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Abstract

We formulate end-to-end congestion control as a global
optimization problem. Based on this formulation, a class
of minimum cost flow control (MCFC) algorithms for ad-
justing session rates or window sizes are proposed. Signif-
icantly, we show that these algorithms can be implemented
at the transport layer of an IP network and can provide cer-
tain fairness properties and user priority options without
requiring non-FIFO switches. Two algorithm versions are
discussed. A coarse version is geared towards implementa-
tion in the current Internet, relying on the end-to-end packet
loss observations as indication of congestion. A more com-
plete version anticipates an Internet where sessions can so-
licit explicit congestion information through a concise prob-
ing mechanism. We show that TCP congestion control, after
some modification, may be treated as a special case of the
MCFC algorithms.

1. Introduction

Congestion control in packet networks has proven to be a
difficult problem, in general. However, this problem is par-
ticularly challenging in the Internet, due to very limited de-
grees of network observability and controllability. In order
to accommodate rapid growth and proliferation, the design
of the IP protocol and the requirements placed on individual
subnetworks have been kept at a minimum. Consequently,
the main form of congestion control possible in the current
Internet is end-to-end control of user traffic at the transport
layer. As exemplified by TCP [Jac88], this control must be
exerted using only the limited network observation that ses-
sions can locally make, based on their own performance.
The prevalent form of service discipline in the Internet is
FIFO queuing, and control approaches based on more so-
phisticated service disciplines are not easily applicable.

Although the current TCP congestion control has been
relatively successful, its ability is exceedingly stretched
by the rapid growth of the Internet and the proliferation
of both real-time and multicast services. Over the past
several years, considerable effort has been directed at im-

proving the existing techniques of congestion control in
the Internet and at introducing new approaches to accom-
modate the requirements of new services and applications
[RJ88, CJ89, Flo91, Kes91, Mit92, MS90, MS93, ZDE+93,
Flo94, FJ93, FF96, Bra97].

In this paper, we formulate the end-to-end control of
user traffic in IP networks as a global optimization problem.
The optimization framework enables us to bring out, in a
comprehensive and concrete manner, the tradeoff between
avoiding congestion and satisfying users and the issues of
fairness and priority among different users. Using this the-
oretical approach, we come up with a class of congestion
control algorithms which have well-defined fairness prop-
erties and allow for the possibility of providing user priori-
ties through the proper setting of certain design parameters
associated with a particular user or application type.

Although methods of enforcing fairness or user priori-
ties have been extensively studied in recent years, they are
usually based on non-FIFO service scheduling at network
switches where traffic streams meet and competitions arise
[Zha91, Gol94]. Remarkably, in the class of algorithms pre-
sented here, we are able to achieve certain fairness proper-
ties and user priority options without requiring non-FIFO
switches. The key to this success is the underlying opti-
mization framework which strikes a balance between the
satisfaction of various users and the congestion cost associ-
ated with various links.

Performing global optimization involving users and links
scattered throughout the Internet is a seemingly infeasible
task. Although it is well-known that network optimization
problems can be solved using distributed computations, al-
gorithms proposed for this purpose [Gal77, Gol79, GG80]
have relied on the presence of sophisticated network layer
protocols, a luxury not available in the Internet for end-to-
end congestion control. A significant accomplishment of
this paper is in showing how such optimization is indeed
feasible in the Internet. We even show that the current TCP
congestion control, after some modification, belongs to the
class of optimal algorithms that we describe. We refer to
these optimal algorithms, either collectively or individually,
as theminimum cost flow control(MCFC) algorithm.

Two versions of the MCFC algorithm, referred to as the
coarse realizationand theexact realization, are explored in
this paper. The coarse realization is geared towards imple-
mentation in the current Internet. This version of the al-
gorithm, like TCP, relies on the end-to-end packet loss ob-
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servations made by each session as indication of network
congestion. The exact realization anticipates an Internet
where sessions can solicit explicit congestion information
from the network switches through a concise probing mech-
anism: some of the data packets of each session include a
short congestion field which is modified by each switch that
the packet visits.

Our systematic formulation of congestion control in the
Internet provides a concrete framework to address several
topics of increasing importance. One of these topics is con-
gestion control for multicast communications. The theo-
retical framework developed here extends very naturally to
multicast communications and allows for a systematic ex-
ploration of what is fair and how a particular notion of fair-
ness impacts scalability. This subject is presented in a com-
panion paper.

Another research topic of long standing is the compar-
ison of algorithms that are based on explicit and implicit
congestion notification. By implicit congestion notifica-
tion we refer to the packet delay and loss observations that
each session can locally make. The class of MCFC algo-
rithms, by including both the coarse and the exact versions,
provides a coherent setting to compare congestion control
based on implicit and explicit notification.

The MCFC algorithm can be applied to both rate-based
and window-based congestion control. Although both of
these methods have been extensively studied, the real dis-
tinction between them and their dynamics are not always
well-understood. Our approach to rate-based and window-
based congestion control is founded on a distinction be-
tween quasi-static and dynamic fluctuations in network traf-
fic. Therefore, before we embark on developing the op-
timization framework, we lay out in Section 2 our view-
point on different time scales of congestion control and the
corresponding roles that may be played by rate-based and
window-based mechanisms.

2. Multiple Scales of Congestion Control

The dynamics of a network congestion control strategy
can span multiple time scales. On the fastest time scale,
congestion control should provide protection against sud-
den surges of traffic by quick reaction to buffer overloads.
The reaction time in this type of control is, at best, in the
order of one round-trip time since that is how fast news of
congestion can reach a source node and the response to it
propagate back to the trouble spot. We refer to this type
of congestion control asdynamicand to the corresponding
time scale asshort term. On a slower time scale, congestion
control could mean gradual but more steady reaction to the
build-up of congestion, as perceived over a period involv-
ing tens or hundreds of round-trip times. It is on this time
scale that notions such as theaverage transmission rateof
a session,rate allocation, andfairnessbecome meaningful.
We shall use the termsquasi-staticandmedium termto re-
fer to this type of congestion control and the corresponding
time scale, respectively. Still, on slower time scales, con-
gestion control can include longer term activities such as
service scheduling on network switches and network recon-
figuration, where possible. Our discussion in this paper is
limited to the first two parts, i.e., dynamic and quasi-static
congestion control.

Now, consider a window scheme for end-to-end conges-
tion control. A window scheme keeps the amount of out-
standing data for a given session limited to a maximum,
called the window size. The window size may be changed
in response to changing network conditions. But, let us first
see what type of congestion control can be accomplished by
window scheme if the window size is held constant. Con-
sider a sessions with a window sizews. Assume an infinite
source for the session, so that the window is always fully
utilized. Denote by�s and�s the round-trip time and the
transmission rate of this session, averaged over some short
term interval. According to Little’s formula,

�s � ws

�s
: (1)

Even with a fixedws, as the traffic increases and network
links approach congestion, the round-trip time�s will in-
crease, resulting in a proportionate reduction in the rate
�s. Notice that the reaction to increased queuing delay
takes place within one round-trip time. Therefore, win-
dow scheme provides a form of dynamic congestion con-
trol even if the window size is not adjusted according to
network conditions. If we now take the viewpoint of mod-
ifying the window size in response toquasi-staticnetwork
conditions, then the window scheme combines dynamic and
quasi-static congestion control.

