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Statistical Tests for Presence of Cyclostationarity

Amod V. Dandawaté, Member, IFEE, and Georgios B. Giannakis, Senior Member, IEEE

Abstract—Presence of kth-order cyclostationarity is defined in
terms of nonvanishing cyclic-cuamulants or polyspectra. Relying
upon the asymptotic normality and consistency of kth-order
cyclic statistics, asymptotically optimal x> tests are developed
to detect presence of cycles in the kth-order cyclic cumulants
or polyspectra, without assuming any specific distribuiion on the
data. Constant false alarm rate tests are derived in both. time- and
frequency-domain and yield consistent estimates of pos:ible cycles
present in the kth-order cyclic statistics. Explicit algorithms for
k < 4 are discussed. Existing approaches are rather empirical
and deal only with k¥ < 2 case. Simulation results are presented
to confirm the performance of the given tests.

1. INTRODUCTION

HE concept of (almost) cyclostationarity anc. (almost)

periodically time-varying ensemble statistics |14], [18],
[21], [22] has gained a lot of interest in the engineering litera-
ture lately. A discrete-time zero-mean (almost) cyclcstationary
process, z(t), is characterized by the property tha: its time-
varying covariance cz.(t;7) = E{z(t)z(t + 7)} accepts a
Fourier series (FS) with respect to time ¢, as

cox(t;T) = Z Cax(; 7)€,

a€Ay
1 T-1 }
CrolaiT) = lim = > con(t;T)e 7o ¢))
t=0

where the Fourier coefficient Co,(c;7) is called the cyclic-
covariance at cycle-frequency o and

Ay £ {@:0 < a < 27 and Cor(a;7) # 0. @

oo
T==00

Further, its time-varying spectrum Sg(t;w) 2 S
c2z(t;7) €777 can also be similarly expressed as

Soz(t;w) = Z SZw(a;w)ej“t 3)
aEAz

where the Fourier coefficient S, (0 w) 2 3. Cor(a;7)e 9T
is called the cyclic-spectrum.

Cyclic-statistics have been used as tools for .xploiting
cyclostationarity in several applications, including «ommuni-
cations {7}, [8], signal processing [4], [5], [10]-[13], [16],
[27], [29), hydrology [30], multivariate analysis [25], and array
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processing [32], for developing improved SNR, parametric and
nonparametric algorithms in nonstationary environments.

An important assumption made in these algorithms is that
the cycles present in the signal statistics of interest (e.g., the
set Ay of (2)) are known. This knowledge makes estimation
of the ensemble-statistics possible, and allows for separation
in the cyclic-domain of signals with distinct cycles. How-
ever, in several applications, the cycle frequencies are not
known a priori. For example, in processing of signals from
a mechanically vibrating system one may not know the cycles
arising due to unknown vibration modes. For other applications
such as identification of periodically time-varying systems
[4], [11], [29] or processing of signals with periodically
missing observations [4], [5], [12], the knowledge of cycles
is necessary to determine the unknown period.

An attempt was made in [33] to define a “degree of
cyclostationarity.” However, no statistical test was provided
to check for the presence of cycles. An interesting graphical
method for presence of second-order cyclostationarity was
developed in [19] by modifying Goodman’s test for non-
stationarity [15]. The resulting test is rather empirical and
is not geared towards checking for presence of cycles, due
to the nature of Goodman’s test. Further, with the growing
interest in higher than second-order cyclostationarity [4]-[6],
[9], [11]1-{13], [27], [29], there is also a need to detect presence
of cycles in the kth-order cyclic-cumulants and polyspectra
for £ > 3.

In this paper, tests are developed to check for presence of
cycles in the cyclic-covariance and spectrum by exhaustively
searching over candidate cycles for which the correspond-
ing cyclic-statistics are nonzero and statistically significant.
Asymptotically x2, constant false alarm rate (CFAR) tests
are derived in both time- and frequency-domain using the
asymptotic normality of sample cyclic-covariance and spec-
trum, respectively, without requiring knowledge of the data
distribution. Generalizations for detecting presence of cycles
in the kth-order cyclic-cumulants and polyspectra are also
developed. Apart from providing estimates of possible cycle
frequencies, these tests inherently check for presence of cy-
clostationarity and are expected to be performed as a first step
in most algorithms that exploit cyclostationarity. Differences
and similarities between the proposed methods and those of
[33] and [19] are delineated wherever appropriate.

To illustrate the elements of our approach, we first present
the time-domain tests with k& = 2, for simplicity, in Section IL
The kth-order generalizations for k£ > 1 are derived in Section
III, and frequency-domain tests are developed in Section IV.
Simulation results are presented in Section V and, finally,
conclusions are drawn in Section VI
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II. TIME-DOMAIN TEST

The objective of this section is to derive a test for finding
the cycles present in co.(f;7) of (1), for a fixed 7. In other
words, we wish to detect and estimate those o’s for which
Cyr(a;7) # 0, from a given stretch of data {z(#)}75". If
there exists one pair (o;7) for which Cyy (a;7) # 0, then
we say that second-order cyclostationarity is present in z(¢).
Hence, by detecting and estimating cycles of cg,.(t;7) we
are essentially testing for the presence of cyclostationarity.
For convenience, we study zero-mean processes although this
assumption is not restrictive, as shown in Section 1I-B.

To check if Ca,(a;7) in (1) is null for a given candidate
cycle consider the following consistent estimator of Coq(c; 7)
(see Section II-A)

T-1

Cogla;T) 2 % Z z(t)z(t + T)e It @
t=0

= Cox(a;7) + eg)(a"r) (5)

where eu)(a T) represents the estimation error which van-
ishes asymptotically as T' — co. Due to the error .g (a57),
the estimator C( )(a,r) is seldom exactly zero in practice,
even if « is not a cycle frequency. This raises an important
issue about deciding whether a given value of (fg)(_a; T) is
“zero” or not. To answer this question statistically, we formu-
late the decision-making problem in a generalized hypotheses-
testing framework.

In general, we consider a vector of @éf) (a; 7) rather than a
single value in order to check simultaneously for the presence
of cycles in a set of lags 7.

Let 71,...,7n be a fixed set of lags, o be a candidate
cycle-frequency, and

(T) [Re{C( )(a 7'1)} .,Re{ég’(amv)},
Im{éh (a;n)},...,Im{ég)(a;TN)}] ©)

represent a 1 x 2N row vector consisting of second-order
cyclic-cumulant estimators from (4) with Re{ } and Im{ }
representing the real and imaginary parts, respectively. If the
asymptotic (true) value of ég) is given as ca;

Cox 3 [RC{CQI(Q; Tl)}, ey Re{sz(a; TN)]P,
Im{Coz(0; 1)}, ..., Im{Coz(a; 7n)}] 0
then using (5), we can write

R ®
where egT) 4 [Re{eg)(a;n)}, e ,Re{eg’(a;TN)},
Im{egx (a,—rl)},...,Im{eg)(a;n\;)}], is the estimation
error vector. To check if a is a cycle frequency or not we
formulate the following hypothesis testing problem:

Ho:a & Ay V{r } ) = &0 = €57

Hi:a € A, for some {Tﬂ}n=l = ng) = Cz, + eg). 9
Since c¢g, is nonrandom, the distribution of €5, under Hy

and H; differs only in mean. Therefore, testing for the pres-
ence of a given « in Ay is equivalent to a binary classification
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problem and requires knowledge of the distribution of egg)
for designing a decision strategy. Because the distribution
of the data is unknown, we subsequently make use of the
asymptotic properties of the cyclic-covariance estimators to
infer the asymptotic distribution of eg)

A. Asymptotics of Cyclic-Covariance Estimators

The time-varying kth-order moment my,(t;7),7 = (r,
.,Tr—1) Of a process, z(t), is defined as

My (t;7) = E{z(@)z(t +71) - 2(t + T76-1)}- (10)
With 7o £ 0, let m,(¢;7,)
where {1, = [f,,...
Tuys--+3Twg- The kth-order cumulant, cy.(t;7), of
defined as

£ Ela(t +7,) -2t +7,)},
,Tv,]} and v denotes the group

z(t), is

Cra(3T)

=Y -

XMy z(t370,) My 2 (85 70,) an
where the summation on v extends over all partitions v =
v U---Uyyp of {7g,...,Tk—1}, with p representing the number
of groups in a partition. The mixing condition that we require
for deriving the asymptotic properties of (fg)(a; T) is given
in terms of cg,(t;7) as follows:

o

Al Z sup [Tk (8 7)| < 00, L € {1,...,k
t

T=—0c

—1},Vk.

