extracts the
frequencies of the 2N-variate fraction-of-time joint
probability density function of the real and
imaginary parts of the time-series xkðtÞ ðk ¼

1; . . . ;NÞ according to

Efagfgðx
ð�Þ1
1 ðtþ t1Þ; . . . ;x

ð�ÞN
N ðtþ tNÞÞg

¼

Z
R2N

gðxð�Þ11 ; . . . ; xð�ÞNN Þ

�f fagx1rðtþt1Þx1iðtþt1Þ���xNrðtþtN ÞxNiðtþtN Þ

ðx1r; x1i; . . . ; xNr; xNiÞ

�dx1r dx1i � � � dxNr dxNi, ð13:13Þ
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where xkrðtÞ9Re½xkðtÞ�, xkiðtÞ9Im½xkðtÞ�, xkr9
Re½xk�, xki9Im½xk�, and

gðxð�Þ11 ; . . . ; xð�ÞNN Þ9 exp j
XN

k¼1

okx
ð�Þk
k

" #
. (13.14)

In fact, by taking the N-dimensional Fourier
transform of the coefficient of the Fourier series
expansion of the almost-periodic function (13.12)

Cb
xðsÞ9hCxðt; sÞe

�j2pbtit (13.15)

which is referred to as the Nth-order cyclic

temporal cross-cumulant function (CTCCF), one
obtains the Nth-order cyclic spectral cross-cumu-

lant function (CSCCF) Pb
xðf Þ. It can be written as

Pb
xðf Þ ¼ Pb

xðf
0
Þdðf T1� bÞ, (13.16)

where

Pb
xðf
0
Þ9
Z
RN�1

Cb
xðs
0Þe�j2pf 0Ts0 ds0 (13.17)

is the Nth-order cyclic cross-polyspectrum (CCP),
and

Cb
xðs
0Þ9Cb

xðsÞjtN¼0
(13.18)

is called the reduced-dimension CTCCF (RD-
CTCCF). The cyclic cross-polyspectrum is a well-
behaved function under the mild conditions that
the time-series xNðtÞ and xkðtþ tkÞ ðk ¼

1; . . . ;N � 1Þ are asymptotically (jtkj ! 1) inde-
pendent (in the FOT probability sense) so that
Cb

xðs
0Þ ! 0 as ks0k ! 1 and, moreover, there

exists an �40 such that jCb
xðs
0Þj ¼ oðks0k�Nþ1��Þ as

ks0k ! 1. Furthermore, except on a b-submani-
fold, the CCP Pb

xðf
0
Þ is coincident with the RD-

CSCMF Sb
xðf
0
Þ.

The CCP can also be expressed as

Pb
xðf
0
Þ ¼ lim

T!1

1

T
cumfX

ð�ÞN
N ;T ðt; ð�ÞN ða� f

0T1ÞÞ,

X
ð�Þk
k;T ðt; ð�Þkf kÞ,

k ¼ 1; . . . ;N � 1g, ð13:19Þ

where, in the computation of the cumulant in
(13.19), the stationary FOT expectation operation
can be adopted as T !1. Eq. (13.19) reveals that
the CCP of N time series is the Nth-order cross-
cumulant of their spectral components at frequen-
cies f k whose sum is equal to b. In fact, Eq. (13.19)
can be re-written as

Pb
xðf
0
Þ ¼ lim

B!0

1

BN�1
cumf½ðx

ð�ÞN
N ðtÞe�j2pða�f

0T1ÞtÞ

� hBðtÞ�; ½ðx
ð�Þk
k ðtÞe

�j2pf ktÞ � hBðtÞ�,

k ¼ 1; . . . ;N � 1g ð13:20Þ

which is the Nth-order temporal cross-cumulant of
low-pass filtered versions of the frequency-shifted
signals x

ð�Þk
k ðtÞe

�j2pf kt when the sum of the fre-
quency shifts is equal to b and the bandwidth B

approaches zero.
As first shown in [13.5] and then, in more detail,

in [13.9,13.13,13.15,13.17], the Nth-order temporal
cumulant function of a time series provides a
mathematical characterization of the notion of a
pure Nth-order sinewave. It is that part of the
sinewave present in the Nth-order lag product
waveform that remains after removal of all parts
that result from products of sinewaves in lower
order lag products obtained by factoring the Nth-
order product.
13.2.2. Discrete-time time series