The rest of this paper is concerned with developing algo-
rithms for adaptive allocation of average session rates in the
Internet, based on quasi-static network conditions. These
allocated rates, once computed (e.g., by the sessions them-
selves), may be applied in two ways: directly by controlling
the instantaneous transmission rate, or indirectly by a win-
dow scheme with the window size set in accordance with
the allocated rate. Letrs denote the average rate allocated
to sessions, based on algorithms to be discussed later. In
the direct, i.e., rate-based approach, in order to applyrs, the
minimum spacing between packet transmission times may
be either set to1=rs, or more generally, determined through
a leaky bucket mechanism. Alternatively, to applyrs by
means of window scheme, the window sizews should be
set to

ws = rs � �s; (2)

where�s is the average round-trip time of sessions.
The above approach combines the fast dynamics of win-

dow scheme with the quasi-static rate adjustments, provided
that�s in (2) is themedium termaverage round-trip time of
sessions. To see why themedium termqualification in�s
is necessary, let us denote by�s and�s the round-trip time
and the transmission rate of sessions, averaged over some
short terminterval. It follows that:

�s � ws

�s
= rs

�s
�s
; (3)

clearly showing that with the increase of short term round-
trip time �s, the short term rate�s decreases, providing the
quick reaction to congestion that was discussed. If we in-
stead allow�s to be dominated by short term fluctuations of
round-trip time, then we get�s � �s, and�s � rs, in effect
neutralizing the dynamic component of window congestion
control.
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Consider using an exponentially weighted running aver-
age algorithm to update the estimation of�s, upon observ-
ing round-trip time�(p) of each new packetp from s:

�s  � (1� �)�s + � � �(p): (4)

If � is in the order of1=ws, then the averaging interval in
(4) is roughly one round-trip time (i.e., the time it takes to
sendws packets), which is not what we want. For averaging
to take place over medium term,� in (4) should be at least
one or two orders of magnitude smaller than1=ws.

In Sections 3 the quasi-static allocation of session rates
is formulated as a global optimization problem. While the
solution algorithms are initially expressed in terms of the
session ratesrs, we later use (2) to convert them to algo-
rithms for directly updating the window sizesws.

3. A Global Optimization Framework

In this section, we formulate the allocation of session
rates in a packet network as a global optimization problem.
Formulation of network congestion control as a convex opti-
mization problem was first studied in [Gol79, GG80]. How-
ever, in that study, routing and congestion control are treated
as a unified problem. Consequently, congestion control pa-
rameters are determined based on and in conjunction with
routing parameters, making the approach inapplicable to IP
networks.

Consider a packet network, such as the Internet and de-
note the communication links (including both point-to-point
and multiple access links) by integers` = 1; � � � ; L; and the
network sessions by integerss = 1; � � � ; S. By a session, we
refer to a one way flow of traffic between a given source and
a given destination. Letrs, denote the average rate of traffic
of sessions andf `, denote the average rate of traffic of link
`, all in bits/sec. The averaging intervals used in evaluat-
ing rs andf ` are medium term, i.e. they consist of tens or
hundreds of round-trip times. We refer tors andf `, more
briefly, as rate of sessions, andflowof link `, respectively.

Denote the vector of session rates by~r
4
= (r1; r2; � � � ; rS),

and the vector of link flows by~f
4
= (f1; f2; � � � ; fL).

We would like to come up with a quasi-static conges-
tion control algorithm which determines and allocates the
session ratesrs, based on the existing user demand and
some reasonable notion of fairness. This goal can be ac-
complished by formulating network congestion control as
a global optimization problem. We take the viewpoint of a
supplier of network resources who can lose revenue either
by failing to meet user demands or by causing long delays
and lost messages due to congestion. Thus for each session
s using the network we create a cost functiones(rs), which
is a decreasing function of the raters allocated tos (Fig-
ure 1). Asrs is decreased, the cost in user dissatisfaction
clearly increases. Similarly, for each communication link`
of the network, we create a cost functiong`(f `) (Figure 2),
which is an increasing function of the flowf ` on that link.
As the flow approaches the capacity of the link, the average
queue length of messages waiting to traverse the link in-
creases and the danger of congestion goes up. Thus,g`(f

`)
should represent the cost of this congestion danger.

O

e (r )

s

s s

r

Figure 1. Cost of
limiting the rate of
sessions to rs.
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Figure 2. Conges-
tion cost of the flowf `

on link `. C` is the link
transmission speed.

The implications of different forms of the link and ses-
sion cost functions will be discussed later. For the time be-
ing, we simply restrict them to be twice differentiable and
convex, i.e., have nonnegative second derivative. We also
assume thates(rs) andg`(f `) are decreasing and increas-
ing functions, respectively.

We distinguish between two types of possible routing in
the network,single-pathandmulti-pathrouting. Insingle-
pathrouting (such as the routing in the current Internet), the
same path is applied to the traffic of each session, until the
routing tables are changed. Inmulti-pathrouting, that we
consider here for the sake of generality, a session’s traffic
may be divided over different paths leading to its destina-
tion. Of course, in both single-path and multi-path routing,
the routing tables could be updated over the time. Unless
otherwise stated, the discussions and conclusions of this pa-
per apply to both single-path and multi-path routing.

Let �`s denote the fraction of traffic ofs that is carried
over link `. Obviously, in single-path routing,�`s is one for
each link` along the path ofs and zero, otherwise. In con-
trast, in multi-path routing,�`s may assume any value be-
tween zero and one. ¿From the above definitions it follows
that,

f ` =
SX

s=1

�`s � rs; ` = 1; 2; � � � ; L; (5)

which simply says that the flow of each link is the sum of
the rate of all sessions carried over it. Notice that ifrs and
f ` were taken to be short term averages, then (5) would not
be quite correct, and in fact the right side minus the left
side would represent the rate of buffer build up at link`.
Also, notice that in (5), packets lost at` are assumed to be a
negligible part of the total link traffic.

While, the routing parameters�`s show up in our for-
mulation of congestion control and subsequent derivations,
it turns out that the resulting end-to-end congestion con-
trol algorithm is realizable without requiring explicit knowl-
edge about them. However, an assumption regarding the
time scale of routing updates in the network is necessary
for our formulation to be valid: the routing updates should
take place over a time scale sufficiently longer than the time
scale of congestion control updates so that the routing pa-
rameters can be assumed to be relatively constant.

Let rds denote the average transmission rate desired by
sessions. The raters to be allocated to each sessions by
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the congestion control algorithm should satisfy:

0 � rs � rds : (6)

As we shall see, an explicit knowledge of the desired rates
rds is not required by the rate allocation algorithms discussed
in this paper. These parameters only appear in the interim
mathematical steps leading to those algorithms.

We formulate network congestion control based on the
following optimization problem expressed in terms of the
rate vector~r to be allocated to network sessions:

min
~r

J(~r)
4
=

SX
s=1

es(rs) +

LX
`=1

g`(f
`); (7)

subject to constraint (6) and the expression of link flows
in (5).

In order to state the optimality conditions for this prob-
lem, we introduce two new functions. First, we define the
incremental reward function(or reward functionfor short)
of each sessions as

hs(rs)
4
= �e0s(rs); s = 1; � � � ; S: (8)

hs(rs) is the incremental decrease in the cost of sessions
(due to user dissatisfaction) for a unit of increase in the allo-
cated raters, hence the name incremental reward function.
Sincees(rs) is by definition a decreasing convex function,
hs(rs) is positive and decreasing.

Next we define thecongestion measureof a sessions as
the incremental cost of network congestion due to a unit of
increase inrs:


s(~f)
4
=

@

@rs

LX
`=1

g`(f
`) =

LX
`=1

�`s � g0`(f `): (9)


s is denoted as a function of~f to emphasize its dependence
on the link flows in the network. Since by assumption, link
cost functions are increasing and their derivatives are pos-
itive, a session’s congestion measure is always a positive
quantity. Clearly, with single-path routing, (9) reduces to


s(~f) =
X
`2Ps

g0`(f
`): (10)

wherePs denotes the path of sessions. We observe that
with single-path routing (e.g., in the Internet), the conges-
tion measure of each sessions equals sum of the incremen-
tal costs of the links along its path.

