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Statistical Tests for Presence of Cyclostationarity 
Amod V. Dandawatk, Member, NEE,  and Georgios B. Giannakis, Senior Member, IEEE 

Abstract-Presence of kth-order cyclostationarity is defined in 
terms of nonvanishing cyclic-cumulants or polyspectr a. Relying 
upon the asymptotic normality and consistency of kth-order 
cyclic statistics, asymptotically optimal x2 tests are developed 
to detect presence of cycles in the kth-order cyclic cumulants 
or polyspectra, without assuming any specific distribu ion on the 
data. Constant false alarm rate tests are derived in both time- and 
frequency-domain and yield consistent estimates of pos! iible cycles 
present in the kth-order cyclic statistics. Explicit algorithms for 
k 5 4 are discussed. Existing approaches are rather empirical 
and deal only with k 5 2 case. Simulation results are presented 
to confirm the performance of the given tests. 

I. INTRODUCTION 

HE concept of (almost) cyclostationarity an( (almost) T periodically time-varying ensemble statistics I 141, [ 181, 
[21], [22] has gained a lot of interest in the engineering litera- 
ture lately. A discrete-time zero-mean (almost) cyclctstationary 
process, z ( i ) ,  is characterized by the property tha; its time- 
varying cowiance ~ 2 ~ ( t ; 7 )  = E{z(t)x( t  + T)} accepts a 
Fourier series (FS) with respect to time t, as 

czz( t ;  T) = c~,((Y; T ) e J Q t ,  
acdz 

where the Fourier coefficient C 2 z ( ~ ; ~ )  is called tlie cyclic- 
covariance at cycle-frequency a and 

A2 4 { a  : 0 5 (Y < 2~ and C ~ , ( ( Y ; T )  # 0). (2) 

Further, its time-varying spectrum S 2 , ( t ; ~ )  
czZ( t ;  7) e-jW7 can also be similarly expressed as 

E,“=-, 

~ , , ( t ; w )  = s2,(a;w)ejat (3) 
a E d 2  

where the Fourier coefficient 24, (a; w )  E, Caz (a ; 7)e- jwr 
is called the cyclic-spectrum. 

Cyclic-statistics have been used as tools for ,:xploiting 
cyclostationarity in several applications, including 4 :ommuni- 
cations [7], [8], signal processing [4], 151, [101-[131, 1161, 
[27], [29], hydrology [30], multivariate analysis [25], and array 
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processing [32], for developing improved SNR, parametric and 
nonparametric algorithms in nonstationary environments. 

An important assumption made in these algorithms is that 
the cycles present in the signal statistics of interest (e.g., the 
set .A2 of (2)) are known. This knowledge makes estimation 
of the ensemble-statistics possible, and allows for separation 
in the cyclic-domain of signals with distinct cycles. How- 
ever, in several applications, the cycle frequencies are not 
known a priori. For example, in processing of signals from 
a mechanically vibrating system one may not know the cycles 
arising due to unknown vibration modes. For other applications 
such as identification of periodically time-varying systems 
[4], [ l l ] ,  [29] or processing of signals with periodically 
missing observations [4], [5], [12], the knowledge of cycles 
is necessary to determine the unknown period. 

An attempt was made in [33] to define a “degree of 
cyclostationarity.” However, no statistical test was provided 
to check for the presence of cycles. An interesting graphical 
method for presence of second-order cyclostationarity was 
developed in [19] by modifying Goodman’s test for non- 
stationarity [15]. The resulting test is rather empirical and 
is not geared towards checking for presence of cycles, due 
to the nature of Goodman’s test. Further, with the growing 
interest in higher than second-order cyclostationarity [4]-[6], 
[9], [ 111-[ 131, [27], [29], there is also a need to detect presence 
of cycles in the kth-order cyclic-cumulants and polyspectra 
for k 2 3. 

In this paper, tests are developed to check for presence of 
cycles in the cyclic-covariance and spectrum by exhaustively 
searching over candidate cycles for which the correspond- 
ing cyclic-statistics are nonzero and statistically significant. 
Asymptotically x 2 ,  constant false alarm rate (CFAR) tests 
are derived in both time- and frequency-domain using the 
asymptotic normality of sample cyclic-covariance and spec- 
trum, respectively, without requiring knowledge of the data 
distribution. Generalizations for detecting presence of cycles 
in the kth-order cyclic-cumulants and polyspectra are also 
developed. Apart from providing estimates of possible cycle 
frequencies, these tests inherently check for presence of cy- 
clostationarity and are expected to be performed as a first step 
in most algorithms that exploit cyclostationarity. Differences 
and similarities between the proposed methods and those of 
[33] and [19] are delineated wherever appropriate. 

To illustrate the elements of our approach, we first present 
the time-domain tests with k = 2, for simplicity, in Section 11. 
The kth-order generalizations for k 2 1 are derived in Section 
111, and frequency-domain tests are developed in Section IV. 
Simulation results are presented in Section V and, finally, 
conclusions are drawn in Section VI. 
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11. TIME-DOMAIN TEST 

The objective of this section is to derive a test for finding 
the cycles present in c g , ( t ; ~ )  of (l), for a fixed T .  In other 
words, we wish to detect and estimate those a’s for which 
CzX(a;7) # 0, from a given stretch of data {x(t)}~:~. If 
there exists one pair (a: 7 )  for which Cz, (a;  T )  # 0, then 
we say that second-order cyclostationarity is present in x ( t ) .  
Hence, by detecting and estimating cycles of cz . , . ( t ;~ )  we 
are essentially testing for the presence of cycloslationarity. 
For convenience, we study zero-mean processes although this 
assumption is not restrictive, as shown in Section It-B. 

To check if Czx(a: T )  in (1) is null for a given candidate 
cycle consider the following consistent estimator of Czx(a;  T )  

(see Section 11-A) 

(4) 

( 5 )  

1 T-l 
&,(a; T )  A - x( t )x ( t  + 7)e-Jat  

t=O 
T 

= Cz,(a; T) + &I; 7 )  

where €E)( a; 7 )  represents the estimation error which van- 
, - ~  

ishes asymptotically as T --+ 03. Due to the error t :EJ (a ;T) ,  

the estimator ?:’(a; T) is seldom exactly zero in practice, 
even if a is not a cycle frequency. This raises an important 
issue about deciding whether a given value of C . - $ : ? ( ~ ; T )  is 
“zero” or not. To answer this question statistically, we formu- 
late the decision-making problem in a generalized hypotheses- 
testing framework. 

(a: 7 )  ral her than a 
single value in order to check simultaneously for the presence 
of cycles in a set of lags 7 .  