In accordance with the definition for the
continuous-time case, N not necessarily distinct
discrete-time complex-valued time series xkðnÞ,
n 2 Z, exhibit joint Nth-order wide-sense cyclos-
tationarity with cycle frequency eaa0 ðea 2 ½�1

2;
1
2½Þ if

at least one of the Nth-order CTCMF’s

eReaxðmÞ9 lim
N!1

1

2N þ 1

XN

n¼�N

YN
k¼1

x
ð�Þk
k ðnþmkÞe

�j2pean

(13.21)

is not identically zero. In (13.21), xðnÞ9
½x
ð�Þ1
1 ðnÞ; . . . ;x

ð�ÞN
N ðnÞ�T and m9½m1; . . . ;mN �

T.
The magnitude and phase of the CTCMF

(13.21) are the amplitude and phase of the
sinewave component with frequency ea contained
in the discrete-time lag product whose temporal
expected value is the discrete-time Nth-order
TCMF.
The N-fold discrete Fourier transform of the

CTCMF

eSeaxðmÞ9 X
m2ZN

eReaxðmÞe�j2pmTm, (13.22)
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where m9½n1; . . . ; nN �
T, is called the Nth-order

CSCMF and can be written as

eSeaxðmÞ ¼ eSeaxðm0Þ Xþ1
r¼�1

dðea� mT1� rÞ, (13.23)

where the function eSeaxðm0Þ is the Nth-order RD-
CSCMF, which can be expressed as the ðN � 1Þ-
fold discrete Fourier transform

eSeaxðm0Þ ¼ X
m02ZN�1

eReaxðm0Þe�j2pm
0Tm0 (13.24)

of the Nth-order RD-CTCMF

eReaxðm0Þ9eReaxðmÞjmN¼0
. (13.25)

Once the Nth-order discrete-time TCCF eCxðk;mÞ
is defined analogously to the continuous-time case,
the Nth-order CTCCF is given by

eCebxðmÞ9 lim
N!1

1

2N þ 1

XN

n¼�N

eCxðn;mÞe
�j2pebn.

(13.26)

Its discrete Fourier transform, referred to as the
Nth-order CSCCF, is given by

ePebxðmÞ ¼ ePebxðm0Þ Xþ1
r¼�1

dðeb� mT1� rÞ, (13.27)

where the function ePebxðm0Þ is referred to as the Nth-
order CCP, which can be expressed as the ðN � 1Þ-
fold discrete Fourier transform of the Nth-order
RD-CTCCF

eCebxðm0Þ9eCebxðmÞjmN¼0
. (13.28)

Finally, it can be easily shown that the following
periodicity properties hold:

eReaxðmÞ ¼ eReaþp

x ðmÞ; p 2 Z, (13.29)

eSeaxðmÞ ¼ eSeaþp

x ðm þ qÞ; p 2 Z; q 2 ZN , (13.30)

eCebxðmÞ ¼ eCebþp

x ðmÞ; p 2 Z, (13.31)

ePebxðmÞ ¼ ePebþp

x ðm þ qÞ; p 2 Z; q 2 ZN . (13.32)

Analogous relations can be stated for the reduced-
dimension statistics.
14. Applications to circuits, systems, and control

Applications of cyclostationarity to circuits,
systems, and control are in [14.1–14.31]. In circuit
theory, cyclostationarity has been exploited in
modelling noise [14.1,14.2,14.12,14.17,14.19,14.20,
14.24,14.26,14.28]. In system theory, cyclostation-
ary or almost cyclostationary signals arise in
dealing with periodically or almost-periodically
time variant systems (see Section 3.6) [14.4–14.8,
14.13,14.14,14.23,14.25]. In control theory, cyclos-
tationarity has been exploited in [14.3,14.10,14.16,
14.18,14.21,14.22].
On this subject, also see [9.4,9.59,10.5,10.24,

13.15,13.28,15.1,16.3].
Patents on applications of cyclostationarity to

system and circuit analysis and design are
[14.27,14.29,14.31].
15. Applications to acoustics and mechanics