Intuitively, assumption Al implies that samples of the
process z(t) that are well separated in time are approximately
independent. A1 is met, for example, by stable (non)stationary
linear processes (see also [4]).

With these preliminaries we are ready to present the main
result of this section, namely, the asymptotic properties of
@g)(a;r): Let z(t) be a discrete-time generally complex
valued cyclostationary process and define

flt;7) & )zt + 7). (12)
Let the unconjugated and conjugated cyclic-spectrum of
f(t;7) be defined, respectively, as

Sa, , (3 w)
1 T-1 oo
£ Jim Y0 Y cum{f(ti7), f(t+ & p) eIt
t=0 £=-o0
(s w)

ij 3 cumlfEm e

where * denotes complex conjugation, and (x) is just nota-
tional. Notice that for real processes, f(¢; 7) is real, and hence,
Sy, (azw) = Sé}ivp(a;w).
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Theorem 1: If z(t) satisfies assumption A1, then the esti-
mator Cg)(a; 7) defined in (4) is mean-square sense consistent;
i.e.

Tlim VCAg](a;T)m;—i'sCzr(a:T)- (13)

Additionally, \/T[éé?(a; 7)—Cor(a; T)] is asymptotically com-
plex normal with covariances given by

tim T cum{ 87 (057), €37 (8 ) } = Say, e+ B3 )

lzm T(‘um{Cﬁ,)(a 7,6 (8 p} ng_ (=3 =-0).
(14)
Proof: See Appendix A. 4
B. Test Statistics for k = 2
Returning to our test for presence of cycles, i€., (9), we

observe from the asymptotic normality of cyclic-cumulant
estimators (c.f. Theorem 1 and (5)) that

hnl \/_C(T)D N(0,%,.) (15)

D s e
where = denotes convergence in distribution, A stands for
a multivariate normal density, and 3s. is the zsymptotic
covariance matrix computed using (14) as follows Let Qa.

and Qg;) be two covariance matrices with (m,n th entries
given, respectively, as

Qae(m,n) = Sag, .. (2050)

Q.(m,n) £.85))  (0;-a). (16)

Using (14) and (16) and elementary complex algebraic ma-
nipulations it follows that the (auto- and cross-) covariance of
the real and imaginary parts of (fg)(agv'n),l <n < N are
computed as

Red @t | [ erq‘z?

an

From (9) and (15), it is seen that the hypotheses-testing
préblem of (9) is asymptotically equivalent to tte one of
checking for nonzcroness of the unknown mean o' a multi-
variate normal random variable. This problem is eqtivalent to
a generalized maximum-likelihood detection problem in the
cyclic-statistics domain and as usually done [17], 28], (pp.
378-380 of [31]), we let the following generalized "ikelihood
function be our test statistic!

AT 1elT) (18)
where 3. represents a consistent estimator of 3is. to be
developed subsequently in Section IV. To set a threshold for
hypotheses testing, we next derive the asymptotic distribution
of 73.. The following theorem comes in handy (se: pp. 337
and 344 of [24] for a proof):

'In (18), prime denotes transpose. and the pseudo-inverse must replace the
inverse if Yo, is rank deficient.
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Theorem 2: R1) If the 1 x M vector #7) is an asymp-
totically Gaussian estimator of 6, based on T data samples,
ie., limr_ vT(0™ — 6) 2 AN(0,5) and & # 0, then
limy ... VT(BTET — 69') 2 N(0,46%68'), but if 6 = 0
and ¥, = I (an identity matrix), then limy_ .. T(8T (7" — g¢’)
£ 2, where x2, denotes a central chi-squared distribution with
M degrees of freedom.

R2) If limy— .6 2 ¢ and limp_ o %7 ™2 ¥, an M x M
matrix, then limy_ .. 67§ 2 gy, O

Let G(T) 2 ¢ T)E'lﬂ and M = 2N. Since Ezp is mean-
square sense consistent, and sz)
Theorem 1) it follows from R2) of Theorem 2 that Q(T) is
asymptotically normal. Then, using (9) and R2) of Theorem
2, it follows that 75, in (18) has the following asymptotic
distribution under H,

is asymptotically normal (see

lim 7. 2 ng 19
T—o0 °
and under the alternative hypothesis H;
lim \/T( )221 cg) — €2, 27, Ch,)
T—o0
EN(0,4e2. 250 ¢h,).  (20)

Using (19) and (20), we now present our test which is
based on a constant false alarm rate approach for selecting
a threshold. For a given probability of false-alarms, Pr =
Pr{T5. > T | Hp}, we find a threshold T' from the central x?
tables with 2N degrees of freedom [20], such that (see (19))
Pr = Pr{x35 > T'}. Our test is given as

if T > T declare a € Ay for some 71,...,7n

else declare o & Ay, V71,...,7n. 2n
Once the threshold I' in (21) has been set, one can approxi-
mately evaluate the probability of detection, Pp £ Pr{T5. >
T'} H;}, using the distribution of 75, under H;. From (20)
and for T large enough, we may approximately write the
distribution of 75, as

2e ~ N (Tep, B35 ¢y 4T 2, S5k ey, ). 22)
Therefore, Pp can be evaluated in practice by substituting
for ¢z, and Xy in (22) by their cstimates and using the
standard normal tables [20]. The algorithm for ¥ = 2 can
be implemented using the following steps:

Step 1: From the available data and using (4), compute ég)
as in (6).
Step 2: Fill in the entries of the covariance matrix bf%,,

using the consistent cyclic-spectrum estimator
of Section IV, specifically, with Fr.(w) =
S o w()2(t + T)e "t compute

S

3 (20; @)

X FT.,-" (

_ L-1)/2
- ﬁ EE:—<L—1)/2 WT(s)

27s 27s
)FT‘rm <0 + T)
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S ., (0:-0)

- (L-1)/2
St =77 Zs:—(L—l)/2 WT(s)

2ms 2ms
x Fp,, (a + %)FT T (a + T)
(23)

where W(T) is a spectral window of length L (odd).
Using (23), fill in the entries of Qs and Q(;c) via
(16), which in turn yields 5., as in (17).
Compute the test statistic as T3, = Té5.) £5,18{7).
For a given probability of false alarms, P, using
central x? tables for 2N degrees of freedom [20],
find a threshold T' so that Pr = Pr{x? :» I'}.
Declare o as a cycle frequency at least for one of
T1,...,7n, if To. > T else, decide that « is not a
cycle frequency of Co,(v;7) for any of 7y,..., 7n.