Let q , .  . . , TN be a fixed set of lags, a be a candidate 
cycle-frequency, and 

In general, we consider a vector of 

represent a 1 x 2N row vector consisting of second-order 
cyclic-cumulant estimators from (4) with Re{ } and Im{ } 
representing the real and imaginary parts, respectively. If the 
asymptotic (true) value of tE) is given as cz, 

then using ( 5 ) ,  we can write 
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where €E) 4 [Re(cE)(a;Tl)), . . . , R e { c g ’ ( a ; ~ ~ ) } ,  
Im{tg)(a;  q)}, . . . , ~ m { c g ) ( a ;  T N ) ) ] ,  is the estimation 
error vector. To check if a is a cycle frequency or not we 
formulate the following hypothesis testing problem: 

Since cza: is nonrandom, the distribution of ezx under Ho 
and H1 differs only in mean. Therefore, testing for the pres- 
ence of a given a in d2 is equivalent to a binary classification 

problem and requires knowledge of the distribution of 
for designing a decision strategy. Because the distribution 
of the data is unknown, we subsequently make use of the 
asymptotic properties of the cyclic-covariance estimators to 
infer the asymptotic distribution of €E). 
A. Asymptotics of Cyclic-Covariance Estimators 

The time-varying kth-order moment mkX(t; T ) ,  T 4 (71, 
. . . , ~ ~ - 1 )  of a process, x ( i ) ,  is defined as 

with 70 A O, let m,(t; 7,) e ~ { x ( t  + TY1) . . . x( t  + TVq 11, 
where {T” = [T”, ,. . . ,r,,]} and v denotes the group 
T,,, . . . ,rvva. The kth-order cumulant, c l , ( t ; ~ ) ,  of ~ ( t ) ,  is 
defined as 

C k x ( t ; T )  = C ( - l ) p - ’ ( p  - l)! 

where the summation on v extends over all partitions v = 
v1 u.. .Uv, of {TO,. . . , T k - l } ,  with p representing the number 
of groups in a partition. The mixing condition that we require 
for deriving the asymptotic properties of Ciz)(a; T )  is given 
in terms of Q + ( ~ ; T )  as follows: 

M 

Intuitively, assumption A1 implies that samples of the 
process x ( t )  that are well separated in time are approximately 
independent. A1 is met, for example, by stable (non)stationary 
linear processes (see also [4]). 

With these preliminaries we are ready to present the main 
result of this section, namely, the asymptotic properties of 
Ciz)(a; 7): Let x ( t )  be a discrete-time generally complex 
valued cyclostationary process and define 

f ( t ; 7 )  2 Z ( t ) X ( t  + T ) .  (12) 

Let the unconjugated and conjugated cyclic-spectrum of 
f ( t ; ~ )  be defined, respectively, as 

where * denotes complex conjugation, and (*) is just nota- 
tional. Notice that for real processes, f ( t ;  T )  is real, and hence, 
s z f 7 , , ( a ; w )  s(*) ( a ; w ) .  

2 f T . P  
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Theorem I :  If T ( t )  satiqfies assumption A l ,  then the esti- 
mator C;;)(a; 7 )  defined in (4) is mean-square sense zonsistent; 
i.e. 

7--cr Eim C ~ ~ ’ ( c y ; T ) m ~  ’ ~ ~ , ( a ; 7 ) .  (13) 

( a ;  T ) ]  is asymptotisally com- Additionally, @[C$T’(n: 7) 
plex normal with covariances given by 

7 lim -.Tu T c L N n { c i r ’ ( r r ; 7 j , c : i j ( : i ; p ) }  =  cy + i o ; [ ) )  

I lim -’3c ~ ~ ~ , ~ { C ~ ~ ’ ( ~ . T ) , C ~ ~ ~ ) ( ~ ? ; ~ ) }  = ~ i ; l ~ ( a  - p; -p). 
(14) 

Pro08 See Appendix A. U 

B. Test Statistics for IC = 2 

Theorem 2: R1) If the 1 x M vector is an asymp- 
totically Gaussian estimator of 0, based on T data samples, 
i.e., limT-,fl(d(T) - 0) N(O.C,) and 6 # 0, then 
lim,-,J?;(8(7jdcr)’ - 06’) N(0,46&6’), but if 0 0 
and CO I (an identity matrix), then limTdxT(8(r)$T)‘ -00’) 
= x2nr where x;, denotes a central chi-squared distribution with 
M degrees of freedom. 

R2) If limT-K&T) 2 0 and limT-OL$‘) m‘gs 9. an M x M  
matrix, then lirnT-x 89. 0 

Let 6(T) !i ?K’ei:1/2 and M = 2 N .  Since is mean- 
square sense consistent, and tg) is asymptotically normal (see 
Theorem 1) it follows from R2) of Theorem 2 that 0 
asymptotically normal. Then, using (9) and R2) of Theorem 
2, it follows that ‘T& in (18) has the following asymptotic 
distribution under HO 

U 

-(TI is 

D 2  lim ZC = xZ1\r 
Returning lo our test for presence of cycles, i.e., (9), we 

observe from the asymptotic normality of cyclic -cumulant T-w 

and under the alternative hypothesis HI estimators (c.f. Theorem 1 and ( 5 ) )  that 

D D where = denotes convergence in distribution, ,tands for =N(o, 4C22x.&?Cis). (20) 
a multivariate normal density, and CzC is the asymptotic 
covariance matrix computed using (14) as follows Let Q z c  
and be two covariance matrices with (m,r~ ; th  entries 
given, respectively, as 

Using (19) and (20), we now present our test which is 
based on a constant false alarm rate approach for selecting 
a threshold. For a given probability of false-alarms, PF A 
Pr{& 2 r 1 Ho}, we find a threshold I‘ from the central x2 
tables with 2N degrees of freedom [20], such that (see (19)) 
PF = Pr{X:,v 2 r}. Our test is given as 

Q P ~ ( ~ ,  S2fr,, T n  (2a; 

Q;,(m, n) A Si>) (0; -a) .  (16) 

Using (14) and (16) and elementary complex algebraic ma- 
nipulations it follows that the (auto- and cross-) cov iriance of 
the real and imaginary parts of Ciz)(a: T ~ ) ,  1 5 71 5 N are 
computed as 

rnt 7, 

if 7 z C  2 r declare a! E A2 for some T ~ ,  . . . , T , ~  

else declare a # -A2. bl, . . . , T.~ ‘ .  (21) 

Once the threshold r in (21) has been set, one can approxi- 
mately evaluate the probability of detection, Po Pr{z, 2 

I HI}, using the distribution of Zc under H I .  From (20) 
and for T large enough, we may approximately write the 
distribution of 7 z C  as 

(17) 

From (9) and (15), it is seen that the hypotheres-testing 
problem of (9) is asymptotically equivalent to tt’e one of 
checking for nonzcroness of the unknown mean o ’ a multi- 
variate normal random variable. This problem is eqi ivalent to 
a generalized maximum-likelihood detection prob1c:m in the 
cyclic-statistics domain and as usually done [17], 1281, (pp. 
378-380 of [31]), we let the following generalized ikelihood 
function be our test statistic’ 

( 1  8) 

where kzC represents a consistent estimator of 1:zc  to be 
developed subsequently in Section IV. To set a thrcshold for 
hypotheses testing, we next derive the asymptotic distribution 
of 7zc.  The following theorem comes in handy (set: pp. 337 
and 344 of [24] for a proof): 

A (7) A - 1  (T)’  
7 2 r  = Te2,r xZc eZx 

’ In ( I  8): prime denotes transpose. and the pseudo-inverse musl replace the 
inverse i f  5r i s  rank deficient. 

&c - N ( T c ~ ~ E ~ : c ~ ~ ,  4 T C 2 L 2 y : C i , ) .  (22)  

Therefore, PD can be evaluated in practice by substituting 
for c2x and Czc in  (22) by their cstimates and using the 
standard normal tables [20]. The algorithm for IC = 2 can 
be implemented using the following steps: 

Step 1: From the available data and using (4). compute 13g) 
as in (6).  

Step 2: Fill in the entries of the covariance matrix bfC,, 
using the consistent cyclic-spectrum estimator 
of Section IV, specifically, with F T , ~ ( w )  = 
E:=;’ a( t ) x ( t  + 7 ) e - 3 m t  compute 

“. , . .. 
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where W ( T )  is a spectral window of lenglh L (odd). 
Using (23), fill in the entries of QzC and Qc) via 
(16), which in turn yields kzC, as in (17). 

Step 3: Compute the test statistic as %c = T C ~ )  k~2 tg ) ’ .  
Step 4: For a given probability of false alarms, PF,  using 

central x2 tables for 2N degrees of freedom [20], 
find a threshold r so that PF = Pr{X2 :> I?}. 