Applying Kuhn-Tucker theory [Lue89] to the optimiza-
tion problem (7), we are led to the following optimality con-
ditions:

Theorem 1 Assume thatg`(:) andes(:) have first and sec-
ond derivatives satisfyingg0` > 0; g00` > 0; e0s < 0, and
e00s > 0. The following is a set of necessary and sufficient
conditions for the session rate vector~r� to minimize (7) sub-
ject to the constraint (5) and (6):

hs(r
�
s )

8<
:
� 
s( ~f�); if r�s = 0;

= 
s( ~f�); if 0 < r�s < rds ;

� 
s( ~f�); if r�s = rds ;

(11)

for s = 1; � � � ; S; where ~f� = (f1�; f2�; � � � ; fL�) is the
link flow vector corresponding to~r�, as given by (5).

The interpretation of the above optimality condition is
straight forward: at the optimal point~r�, as long as con-
straint (6) is not active for a sessions, the session’s incre-
mental reward function should be equal to the incremental
cost of congestion, i.e., the session’s congestion measure.
If r�s = 0, (r�s = rds ), that is if r�s cannot be decreased
(increased) anymore, then the session’s incremental reward
function can be smaller (larger) than the session’s conges-
tion measure.

3.1. Iterative Distributed Algorithms for the Solu-
tion

The constrained convex optimization problem (7) can be
solved by means of a gradient projection algorithm with the
following iterations:

rs  �

8>>><
>>>:

0; if rs + �
�
hs(rs)� 
s(~f)

�
� 0;

rds ; if rs + �
�
hs(rs)� 
s(~f)

�
� rds ;

rs + �
�
hs(rs)� 
s(~f)

�
; otherwise:

(12)
This algorithm converges to the optimal point of (7), pro-
vided that the step size� is properly chosen [Lue89]. We
shall refer to this algorithm or its variants as theminimum
cost flow control(MCFC) algorithm.

Distributed execution of Iterations (12) by various ses-
sions in the network is possible if, prior to each iteration, the
current values of congestion measures
s are available. In
Section 4, we will show how these congestion measures can
be locally evaluated by the corresponding sessions, without
involvement of the IP layer.

A priori knowledge of the desired session ratesrds is
not actually necessary for the execution of the MCFC algo-
rithm. When updating session rates, we can simply disre-
gard the upper boundsrds , and let the course of action deter-
mine whether or not a sessions fully utilizes the allocated
rate. In other words, we can replace Iteration (12) by

rs  � max
�
0; ~rs + �

�
hs(~rs)� 
s(~f)

��
; (13)

wherers is the rate allocated to sessions which may or
may not be fully utilized, and~rs is the average rate actually
attained bys during the past iteration interval. In the rest
of this paper, we simplify the presentation by ignoring the
distinction betweenrs and~rs, which reduces (13) to:

rs  � max
�
0; rs + �

�
hs(rs)� 
s(~f)

��
: (14)

This simplification is equivalent to assuming that sessions
are always greedy, i.e., they utilize whatever rate is allocated
to them. The extension of subsequent results in the paper to
the more general scenario is straight forward.

The speed of convergence of the MCFC algorithm can be
significantly improved by incorporating the second deriva-
tives of the cost function in Iteration (7) [Lue89, BG92], as
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follows:

rs  � max

 
0; rs + �

hs(rs)� 
s(~f)

�s(~f)� h0s(rs)

!
; (15)

where

�s(~f)
4
=

@2

@2rs

LX
`=1

g`(f
`) =

LX
`=1

(�`s)
2 � g00` (f `): (16)

In single-path routing, (16) reduces to

�s(~f) =
X
`2Ps

g00` (f
`): (17)

which facilitates the end-to-end evaluation of�s(~f), as dis-
cussed later.

We defer a discussion of other considerations, such as
asynchronous implementation of the MCFC algorithm and
the impact of quasi-static traffic fluctuations to Section 4.
In the next two subsections, we study the role of the session
and link cost functions more closely, and identify some ap-
propriate forms for them.

3.2. Fairness, Priorities, and the Impact of Session
Reward Functions

In order to study the fairness properties of the session
rate allocations at the optimal point, let us consider two
sessionsi and j, with identical cost functions and (there-
fore) identical reward functions, i.e.,ei(r) = ej(r), and
hi(r) = hj(r). Assume that the congestion measures seen
by these two sessions at the optimal point are the same, i.e.,

i(~f

�) = 
j(~f
�). This means that sessionsi andj induce

the same increase in the total cost of network congestion for
a unit of increase in their rate. This condition would apply
if, for example,i and j share the same (set of) routes in
the network. According to (11), as long as the desired rates
of i and j permit, from
i(~f

�) = 
j(~f
�), it follows that

r�i = r�j ; hence the following corollary:

Corollary 1 To the extent permitted by session desired
rates, at the optimal point of the MCFC algorithm, equal
rates are allocated to sessions experiencing the same de-
gree of network congestion (i.e., having the same conges-
tion measures), unless the corresponding reward functions
are different.

In order to see how the rate allocated to a session may be
influenced by the form of its reward function, we consider
the class of reward functions:

hs(rs) = (
�s

rs
)�s ; (18)

for some positive�s and�s (curvesa andb in Fig. 3). We
can see from (18) that if the desired raterds is large enough,

r�s =
�s

�s

p

s

: (19)

η1 2

c

h (r )s   s

rsαs

1 a

b

Figure 3. Com-
parison of different
forms of a session’s
reward function : a
and b correspond to
(18) with �s = 1
and �s = 3 respec-
tively. c illustrates
the reward function
(21) for �s = 2, later
shown to be associ-
ated with TCP.

g (f )

fl

l

1

0
lf

λ l
0

l

l

a

b

c

C

Figure 4. Compari-
son of different
choices for the incre-
mental congestion cost
of a link : a andb cor-
respond to (23) with
� = 1 and� = 0:33,
respectively. c shows
g0

`(f
`) = �`, used in

the coarse realization.
Note thatC` is the link
transmission speed.

It follows that,
dr�s
r�s

= � 1

�s

d
s

s

: (20)

A few observation can be made from these results. First,
we notice that the allocated rate is proportional to�s.
Therefore, a session with a large traffic volume, may be ac-
commodated by assigning to it a large�s. Next, we see in
(19) that as congestion builds up in the network and
s in-
creases, the allocated session rate decreases and the change
is inversely proportional to�s

p

s. For �s = 1, a doubling

of the congestion measure
s, reduces the allocated rate by
half. As �s becomes larger, the sensitivity of the allocated
rate to the congestion measure goes down. For example, for
�s = 4, a doubling of the congestion measure cuts the allo-
cated rate only by 16%. The role of�s is best illustrated by
(20) which relates the changes inr�s and
s, in percentages
terms.

We conclude that�s can be used as a priority assign-
ment to sessions. Sessions with larger�s, would be cut
less severely in response to network congestion. Similarly,
a larger�s makes sessions less sensitive to the number of
hops they must traverse in the network. We should realize,
however, that this advantage is only relative. If all sessions
are assigned a large�s, the congestion measures
s will in-
crease enough until every body is cut back to the proper
usage level, as discussed in Section 3.3.