The test summarized in these steps exploits the asymptotic
normality of cyclic statistics to introduce a x? CFAR test,
which is asymptotically optimal in the generalized likelihood
sense (see pp. 378-380 of [31]). Further, our test is based
on the cyclic-statistics only and does not require knowledge
about the data distribution. The variance normalization in
the test statistic makes the thresholding easier and standard
by employing table look-up from standard central x? tables,
irrespective of the particular signal at hand. Also, the x3y
distribution under the null hypothesis is asymptotically exact,
therefore we guarantee that the observed false alarm rates
converge to the one corresponding to the threshold selection.
In this sense our test is consistent, which is also an aspect of
its optimality.

By performing the given test for various values of ¢ one
can determine possible cycles in (fg)(a;f),r =T1,...,TN-
Presence of cycles indicates presence of second-order cyclo-
stationarity, however, to declare absence one has to show that
CAS)(Q; 7) = 0,¥(a; T), in the sense of the test. If there exists
an (a; ) for which Coz(a;7) # 0, then there is presence of
‘second-order cyclostationarity. However, this does not imply
that z(t) is cyclostationary, as is seen from the following
example.

Example 1: Let z(t) = w1(t) cos(wot) + b(¢)wa't), where
w1 (t) and w4 (t) are zero-mean uncorrelated stationary random
processes and b(t) is a deterministic transient function which
is nonzero only for 0 < t < Tg. Using the definition

Step 3:
Step 4:

Step 5:

cox(t;7) = E{z(t)z(t + 7)} it follows from the FS in (1)
that
sz(t;‘l') — C2w, (T)e—ngre—ijot + C2w, (T)
4 2
X COSwoT + Er“ﬁ—“:li)—ej""""'ejz“"” + (8 7)

where &(t;7) 2 b(t)b(t +7)caw, (7), has vanishing Fourier co-
efficients due to the finite support of b(¢). Hence, although z(¢)
is not second-order cyclostationary (in the sense of (1), due to
¢(t; 7)), it exhibits presence of second-order cyclostationarity
with cycles Ay = {—2wp,0,2wp}. O

An increased power test could be performed by using
different 7’s as well as different o’s in ch) Although com-
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putationally more expensive, this is particularly useful in an
exhaustive search for absence of cyclostationarity.

A simplified version of the given test, which is of particular
interest in determining the cycles present in Co.(a;7) for a
given 7, results by setting N = 1. The test statistic and its
implementation in practice is given as:

']-ZC = Tszzzc C2:c (24)
where &, = [Re{% St et + eIy, m{% ¥
2Dt + )97,

857 2aa) + 857 (0, ~a)

Re 2
$oe(m,n) = . i

[ 8, o) 4 8557 (05 —a)
m 2

87 (2050) - 850 (05 -a)
Im J 3 :

A(xT T

S5 (0;-a) - 857 (2050)
Im 5

(25)

with Sp5. _(20; ), 3;2 (0; ), and F(w), as in (23).
A fast implementation of the test results by observing that
F{T) and é,, are essentially the periodograms of z(t)z(t+7)
and hence can be computed via FFT’s. However, this limits
the resolution (with reference to the search space of candidate
a’s) to the FFT grid. From (23), it follows that the choice of
different W(T)’s with different L’s introduces different scale
factors in (24).

It is possible to estimate the time-varying ensemble statistics
of a cyclostationary process with the knowledge of the cycles,
which are used, for example, in parametric identification
methods [29]. Once the set of cycles As of ca,(¢;7) has been
estimated using the test in (24), one can estimate co,(t;7)
from (1) and (4) as

& () = -t (26)

S

acA,

(asT)e

The estimator 625) (t; T) can be shown to be mean-square sense
consistent and asymptoncal]y normal using the consistency
and asymptotic normality of sz (a;7) [4].

In the next section, we generalize the time-domain tests
for & = 2 to estimate the set cycles, Ag, of the kth-
order cyclic-cumulant for & > 1. Along the same lines,
consider the time-varying mean of z(t), ¢1.(t) = E{z(t)} =
Y aca, Cra(a)e?™, where Cig(a) is the cyclic-mean. Once
the cycles of the mean, A;, are estimated, c¢1,(t) can be
consistently estimated as élz(t) = Y aed, C}?(a) e,
where €7 () = & LYo a(t) et Therefore, the zero-
mean assumption about the cyclostationary process z(t) does
not sacrifice any generality, for if it is not zero-mean, one can
estimate and subtract the mean.
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An attempt was made in [33] to define a “Irequency-
decomposed measure of degree of cyclostationarity” for con-
tinuous time processes as

DOSe 2 f_ | Copla;7) |2 dr
f_ ICQI 0 T) '2 d

@70

where normalization in the denominator makes 0 < DCS®* <
1. However neither a statistical test was provided tc check for
the “degree of cyclostationarity” nor the determina ion of the
threshold of the probability of detection was given

III. GENERALIZATION TO ATH-ORDER

The test of the preceding section can be easily extended
for checking the presence of cycles in the kth-orcer cyclic-
cumulant of a cyclostationary process z(t). Ths is use-
ful for estimating cycles needed by the algorithns which
employ higher than second-order statistics for processing
cyclostationary signals [4], [5], [12], [27], [29]. Further, in
certain situations it becomes necessary to deal w.th higher
than second-order statistics, since second-order statistics are
inadequate in providing information about the c:'cles. For
example, in the transmission of QAM signals, the seriod (or
equivalently, cycles) of the periodically time-varying channel
cannot be inferred from the second-order statistics of its output
alone. One has to employ a combination of second- and fourth-
order cumulants to extract this information {29]. The following
example considers a related situation and further mo ivates the
need to consider the kth-order generalization.

Example 2: Consider a QAM signal w(t) = a(t) + jb(t),
where a(¢) and b(t) are mutually independent, .i.d., and
assume binary values 1 with equal probability. Let w(t)
be transmitted on a mobile communication channel with
(almost) periodically time-varying impulse response h{t;7) =
ed“otg(T). The received signal in the noise-free cas: is given
as

u(t) = i h{t; m)w(t —m)
=t N g(mu(t —m). (28)

To compensate for intersymbol interference introdaced due
to the channel, one has to acquire knowledge cf h(¢;7)
by performing identification. Since the time variati»n of the
channel is completely characterized by the exponential term
e7*0t it is crucial to determine wq. Now, from the distribution
of a(t) and b(t) it follows that E{a(t)} = E{b(t) = 0, so
that E{w(t)} = 0 and one cannot estimate wy from the cycle
of c14(t) = 0. Similarly

eaw(t:7) = E{w(t)w(t + 1)} = §(7) E{w?(t)}

= (1) [E{az(t)} - E{bz(t)}] =0
where 8(-) represents the Dirac delta. From (29) anc (28) we
see that cy,(t;7) = 0; therefore, the tests of the preceding

section, although they correctly show that no crcles are
present in ¢y (4;7), cannot be used to estimate wg. Also,

(29)
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since E{w(t)w*(t + 1)} = 6(7)E{|w( t)|2} = 26(1), where
* denotes conjugation, it follows from (28) that €g,(¢;7)
2 Byt + 1)} = 2047 T g(m)g*(m + 7).
In general, one cannot determine wg from &, (¢;7) due to
presence of the multiplicative factor 3_o-_ ___ g(m)g*(m+7).
From the preceding discussion it is evident that the second-
order statistics (with or without conjugation) cannot be used
to infer wy and one must resort to higher than second-order
statistics to obtain this information. Indeed for & = 4, since
May(t;7) = 0 = myy(¢), it follows from (11) and (28) that

€4y(t;0,0,0) = M4y (4;0,0,0)

o0

_766j4ugt Z _(]4(’{71)

m=—-0C

(30)

so that the cycle of c4y(t;0,0,0) (i.e., dwp) yields an estimate
of wp, motivating the need to develop tests for presence of
cycles in kth-order cyclic-cumulants for k£ > 2.