Step 5: Declare a as a cycle frequency at least for one of 
q , .  . . , T N ,  if 7 z C  2 I?; else, decide that a is not a 
cycle frequency of C2, (a ;  T )  for any of 7 1 . . . , T N .  

The test summarized in these steps exploits the asymptotic 
normality of cyclic statistics to introduce a x2 C’FAR test, 
which is asymptotically optimal in the generalized likelihood 
sense (see pp. 378-380 of [31]). Further, our test is based 
on the cyclic-statistics only and does not require howledge 
about the data distribution. The variance normalization in 
the test statistic makes the thresholding easier and standard 
by employing table look-up from standard central y2 tables, 
irrespective of the particular signal at hand. Also, the x;N 
distribution under the null hypothesis is asymptotically exact, 
therefore we guarantee that the observed false alarm rates 
converge to the one corresponding to the threshold selection. 
In this sense our test is consistent, which is also an aspect of 
its optimality. 

By performing the given test for various values of a one 
can determine possible cycles in Ciz’ (a;  7 j ,T  = 7 1.  . . . , T N .  

Presence of cycles indicates presence of second-order cyclo- 
stationarity, however, to declare absence one has to show that 
fiz)(a; T j  = O,V(a; 71, in the sense of the test. If there exists 
an (a;  T )  for which C z Z ( a ;  T )  # 0, then there is presence of 
second-order cyclostationarity. However, this does not imply 
that x ( t )  is cyclostationary, as is seen from the following 
example. 

Example 1: Let x ( t )  = w l ( t )  cos(&) + b(t)w2 : t ) ,  where 
w1 ( t )  and w2(t) are zero-mean uncorrelated stationary random 
processes and b ( t )  is a deterministic transient function which 
is nonzero only for 0 5 t 5 TO. Using the definition 
cz,(t;r) = E{x( t ) x ( t  + T ) }  it follows from the FS in (1) 
that 

where E(t; 7 )  A b ( t ) b ( t + ~ ) c ~ , ,  ( T ) ,  has vanishing F’ourier co- 
efficients due to the finite support of b ( t ) .  Hence, although x( t )  
is not second-order cyclostationary (in the sense of ( l), due to 
e( t ; T ) ) ,  it exhibits presence of second-order cyclostationarity 

0 
An increased power test could be performed by using 

different T ’ S  as well as different a’s in ?E). Although com- 

with cycles d 2  = {-2w0,0,2w0}. 

putationally more expensive, this is particularly useful in an 
exhaustive search for absence of cyclostationarity. 

A simplified version of the given test, which is of particular 
interest in determining the cycles present in C 2 , ( a ; ~ )  for a 
given T ,  results by setting N = 1. The test statistic and its 
implementation in practice is given as: 

with (2a; a) ,  (0; -a), and F!T’(~), as in (23). 
A fast implementation of the test results by observing that 

and C2, are essentially the periodograms of x( t )x( t  + T )  

and hence can be computed via EFT’S. However, this limits 
the resolution (with reference to the search space of candidate 
a’s) to the FFT grid. From (23), it follows that the choice of 
different W ( T ) ’ ~  with different L’s introduces different scale 
factors in (24). 

It is possible to estimate the time-varying ensemble statistics 
of a cyclostationary process with the knowledge of the cycles, 
which are used, for example, in parametric identification 
methods [29]. Once the set of cycles d 2  of c2,(t; T )  has been 
estimated using the test in (24), one can estimate czZ(t; T )  

from (1) and (4) as 

The estimator ?E)(t;  T )  can be shown to be mean-square sense 
consistent and asymptotically normal using the consistency 
and asymptotic normality of Ci:)(a; T )  [4]. 

In the next section, we generalize the time-domain tests 
for k = 2 to estimate the set cycles, dk, of the kth- 
order cyclic-cumulant for k 2 1. Along the same lines, 
consider the time-varying mean of x ( t ) ,  c l x ( t )  = E { x ( t ) }  = 
CaEAl C l Z ( a ) e J a t ,  where C l X ( a )  is the cyclic-mean. Once 
the cycles of the mean, d l ,  are estimated, cl,(t) can be 
consistently estimated as i . lx ( t j  = CaEAl C$z)(a) e ja t ,  

where Ciz)(a) = 2- ET--’ t=O x ( t )  , - j e t .  Therefore, the zero- 
mean assumption about the cyclostationary process x ( t )  does 
not sacrifice any generality, for if it is not zero-mean, one can 
estimate and subtract the mean. 
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An attempt was made in [33] to define a “riequency- 
decomposed measure of degree of cyclostationarit)” for con- 
tinuous time processes as 

where normalization in the denominator makes 0 5 DCS“ 5 
1. However neither a statistical test was provided tc check for 
the “degree of cyclostationarity” nor the determina ion of the 
threshold of the probability of detection was given 

111. GENERALIZATION TO kTH-ORDER 

The test of the preceding section can be easily extended 
for checking the presence of cycles in the kth-orcer cyclic- 
cumulant of a cyclostationary process ~ ( t ) .  Th s is use- 
ful for estimating cycles needed by the algorith ns which 
employ higher than second-order statistics for I wocessing 
cyclostationary signals [4], [ 5 ] ,  [ 121, [27], [29]. I urther, in 
certain situations it becomes necessary to deal w th higher 
than second-order statistics, since second-order statistics are 
inadequate in providing information about the c: Fcles. For 
example, in the transmission of QAM signals, the Jeriod (or 
equivalently, cycles) of the periodically time-varying channel 
cannot be inferred from the second-order statistics of its output 
alone. One has to employ a combination of second- and fourth- 
order cumulants to extract this information [29]. The following 
example considers a related situation and further mo ivates the 
need to consider the kth-order generalization. 

Example 2: Consider a QAM signal ~ ( t )  = a ( t )  + j b ( t ) ,  
where a ( t )  and b ( t )  are mutually independent, .i.d., and 
assume binary values dz1 with equal probability. Let w(t)  
be transmitted on a mobile communication chai inel with 
(almost) periodically time-varying impulse response h(t: T )  = 
eJYotg(r). The received signal in the noise-free cas’: is given 
as 

-00 

y ( t )  = h(t: nL)w(t - m) 
m = - x  

-00 

m=-m 

To compensate for intersymbol interference introd Jced due 
to the channel, one has to acquire knowledge cf h(tr7) 
by performing identification. Since the time variatim of the 
channel is completely characterized by the exponei itial term 
eJWot ,  it is crucial to determine WO. Now, from the di ;tribution 
of n( t )  and b ( t )  it follows that E { a ( t ) )  0, so 
that E { w ( t ) }  0 and one cannot estimate WO from the cycle 
of cl,(t) 3 0. Similarly 

E{h(t):  

C z w ( t : 7 )  = E{’fll(t)W(t + 7 ) )  = 6 ( 7 ) E { W 2 ( t ) }  
= S ( T )  [E{a2( t ) }  - E{b2(t)}] e 0 (29) 

where 6(.) represents the Dirac delta. From (29) anc’ (28) we 
see that CZ,( t ;  T )  z 0; therefore, the tests of the ireceding 
section, although they correctly show that no c!cles are 
present in ~ , ( t :  7 ) ,  cannof be used to estimate (110. Also, 

since E{w(t )w*( t  + 7 ) )  = 6(7)E{ Iw(t)l2} = 26(7), where 
* denotes conjugation, it follows from (28) that Czy( t ;  T )  

A ~ { y ( t ) y * ( t  + 7 ) )  = 2 e ~ ~ o ~  E,“=-, g(m)g*(m + 7). 

In general, one cannot determine W O  from Fzy( t ;  T )  due to 
presence of the multiplicative factor E:=-, g(m)g*(m+7). 