Applications of cyclostationarity to acoustics
and mechanics are in [15.1–15.24]. Cyclostationar-
ity has been exploited in acoustics and mechanics
for modelling road traffic noise [15.2,15.3], for
analyzing music signals [15.6], and for describing
the vibration signals in mechanical systems. In
mechanical systems with moving parts, such as
engines, if some parameter such as speed, tem-
perature, and load torque can be assumed to be
constant, then the dynamic physical processes
generate vibrations that can be modelled as
originating from periodic mechanisms such as
rotation and reciprocation of gears, belts, chains,
shafts, propellers, pistons, and so on [2.5]. Conse-
quently, vibration signals exhibit periodic behavior
of one type or another with periods related to the
engine cycle. Often, the observed vibration signals
contain both an almost-periodic and an almost-
cyclostationary component [15.1,15.5,15.8,15.10,
15.14,15.18,15.23]. Even if the almost-cyclosta-
tionary component has a power smaller than the
power of the almost-periodic component, it can be
useful; for example it can be successfully exploited
in early diagnosis of gear faults [15.4,15.8,15.9,
15.11,15.13,15.14,15.16,15.19–15.21,15.24].
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Additional applications in the field of acoustics
and mechanics can be found in [4.33,4.43,4.49,
14.21,21.2].

Patents on applications of cyclostationarity to
engine diagnosis are [15.12,15.17].
16. Applications to econometrics

In high-frequency financial time series, such as
asset return, the repetitive patterns of openings
and closures of markets, the number of active
markets throughout the day, seasonally varying
preferences, and so forth, are sources of periodic
variations in financial-market volatility and other
statistical parameters. Autoregressive models with
periodically varying parameters provide appropri-
ate descriptions of seasonally varying economic
time series [16.1–16.13]. Furthermore, neglecting
the periodic behavior gives rise to a loss in forecast
efficiency [2.15,16.8,16.10].

On this subject see also [12.40].
17. Applications to biology

Applications of cyclostationarity to biology
are in [17.1–17.18]. Applications of the concept
of spectral redundancy (spectral correlation
or cyclostationarity) have been proposed in
medical image signal processing [17.6,17.8], and
nondestructive evaluation [17.2]. Methods of
averaging were developed for estimating the
generalized spectrum that allow for the meaningful
characterization of phase information when
classic assumptions of stationarity do not hold.
This has led to many significant performance
improvements in ultrasonic tissue characteriza-
tion, particularly for liver and breast tissues
[17.5,17.10–17.18].

A patent on the application of cyclostationarity
to cholesterol detection is [17.4].
18. Level crossings

Level crossings of cyclostationary signals have
been characterized in [18.1–18.10].
19. Queueing

Exploitation of cyclostationarity in queueing
theory in computer networks is treated in
[19.1–19.4,19.6]. Queueing theory in car traffic is
treated in [19.5].
On this subject, also see [14.8].
20. Cyclostationary random fields

A periodically correlated or cyclostationary
random field is a second-order random field whose
mean and correlation have periodic structure
[20.6,20.7]. Specifically, a random field xðn1; n2Þ

indexed on Z2 is called strongly periodically
correlated with period ðN01;N02Þ if and only if
there exists no smaller N0140 and N0240 for
which the mean and correlation satisfy

Efxðn1 þN01; n2 þN02Þg ¼ Efxðn1; n2Þg, (20.1)

Efxðn1 þN01; n2 þN02Þx
�ðn01 þN01; n

0
2 þN02Þg

¼ Efxðn1; n2Þx
�ðn01; n

0
2Þg ð20:2Þ

for all n1, n2, n01, n02 2 Z. Cyclostationary random
fields are treated in [20.1–20.7].
21. Generalizations of cyclostationarity

21.1. General aspects

Generalizations of cyclostationary processes
and time series are treated in [21.1–21.17]. The
problem of statistical function estimation for
general nonstationary persistent signals is ad-
dressed in [21.1,21.5] and limitations of previously
proposed approaches are exposed. In
[21.2–21.4,21.8], the class of the correlation auto-
regressive processes is studied. Nonstationary
signals that are not ACS can arise from linear
time-variant, but not almost-periodically time-
variant, transformations of ACS signals. Such
transformations occur, for example, in mobile
communications when the product of transmitted-
signal bandwidth and observation interval is not
much smaller than the ratio between the pro-
pagation speed in the medium and the relative
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radial speed between transmitter and receiver
[8.35,21.11]. Two models for the output sig-
nals of such transformations are the generalized
almost-cyclostationary signals [21.7,21.9–21.11,
21.13,21.15–21.17], and the spectrally correlated
signals [21.6,21.12,21.14]. Moreover, communica-
tions signals with parameters, such as the carrier
frequency and the baud rate, that vary slowly
with time cannot be modelled as ACS but,
rather, can be modelled as generalized almost-
cyclostationary if the observation interval is large
enough [21.9].
21.2. Generalized almost-cyclostationary signals