The kth-order time-varying cumulant cg,,(¢; 7) was defined
in (11). A kth-order cyclostationary process is formally defined
as a signal whose cumulants of order k are (almost) periodi-
cally time-varying [4], [6]. Thus, similar to (1), cx,(t;7) for
each fixed 7 = (rq,..., . Tk—1) can be expanded as a function

of ¢t in an FS as
Y Cralaim)ei™,
a €Ay

Cre(t;T) =

A £ {e:0< o < 27 and Cpp(a;7) £ 0} (31)
where the Fourier coefficients
=
. A . . —~jat
Cro(a;T) = Th_r‘noc T ; crz{t;T)e™? 32)

are called the cyclic cumulants at cycle frequency .

Our goal is to develop tests to find A of (31). If there exists
one pair («; 7) for which Cy,(a; 7) # 0, then we say that kth-
order cyclostationarity is present in z(¢). Hence, the kth-order
tests of the subsequent sections also check for presence of kth-
order cyclostationarity. As with the £ = 2 case, this requires us
to develop an estimator of Ci(a; 7) along with its asymptotic
properties.

A. Asymptotics of kth-Order Cyclic Statistics

The kth-order time-varying moment my.,(t;7) = E{xz(t)
2(t4+71) - - z{t+7-1)} of a kth-order cyclostationary process
is also (almost) periodically time-varying and accepts an FS
(4], [6] as

Mo (t:7) E M (v T)(i]at
ac Ay
T 1

Mipz(057) = hm — E M (t;T)e™ jot (33)

where My, is the cyclic-moment, and A7 is the set of cycle
frequencies of the moments.? Combining (11), (32), and (33),

2Note that the moment set of cycles A7’ may be generally different from
the cumulant set of cycles Ay.
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it follows that cyclic-cumulants can be expressed in terms of
cyclic-moments [4]

Cra(asm) =Y (-1 (p - 1)

X Y Mya(anim) o Mua(agiT,)
QL. Op
xnpla—ar— - —ap) 34
where n(a) is the Kronecker comb (train) function, which
is nonzero and unity only when a = 0( mod 2r), and

MyalesT,) £ lmr_,oo 2 T E: o m,,z(t; 7, )e~9%!, There-
fore, to develop an estimator of Ci, one needs an estimator
for My,. Motivated by (33), we define the estimator of M,
(see also (4)) as

T

t=0

MDD (a;7) 2 = (b + Tho Je I

(3%5)
z(t+7x-1), defining the cyclic

t+T1

With f(;7) = z(t)z(t+m) -
spectra of f(t;7) as

Ssz(a'w
A . —jw€ ,—~jat
_Th—{noofz Z cum{f(t;7), f(t + & p)}e *¥%e™?
t=0 £=—00
%hgmm
éThm —Z Z cum{ f(¢; 1) (t+§;p)}e"j“’€e—j°‘t
e t=0 £=—o0

and generalizing proof Theorem 1, it can be shown that [4]

Tli_l'nm/\;lg)(a; 7) "2 My (a5 7). (36)

In addition, VT [/\;(g)(an) — My (0 7)) is asymptotically
complex normal with covariances given by

TllmmTcum{M(T)(a T), M(T)(,Ba P)}
= SZpr(a + 5, 5)
lll'l'l Tcum{M ( a;7), M (T)(,B )}

=87 (a—B-B).

An estimator of Cy, can be obtained by substituting (35)
into (34), for My,. This estimator has been shown to be
mean-square sense consistent and asymptotically normal with
a computable variance using the asymptotic properties of
Mg) namely, (36) and (37). However, the general covariance
expression for arbitrary & is complicated and can be found in
[4].

In practice, it is usually sufficient to consider cumulants of
order £ < 4 and it follows from (34) and (35) that for zero-
mean processes : C’éf)(a; ,T2) = ./\A/Ig)(a;n,rz). and (see
Appendix B)

37

MEI?;) (a' 71,72, T3)

_ Z {M(T)(a—,@,rl)/\/l (ﬂ;T3—T2)ejﬂ72

BEAT

ég)(aﬂ'lﬂ'zﬁs) =
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M (@ - B;m) MD (871 — 73)e3PT
+M(T>(a ~ By m3) MSD By 1y — 71 )i BT }

Note that for V3 € A, a - 3
of (38), with cycles 3 and (o —

(3%)

& A7, the terms in EﬁeA;"
#) vanish and hence

C4:c(a; T17T2a7—3) E= M42(a; T1772a7-3) (39)

which for this particular choice of cycles suggests a simpler
estimator for C4, when compared to (38). Notice that (39)
holds regardless of o for QAM signals because mq,(¢;7) =
0 = mi.(t) (see also (30)). Apart from simplicity, another
advantage of (39) is that the covariance expression of Mz,
obtained from (37) with & = 4, can be used to evaluate the
covariance of (fh. Thus, at least for zero-mean processes and
for k = 2,3, and 4, one can write

Jim. Tcum{C(T)(a 7).¢0 (3, )} = Sapy plex + 8 )
40)
Tlf_I}lecum{Ckz (a;7), C*(T)(ﬁ,p)} Qf,rp( - B;-8)

provided that (39) holds. With these comments we are prepared
to present our kth-order time-domain test.

B. Test Statistic

Given a candidate frequency « and a set of lags 74,...,7n,
the problem of testing for presence of « in [Ckz(a; T1), -
Cre(oy Ty )] can be stated in a hypotheses-testing framework
as done in (9):

Ho:o ¢ A V{ma}ho) = él(c:) = fg) @1

a(T) (T)

Hi:a € Ay for some {7} = &) = cxp + €%

where &) 2 [Re{C{D(a;m)},....Re{CT (a; 7))},
m{¢ (7))} , .,Im{C( ey TN)}] cre 2 [Re{Crs
(a571)}, Re{Cxz aTN)}, Im{Ck; (a;m1)},-..,

Im{Ciz(a;7n)},] and eg) represents the estimation error.
Using the asymptotic normality of cyclic-cumulant estimators
we find that

lim VTl 2 N (0, B4.)

—00

42)

where X is the asymptotic covariance matrix of the cyclic-
cumulant estimators constructed analogous to the covariance
of k = 2 case (17) by first filling in the entries of the Q
matrices via (40) and then computing the Xj;. matrix using
(17) (see also the discussion (37)—(40)).

The test for presence of the kth-order cyclostationarity
follows essentially the same steps as the kK = 2 case, and
therefore, we skip the details. The kth-order algorithm is given
in Table I

With £ = 3 and N = 1, the algorithm of Table I yields
the test for cycles in the third-order cumulant similar to the
second-order case with z(t)z(t + 7) replaced by z(¢)z(t +
71)Z(t+72). It should be noted that for k£ > 4 the computation
of sample cyclic-cumulants becomes complicated and burden-
some with increasing order (34)—(38). On the other hand, the
sample cyclic-polyspectrum estimators to be presented next
have a simpler form.
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TABLE 1
'TiME-DOMAIN TEST -

Step 1 From data and using egs. (37)-(38) compute {see also (42), (43) and (4)]
ég) = Re{Cng)(a;rl)}, . ..,JEe{C’iT (a;7n)}, Im{C(T)(a;-rl)}, . ..,Im{(fg)(a;TN)}].
Step 2 Fill in the entries of the covarian:e matrix ¥y, as discussed following eq. (46).
Step 3 Compute the value of the test stztistic as
A a1l
T = T &7 i &

Step 4 For a given probability of false alerm Pp, find, using the central x? tables for 2V degrees of freedom

(e.g., [20]), the threshold T such that Pr = Pr{x% >T}.
Step 5 Declare o as a cycle frequency at least for Ty,..., 75 if Tec > T; else decide that a is not a cycle

frequency of Cy,(«;7) for any of ry,...,Tn.