From the preceding discussion it is evident that the second- 
order statistics (with or without conjugation) cannot be used 
to infer WO and one must resort to higher than second-order 
statistics to obtain this information. Indeed for k = 4, since 
7rLzy(t; T )  0 m l y ( t ) ,  it follows from (1 1 )  and (28) that 

r4,(t; o,o, 0) 71&t: 0.0.0) 

- - -6e34”’0t 9 .94(m) (30) 

so that the cycle of qy( t :  0.0.0) (i.e., 4 ~ 0 )  yields an estimate 
of W O ,  motivating the need to develop tests for presence of 
cycles in kth-order cyclic-cumulants for k 2 2. 

The kth-order time-varying cumulant ck , ( t ;  7 )  was defined 
in (1 1). A kth-order cyclostationary process is formally defined 
as a signal whose cumulants of order k are (almost) periodi- 
cally time-varying [4], [6].  Thus, similar to (l) ,  ckz( t :  T )  for 
each fixed T = ( T I . .  . . , 7 k - 1 )  can be expanded as a function 
of t in an FS as 

m=--00 

C k l ( k T )  = C k r ( N ; T ) e J O t ,  

o E d i  

Arc 4 {a:  0 5 cr < 27~ and C~,(N:T) # 0} (31) 

where the Fourier coefficients 
. T-1 

are called the cyclic cumulants at cycle frequency a. 
Our goal is to develop tests to find Ah of (31). If there exists 

one pair (a:  T )  for which Cl;,(a: T )  # 0, then we say that kth- 
order cyclostationarity is present in ~ ( t ) .  Hence, the kth-order 
tests of the subsequent sections also check for presence of kth- 
order cyclostationarity. As with the k = 2 case, this requires us 
to develop an estimator of Ck,(a;~) along with its asymptotic 
properties. 

A. Asymptotics of kth-Order Cyclic Statistics 

The kth-order time-varying moment m k Z ( t : 7 )  2 E { z ( t )  
x ( t + ~ l )  . . . x ( t + T k - I ) )  of a kth-order cyclostationary process 
is also (almost) periodically time-varying and accepts an FS 
HI ,  [61 as 

. T-I 

where M k x  is the cyclic-moment, and dr is the set of cycle 
frequencies of the moments.2 Combining (1 l), (32), and (33), 

’Note that the moment set of cycles A;’ may be generally different from 
the cumulant set of cycles dl;. 
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it follows that cyclic-cumulants can be expressed in terms of 
cyclic-moments [4] 

C k x ( a ; T )  = ( - 1 ) q p  - l)! 
v 

x Mv,x(ai;Tv,)...Mvp+((Yp;Tvp) 

x q(a - a1 - . . . - CYP)  

a l > . . . P p  

(34) 

where q(a) is the Kronecker comb (train) function, which 
is nonzero and unity only when a = O( mod 27r), and 
M v x ( a ;  7,) g limT-,w $ ET:, mvx(t;  T v ) e - j G t .  There- 
fore, to develop an estimator of C k x  one needs an estimator 
for M k X .  Motivated by (33), we define the estimator of Mk,  
(see also (4)) as 

T-1 
A ( T )  A 1 M,, (a;  T )  = - x( t )x( t  + T ~ )  . . . z(t + 7k- I )e-jat.  

t=O 
T 

(35) 
.With f ( t ;  T )  A x ( t ) x ( t + q )  . . . z ( t + ~ - ~ ) ,  defining the cyclic 
spectra of f ( t ; ~ )  as 

SZf,,,(a; 

t=O (=-m 

and generalizing proof Theorem 1, it can be shown that [4] 

lim ME’(a;  7) “g‘” Mk,(a; 7). (36) 
T’W 

In addition, J?‘[h E’ (a;  T )  - M k, (a;  T ) ]  is asynlptoticdly 
complex normal with covariances given by 

= S2fT,# ( a  + P; P )  
lim ~ c u m { M E ’ ( a ;  T I ,  M ; y ) ( p ;  p ) }  

(37) 

2-00 

- - ( a  - P; -PI. 
An estimator of c k x  can be obtained by substituting (35) 
into (34), for Mkx.  This estimator has been shown to be 
mean-square sense consistent and asymptotically normal with 
a computable variance using the asymptotic properties of 
M E )  namely, (36) and (37). However, the general covariance 
expression for arbitrary k is complicated and can be found in 

In practice, it is usually sufficient to consider cumulants of 
order k 5 4 and it follows from (34) and (35) that for zero- 
mean processes : Ci:’(a; 7 1 , ~ ~ )  = M!jz)(a; 7 1 , ~ ~ ) .  and (see 
Appendix B) 

[41. 

Y T )  C,X (a;  71 7 2  7 73) = ME’(a; 71 , 7 2 , 7 3 )  

- { ME)@ - p; T1)Mg) (p ;  7 3  - 7 2 ) 2 @ 2  

@EAT 

+ M,, A ( T )  ( a  - p; 7 2 ) M g ) ( p ;  T1 - 73)ejOT3 

+ M E ) ( a  - , 6 ; 7 3 ) & g ) ( p ; 7 2  - T l ) e j @ T l } .  (38) 

Note that for Vp E dy,a - /3 6 dy, the terms in xoEd,y 
of (38), with cycles /3 and ( a  - P )  vanish and hence 

(39) 

which for this particular choice of cycles suggests a simpler 
estimator for C4x when compared to (38). Notice that (39) 
holds regardless of a for QAM signals because mz,(t; T )  = 
0 mlx(t) (see also (30)). Apart from simplicity, another 
advantage of (39) is that the covariance expression of ./\;14x, 
obtained from (37) with k = 4, can be used to evaluate the 
covariance of C4x. Thus, at least for zero-mean processes and 
for k = 2,3,  and 4, one can write 

c4x (a;  71 3 7 2 7 7 3 )  E M4x (a;  71, 72773) 

lim Tcum{ Cp(a; e,, V) (0, . P I }  = S2fT ,@(”  + Pr P )  
T-+w 

(40) 

provided that (39) holds. With these comments we are prepared 
to present our kth-order time-domain test. 

B. Test Statistic 

Given a candidate frequency a and a set of lags 7 1 ,  . . . , T N ,  

the problem of testing for presence of a in [&(a; T I ) ,  . . . , 
&,(a; T N ) ]  can be stated in a hypotheses-testing framework 
as done in (9): 

Ho:a -A, V{T,},N=~ * k x  = ‘ k x  (41) 
N H1:a E A, for some {T,},=~ ==+ kx - - cka: f ‘E) 

where tE) [Re{C^i:)(a; T I ) } ,  . . . , Re{c^g)(a; w)}, 
^(TI Im{C^g) (a;  TI)} , . . [Re{Ckx 

Im{Ckx(a; 7 ~ ) ) :  ] and represents the estimation error. 
Using the asymptotic normality of cyclic-cumulant estimators 
we find that 

Im{C,, (a;  T N ) } ] ,  c k x  
( a ;  7 1 ) ) :  . . . : Re{Ckx ( a ;  ”, I m { C , x  ( a ;  T l ) ) ,  . . . , 

where x k c  is the asymptotic covariance matrix of the cyclic- 
cumulant estimators constructed analogous to the covariance 
of k = 2 case (17) by first filling in the entries of the Q 
matrices via (40) and then computing the x k c  matrix using 
(17) (see also the discussion (37)-(40)). 

The test for presence of the kth-order cyclostationarity 
follows essentially the same steps as the k = 2 case, and 
therefore, we skip the details. The kth-order algorithm is given 
in Table I. 