As we will see later, realization of the MCFC algorithm
in thecurrent Internet is best accommodated by using ses-
sion reward functions that are confined to an upper bound
hmax � 1. Keeping in mind that the reward functions must
be positive and decreasing, we are led to consider the fol-
lowing class of reward functions, as another example:

hs(rs) = hmax
�s

�s + r�ss
; (21)

for some positive�s and�s (curvec in Fig. 3). The prior-
ity implication of the index�s, earlier discussed in connec-
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tion with (18), also applies to (21) as long asr�s >> �
1=�s
s ,

where the functional form of (21) converges to that of (18).
We will later show that the reward function (21), with
�s = 2 andhmax = 1, is actually associated with the TCP-
reno congestion control algorithm.

Notice that the fairness property stated in Corollary 1 ap-
plies regardless of the form of the reward function, provided
that it is the same for the sessions in comparison.

3.3. Congestion Avoidance and the Impact of Link
Cost Functions

The purpose of including link cost functionsg`(f `) in
the optimization problem (7) is to inhibit the algorithm from
driving the links into congestion by accepting too much traf-
fic from the sessions. By proper choice of these cost func-
tions, it is possible to keep the packet loss probability of
each link below some desired maximum, as will be shown
next. Rather than specifying the form of the cost functions
g`(f

`), we carry out the discussion directly in terms of the
incremental costsg0`(f

`), which are the actual quantities
needed for the evaluation of congestion measures
s. We
keep in mind that forg`(f `) to be increasing and convex,
g0`(f

`) must be positive and increasing.
Consider a link̀ and denote the probability of packet

losses due to buffer overflow over this link by�` and the
desired cap on this loss probability by�`�. With a given
buffer size and given traffic statistics,�` is a monotonically
increasing function of the link flowf `. Denote byf `� the
link flow at which the maximum permissible loss probabil-
ity is reached, i.e.,�`(f `�) = �`�.

Theorem 2 Consider a link̀ and letg0`(f
`) be an arbitrary

positive increasing function off ` over[0; f `�), andg0`(f
`) =

1, for f ` � f `� . It follows that, at the optimal point of (7),

�`(f `�) < �`�: (22)

Therefore, once the algorithm converges to its optimal
point, the loss probability of link̀ is guaranteed to be be-
low the desired cap�`�. An analytically simple form for the
incremental cost function of link̀ is:

g0`(f
`) =

1

(1� f `=f `�)
� ; (23)

for some� > 0. As � is decreased,g0`(f
`) becomes steeper

(Fig. 4, curvesa andb), which on the one hand, increases
the link utilization at the optimal point and, on the other
hand, reduces the speed of convergence.

So far, the incremental congestion cost of a link is speci-
fied as an explicit function of the link flow. Therefore, in the
actual running of the algorithm, the link flow must be mea-
sured and plugged into the functiong0`(f

`), to evaluate the
incremental congestion cost. Alternatively, it is possible to
use the average queue length of a link as the measurement
parameter based on which the incremental congestion cost
is specified. Letn` denote the average queue length of link
`. Denote byn`�, the average queue length corresponding to
the flowf `� , i.e., the average queue length at which�` = �`�.

Consider specifyingg0`(f
`) as an increasing function ofn`

which approaches infinity atn` = n`�. For example, let:

g0`(f
`)

4
=

1

(1� n`=n`�)
� : (24)

It is easy to verify thatg0`(f
`), as implicitly defined in the

above, satisfies the properties required by Theorem 2.
It must be noted that the strong congestion avoidance

property stated in Theorem 2, hinges on the ability to spec-
ify the threshold parametersf `� in (23) orn`� in (24), based
on the desired loss probability cap�`�. Obviously, the rela-
tionship between these parameters depends on the statistics
of the traffic passing through the link, which is not easily
predictable. Therefore, the threshold parameter of choice,
i.e., f `� or n`�, must be specified in anticipation of likely
changes in traffic statistics, such as burstiness. A main dis-
tinction between defining the incremental congestion cost
directly in terms off `, or implicitly in terms ofn`, is in the
sensitivity of the corresponding threshold parameter to the
traffic statistics. Intuitively, it seems thatn`� should be less
sensitive thanf `� to changes in traffic statistics, suggesting
that the incremental congestion cost should be specified in
terms of the average queue length. More research is needed
to conclusively determine the best measurement parame-
ter(s) to be used for specifying the incremental congestion
cost of a link.

4. Realization of the MCFC algorithm in IP
Networks

The main difficulty facing the realization of the MCFC
algorithm (14) is the distributed computation of the conges-
tion measures
s. In a network with a highly developed net-
work layer, the task of computing congestion measures and
distributing them to the corresponding sessions (or access
points) can be performed by a specially designed network
layer protocol, in possible cooperation with the routing pro-
tocol. In the Internet or other IP networks, realization of
the MCFC algorithm is more challenging since it should be
done without explicit knowledge of the routing parameters
and without expecting cooperation from the IP layer.

In this section, we introduce two possible realization for
the MCFC algorithm at the transport layer of an IP network:
an exact realization requiring modest cooperation by net-
work switches, and a coarse realization with no such re-
quirement, which is therefore applicable to the current In-
ternet. We have also come up with a hybrid realization of
the algorithm in a network consisting of both cooperative
and non-cooperative switches, facilitating transition from
the coarse to the exact realization when the necessary proto-
col and switch enhancements are gradually introduced. Due
to space limitation, this hybrid realization is not discussed
here.

4.1. Exact Realization with Switch Cooperation

Distributed execution of the MCFC algorithm (14) by
various network sessions is possible if the sessions have a
way of evaluating the corresponding congestion measures.
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There are two basic requirements for the evaluation of con-
gestion measures
s by each sessions. First, at each link
`, there must be a local capability to evaluate the incremen-
tal congestion costg0`(f

`), on an ongoing basis. Second,
there must be a way of communicating this information to
the sessions traversing link̀. The method we employ to
relay congestion information to the sessions is both simple
and concise. But more significantly, it relaxes the need for
explicit knowledge about routing parameters, thereby en-
abling a realization of the algorithm in the Internet.

Consider a packet network with the following capabili-
ties:

1. Each switch (or router) in the network has the capabil-
ity of estimatingg0`(f

`), for each link originating from
it. This estimation is performed on an on-going basis.
Here, the term switch refers to any multiplexing point
in the network.

2. Some of the data packets traversing the network are
marked by the source (or the access point) asprobe
packets. Eachprobepacket, in addition to user data,
includes a shortcongestion fieldto carry congestion
information. This field is initially set to zero, at the
source.

3. Each switch in the network, before forwarding a probe
packet over a link̀ , increments its congestion field
by the current estimate of the link’s incremental cost
g0`(f

`).

Theorem 3 Consider a sessions and a probe packetp be-
longing to this session. Let
(p) denote the value of the
congestion field ofp upon arrival to the destination. Then,

Ef
(p)g = 
s: (25)

For single-path routing, (25) reduces to


(p) = 
s: (26)

Here, we present an intuitive explanation about this the-
orem. Consider a short period of time during which the
statistics of network traffic and the routing parameters do
not change. Letn probe packets from a sessions be trans-
mitted during this interval. Since�`s is the fraction of pack-
ets ofs which usè , if n is sufficiently large, about�`s �n of
these probe packets traverse`, each of which will have its
congestion field incremented byg0`(f

`). The total increase
of the congestion field of probe packets which traverse`
will be �`s � n � g0`(f `). Accordingly, the total value of the
congestion field of all of then probe packets upon arrival
to the destination will be

PL
`=1 �

`
s � n � g0`(f `) = n � 
s.

Therefore,
s equals the average of the congestion field of
the probe packets. Notice that with single-path routing, the
path traveled byp and the value of
(p) are deterministic,
simplifying (25) to (26).