IV. FREQUENCY-DOMAIN TEST

As mentioned in Section I, cyclostationarity can equally well
be exploited using the frequency-domain counterpart of the
cyclic-covariance called the cyclic-spectrum. Nonparametric
algorithms for cyclostationary signals are typically based on
the cyclic-spectra and assume knowledge of cycle fiequencies
present in the statistics of interest [1], [5], [10]. In this sec-
tion we develop frequency-domain tests for cycle fiequencies
present in the cyclic-spectra and presence of cyclostationarity.
Since the second-and kth-order tests follow the sume steps,
we directly present the kth-order case.

As with the spectra (3), the time-varying and cyclic-
polyspectra are defined, respectively, as

Skr(t;w)é Z t’,'km(t‘,‘l')g*jm'r'_7
T=—o0

Skx é Z Ck,(a 6 ~wT’ (43)
T=—00

,wg—1). Using (31) and (43), one can write

Z Sk (a;w) e“’t

aEAy

A
where w = (wy, ...

Ska(t; w) (44)

which represents the FS expansion of the time-varying
polyspectra. For a given w, our aim here is to develop tests
to find A; ie., all the a’s for which Si.(o;w) # 0, and
analogous to the time-domain tests, this requires estimators of
Skz(a;w) along with their asymptotic distributions.

A. Asymptotics of Cyclic-Polyspectral Estimators

Notice from (3) and (43) that the cyclic-spuctra and
polyspectra are nothing but the Fourier transforms of the
cyclic-cumulants. In this sense, they are similar to the spectra
and polyspectra of stationary processes, which arz Fourier
transforms of the time-invariant cumulants. It therefore seems
natural to modify the (poly) periodogram estimators [2] to
estimate cyclic-(poly)spectra.

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 19,

With Xp(w) 2 ST a(t)e 7“t, the cyclic-periodogram
and bi-periodogram are defined, respectively, as

T 1
I (@) = ZXr(w)Xr(a - w), 45)

1

FXT(@1)X7(ws) Xr(a — wi — wy).
(46)

Notice that for & = 0, I{7) and IST of (45) and (46)

reduce to the conventional periodogram and bi-periodogram

respectively, used for stationary processes. The kth-order
cyclic-periodogram can be defined as

ED (a5 w1,w0) =

I (g, ... - Xrp(we-1)

X "a—ug—-'-—uk_l

,we—1) = —‘XT(WO)
47)

where 7 denotes the Kronecker delta train, and hence, I, g)
is a (k — 1)-dimensional function which is nonzero and unity
only when wo + - - - + wx—1 = a(mod 27).

Analogous to the stationary case the periodograms are
unbiased but inconsistent estimators of the cyclic polyspectra,
and spectral smoothing is needed to make them consistent
[4], [6]. The smoothed periodogram estimate of the cyclic-
polyspectra is given as

T-1
ST wo,. .. wp_y) 2 TR Z
80418k —1=0
27s Imsn_
x W(T) _ o o 2msi
“o T ) s Wk—1 T

27sg
T R ]
278k _1

T

X I,g) (a; ——27“’1’1“‘1

)
o )

T
where W{T) represents the spectral smoothing window and
the function ¢ is defined as

(48)

Zw, € A and an =«

lel
else

A

¢((d0, e

y Wk— 1
0,
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where £ are all the nonempty subsets of {1,...,k — 1} with
|| elements, and its role is to suppress the contributions from
the proper submanifolds [4], [6].

In practice the cyclic-spectra and bispectra estimators can
be obtained by simplifying (48) for zero-mean processes as

=
SéT)(a; w) 2 ___ W(T)(S)
“ TL
s=—(L-1)/2
2
x Iy (a;w - —;3) (49)
1 (L-1)/2
S;g)(a;wl,wz) ES T Z W(T)(SI)VV(T)(SQ)

s1,82=—(L—1)/2

2 I
1D (o0 - 2 = B2 )

where W(T) is a spectral window of support L (odd).

Our interest is on the asymptotic properties of the cyclic-
polyspectral estimators, which are presented next. If the
window WD) satisfies certain regularity conditions (usually
met in practice by smooth windows), z(¢) satisfies Al, and
Sorlnl IC( ) (o ‘r)| < oo, i =1,....,k -1, Vo, Vk,
then, Skz)(a wo, ... ,wk—1) of (48) is mean-square sense
consistent [4], [6], i.e.

lim S(

T—o0

(@30, - - - wh1) "2 Sta(asw).  (SD)

Additionally, 5‘,(;‘:) is asymptotically complex normal with
covariance given by

lim B‘lc Ly
T—o00
X Cum{gka-‘ (a1 wo, .. 7wk—1)7$]£:)(ﬁ; Ho, - - - I-l‘k—l)}
_ngn k] ( 210’”)
X Szz (wo + 1p(o); +MP(0))
< Sap(Wh—1 + tpr-1): THPE-1)) (52)

where £, represents the energy of the window, P represents
all the permutation of the integers 0,...,k — 1 and Brp is
the bandwidth of the spectral window [4], [6]. The conjugated
covariance can be obtained by replacing u with --p and 3
with — 4 in (52). Note that although the covariance expression
of (52) seems complicated, it consists only of second-order
cyclic-spectra which can be easily estimated using (49), irre-
spective of k. In practice, the covariance of the cyclic-spectra
and bispectra can be computed using (52) and (49) as

cim{ {7 (o30), 85 (B;)}
_ Ew .
ol o7 {S(T)(w + ) S5 (et B—w— 18— )
+30w+ 8- wf- WS- w+mp} (63

and with po = 8 — po — p1 and we = @ — wp — wy

LT | (4 R
TCOV{S:(;?(OL; W, W1, We), S:E:)(ﬁ} o, 1, u2)}
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~ 850 (wo + 0 10) S5 (Wi + pa; 1) SSE) (we + s prz)
+ 80 (wo + o3 )52 (w1 + i p2)S5E) (w2 + puas )
+ 85 (wo + p1; 1) SSE (w1 + pro; 1s0)SS2 (wa + pias o2)
+ 8 (wp + 3 1) S50 (w1 + 2 12)SET (wa + pro; pi0)
+ 8 (wo + p2; 12) S (wn + pir; ) SEE (wa + o3 o)
+ 8 (wo + pio; 12) 85T (w1 + 1103 0) S8 (wa + 15 1)
(54

Recall that the covariance of the cyclic-cumulant estimator,
Say, . (14), (40) is the cyclic-spectrum f(t;7) and therefore
can be estimated using (48) with £ = 2. Strictly speaking,
this requires inclusion of the 0-1 function ¢(w), for avoiding
the proper sub-manifolds which in the case of cyclic-spectra
are the cycles of the mean of f(t;7) i.e., Ak, but since when
testing for presence of cycles, Ay is unknown, we had set
¢(w) = 1, except at the candidate cycle (24). The resulting
error is negligible in practice and one may ignore it. Our
simulation results agree with this conclusion.

Due to the consistency and asymptotic normality of the
cyclic-polyspectral estimators the asymptotic properties of the
frequency-domain and the time-domain statistics are com-
pletely analogous. Therefore, the steps involved in deriving
the test of Section II can equally well be applied to develop
the frequency-domain algorithm, as is done next.