With k = 3 and N = 1, the algorithm of Table I yields 
the test for cycles in the third-order cumulant similar to the 
second-order case with x ( t ) x ( t  + 7) replaced by x ( t ) x ( t  + 
q ) x ( t + ~ 2 ) .  It should be noted that fork 2 4 the computation 
of sample cyclic-cumulants becomes complicated and burden- 
some with increasing order (34)-(38). On the other hand, the 
sample cyclic-polyspectrum estimators to be presented next 
have a simpler form. 
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TABLE I 
TIME-DOMAIN TEST 

Step 1 From data and using eqs. (37)-(38) compute [see also (42), (43) and (4)] 

1 tg) = [Re{ tg) (a;  rl)), . . . , Ite{Ck, (̂TI (a ;  Tjv ) ) ,  ~ r n { C ~ ) ( a ;  ri)), . . . , ~ m { C i ~ ) ( a ;  r N ) )  . 

Step 2 
Step 3 

Fill in the entries of the covarian1:e matrix &kc as discussed following eq. (46). 
Compute the value of the test stt tistic aa 

Step 4 

Step 5 

For a given probability of false alz.rm PF, find, using the central x2 tables for 2N degrees of freedom 
(e.g., [20]), the threshold r such lhat PF = Pr(x2  2 I'). 
Declare a as a cycle frequency a1 least for 71 , .  . . , TN if 7 k c  1 I'; else decide that a is not a cycle 

Iv. FREQUENCY-DOMAIN TEST 

As mentioned in Section I, cyclostationarity can ec,ually well 
be exploited using the frequency-domain counteqart of the 
cyclic-covariance called the cyclic-spectrum. Non1)arametric 
algorithms for cyclostationary signals are typically based on 
the cyclic-spectra and assume knowledge of cycle fi equencies 
present in the statistics of interest [l], [ 5 ] ,  [IO]. 111 this sec- 
tion we develop frequency-domain tests for cycle fi equencies 
present in the cyclic-spectra and presence of cyclost ationarity. 
Since the second-and kth-order tests follow the sitme steps, 
we directly present the kth-order case. 

As with the spectra (3), the time-varying and cyclic- 
polyspectra are defined, respectively, as 

where w (w1, . . . , wk-1) .  Using (3 1) and (43), one can write 

which represents the FS expansion of the the-varying 
polyspectra. For a given w,  our aim here is to develop tests 
to find d k  i.e., all the a's for which SkZ(a ;w)  # 0, and 
analogous to the time-domain tests, this requires estj mators of 
Sk,(a; w )  along with their asymptotic distributions 

A. Asymptotics of Cyclic-Polyspectral Estimators 

Notice from (3) and (43) that the cyclic-spc:ctra and 
polyspectra are nothing but the Fourier transfomis of the 
cyclic-cumulants. In this sense, they are similar to the spectra 
and polyspectra of stationary processes, which ari: Fourier 
transforms of the time-invariant cumulants. It therefire seems 
natural to modify the (poly) periodogram estimators [2] to 
estimate cyclic-(po1y)spectra. 

With X , ( W )  ET:, z ( t ) e - j w t ,  the cyclic-periodogram 
and bi-periodogram are defined, respectively, as 

1 
T (45) lza: (TI (a ;  w )  = - x T ( w ) x T ( Q  - U ) ,  

(TI 1 
13Z ( ~ ; w 1 , ~ 2 )  = , X T ( W ~ ) X T ( U Z ) X T ( ~ .  - wi - ~ 2 ) .  

(46) 

Notice that for a. = 0, 1;:' and I$:) of (45) and (46) 
reduce to the conventional periodogram and bi-periodogram 
respectively, used for stationary processes. The kth-order 
cyclic-periodogram can be defined as 

(TI A 1  I k Z  ( a ; w O , . . . , w k - l )  = -xT(wO)" .xT(Uk-1)  T 
x 7 1 , - , 0 - - - - w k - 1  (47) 

where 7 denotes the Kronecker delta train, and hence, 1iz) 
is a (k - 1)-dimensional function which is nonzero and unity 
only when W O  + . . . + W k - 1  = a(mod2r).  

Analogous to the stationary case the periodograms are 
unbiased but inconsistent estimators of the cyclic polyspectra, 
and spectral smoothing is needed to make them consistent 
[4], [6]. The smoothed periodogram estimate of the cyclic- 
polyspectra is given as 

T-1 

where W ( T )  represents the spectral smoothing window and 
the function 4 is defined as 

f F-1 

(0, else 

. . . . . . . . . _. .. . 
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T )  where C are all the nonempty subsets of (1,. . . , k - 1) with 
IC( elements, and its role is to suppress the contributions from 
the proper submanifolds [41, [61. 

In practice the cyclic-spectra and bispectra estimators can 

x $!$)(WO + PO; po)SiT)(wl  + p l ;  p l ) S z ,  (wz + pz;  pz)  

+ m W 0  + Po; P 0 ) m W l  + Pz; P Z ) g ) ( w 2  + P l ;  P l )  

+ m J J 0  + P1; P 1 ) m W l  + P2; P 2 ) 3 2 ( W 2  + Po; PO) 

+ 4, (WO + P2: P 2 ) S z x  (U1 + P1; Pl)3i%J2 + Po; Po)  

+ q ) ( W O  + P2; P Z ) g ) ( W l  + Po; P O ) g ) ( W z  + P l ;  Pl). 

&!?(WO + P I ;  Pl)'%?(Wl + PO; Po)'%?(wz f Pz; Pz)  

be obtained by simplifying (48) for zero-mean processes as 
^ ( T )  

A 1  ( L - 1 ) / 2  

W(T)(S)  ^(TI Szx (a;  W )  = - 

(54) 
s = - ( L - l ) / Z  

T L  

x I g )  (.; w - F) , (49) 

- ( L - l ) / 2  

2 T S l  2x92 
x I;:) (a; W I  - T, wz - -7) 1 (50) 

where W ( T J  is a spectral window of support L (odd). 
Our interest is on the asymptotic properties of the cyclic- 

polyspectral estimators, which are presented next. If the 
window W ' T )  satisfies certain regularity conditions (usually 
met in practice by smooth windows), ~ ( t )  satisfies A l ,  and 
E, 1 ~ ~ 1  IC~, : ' (~;T)I  < 03, i = 1, ... , k - 1, V a ,  V k ,  
then, 8E)(cy; W O , .  . . , W k - - l )  of (48) is mean-square sense 
consistent [4], [6], i.e. 

m . a . 3 .  lim ~ ~ ) ( a ; w 0 7 . . . , w l ; - 1 )  = S k + ( a ; w ' l .  (51) 
T-CC 

Recall that the covariance of the cyclic-cumulant estimator, 
S Z ~ ~ , ~  (14), (40) is the cyclic-spectrum f ( t ;  7) and therefore 
can be estimated using (48) with k = 2. Strictly speaking, 
this requires inclusion of the 0-1 function I$(w),  for avoiding 
the proper sub-manifolds which in the case of cyclic-spectra 
are the cycles of the mean of f ( t ;  T )  i.e., A l ; ,  but since when 
testing for presence of cycles, A k  is unknown, we had set 
+(U)  1, except at the candidate cycle (24). The resulting 
error is negligible in practice and one may ignore it. Our 
simulation results agree with this conclusion. 

Due to the consistency and asymptotic normality of the 
cyclic-polyspectral estimators the asymptotic properties of the 
frequency-domain and the time-domain statistics are com- 
pletely analogous. Therefore, the steps involved in deriving 
the test of Section I1 can equally well be applied to develop 
the frequency-domain algorithm, as is done next. 