As Theorem 3 shows, with single-path routing, the value
of a session’s congestion measure at any given time can be
obtained from a single probe packet. It is interesting to
see whether the second order congestion parameters�s re-
quired to implement the second order algorithm (15) can

also be determined in a similar manner. For single-path
routing, in view of the similarity of (10) and (17),�s can
be determined based on an identical approach; it suffices to
designate a new field in each probe packet to second order
information and have this field incremented by each visited
switch, in a similar fashion. For multi-path routing, how-
ever, it can be shown that there is no way to implement
the second order algorithm (15), short of full cooperation
by the network layer. In the Internet, since the routing is
single-path, both the first and the second order algorithms
are realizable. For the rest of this paper, we limit our atten-
tion to the first order algorithm (14).

We now consider the important issue of interactions be-
tween the quasi-static changes in network traffic and the
algorithmic iterations in (14). Ideally, one would like to
see the network traffic remain stationary until the algorithm
converges to its optimal point. In real network operation,
however, due to quasi-static traffic changes, the optimal
point is not stationary and may be viewed as a moving tar-
get that the algorithm tries to reach. Although this target
may not be reached exactly, with a sufficient speed of con-
vergence, the algorithm should be able to keep up with the
pace of network changes and follow the optimal point rela-
tively closely. Since the network traffic is an aggregation of
traffic from many sources, its changes are typically slower
than the dynamics of individual sessions [BG92].

In general, a distributed algorithm such as (14) may be
executed either synchronously, or asynchronously [BT89].
In a loosely connected network such as the Internet, syn-
chronous execution of (14) by various sessions is not fea-
sible. Moreover, the potential benefit of synchronous ex-
ecution in terms of providing faster convergence is either
minimized or totally removed by the quasi-static traffic vari-
ations.

In an asynchronous implementation of (14), each session
updates its input rate without timing coordination with other
sessions. To increase the speed of convergence, the session
congestion measures should be updated regularly, based on
regular transmission of probe packets. Similarly, each link
should update its incremental congestion cost on a regular
basis. Evaluation of session congestion measures and link
incremental costs should involve a limited memory span, so
that the information regarding past network status is slowly
forgotten and replaced by the more recent network condi-
tions. This goal may be accomplished by updating session
congestion measures and link average queue lengths, using
the following exponentially weighted running averages:


s  � (1� �s)
s + �s � 
(p); (27)

and
n`  � (1� �`)n` + �` � n`t ; (28)

where
(p) is the congestion field of the received probe
packet, andn`t is the queue length at the time of update.

The time constant in the above averaging algorithms (i.e.
the memory span, measured in seconds) is equal to1=�s
(or 1=�`) times the corresponding updating interval. The
choice of this time constant involves a trade-off between
accurately measuring traffic conditions in the network and
quickly responding to it. Conceptually, it seems desirable
to apply the same time constant to the evaluation of link in-
cremental costs, throughout the network. However, due to
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the wide range of link and session transmission rates in a di-
verse network such as the Internet, it may prove inevitable
to apply different time constants to various parts of the net-
work.

Once a session’s congestion measure is evaluated, its rate
can be updated through

rs  � max
�
rinit
s ; rs + �

�
hs(rs)� 
s(~f)

��
; (29)

whererinit
s is a small rate initially allocated to each new

sessions to enable transmission of probe packets needed
for the initial evaluation of congestion measure. Notice that
a session need not execute (27) and (29) with the same fre-
quency. The congestion measure is updated each time a new
probe packet is received, while the rate may be updated at
the same time, or less frequently.

An alternative to explicitly updating the congestion mea-
sure through (27) and using it for rate updates, is to update
the rate directly based on the congestion field of the received
probe packetsp:

rs  � max
�
rinit
s ; rs + �

�
hs(rs)� 
(p)

��
: (30)

One can easily verify that the statistical average of the rate
change in (30) is identical to the rate change according to
(29), provided that the right step size� is used. Although in
this approach, the congestion measure is not explicitly de-
termined, updating the rate through (30) amounts to main-
taining an implicit estimation of the congestion measure.

A session’s rate or congestion measure may be updated
by the source or receiver (or by a policing entity, where such
an entity exists). Obviously, each approach has different im-
plications on the design of transport protocols, the control
information which must be exchanged between the source
and receiver, and the interaction between error control and
congestion control. These issues fall beyond the scope of
the present paper.

4.2. Coarse Realization in the Current Internet

In this section, we develop a realization for the MCFC al-
gorithm without using probe packets and requiring explicit
congestion information from network switches.

In the absence of explicit congestion notification, the
only observation a session can have about the network is
through its own performance, i.e., the loss and delay of its
own packets. We try to choose a form for the cost functions
g`(f `) so that the resulting congestion measures
s can be
best estimated through the available loss and delay informa-
tion.

Let us denote the end-to-end loss probability and theav-
eragedelay of packets of sessions, by�s, andDs, respec-
tively. Similarly, we denote the average delay of each link
`, byD`.

Theorem 4 The loss probability and the average delay of
each sessions can be expressed as,

Ds(~f) =

LX
`=1

�`s �D`(f `); (31)

and

�s(~f) �
LX
`=1

�`s � �`(f `); (32)

where (32) is valid assuming that all sessions sharing a link
` encounter the same loss probability at that link. The ap-
proximation in (32) is good for�s << 1.

By comparing (31) and (32) with (9), we get the follow-
ing corollary:

Corollary 2 Consider the following incremental conges-
tion costs for the links of the network:

g0`(f
`)

4
= � �D`(f `) + �`(f `); ` = 1; 2; � � � ; L: (33)

The congestion measure of each sessions can be stated as:


s(~f) � � �Ds(~f) + ��s(~f): (34)

In principle, a session can estimate the average delay
and loss probability associated with its own transmissions.
Therefore, Corollary 2 suggests that if incremental cost
functions of the form (33) are a suitable representation for
the level of congestion on individual links, then the asso-
ciated congestion measures can be estimated locally by the
sessions, without receiving explicit congestion notification
from the switches. The cost function specified in (33) meets
the convexity requirement sinceD`(f `) and�`(f `) are both
increasing functions off `. To see how well it can indicate
congestion, we consider the delay and loss terms in (33),
separately. While there is a positive correlation between the
average delay and the level of congestion on a link, average
delay is not indicative of congestion, in itself. Other in-
formation, such as the propagation delay and the available
buffer space (or the acceptable range of queuing delays) are
essential to infer the level of congestion associated with a
given average delay. In contrast, the loss probability pro-
vides a more conclusive indication of the severity of con-
gestion, suggesting that we should use the second term in
(33), and set� = 0:

g0`(f
`)

4
= �`(f `); (35)

which gives rise to the following congestion measure:


s(~f) = �s(~f): (36)

Note however that if a large fraction of losses are due to
transmission error, as could be the case in wireless commu-
nications, link loss probability cannot be trusted as a good
indicator of congestion, either.

The strong congestion avoidance property stated in The-
orem 2 was based on link cost functions that approach in-
finity as the link flow exceeds a critical threshold, and does
not apply with link cost functions chosen as in (35). In fact,
it is easy to see that if link cost functions (35) are used in
conjunction with unbounded session reward functions such
as (18), the MCFC algorithm could drive the network into
heavy congestion. If, on the other hand, the reward func-
tions are appropriately bounded, small loss probabilities can
still be guaranteed at the optimal point of the algorithm, as
established by the following theorem:
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Theorem 5 Consider a network with single-path routing
and let the following bound be satisfied by all session re-
ward functions:

hs(0) � hmax; s = 1; 2; � � � ; S; (37)

for somehmax � 1. It follows that, at the optimal point of
the MCFC algorithm, for all sessionss and links`, �s <
hmax, and�` < hmax, provided that the initial session rates
rinit
s are sufficiently small and, by themselves, do not lead

to excessive loss.