B. Test Statistic

For a fixed w and a given candidate frequency « let
éﬁé[ {8 (@)}, Re{S{ (@wm) },
Im{Sg)(a;wl)}, e Im{Sg)(a;wN)}] (55)

whose asymptotic (true) value is given by

£ [Re{Skz(a;w1)}, - ., Re{Ska(a;wn)},

Im{Si.(a;w1)}, ..., Im{Skz(;wn)}] (56)

so that
80 = g4 + D) (57)
where ei is the estimation error. Using the asymptotic nor-

mality of cyclic-polyspectrum estimators, the error converges
in distribution to a Gaussian density given by

Jim VTBE 1D 2 A0, 24,)

where X, is the asymptotic covariance matrix, which is
constructed in the same fashion as (17), by first computing
the Q matrices with conjugated and unconjugated covariance
of the polyspectral estimators and then using them to fill the
Yk matrix.

The hypotheses-testing problem corresponding to the de-
tection of the cycle frequencies in Si, may be stated as

(38)
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TABLE II
FREQUENCY-DOMAIN TEST
Step 1 From data and using eq. (52) compute [see also (54-55)]
80 = [RefS (s 1)}, .., Re{SD (s wn)}, Im{8E (a5 w1)},. .., Im{S{2 (e;wn)}|.
Step 2 Fill in the entries of the covariance matrix X, using as discussed following eq. (63).
Step 3 Compute the value of the test statistic as
T, = T 5, &
Step 4 For a given probability of false alarm, Pr, find, using the central x tables for 2N degrees of freedom
(e.g., [20]), the threshold I' such that Pp = Pr{x? > T'}.
Step 5 Declare « as a cycle frequency at least for wi,...,wn if Txs > T else decide that « is not a cycle
frequency of Sgz(a; w) for any of wy,...,wn.
follows: M <<< T for (63) to be reasonably accurate. However,
) J(T) _ (T) the “‘coherent” statistic [19] is derived by choosing M = T,
Ho: o AV {ra)os, = &) =€, 59 which yields via Parseval’s theorem

ey (T)

H;: a € A for some {T,,}n 1= 58;, = 8k +e,

and the test statistic is given by

(T)

—14 (T)
5 =

Tes = ks ka - (60)

Following the steps of Section II, we arrive at the frequency-
domain algorithm, which is summarized in Table ‘1.

As in the time-domain algorithm, once the threshold I is set,
one can approximately evaluate the probability ol detection,
Pp £ Pr{T;, | H;}. For large enough data lengtis we may
approximately write

~ N (Ts1: 558, 4T 84,5528, (61)

Therefore Pp can be evaluated by substituting for s, and
3. in (61) by their estimates and using the standard normal
tables [20].

An interesting test was given in [19] which, in cur notation
and for FFT frequencies, uses the following functicn to derive
the detection statistic

7("‘)13“)21 A[) 2
M-1
% Em:[) XT(
M ZM o | Xz (w1 + 252

2
+ 252) X7 (w2 + 2)

T
|21\L M- 1|XT w2+2wm)l2'
(62)

The numerator is a sample correlation of the finite Fourier
transform X (w), used to measure the spectral correlation.
Intuitively. this suggests that large values of M should improve
the measure. The denominator serves as a normalizing factor.
The authors in [19] provide the distribution of y(w1,ws, M) as

Pr(y >T) = (1 -T)M-! (63)

which was derived by Goodman [15] under the assump-
tion that Xp(w) are zero-mean complex Gatssian with
E{X7(w1+%2)} and E{Xr (w2 + 2Z2)}, being con-
stants for m = 0,..., M — 1, suggesting that one must have

) 2
'_ t—O x(t)] "_J_l
T_ 2
[+ 205 o]
Apart from violating the assumption required to derive (63),
the coherent statistic loses phase information in xz(¢) which

in fact may contain the cyclostationary component, as in
z(t) = w(t)exp(—jwot), where w(t) is a stationary process.

7(0,0,T) = (64)

As an alternative to the coherent statistic, an “incoherent”
statistic was derived in [19], which is given as
1
bla, M) = ——
@M= 1
27rpM 27 (pM + a)
X .M. (65
z (o e, (65)

However, the distribution of §(c, M), which is necessary for
performing a statistical test, was not derived. A threshold
setting based on (63) yields a I" for a given probability of
false alarm Pr as ' =1 — PI[L}/(M_I)], which approaches 0
exponentially as M increases. This can be detrimental to the
performance of the test, especially if the variance of the test
statistic decays slower than exponentially. Unlike the kth-order
treatment herein, the test of [19] considers only correlations
of periodically correlated process.

V. SIMULATIONS

A modulating signal w(t) was generated by passing zero-
mean exponential deviates through an all-pole filter with poles
at 0.45 + j0.35. The data x(¢) was generated as

z(t)

The signal z(t) models AM signals, or can be used to
model sinusoids with randomly fluctuating amplitudes [13].
Our goal is to estimate the cycles present in the kth-order
cyclic statistics of z(t) for k = 2 and 3, using the time- and

= w(t) cos(wot);wp = 7/4. (66)
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(a) 2nd-order cyclic-cumulant (b) Stat. w/ threshoild @ PFA=0.05
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Fig. 1. Second-order time-domain tests.

frequency-domain algorithms. Using (1), (3), (31), 132), (43),
and (44), it follows that

c2(t;7) = e

c2u(r) elwoT COSwWoT
4

—j2wot 4. 021112(7')

+ Czw(T) eIwoT gi2wot (67)

Ca‘”(Tl’T?) jwo (T1+72) ,—F3wot ﬁ___"’(Tl’__Tz)
S eI+ 22

X [QCos(uo[Tl - 7))+ o (Ti4m2) | g—jwot

c3z(t;m,72) =

cSw(Tl’ 7'2)
8 .
X [QCOS(QJ()[T] - 7-2]) + ejuJU(Trl—Tz)lengt

€3u(T1:T2) juo(ry +72) B0t

+ (68)
Spulti7) = Sow(w — wg)4$2w(w + wp)
Saw(w + wﬂ)e—jzugt + Sow(w — “’erzwz
4 4
(69)

SSw(wl — Wp, W2 — wo)e*]ﬁwgt

Sy (t; 11, 72) =

8
Sgw(wl — Wp, W — WO) SBw(wl — wp, w2 + (‘JU)
8 8
S (w1 + wo, w2 + wo)e—jwot
8
st(wl — Wwo, w2 — wo)
8
Sgwl{wl — wo,wa +wp) | Saw(wi + wo, w2 + wp) vt
8 8
Sz (w1 + u;o,wz + wﬂ)ej:iwot. (70)

From (67)—(70) it is evident that Ay = {—2wy,0,2wp} and
Az = {-3wp, —wo,wo, 3wg} at most, for all 7, w, 71,72, w1
and ws, which is verified in the following simulations.
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Fig. 2. Second-order time-domain tests—two signals.

A. Second-Order Time-Domain Tests

The algorithm of Table I, with k = 2, was tested with
T = 256 (128 x 2) and 7 = 0. A Kaiser window of parameter
10 was used to compute the covariance estimates in (24) with
L = 61. Fig. 1(a) shows the magnitude of the “raw” second-
order sample cyclic-cumulant of (4), from which it is seen
that Cé?(a; ) shows several peaks indicating the possibility
of the presence of several cycles. Fig. 1(b) shows the test
statistic (24) along with a threshold I'" set to CFAR of 0.05,
which clearly shows that only three frequencies are statistically
significant and they are {—7/2 = —1.57,0,7/2 = 1.57}, as
expected (66), (67). Fig. 1(c) shows mean = standard deviation
of the test statistic for 100 Monte Carlo runs. To verify the
performance of the test we have plotted in Fig. 1(d) the
theoretical probability of false alarms i) versus the probability
of false alarms (PFA, solid line) and ii) the probability of
detection (PD, dashed line), observed over 100 Monte Carlo
runs. The probability of detection can be seen to rapidly
approach the value 1, whereas the probability of false alarm
is almost a straight line from O to 0.5, as expected.