Additionally, 3::) is asymptotically complex normal with 
covariance given by 

B. Test Statistic 

For a fixed w and a given candidate frequency (Y let 
lim BYT 

where &, represents the energy of the window, P represents 
all the permutation of the integers 0 , .  , , , k  - 1 and BT is 
the bandwidth of the spectral window [4], [6]. The conjugated 
covariance can be obtained by replacing p with - -p and p 
with -p  in (52). Note that although the covariance expression 
of (52) seems complicated, it consists only of second-order 
cyclic-spectra which can be easily estimated using (49), irre- 
spective of k .  In practice, the covariance of the cyclic-spectra 
and bispectra can be computed using (52) and (49) as 

whose asymptotic (true) value is given by 

so that 

where E E )  is the estimation error. Using the asymptotic nor- 
mality of cyclic-polyspectrum estimators, the error converges 
in distribution to a Gaussian density given by 

T" lim J ~ E E )  ~ N ( o ,  E k s )  (58)  

?& { 3i?(W + P ;  +P)'$?(a p - - P;  - P )  T L  where x k s  is the asymptotic covariance matrix, which is 
constructed in the same fashion as (17), by first computing 

- P)'i?(a - + P ; ' L ) }  (53) the Q matrices with conjugated and unconjugated covariance 

of the polyspectral estimators and then using them to fill the and W Z  = a - WO - LJL 
x k s  matrix. 

The hypotheses-testing problem corresponding to the de- 
tection of the cycle frequencies in Sk, may be stated as 

+ 
- 

and with ,LLZ = p - PO - 

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 19, 2009 at 02:10 from IEEE Xplore.  Restrictions apply.



~ 

DANDAWAfi AND GIANNAKIS: STATISTICAL TESTS FOR PRES iNCE OF CYCLOSTATIONARITY 2363 

TABLE I1 
FREQUENCY-DOMAIN TEST 

Step 1 From data  and using eq. (52) compute [see also (54-55)] 

1 SE) = [hk{ jE) (a ;  W l ) } ,  . , . , f ie {Skx V) (a ;  U N ) } ,  In(8E)(a; W I ) } ,  . . . , I???{C!$:)(~; W N ) }  . 

-- Step 2 
Step 3 

Fill in the entries of the covarianc.e matrix Z:ks using as discussed following eq. (63). 
Compute the value of the test statistic as -- 

Step 4 

Step 5 

For a given probability of false alarm, PF, find, using the central x2 tables for 2N degrees of freedom 
(e.g., [ Z O ] ) ,  the threshold r such that PF = Pr{x2 2 r}. 
Declare a as a cycle frequency at least for w 1 , .  . . , WN if 7 k s  2 r else decide that a is not a cycle 

and the test statistic is given by 

Following the steps of Section 11, we arrive at the frequency- 
domain algorithm, which is summarized in Table I. 

As in the time-domain algorithm, once the thresh1 )Id r is set, 
one can approximately evaluate the probability 01 detection, 
PD A Pr{& 1 HI}. For large enough data lengt IS we may 
approximately write 

’GS N N ( T 8 k z ~ ~ ~ 8 L x .  4 T 8 k z ~ ~ ~ 8 L z )  (61) 

Therefore PD can be evaluated by substituting f )r 8 k z  and 
in (61) by their estimates and using the standard normal 

tables [20]. 
An interesting test was given in [ 191 which, in cur notation 

and for F‘FT frequencies, uses the following functic n to derive 
the detection statistic 

y(w1, w2. M )  A 
I ;& x::; XT (Ul + 9) x;. ( w2 + + ) 1 

&x:::()l (XT(W1 + +)12L E“-’ 2rm 2 ’  

(62) 

The numerator is a sample correlation of the firiite Fourier 
transform X T ( W ) ,  used to measure the spectral :orrelation. 
Intuitively. this suggests that large values of M shoilld improve 
the measure. The denominator serves as a normali aing factor. 
The authors in [ 191 provide the distribution of y(w1, w2, M )  as 

(63) 

which was derived by Goodman [I51 under tke assump- 
tion that XT(W) are zero-mean complex GaLssian with 
E (XT(W~ + T)} and E{X=(wz  + T)} ,  lbeing con- 
stants for m = 0 , .  . . . Ad - 1, suggesting that one must have 

nf m=O IXT(W2 + TI1 

Pr(y > r) = (1 - rpf-l 

M <<< T for (63) to be reasonably accurate. However, 
the “coherent” statistic [19] is derived by choosing M = T ,  
which yields via Parseval’s theorem 

Apart from violating the assumption required to derive (63), 
the coherent statistic loses phase information in x ( t )  which 
in fact may contain the cyclostationary component, as in 
x ( t )  = w(t)exp(-jwot), where w ( t )  is a stationary process. 
As an alternative to the coherent statistic, an “incoherent” 
statistic was derived in [19], which is given as 

1 
S ( a , M )  = - 

L f l  

However, the distribution of S(a: M ) ,  which is necessary for 
performing a statistical test, was not derived. A threshold 
setting based on (63) yields a I? for a given probability of 
false alarm PF as r = 1 - P~’”’‘-’)’, which approaches 0 
exponentially as M increases. This can be detrimental to the 
performance of the test, especially if the variance of the test 
statistic decays slower than exponentially. Unlike the kth-order 
treatment herein, the test of [ 191 considers only correlations 
of periodically correlated process. 

V. SIMULATIONS 
A modulating signal w ( t )  was generated by passing zero- 

mean exponential deviates through an all-pole filter with poles 
at 0.45 f j0.35. The data x ( t )  was generated as 

z ( t )  = w ( t )  cos(wot); WO = 7r/4. (66) 

The signal z ( t )  models AM signals, or can be used to 
model sinusoids with randomly fluctuating amplitudes [ 131. 
Our goal is to estimate the cycles present in the kth-order 
cyclic statistics of z ( t )  for k = 2 and 3, using the time- and 
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(a) 2nd-order CyCIIC-CUfnulant 

40- 

I 
0 2 

Candidate cycle freq 
(c) 2nd-order TD test 

1 

-10+7j----+ 
Candidate cycle freq 

(b) Stat w/ threshold 0 PFA=O 05 

"I1 20 

-2 
Candidate CyCIo freq 

(d) PFA and =D 

- 1 0  

Fig. 1, Second-order time-domain tests. 

n 

0.1 0.2 0 3 0.4 0.5 
PFA (theoretical) 

frequency-domain algorithms. Using (l), (3), (31), :32), (43), 
and (44), it follows that 

From (67)-(70) it is evident that d 2  = { -2w0,0,2~0} and 
d3 = { - ~ w o , - w o , w o , ~ w o }  at most, for d l  T , w : T ~ , T ~ , w ~  
and w2, which is verified in the following simulations. 

(a) 2nd-order cycllc-cumulant (b) Stat w/ threshold 0 PFA=O 01 
40 

.U B 
22 

I 
-2  0 2 Candidate 0 cycle freq 2 - 1 0 '  

(d) PD YS SNR. PFA=O 01 
Candidate cycle freq 
(c) 2nd-order TD test 

0 

40 

30 

20 

1 0  

- 1 0  
SNR (de) Candidate cycle treq 

Fig. 2. Second-order time-domain tests-two signals. 

A. Second-Order Time-Domain Tests 

The algorithm of Table I, with IC = 2, was tested with 
T = 256 (128 x 2) and T = 0. A Kaiser window of parameter 
10 was used to compute the covariance estimates in (24) with 
L = 61. Fig. l(a) shows the magnitude of the "raw" second- 
order sample cyclic-cumulant of (4), from which it is seen 
that Ciz)(a; T )  shows several peaks indicating the possibility 
of the presence of several cycles. Fig. l(b) shows the test 
statistic (24) along with a threshold r set to CFAR of 0.05, 
which clearly shows that only three frequencies are statistically 
significant and they are {-7r/2 = - 1 . 5 7 , 0 , ~ / 2  = 1.57}, as 
expected (66), (67). Fig. l(c) shows mean f standard deviation 
of the test statistic for 100 Monte Carlo runs. To verify the 
performance of the test we have plotted in Fig. l(d) the 
theoretical probability of false alarms i) versus the probability 
of false alarms (PFA, solid line) and ii) the probability of 
detection (PD, dashed line), observed over 100 Monte Carlo 
runs. The probability of detection can be seen to rapidly 
approach the value 1, whereas the probability of false alarm 
is almost a straight line from 0 to 0.5, as expected. 