What is ignored by the above theorem, is the difficulties
and inaccuracies involved in the estimation of congestion
measures
s = �s, an issue that we now explore. To make
an analogy with the estimation of congestion measures us-
ing probe packets, we might associate a parameter
(p) with
each packetp, and assume that
(p) = 1, if the packet is
lost, and
(p) = 0, otherwise. With this convention, we
notice that,


s = �s = Ef
(p)g; (38)

which parallels (25) in Theorem 3. For the asynchronous
implementation of the MCFC algorithm, we may again es-
timate
s using the exponentially weighted running average
algorithm (27). In the present case, (27) may be restated as
the following iteration, executed every time a new loss or
successful transmission is observed:


s  �
�

(1� �)
s; successful transmission,
(1� �)
s + �; packet loss.

(39)
The algorithmic similarities between estimating
s in the
coarse and exact realizations, should not obscure a funda-
mental difference between the two cases regarding the range
of statistical fluctuations in
(p) and the accuracy of esti-
mations. We notice from Theorem 3 that in the exact re-
alization in a network with single-path routing, one probe
packet is enough to determine the congestion measure. In
the coarse realization, on the other hand, the analogous pa-
rameter
(p) associated with each packetp, is either one or
zero, with an average typically in the order of few percent or
less. Here, due to the random nature of
(p), a much larger
number of observations are necessary before algorithm (39)
converges to a reasonable estimation of the end-to-end loss
probability. As a numerical example, if�s = 0:01, typically
one out of every 100 packets are lost, implying that at least
several hundred observations are needed for a meaningful
estimation of�s. This sharp difference with the exact real-
ization is the result of restricting information about network
status to the packet losses locally observed.

We should emphasize that the choice of link cost func-
tions in (33) or (35) was dictated by the requirement of com-
ing up with congestion measures
s that sessions can locally
evaluate, using their own loss and delay observations. It is
possible to show that, in a network of arbitrary topology,
no other form of link cost functions can satisfy this require-
ment.

One way to run the coarse MCFC algorithm is to up-
date the rate via (29), based on explicit estimation of
s ob-
tained in (39). An alternative approach, like in the exact re-
alization, is to directly update the rate, upon observing each

new loss or successful transmission, by way of (30). In the
coarse realization, due to the wide random fluctuations of

(p) , (30) constitutes a stochastic gradient algorithm. The
choice of the step size� in this case involves hard tradeoffs,
as will be illustrated in the simulation section. A small�,
prolongs the time necessary for the rate of new sessions to
reach the final value. A large�, on the other hand, gives rise
to large oscillations in the session rates, induced by the ran-
dom fluctuations of
(p). This difficulty can be overcome
by adopting a variable step size in (30), i.e. adjusting� as
a function of iteration number, session rate, or some other
parameter.

For the coarse realization, we restate (30) as:

rs  �
�

rs + as(rs); successful trans.
max (rinit

s ; rs � bs(rs)) ; packet loss;
(40)

where
as(rs) = �s(rs) � hs(rs); (41)

and
bs(rs) = �s(rs) (1� hs(rs)) : (42)

In the above equations, we have denoted�s as a function
of rs, in order to emphasize the possibility of changing the
step size during the course of the algorithm, based on the
value attained byrs, (or some other criteria). According to
(40), a session’s rate must be increased byas(rs), each time
a packet is successfully transmitted, and reduced bybs(rs),
each time a packet loss is observed.

As discussed in Section 2, the allocated raters may be
enforced by means of the window scheme, with the added
benefit of combining fast dynamics of the window scheme
with the quasi-static control that the MCFC algorithm pro-
vides. Using (2) and (40), we get the following iteration for
directly updating the window size:

ws  �
�

ws +As(ws); successful trans.
max (w init

s ; ws �Bs(ws)) ; packet loss;
(43)

where
As(ws) = �s � as(ws

�s
); (44)

Bs(ws) = �s � bs(ws � �s); (45)

and
w init
s = �s � r init

s : (46)

Obviously, the smallest feasible value for the initial window
w init
s is the size of one packet.
The window version of the MCFC algorithm in (43), re-

veals significant similarity to TCP congestion control which
also decreases the window size in reaction to packet losses
and increases it when packets are successfully transmitted.
In Section 5.1, we further explore the relationship between
TCP congestion control and the MCFC algorithm.

5. Comparison with Alternative Schemes

In this section, we provide a comparison between
the MCFC algorithm and some of the congestion con-
trol schemes previously proposed for the Internet. These
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schemes are the TCP congestion control [Jac88] currently
used in the Internet, the Binary Feedback Scheme [RJ88],
the Random Early Detection Gateways [FJ93], and the Dy-
namic Adaptive Windows [Mit92, MS90, MS93]. While
the global optimization framework is a foundation unique
to the MCFC algorithm, there are important commonali-
ties between the above schemes and the MCFC algorithm,
regarding the underlying ideas or methods of execution.
These common features allow us to apply some of the in-
sight gained from the design and analysis of the MCFC al-
gorithm to other schemes and develop a clearer understand-
ing of the merits and drawbacks of each approach.

5.1. TCP Congestion Control

In order to compare the MCFC algorithm with TCP con-
gestion control, we consider the window-based coarse re-
alization of the algorithm withas(rs) andbs(rs) selected
as:

as(rs) = �
�

rs
; (47)

and
bs(rs) = � � rs ; (48)

which, in view of (41) and (42), correspond to the reward
function

hs(rs) =
as(rs)

as(rs) + bs(rs)
=

�

� + r2s
; (49)

which is a special case of (21) for�s = 2; hmax = 1, and
�s = � (curvec in Fig. 3). Notice that� has no effect
on the form of the reward function and merely determines
the step size of the algorithm. In the window-based imple-
mentation, in view of (44) and (45), window sizes may be
updated using iteration (43) with:

As(ws) = �
� � �2s
ws

; (50)

and
Bs(ws) = � � ws: (51)

We will refer to the above coarse MCFC algorithm as the
modified TCPalgorithm. To see the reason behind this nam-
ing, consider the function

A0
s(ws) = � � �

0

ws
; (52)

which differs fromAs(ws) in the missing term�2s . It is
easy to see that the adjustment of window sizes in TCP-
reno, after the slow start phase, can be expressed by (43),
usingA0

s(ws) in place ofAs(ws) and applying coefficients
�0 = 2 and� = 0:5. It turns out that the essential differ-
ence between the special case of the MCFC algorithm, here
called modified TCP, and TCP-reno is the extra term�2s , in
(50).

In order to determine the impact of the extra term�2s in
the modified TCP algorithm, let us compute the statistical

average of the window size change during one iteration of
(43):

Ef�wsg = �s � Ef�wsj packet lossg +

(1� �s) �Ef�wsj successful transmissiong
= ��s �Bs(ws) + (1� �s) � As(ws)

= As(ws)� �s(As(ws) +Bs(ws)): (53)

Assuming that the algorithm reaches the optimal point~w =
(w�

1 ; w
�
2 ; � � � ; w�

S) , the statistical average of change at this
point should be zero. It follows that

As(w
�
s )

As(w�
s ) +Bs(w�

s )
= �s: (54)

For the modified TCP algorithm, we conclude from (50) and
(51) that

�

� + (w�
s=�s)

2
= �s: (55)

Notice that the LHS of (55) is equal tohs(r�s ), reaffirm-
ing the optimality condition in (11). For TCP-reno, on the
other hand, by substitutingA0

s(w
�
s ) for As(w

�
s ) in (54) and

applying (51) and (52), we get

�0

�0 + w�2
s

= �s: (56)

The impact of the term�2s in the modified TCP algorithm
is now clearly explained by comparing (55) and (56). In
the modified TCP algorithm, at the equilibrium point, equal
rates are allocated to sessions with the same end-to-end loss
probability. In contrast, in TCP-reno, equal window sizes
would be allocated to sessions experiencing identical loss
probabilities, should the point of equilibrium be reached.