B. Second-Order Time-Domain-2 Signals

To check the sensitivity of our test to the relative strengths
of a superposition of two cyclostationary signals we picked
w; = g;we = %, and

z(t) = w1(t) cos(wrt) + wa(t) cos(wat) 7D
where wi(t) and wy(t) were two independent time-series
generated by passing exponential deviates through the same
filter as the w(t) in (66). One of the two signals could be
considered as an interference or noise. The variance of ws(¢)
was four times that of w(¢). The signal-to-noise-ratio SNR
was defined as 10log;q (var{w,(t)}/var{wo(t)}). The signal
z(t) was processed using the second-order time-domain test as
in the previous experiment to detect the five cycle frequencies
{—2w32, —2w1,0,2w1,2wz}. The results are shown in Figs.
2(a), (b), and (c), which are analogous to those of Figs. 1(a),
(b), and (c). It was seen that for better performance, we had to
increase the data size to 7' = 2048 (128 x 16); otherwise, the
estimdtion error was dominating the weaker signal. Further,
for a fixed T = 2048 (128 x 16) and Pr = 0.01, we studied

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 19, 2009 at 02:10 from IEEE Xplore. Restrictions apply.



DANDAWATE AND GIANNAKIS: STATISTICAL TESTS FOR PRESENCE OF CYCLOSTATIONARITY

(a) 2nd-order cyclic-spectrum

(b) Stat. w/ threshold @ PFA=0.05
8, T

| | o
6
2
£ 4
&
2
B o 2 R 0 2
Candidate cycle freq Candidate cycl s freq
(c) 2nd-order FD test (d) PFA and PD
15
§ B R e b
.
b !
&2
z g |
® SO e R
@
gl ]
w !
a I
-5 9571 02 03 04 05

-2 o 2
Candidate cycle freq PFA (theoretizal)

Fig. 3. Second-order frequency-domain tests.

(b) Stat. w/ threshold @ PF A=0.0000005
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Fig. 4. Coherent statistic of [19].

the probability of detection for different values of the SNR;
results are shown in Fig. 2(d).

C. Second-Order Frequency-Domain Tests

The frequency-domain algorithm of Table II, with k = 2,
was tested with 7' = 256 (128 x 2) w = 0 and z(t), 1s in (66).
A Kaiser window with parameter 1 was used for computing
the cyclic-spectrum as in (49) as well as the estim.tes of its
covariance, as in (53) with L = 11. Fig. 3 shows tl.e various
plots analogous to the diagrams in Fig 1.

For comparison we have plotted the coherent statistics of
[19] in Fig. 4 with T = 256 (128 x 2). Because the data
length per segment is large (1" = 128), the threshold zomputed
using (63) rapidly approaches zero as Pp increases (see
discussion following (65)). As a consequence, the observed Pp
consistently exceeds its theoretical value while the probability
of detection is 1 since most of the frequencies exceed the
small threshold value.

D. Third-Order Time-Domain Tests

The algorithm of Table I, with & = 3, was tested with
T = 2048 (128 x 16) and 7, 7 = 0. A Kaise* window
with parameter 10 was employed for computing the covariance
estimates with L 41. Fig. 5 shows the various plots
analogous to the ones in Fig. 1. It can be seen that tt.e higher-
order test requires more data than its second-order counterpart
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to reduce the increased variance caused by the higher order
statistics.

E. Third-Order Frequency-Domain Tests

The algorithm of Table II, with & = 3 was tested with
T = 2048 (128 x 16) and w; = ws = 0. A Kaiser window
with parameter 15, L = 31 was employed for computing the
cyclic-bispectrum while parameter 1, L = 11 was used for
the estimates of its covariance. Note that because of increased
variance of higher order statistics, longer window averaging
lengths are required to compute the cyclic-bispectrum when
compared to the ones required for variance estimation, which
depend only upon the second-order spectra (52). Fig. 6 shows
the various plots analogous to the ones in Fig. 1.

F. Target Motion Detection

As an application of the second-order algorithm we sim-
ulated a target motion detection in the radar scenario [1]. A
cosinusoidal pulse is transmitted at frequency wo and when
the target is stationary we receive

z4(t) = w(t) cos(wot) + v(t) (72)
where w(t) is a stationary process which models random

effects introduced due to the target and the medium. When
it is in motion with constant velocity, the received signal is
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given as

Zm(t) = w(t») cos(wo D[t — d]) + v(t) (73)

where D accounts for the Doppler effect and d depicts the

delay. It follows, using (1) and (3), that Ay = {—2w9,0, 2wp}
when the object is stationary and A; = {—2Dwy,0,2Dwp}
when the object is in motion. With D = 2, d = 0, wg = 7/8,
u(t) to be a colored Gaussian noise (MA(16) approximation
of an AR(2) filter with poles at 0.1 £+ j0.25) and with
E{w*(t)} = E{v*(t)}, we tested our second-order time-
domain algorithm for 7' = 1024 (128 x 8), Kaiser window
parameter 10, L = 61. The probability of false alarms was
fixed at 0.01. Fig. 7(c) shows one realization of the statistic
when the object is stationary, whereas Fig. 7(d) shows one
realization of the statistic when the target is in motion. It
can be seen that when the object moves the cycles appear at
{—4wy, 0,4wy} instead of {—2wy, 0, 2we}, correctly detecting
motion. Fig. 7(a) and 7(b) shows mean and mean % standard
deviation of the second-order test statistics, over 100 Monte
Carlo runs corresponding to Fig. 7(c) and (d), respectively.

VI. CONCLUSION

Presence or absence of kth-order cyclostationarity in a time
series is defined by the presence or absence, respectively,
of kth-order cyclic-cumulants and polyspectra in their corre-
sponding time-varying ensemble averages. The main idea in
the development of the tests was to establish thar the kth-
order sample cyclic-cumulants and polyspectra are consistent
and asymptotically normal with computable variances, and
therefore, asymptotic x? tests could be developed for checking
for (non)zeroness (presence or absence) of sample cyclic-
cumulants or polyspectra. The variance normalization leads
to a standardization of the thresholding process irrespective
of k, time-, or frequency-domains. Simulations confirm the
performance of the tests.

Implementation aspects, special cases, and explicit algo-
rithms for £ < 4 were discussed. Computationally. it seems
that for £ < 3, the time-domain tests are convenient to use;
however, for k£ > 4, the frequency-domain tests are simpler to
implement. Our tests are expected to be a necessary first step
for gaining knowledge of the cycles, in the implementation of
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the algorithms which exploit cyclostationarity. The frequency-
domain tests are appropriate for nonparametric algorithms
which usually employ frequency-domain statistics, while the
time-domain tests are suited for cyclic-cumulant based meth-
ods. Although fast FFT-based implementations of the tests are
possible, they are limited by the resolution provided by the
FFT’s. In future it will be of interest to develop high resolution
implementations to estimate cycles of a cyclostationary time
series.

APPENDIX A
PROOF OF THEOREM 1

Unbiasedness and Consistency: ~Asymptotic unbiasedness
follows easily, since from (4) and (1)
T-1

Jim B{¢((as7)} = lim —ZE{:c(t (¢ + T)eIot)
%E&“ZCZ@(” edt
=C2m(a,‘r).