B. Second-Order Time-Domain-2 Signals 
To check the sensitivity of our test to the relative strengths 

of a superposition of two cyclostationary signals we picked 
w1 = $;w2 = 5 ,  and 

x ( t )  = w l ( t )  cos(w1t) + w ~ ( ~ ) c o s ( w ~ ~ )  (71) 

where w1 ( t )  and wz(t) were two independent time-series 
generated by passing exponential deviates through the same 
filter as the w(t)  in (66). One of the two signals could be 
considered as an interference or noise. The variance of w2(t) 
was four times that of wl(t). The signal-to-noise-ratio SNR 
was defined as 10loglo (var{wl(t)}/var{w2(t)}). The signal 
x ( t )  was processed using the second-order time-domain test as 
in the previous experiment to detect the five cycle frequencies 
{ - 2 ~ 2 ,  - 2 ~ 1  , 0,2wl, 2 ~ 2 ) .  The results are shown in Figs. 
2(a), (b), and (c), which are analogous to those of Figs. l(a), 
(b), and (c). It was seen that for better performance, we had to 
increase the data size to T = 2048 (128 x 16); otherwise, the 
estimation error was dominating the weaker signal. Further, 
for a fixed T = 2048 (128 x 16) and PF = 0.01, we studied 
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(a) 2nd-order cyclic-spectrum (b) Stat. w/ threshold 'Z! PFA=0.05 
8, 

al 20 s 
E 10 
P 
5 

Candidate cycle freq 
(c) 2nd-order FD test 

-2 0 2 
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-5 

Candidate cycl 
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Fig. 3. Second-order frequency-domain tests. 

(a) 2nd-order cyclic-Cumulant 

40/1 
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(c) 2nJ-order TD test 

(b) Stat w/ threshold 0 PF A=O 0000005 

1 -  
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Candidate cycle req 

(d) PFA and P 3 

I 
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Fig 4 Coherent statistic of [ 191 

the probability of detection for different values of the SNR; 
results are shown in Fig. 2(d). 

C. Second-Order Frequency-Domain Tests 

The frequency-domain algorithm of Table 11, wi h k = 2, 
was tested with T = 256 (128 x 2) w = 0 and ~ ( t ) ,  IS in (66). 
A Kaiser window with parameter 1 was used for computing 
the cyclic-spectrum as in (49) as well as the estim ites of its 
covariance, as in (53) with L = 11. Fig. 3 shows tlae various 
plots analogous to the diagrams in Fig 1. 

For comparison we have plotted the coherent st itistics of 
[I91 in Fig. 4 with T = 256 (128 x 2). Becausr the data 
length per segment is large (T = l28), the threshold :omputed 
using (63) rapidly approaches zero as PF increases (see 
discussion following (65)). As a consequence, the ob: erved PF 
consistently exceeds its theoretical value while the probability 
of detection is 1 since most of the frequencies exeed  the 
small threshold value. 

D. Third-Order Time-Domain Tests 
The algorithm of Table I, with k = 3, was tejted with 

T = 2048 (128 x 16) and 7 1  = r p  = 0. A Kaise. window 
with parameter 10 was employed for computing the clwariance 
estimates with L = 41. Fig. 5 shows the vari ius plots 
analogous to the ones in Fig. 1. It can be seen that tl e higher- 
order test requires more data than its second-order counterpart 

(a) 3rd-order cyclic-cumulant 
30 

al 2 0 -  

E 10- 

I 
0 2 

Candidate cycle freq 
(c) 3rd-order TD test 

I 
-2 
Candidate cycle freq 

-101 0 2 

Fig. 5 .  Third-order time-domain tests. 

(b) Slat w/ lhreshold 0 PFA=O.l 
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Candidate cycle treq 

(d) PFA and PD 

(a) 3rd-order cyclic-bispectrum (b) Stat w/ threshold 0 PFA=O.O3 
I 141 

-10' 

Candidate cycle freq 
(c) 3rd-order FD test 

30 I I 

-10- 
Candidate cycle freq 

12 

y 10 
5 8  3 6  

4 
2 

-2 0 2 
Candldate cycle freq 

(d) PFA and PD 
i 

Fig. 6. Third-order frequency-domain tests. 

0 1  PFA 0 2  (theoretical) 0 3  0 4  0 5  

to reduce the increased variance caused by the higher order 
statistics. 

E. Third-Order Frequency-Domain Tests 

The algorithm of Table 11, with k = 3 was tested with 
T = 2048 (128 x 16) and w1 = wp = 0. A Kaiser window 
with parameter 15, L = 31 was employed for computing the 
cyclic-bispectrum while parameter 1, L = 11 was used for 
the estimates of its covariance. Note that because of increased 
variance of higher order statistics, longer window averaging 
lengths are required to compute the cyclic-bispectrum when 
compared to the ones required for variance estimation, which 
depend only upon the second-order spectra (52). Fig. 6 shows 
the various plots analogous to the ones in Fig. 1. 

F. Target Motion Detection 
As an application of the second-order algorithm we sim- 

ulated a target motion detection in the radar scenario [l]. A 
cosinusoidal pulse is transmitted at frequency W O  and when 
the target is stationary we receive 

(72) Z s ( t )  = w(t) cos(w0t) + .(t) 
where w ( t )  is a stationary process which models random 
effects introduced due to the target and the medium. When 
it is in motion with constant velocity, the received signal is 
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Fig. 7. Motion detection. 
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given as 

X,(t)  = w(t) cos(woD[t - d ] )  + v(t) (73) 

where D accounts for the Doppler effect and d depicts the 
delay. It follows, using (1) and (3), that A2 = {-2uo,O, 2w0) 
when the object is stationary and -A2 = { -2Dw0,0, ~ D w o }  
when the object is in motion. With D = 2, d = 0, WO = ~ / 8 ,  
v ( t )  to be a colored Gaussian noise (MA(16) approximation 
of an AR(2) filter with poles at 0.1 k j0.25) and with 
E { w 2 ( t ) }  = E { v 2 ( t ) } ,  we tested our second-order time- 
domain algorithm for T = 1024 (128 x 8), Kaiser window 
parameter 10, L = 61. The probability of false alarms was 
fixed at 0.01. Fig. 7(c) shows one realization of the statistic 
when the object is stationary, whereas Fig. 7(d) shows one 
realization of the statistic when the target is in motion. It 
can be seen that when the object moves the cycles appear at 
{ -4w0 ,0 ,4~0}  instead of { -2w0, 0; ~ w o } ,  correctly detecting 
motion. Fig. 7(a) and 7(b) shows mean and mean f standard 
deviation of the second-order test statistics, over 100 Monte 
Carlo runs corresponding to Fig. 7(c) and (d), respectively. 

VI. CONCLUSION 

Presence or absence of kth-order cyclostationarig in a time 
series is defined by the presence or absence, respectively, 
of kth-order cyclic-cumulants and polyspectra in their corre- 
sponding time-varying ensemble averages. The main idea in 
the development of the tests was to establish thal: the kth- 
order sample cyclic-cumulants and polyspectra are consistent 
and asymptotically normal with computable variances, and 
therefore, asymptotic x 2  tests could be developed for checking 
for (non)zeroness (presence or absence) of sample cyclic- 
cumulants or polyspectra. The variance normalization leads 
to a standardization of the thresholding process irrespective 
of k,  time-, or frequency-domains. Simulations confirm the 
performance of the tests. 