A continuous-time complex-valued time series
xðtÞ is said to be wide-sense generalized almost-

cyclostationary (GACS) if the almost-periodic
component of its second-order lag product admits
a (generalized) Fourier series expansion with both
coefficients and frequencies depending on the lag
parameter t [21.9,21.10]:

Efagfxðtþ tÞx�ðtÞg ¼
X
n2I

R
ðnÞ
xx� ðtÞe

j2panðtÞt. (21.1)

In (21.1), I is a countable set, the frequencies anðtÞ
are referred to as lag-dependent cycle frequencies,
and the coefficients, referred to as generalized

cyclic autocorrelation functions, are given by

R
ðnÞ
xx� ðtÞ9hxðtþ tÞx�ðtÞe�j2panðtÞtit. (21.2)

For GACS signals, the cyclic autocorrelation
function can be expressed in terms of the general-
ized cyclic autocorrelation functions by the follow-
ing relationship:

Ra
xx� ðtÞ ¼

X
n2I

R
ðnÞ
xx� ðtÞda�anðtÞ. (21.3)

Moreover, it results that

At9fa 2 R : Ra
xx� ðtÞa0g

¼
[
n2I

fa 2 R : a ¼ anðtÞg. ð21:4Þ

That is, for GACS signals, the support in the ða; tÞ
plane of the cyclic autocorrelation function Ra

xx� ðtÞ
consists of a countable set of curves described by
the equations a ¼ anðtÞ, n 2 I. For the GACS
signals, the set

A9
[
t2R

At (21.5)

is not necessarily countable.
The ACS signals are obtained as the special case

of GACS signals for which the functions anðtÞ are
constant with respect to t and are equal to the
cycle frequencies. In such a case the support of the
cyclic autocorrelation function in the ða; tÞ plane
consists of lines parallel to the t axis and the
generalized cyclic autocorrelation functions are
coincident with the cyclic autocorrelation func-
tions. Moreover, the set A turns out to be
countable in this case (see (3.13)).
The higher-order characterization of the GACS

signals in the FOT probability framework is
provided in [21.9]. Linear filtering is addressed in
[21.10,21.11] where the concept of expectation of
the impulse-response function in the FOT prob-
ability framework is also introduced. The problem
of sampling a GACS signal is considered in [21.13]
where it is shown that the discrete-time signal
obtained by uniformly sampling a continuous-time
GACS signal is an ACS signal. The estimation of
the cyclic autocorrelation function for GACS
processes is addressed in [21.15,21.17] in the
stochastic process framework. In [21.16], a survey
of GACS signals is provided.

21.3. Spectrally correlated signals

A continuous-time complex-valued second-or-
der harmonizable stochastic process xðtÞ is said to
be spectrally correlated (SC) if its Loève bifre-

quency spectrum can be expressed as [21.14]

Sxx� ðf 1; f 2Þ9EfX ðf 1ÞX
�ðf 2Þg

¼
X
n2I

S
ðnÞ
xx� ðf 1Þdðf 2 �Cnðf 1ÞÞ, ð21:6Þ

where I is a countable set, the curves
f 2 ¼ Cnðf 1Þ; n 2 I, describe the support of
Sxx� ðf 1; f 2Þ, and the functions S

ðnÞ
xx� ðf 1Þ, referred

to as the spectral correlation density functions,
describe the density of the Loève bifrequency
spectrum on its support curves. The case of linear
support curves is considered in [21.6,21.12]. The
ACS processes are obtained as the special case of
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SC processes for which the support curves are lines
with unity slope.

The bifrequency spectral correlation density

function

S̄xx� ðf 1; f 2Þ9
X
n2I

S
ðnÞ
xx� ðf 1Þdf 2�Cnðf 1Þ (21.7)

is the density of the Loève bifrequency spectrum
on its support curves f 2 ¼ Cnðf 1Þ. In [21.14] it is
shown that, if the location of the support curves is
unknown, the bifrequency spectral correlation
density function S̄xx� ðf 1; f 2Þ can be reliably
estimated by the time-smoothed cross-periodo-
gram only if the slope of the support curves is not
too far from unity.
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simulation in electronic noise in semiconductor materi-

als and devices operating under cyclostationary condi-

tions, J. Comput. Electron. 2 (2003) 455–458.

[14.31] J.S. Roychowdhury, Apparatus and method for re-

duced-order modeling of time-varying systems and

computer storage medium containing the same, US

Patent No. 6,687,658, February 3, 2004.