For consistency, observe from (4) and (12) and the multilin-
earity of cumulants (see p. 19 of [2]) that

cum{c‘gf>(a 7,60 (3; )}

(74)

T-1
=y 3 cum {f{bi7), Stz p) eI+
t1,t2=0
T-1T-t—1
= Y0 3 cum{f(t7), f(t+ 6 p)e I eI
t=0 £=—t

(73)

where £ 2 t, —t; and t = t;. Using the Leonov-Shiryaev
identity (see p. 19 of [2]) to write the cumulant of products of
z(t) in (75) as a sum of products of its cumulants, we obtain

C“m{cm ™), C57) (8; p)} =T, +Ts+Ts (76)
where
T-1T-t-1
T2 5 Y Y culiné )
t=0 £=-t
x e~ H(atB)tg=iBE,
T-1T-t-1
T2éTzZ Z c2e(t;€)
t=0 £=-t
X ch(t + 736+ p— T)eHotBit—iBE,
T-1T-t—-1
Ts £ T2 Z Z coz(t; €+ p)
t=0 ¢(=-t
X Cox(t + 7€ — 1), e I FBgmIBE an

We show that each of T;, Ty and T3 in (76) vanishes
asymptotically due to A1l. Now

1Tl
1S g D et 64 ).

t=0 £=—oc

(78)
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Using the summability of cumulants from Al with k = 4 we
observe that Y g0 _  |caz(t;7,€,€ + p)| = O(1), so that T,
in (78) is O(T~'), hence, limr_,o, T1 = 0. Next consider the
second term from (76) and as with T

1 T—-1 oo
Ty < ﬁz Z lCZI(t§€)l

t=0 ¢=—o0

X 3 Jesa(t+m€+p—1)|.
f=—oc0
Again, using Al we observe that -2 |ca.(t; €| = O(1)
and 3 . lc2c(t + 7€+ p — 7)| = O(1) so that Ty is
O(T~1), and hence, limz .o T = 0. As with T it can be
shown that T3 = O(T~!) and hence limr_, ., T3 := 0. Since
all the three terms in (76) vanish as T' — oo, it follows that

i}gggcunl{ééf)(a;T),(fé?(ﬂ;p)} =0, Vo, B,7,p. (79)
Similarly, it can be shown that
Jim cum{ED (i), G0 (B0)} = 0, Ve 8,50 (80)

proving the consistency? of G2 (a; 7).

Asymptotic Normality We show asymptotic normality as in
[2] (see also pp. 179-182 of [26]) by showing that >umulants
of order >3 of (?Ag)(a; T) (conjugated or unconjugat:d) vanish
asymptotically. Using again (4) and (12) and the multilinearity
of cumulants (see p. 19 of [2]), we find that

cum{(fg)(ao; T0); .- ,@éf)(am;rm)}

T-1

Z Cllm{f(to;T[)),---’f(tm;T‘IH)}

ta,..stm =0

_ 1
- Tm+1

x e~ J(aotottamtm)

(81

With ¢ — to = &1,...,tm — to = &m, and to = ¢ in (81),

it follows that
cum{ééf)(ao; T0)y- - ,C;g)(am; Tm)}

1
(r-1) g
x Yo > am{f(t70) o, f(E+ & iTm)}

=—(T-1)t=ty
v L m
X e J Et:o ot =] Z!:l ol

where t, £ -min(0,&;,...,6n), t5 = T — | — max
{&,...,&m,0}. After using the Leonov-Shiryaev identity,
once again we obtain that

(82)

1

cum{égf)(ao;m), . ,ég)(am;fm)} = Tl

(r-1) g

X Z Z Zcum{z(p),p €wn}

g=—(T~1)t=ta v
.. 'Cle{IL'(p),p € V,,}e—j E‘";omte—j 21";1 1191
(83)

3 Note that for consistency, Al needs to hold enly for k = 2 and 4.
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where the summation on v is over all the indecomposable
partitions [2] of the following table:

t t+ 79
t+&6 t+&H+ 7
: : : (84)
t+ém t+én+n

As done with T of (76), it can be shown that the r.h.s. of
(83) is O(T~™) due to Al; Thus, from (83)

Tli_r'noo T'"_lcum{(fg)(ao; T0),--- ,(fg)(am; Tm)} =0.

(85)
Similarly, it can be shown that (85) holds even when any of the
ééf)’s are conjugated, which proves the asymptotic normality
of éé?(a;fr). The real and imaginary parts of ééf)(a; T) are
thus jointly Gaussian.

Covariance Expression: With m = 1 in (82) we obtain

cum{ééf)(a; T), C}?(ﬁ; p)}

(T-1) tg
1 .
-7 Yo Y cum{f(t:i7), f(t+ & p) e HO
=—(T-1) t=ta
X e“]ﬂf
1 (T-1 T-1 to T-1
=7 X (XX X
£=—(T-1) | t=0 t=0 t=tz+1

x cum{f(t;7), f(t + & p)}e I Nt (86)

Observing that since to, = —min(0,€), tg = T — 1 —

max {£,0}, for each fixed & 3 iz, and ZtT_;;“ contain
only a finite number of terms which vanish asymptotically
when divided by T'. It follows from (86) and (4) that:

Jim Toum{¢§D(a57),ED(8:0)} = Sop.,, (r + B ).
87
The assumption A1 guarantees that the sum on £ converges
at a rate that allows (87) to hold true [4]. It can be similarly
shown that

Jim T em{¢{D(0;7), G (8:0)} = 85 (@~ B;-B)

(88)
which completes the proof of the theorem.
APPENDIX B
THE FOURTH-ORDER CYCLIC-CUMULANT
From (11) with & = 4, it follows that for zero-mean
processes
Caz(t; 71,72, 73) = Mz (t; 71,72, 73)
— Mo (t; 11 )Moz (t + 72573 — 72)
— Mag(t; T2)mor(t + 73,11 — T3)
~ Mag(t; 3)max(t + 71370 — 71). (89)

Using (33) and the definition of cyclic-cumulants from (32)
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with k& = 4, we obtain

Cag(a; 11,72, T3) = Mug(a;71,72,73) — My — Mz — M3

(90)
where
T-1
M; = 1}1_1'1100 tz% Moy (b 71)Mog(t + 72373 — 10)e” jot
91
T-1 '
Mg = Tllm - Z ng;(t T2)m21(t + 7371 — Tfi)e_]at
t=0
(92)
L T2 '
M3 = Th_r'noo T tz:% Moz (t; T3)mag (t + 71372 — 7 )e 7%

93)

Now consider M; in (91) and express mo,(t; 7) via (33) to
see that

MlzTh_r,nooTZ z Z MZw('lpaTl)

t=0 B AT YEAT
X Mo, (8573 — Tg)ej‘l’tejﬂ(t'”’)e'j"t. 94)
Passing the limit along with the summation on ¢t in (94)

inside the summations on (3 and ¢ and observing that

limy_ oo % Ef_ol i = (@), a Kronecker delta train with

period 27, we obtain

Z Z M2:1:("/J;7—1)

BEAT YEAT
X Mo (8573 — m2)n(a — ¢ — )P (95)
Z Mgz(a - ﬂ; Tl)sz(ﬂ; T3 — Tf_))vf!jﬁfz . (96)
BeAr

As with M3, one can simplify My and M3 and bring them
into a form similar to (95). Using these simplifications for My,
M, and M3 in (90) we obtain

My (71,72, 73)
Y {Mao(a—Bim)
BeEAT
X Mag(B; 73 — 72)e?P™
+ Moz (o — B;12) Moy (8511 — 73)e?P™

Caz(o5711,70,73) =

+ Mag(a — B;73) Moz (8572 — 11)e?PT .

o7
Now (38) follows upon using (35) into (97) for My, ,k = 2,4.
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