Implementation aspects, special cases, and explicit algo- 
rithms for k 5 4 were discussed. Computationally. it seems 
that for k 5 3, the time-domain tests are convenient to use; 
however, for k 2 4, the frequency-domain tests are simpler to 
implement. Our tests are expected to be a necessary first step 
for gaining knowledge of the cycles, in the implementation of 

the algorithms which exploit cyclostationarity . The frequency- 
domain tests are appropriate for nonparametric algorithms 
which usually employ frequency-domain statistics, while the 
time-domain tests are suited for cyclic-cumulant based meth- 
ods. Although fast FFT-based implementations of the tests are 
possible, they are limited by the resolution provided by the 
FFT's. In future it will be of interest to develop high resolution 
implementations to estimate cycles of a cyclostationary time 
series. 

APPENDIX A 
PROOF OF THEOREM 1 

Unbiasedness and Consistency: Asymptotic unbiasedness 
follows easily, since from (4) and ( 1 )  

For consistency, observe from (4) and (12) and the multilin- 
earity of cumulants (see p. 19 of [ 2 ] )  that 

= 4 cum { f ( t l ;  71, f ( t 2 ;  p)}e-j(at l+Pt,) 

t l  , t 2=O 
T 

1 T- lT - t - l  
= - cum{f(t; j ( t  + <; p)}e-j(a+P)te-jPc 

(75) 

where < A t2  - tl and t A t l .  Using the Leonov-Shiryaev 
identity (see p. 19 of [2]) to write the cumulant of products of 
~ ( t )  in (75) as a sum of products of its cumulants, we obtain 

(76) 

t=O <=-t 
T2 

cum{Ci:)(a; ~) ,C;z ' (p ;  p ) }  = TI + T2 + T3 

where 

x ~ 2 ~ ( t  + 7 ;  < - T ) ,  e-j(a+P)te-jP<. (77) 

We show that each of T1! T2 and T3 in (76) vanishes 
asymptotically due to A l .  Now 

1 T-l  O0 

Ti I F  I c 4 2 ( t ; 7 , E j < + P ) I .  (78) 
t = O  <=-m 
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Using the summability of cumulants from A1 with IC = 4 we 
observe that xF-m Ic4z(t;7,<,( + p)I = 0(1), so that T1 
in (78) is O(T- ), hence, limT,, TI = 0. Next cmsider the 
second term from (76) and as with T1 

1 T - l  Oo 

Tz I T2 Ic2z(t;t)l 
t = O  €=-cc 
W 

E = -  03 

Again, using A1 we observe that C,“=-,Ic2z(t;< I = 0(1) 
and Icg,(t + T ; <  + p - .)I = 0(1) so lhat T2 is 
O(T-’), and hence, limT,, Ta = 0. As with T2 it can be 
shown that T3 = O(T-’) and hence limT+cc T3 := 0. Since 
all the three terms in (76) vanish as T -+ 00, it follows that 

T - w  lim cun~{Ciz’(cu;7),c~z)(p;p)} = 0, ~ a , p , 7 , p .  (79) 

Similarly, il can be shown that 

T - w  lim c u m { t i T ’ ( a ; 7 ) , C ; r ) ( P ; p ) }  = 0, Vcu,P, - , p  (80) 

proving the consistency3 of Cg’(a; 7). 

Asymptotic Normality We show asymptotic nom ality as in 
[2] (see also pp. 179-182 of [26]) by showing that ,:umulants 
of order 2 3  of C$z’(a; 7) (conjugated or unconjugat1:d) vanish 
asymptotically. Using again (4) and (12) and the mu1 tilinearity 
of cumulants (see p. 19 of [2]), we find that 

cum{C!$(ao;r,), . . . l t i z ) (am;rm)}  

1 T - l  

e-3(aoto+ + m m t m ) .  

cum{f(to;70),... , f ( t m ; T m ) )  - - 
Tm+ 1 

t o ,  ,tm=’J 

(81) 

With t l  - to  = < I , .  . . , t ,  - t o  = <,, and to = t in (81), 
it follows that 

c u m { t ~ ~ ) ( a o ; 7 0 ) , .  .. .e2, V) (am;7,)} 

E=.--(T-l) t=t, 
m 

(82) 

where t ,  2 - min(0, C l , .  . . tm), t p  = T - 1 - max 
{ ( I , .  . . , tm ,  0) .  After using the Leonov-Shiryaev identity, 
once again we obtain that 

e--j  Cl=, ,lte--j Cfl, a t E l  

where the summation on v is over all the indecomposable 
partitions [2] of the following table: 

t t + 70 

t+<m t+Sm+71  

As done with T Z  of (76), it can be shown that the r.h.s. of 
(83) is O(T-”) due to AI; Thus, from (83) 

T + w  lim T”L-lcum{ti~)(ao;ro) ,...,t~~)( am;7m)) = 0. 

(85)  
Similarly, it can be shown that (85) holds even when any of the 
Cg)’s are conjugated, which proves the asymptotic normality 
of Ciz’(cu; 7). The real and imaginary parts of (!$:’(a; 7) are 
thus jointly Gaussian. 

Covariance Expression: With m = 1 in (82) we obtain 

(T-1) t p  

(=-(T-l) t=t ,  

= - 
T2 

x ,+PF 

cum{f(t; 71, f ( t  + <; p))e- j (a+P) t  

T 2  

x cum{f(t;T), f( t  + <. 1P ) }e - j (a+P) te - jPF .  (86) 

Observing that since t ,  - min(0, t), t p  = T - 1 - 
max{<,O}, for each fixed <, and ET=<:+, contain 
only a finite number of terms which vanish asymptotically 
when divided by T. It follows from (86) and (4) that: 

T-CX2 lim ~cum{Ciz)(a;  ~ ) , c $ ; ’ ( P ;  p ) }  = ~ 2 j ~ , ~ ( a  + P; PI. 
(87) 

The assumption A1 guarantees that the sum on < converges 
at a rate that allows (87) to hold true [4]. It can be similarly 
shown that 

(a;  71, C ; ~ ) < P ;  p ) }  = ( a  - P; -p> 
(88) 

T-w 

which completes the proof of the theorem. 

APPENDIX B 
mE FOURTH-ORDER CYCLIC-CUMULANT 

From (11) with k = 4, it follows that for zero-mean 
processes 

Note that for consistency, AI needs to hold only for k = 2 and 4. Using (33) and the definition of cyclic-cumulants from (32) 
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with k = 4, we obtain 

(92) 
T-1 

(93) 
Now consider M1 in (91) and express mz, ( t ;~ )  \.ia (33) to 
see that 

. T-1 

x M2,(P; 73 - 72)ej~tej~(t+TZ)e-j~ut. 

T-1 ,jet - - q(S) ,  a Kronecker delta train with 

(94) 
Passing the limit along with the summation on t in (94) 
inside the summations on p and $ and observing that 
limT+, T 
period 27r, we obtain 

1 

x ~ ~ , ( p ;  7 3  - ~ ~ ) 7 1 ( a  - 1 ~ ,  - D)ejpT2 (95) 
= M2,(a - P ; T ~ ) M ~ , ( P ; T ~  -~2)t i ;3~~’ . (96)  

OCA;” 

As with M1, one can simplify Ma and M3 and bring them 
into a form similar to (95). Using these simplifications for MI, 
Ma, and M3 in (90) we obtain 

Now (38) follows upon using (35) into (97) for Mka,  k = 2,4. 
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