Another difference between TCP-reno and the MCFC al-
gorithm is in the choice of step size�. The value of� = 0:5,
used in TCP-reno, gives rise to large window size oscil-
lations and prevents convergence to an equilibrium point,
while accelerating reaction to changing traffic conditions.
In Section 6, using simulation in a simple network, we will
show that� must be substantially smaller, in order to en-
sure convergence of the coarse MCFC algorithm. We will
also show how multiple values of� may be used to combine
rapid increase of the window size after a session’s initiation,
with ultimate convergence. As discussed earlier, the exact
MCFC algorithm converges much faster than the coarse al-
gorithm.

Both of the above differences with TCP have a positive
impact on the scalability of congestion control algorithms
for multicast communications. In a forthcoming paper, we
show that multicast communications is more scalable (in
terms of the number of receivers) when the applied notion of
fairness is based on transmission rates, rather than window
sizes, and when the window sizes (or rates) undergo slow
adjustments, instead of abrupt changes.

We should also point out that apacket lossrefers to dif-
ferent events, when considered in the context of TCP and
the coarse MCFC algorithm. In TCP, a packet loss is regis-
tered whenever a packet is lost or whenever several consec-
utive acknowledgments are lost, while in the coarse MCFC
algorithm a loss exclusively refers to a packet loss in the
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forward path. It must be clear that congestion on a source-
receiver path is best indicated by losses in the forward di-
rection rather than round trip losses, and that the TCP in-
terpretation of packet losses is an implementation necessity
rather than a conceptual preference. In this paper, in order
to focus on the concepts, we have not addressed the details
of protocols needed to implement our algorithms. However,
we mention in passing that updating the rate or window size
based on forward path loss probability is made possible by
executing the update algorithms at the receiver site. This ap-
proach has the additional benefit of improving scalability in
multicast communications by pushing some of the required
processing to the receiver sites.

The above differences notwithstanding, the similarities
between the coarse MCFC algorithm and TCP congestion
control are significant and allow us to extend our earlier ob-
servations to TCP. We have noticed that in the coarse MCFC
algorithm, the process of updating rates or window sizes
via (40) or (43), is a substitute for estimating the session
loss probabilities via (39). In other words, updating a ses-
sion’s window size via (43) in the coarse MCFC algorithm,
as well as TCP, amounts to an implicit estimation of the loss
probability. In both cases, the end-to-end loss probability
summarizes the observations which are used for congestion
control.

Controlling congestion based on the end-to-end loss
probability has three drawbacks. First, in cases of high
packet error rates, e.g. where wireless links are encoun-
tered, loss probability is not necessarily indicative of con-
gestion, making congestion control on this basis excessively
difficult. Second, the number of packet transmissions re-
quired for a reasonable estimation of loss probability is at
least an order of magnitude larger than the inverse of the
loss probability, itself. This amounts to at least two minutes
of observation for estimating a loss probability of 1%, at a
session rate of 10 packets/sec. Finally, the loss probability
cannot be made too small, for it makes the required obser-
vation time even longer. Ironically, in the current Internet,
some packet losses are needed in order to practice conges-
tion control and prevent more losses. The only way to avoid
this irony and the earlier drawbacks is to provide better end-
to-end observations about network congestion status. In the
next subsections, other proposals for enhancing congestion
observations in the Internet are discussed and compared to
the exact MCFC algorithm.

Some of the observations in this section regarding TCP
congestion control have been previously discussed in the
literature. The impact of making window size increments
proportional to�2s on the relationship between a session’s
throughput and round-trip time has been studied by Sally
Floyd [Flo91], through simulation and analysis of a cascade
of congested links. Our results in (55) and (56), which are
applicable to an arbitrary topology, essentially agree with
those in [Flo91]. Lakshman and Madhow [LM97] provide a
detailed analysis and simulation of the performance of TCP
congestion control, in which they approximately show that
the average throughput of each sessions is inversely pro-
portional to��s , where1 < � < 2. In comparison, we
have found in (56) that the throughput at the equilibrium
point is inversely proportional to�s. In regard to TCP per-
formance, the results in [LM97] should be more accurate
than our conclusion, for two reasons. First, window sizes in

TCP never converge to an equilibrium point whereas (56)
specifies the window size (and throughput) at the equilib-
rium point. Second, in TCP, the link loss probability before
and after sessions react to a packet loss is grossly different,
due to substantial drop in the volume of traffic. For this
reason, there is a considerable time correlation among the
dropping of window sizes on sessions sharing a bottleneck
link, an issue taken into account in [LM97]. Such correla-
tions are negligible near the equilibrium point of converging
algorithms. The equilibrium window size specified in (56)
would closely match the average window size of TCP con-
nections, if a step size� << 0:5, is used.

5.2. Binary Feedback for Congestion Avoidance

One of the early proposals for explicit notification of
congestion is the Binary Feedback Scheme introduced by
Ramakrishnan and Jain [RJ88, CJ89]. In this scheme, users
are notified about network status through a binary feedback
mechanism, i.e., a congestion bit which is set in the pack-
ets traversing some congested link. Although our global
optimization framework and the MCFC algorithm are dif-
ferent from the methodology and the algorithms in [RJ88],
the probing mechanism that we use to collect congestion
measures can be viewed as a generalization of the binary
feedback. To see the relationship, let the congestion field in
probe packets be only one bit. In this case, the incremental
congestion cost of the links must also be quantized to two
levels; 0 and 1. It follows that once a packet’s congestion
field is incremented to 1 at some link, it remains 1 regardless
of the status of subsequent links, an arrangement identical
to the binary feedback in [RJ88].

5.3. Random Early Detection Gateways

The Random Early Detection (RED) scheme [FJ93],
proposed by Floyd and Jacobson, enhances the conventional
TCP congestion control in two major ways. First, it pro-
vides the means of detecting link congestion gradually, by
averaging the buffer occupancy over the long run, rather
than waiting for buffer overflow and inevitable packet losses
to signal congestion abruptly. In this regard, there is a fun-
damental similarity between the RED scheme and the eval-
uation of link incremental cost functions in the MCFC algo-
rithm. Second, in the RED scheme, explicit notification of
congestion through binary feedback is permitted, thereby
detaching congestion notification from packet losses. As
discussed in Section 5.1, detaching congestion notification
from packet losses resolves several drawbacks inherent to
implicit congestion notification via packet losses. Unfor-
tunately, in the proposals [Bra97] that follow the original
paper on the RED gateways, this latter aspect of the RED
scheme is not promoted.

Although the RED scheme constitutes an important step
in the right direction for the improvement of Internet con-
gestion control, we believe that further steps in this direc-
tion are needed. Once congestion at the link level is de-
tected gradually and with a quasi-static point of view, it is
equally important to convey this gradual change with suf-
ficient granularity to the users, in order to facilitate grad-
ual and smooth reaction to congestion. In other words, a
binary feedback stating that the path is either congested or
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un-congested invites abrupt reaction to such notification and
is not commensurate with a smooth and stable control ap-
proach.

We believe that timely and efficient congestion control in
the Internet would be substantially facilitated by accommo-
dating the use of probe packets, preferably with more than
one bit to carry congestion information. Of course, only a
small fraction of user packets need to belong to the probing
category. In this paper, besides providing a concrete frame-
work for congestion control, we have demonstrated that in
order to probe the network congestion status, probing pack-
ets need not carry a separate congestion field for each link
they traverse. No useful information is missed by providing
a single congestion field in the probing packets and adding
the incremental congestion cost of the traversed links onto
it.