[15.1] S. Braun, B. Seth, Analysis of repetitive mechanism

signature, J. Sound Vib. 70 (1980) 513–526.

[15.2] S. Yamaguchi, Y. Kato, A practical method of

predicting noise produced by road traffic controlled

by traffic signals, J. Acoust. Soc. Amer. 86 (1989)

2206–2214.

[15.3] Y. Kato, S. Yamaguchi, A prediction method for

probability distribution of road traffic noise at an

intersection, Acoust. Australia 18 (1990) 46–50.

[15.4] D. Koenig, J. Boehme, Application of cyclostationarity

and time-frequency analysis to engine car diagnostics,

in: Proceedings of International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), Adelaide,

Australia, 1994, 149–152.
[15.5] A.C. McCormick, A.K. Nandi, Cyclostationarity in

rotating machinery vibrations, Mech. Systems Signal

Process. 12 (2) (1998) 225–242.

[15.6] T.R. Black, K.D. Donohue, Pitch determination of

music signals using the generalized spectrum, in:

Proceedings of IEEE South-East Conference ’00,

Nashville, TN, 2000, pp. 104–109.

[15.7] T.R. Black, K.D. Donohue, Frequency correlation

analysis for periodic echoes, in: Proceedings of IEEE

South-East Conference ’00, Nashville, TN, 2000,

pp. 131–138.

[15.8] C. Capdessus, M. Sidahmed, J.L. Lacoume, Cyclosta-

tionary processes: application in gear faults early

diagnosis, Mech. Systems Signal Process. 14 (3) (2000)

371–385.

[15.9] G. Dalpiaz, A. Rivola, R. Rubini, Effectiveness and

sensitivity of vibration processing techniques for local

fault detection in gears, Mech. Systems Signal Process.

14 (3) (2000) 387–412.

[15.10] I. Antoniadis, G. Glossiotis, Cyclostationary analysis of

rolling-element bearing vibration signals, J. Sound Vib.

248 (5) (2001) 829–845.

[15.11] L. Bouillaut, M. Sidahmed, Cyclostationary approach

and bilinear approach: comparison, applications to

early diagnosis for helicopter gearbox and classification

method based on HOCS, Mech. Systems Signal Process.

15 (5) (2001) 923–943.

[15.12] G.F.P. Dusserre-Telmon, D. Flores, F. Prieux, Damage

detection of motor pieces, European Patent No.

1111364, June 27, 2001.

[15.13] R.B. Randall, J. Antoni, S. Chobsaard, The relation-

ship between spectral correlation and envelope analysis

in the diagnostics of bearing faults and other cyclosta-

tionary machine signals, Mech. Systems Signal Process.

15 (5) (2001) 945–962.

[15.14] J. Antoni, J. Daniere, F. Guillet, Effective vibration

analysis of IC engines using cyclostationarity, Part I—A

methodology for condition monitoring, J. Sound Vib.

257 (5) (2002) 815–837.

[15.15] J. Antoni, J. Daniere, F. Guillet, R.B. Randall,

Effective vibration analysis of IC engines using cyclos-

tationarity, Part II —New results on the reconstruction

of the cylinder pressure, J. Sound Vib. 257 (5) (2002)

839–856.

[15.16] J. Antoni, R.B. Randall, Differential diagnosis of gear

and bearing faults, ASME J. Vib. Acoust. 124 (2) (2002)

165–171.

[15.17] G.F.P. Dusserre-Telmon, D. Flores, F. Prieux, Process

for the detection of damage to components of an

engine, US Patent No. 6, 389, 887, May 21, 2002.

[15.18] A. Raad, J. Antoni, M. Sidahmed, Third-order cyclic

characterization of vibration signals in rotating

machinery, in: Proceedings of XI European Signal

Processing Conference (EUSIPCO’02), Tolouse,

France, 2002.

[15.19] J. Antoni, R.B. Randall, A stochastic model for

simulation and diagnostics of rolling element bearings



ARTICLE IN PRESS

W.A. Gardner et al. / Signal Processing 86 (2006) 639–697 695
with localized faults, ASME J. Vib. Acoust. 125 (3)

(2003) 282–289.

[15.20] L. Li, L. Qu, Cyclic statistics in rolling bearing

diagnosis, J. Sound Vib. 267 (2003) 253–265.

[15.21] A. Raad, Contributions to the higher-order cyclic

statistics: applications to gear faults, Ph.D. Disserta-
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