5.4. Dynamic Adaptive Windows

Mitra and Seery, using an elegant analysis of closed
queuing networks, have come up with theDynamic Adap-
tive Windows(DAW), a distributed algorithm for end-to-end
calculation of session window sizes [Mit92, MS90, MS93].
Unlike TCP congestion control and the coarse realization
of the MCFC algorithm devised in this paper, the DAW al-
gorithm updates the session window sizes based on packet
delay measurements, rather than loss observations. In view
of the foregoing discussions, the ability to control conges-
tion without relying on packet losses is an attractive feature.

Earlier in Section 4.2, in search of a realization of the
MCFC algorithm in the current Internet, we noted that the
end-to-end packet delays could be used to detect congestion
if the propagation component of the delay was known and if
some idea regarding the acceptable range of queuing delays
existed. In the DAW scheme, these requirements are satis-
fied first, by assuming that the round trip propagation time is
exactly known for each session and second, by confining the
study to small network topologies with specific cross traffic
statistics and packet length distributions to enable character-
ization of queuing delays in a desirable regime of operation,
referred to asmoderate usage. We think that the elaborate
study and design in [Mit92, MS90, MS93], when contrasted
with its limited application, reinforces the necessity of some
form of explicit congestion notification in the increasingly
complex Internet.

6. A Brief Simulation Study of Coarse MCFC
Algorithm

In this section, we discuss a limited set of simulations for
the coarse realization of the MCFC algorithm. The goal of
these simulations is to gain some understanding of the be-
havior of the algorithm, rather than to provide a comprehen-
sive study. In particular, no simulation results are provided
for the exact realization of the algorithm.

We consider the window-based implementation of
MCFC in (43) withAs(ws) andBs(ws) given by equations
(50) and (51). The round-trip time�s is estimated using (4)
with a coefficient� = 0:001. A receiver notifies its source
of successful packet delivery by means of an acknowledg-
ment (Ack) packet. We assume that packets are never re-
ordered, and Ack’s are never reordered or lost. Hence
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Figure 5. Experiment1– Evolution of the window of session
1 for different step sizes�. Sessions 4–10 are active, but not
shown.

packet losses are detected via gaps in the sequence num-
ber of successive Ack’s. We enforce some minimum packet
spacing for the window-based implementation of MCFC in
order to prevent the phenomenon of packet batching, which
has been reported in earlier simulation studies [SZC90].

We have studied a simple network topology consisting
of a single link with a capacity of1000 packets/sec and a
buffer space of50 packets. Packets are served according to
a FIFO scheduling discipline and are dropped from the tail
of the link queue in case of overflow.

The single link is shared by10 sessions,s = 1; � � � ; 10.
Every session always has data to send after it is activated
and its rate is limited by the source congestion algorithm
alone. The reverse path delays for Ack’s are different for
different sources. The fixed and random components of
these delays are chosen such that the round-trip times of
the sources are as follows :�s � 200 msec fors = 2 and
s = 6; � � � ; 10, �s � 100 msec fors = 1, �s = 300 msec
for s = 3, �s = 400 msec fors = 4, and�s = 500 msec for
s = 5.

In the first experiment, sessions 4–10 are started and the
network is allowed to reach a stable operating point, then
session1 is activated at timet = 1000 sec. Using� = 50
and � = 0:01; 0:05, and0:25, we observe the effect of
the step size� in (50) and (51) on the stability and speed
of convergence of the algorithm. We observe from Figure
5 that as� increases, session1’s window reaches its steady
state value faster but the size of oscillations in the steady
state increases.

In the second experiment, we have tried to combine the
benefits of a large� (fast rise to steady state) and a small�
(small oscillations). Hence we have used� = 0:25 when
a session is first activated and have switched to� = 0:01
at a later stage. The criterion that we have applied for this
switching to takes place is the number of losses experienced
by a session. A threshold of 12 losses has been used in this
simulation. The threshold value has to be chosen in a way
such that the session’s window reaches a given neighbor-
hood of the steady state value before the switching takes
place. It can be shown that, withAs(ws) andBs(ws) cho-
sen as in (50) and (51), the threshold, on the average, de-
pends only on the initial value of� and is independent of
the final value of the window, the link capacity, or the buffer
size.

For Figures 6.A and 6.B, sessions4 through10 have
reached their steady states att = 1000 sec. Sessions1,
2, and3 are activated att = 2000 sec,t = 3000 sec, and
t = 4000 sec, respectively. In order to study the algorithm
behavior under severe congestion, an uncontrolled source
with a rate of500 packets/sec is activated at timet = 4000
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Figure 6. Experiment2 : A. Rates of sessions1� 5 (averaged
over 5 second intervals) for MCFC.B. The loss probability of
the link (averaged over5 second intervals) for MCFC.C: Rates
of sessions1 � 5, averaged over 1000 second intervals, for TCP-
reno. The rate of session1 (averaged over5 second intervals) is
also shown.D: The loss probability of the link (averaged over5
second intervals) for TCP-reno.

sec, and stopped att = 5000 sec. The rate of sessions
1� 5, averaged over5 second intervals is illustrated in Fig-
ure 6.A. We observe that at every point of time, all the active
sessions attain the same rate, in spite of differences in their
round-trip times. We also observe that every incoming ses-
sion is allowed its fair share of the link bandwidth and it
attains this share quite rapidly. Moreover, all sessions react
rapidly and uniformly to changes in the quasi-static state of
the network, as exemplified by the activation of sessions 1,
2, and 3, and by the activation and the termination of the un-
controlled source. Figure 6.B illustrates the loss probability
at the link. The most significant observation in this figure
is the sudden jump in the loss probability when the uncon-
trolled source is activated. However, small loss probability
at the queue is restored within a few seconds.

In Figures 6.C and 6.D, we present the results for the
same network activity and configuration, but with sessions
running the TCP-reno algorithm, modified to fit our sim-
ulation model. Here we observe that link bandwidth is
not shared fairly among the sessions – sessions with larger
round-trip times attain lower average rates. The behavior of
the link loss probability in Figure 6.D is similar to that in
6.B, though we do not observe the sharp jump att = 5000
sec, indicating that TCP reacts faster to the build up of con-
gestion.

In conclusion, we add that the speed of the coarse MCFC
algorithm may be further improved by incorporating the
TCP slow start phase into it, or by using a functionas(rs) =
� ��=r�s ; with some� < 1, instead of the� = 1 used in (47).
We assert once again that the convergence and the reaction
speed of the exact MCFC algorithm is inherently faster than
the coarse algorithm studied in this simulation.

7. Conclusion

We have developed a class of optimal algorithms for end-
to-end congestion control at the transport layer of IP net-
works. The global optimization framework used for this
purpose, allowed us to systematically address issues of fair-
ness and user priority. Although the proposed algorithms
do not require non-FIFO switches, we have shown that they
can provide fair services to the users or help enforce certain
priority options among them. These algorithms are realiz-
able in both a coarse and an exact fashion, using implicit
or explicit congestion information. Therefore, they facil-
itate an objective evaluation of the performance improve-
ment that explicit congestion notification can bring to the
Internet.

As a significant result, we noticed that TCP-reno algo-
rithm, once modified to make its session throughput inde-
pendent of round trip times, belongs to the class of MCFC
algorithms. We provided a mathematical characterization of
session throughputs or window sizes in terms of loss prob-
abilities, for both TCP and its modified version. Although
these results are not precise because of the large step sizes
in TCP-reno algorithm, they are applicable to arbitrary net-
work topologies.

In a forthcoming paper, we use the methodology devel-
oped in this paper to study congestion control for multicast
communications in the Internet and the associated problems
of fairness and scalability.
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