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10.1 Shadow Prices, Proportional Fairness, and Stability

Today, we are going to talk about Kelly, et al [1] work. The authors consider the following scenario.
Let r be an index for users, and also represent the route for the rth user. Users have different
preferences, utility of user r is Ur(xr) where xr is the amount of flow she has been assigned, and Ur

represents her utility function which supposed to be a strictly concave, non-decreasing, differentiable
function. Note that the strictly concaveness condition here is not very important because we know
much about linear utility functions.

Our goal is to reach to the optimum solution of the SY STEM(U,A, c) problem bellow, where
U is the vector of utility functions of users, A is the adjacency matrix, (i.e. A[j, r] = 1 ⇔ j ∈ r),
and c is the capacity constraints on the edges.

SY STEM(U,A, c):

maximize
∑

r

Ur(xr) (1)

Ax ≤ c

x ≥ 0

While this optimization problem is mathematically tractable (with a strictly concave objective
function and a convex region), it involves utilities U that are unlikely to be known by the network.
We are thus led to consider two simpler problems. First, consider the Lagrangian of 1:

L1 =
∑

r

Ur(xr)−
∑

j

µj(
∑
r:j∈r

xr − cj) (2)

Clearly Equation 1 is a Convex optimization problem, so we can write the KKT conditions:

∂L1

∂xr
= U ′

r(xr)− λr = 0, λr =
∑
j:j∈r

µj∀r (3)

Ax ≤ c (4)

x ≥ 0 (5)

µj ≥ 0 (6)

µj(
∑
r:j∈r

xr − cj) = 0,∀j (7)
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The first order condition is then ∂L1
∂xr

= U ′
r(xr) − λr = 0, where λr =

∑
j:j∈r µj . The comple-

mentarity condition is that either µj = 0 or
∑

r:j∈r xr = cj . Finding x, µ satisfying these conditions
will maximize U .

Kelly’s insight is that the first order condition depends only on Ur and λr: this is the USER

problem. The complementarity condition is just a structural condition: this is the NETWORK

problem. This decomposition can simplify analysis of the SY STEM problem.
Suppose λr is the charge per unit for flow r, and are is willing to pay wr for routing her flow.

Then the amount of flow she receives is xr = wr
λr

. Then the utility maximization problem for user
r is:

USER(Ur, λr):

maximize Ur(xr)− λrxr (8)

xr ≥ 0

To give you the intuition, note that λr are not real prices, they are actually corresponding dual
cost, the authors refer to them as shadow prices. We will back to this concept soon.

Suppose next that network knows the vector w of all wrs, and attempts to maximize the function∑
wr log xr. The network optimization problem is then as follows.

NETWORK(A, c, w):

maximize
∑

wr log xr (9)

Ax ≤ c

xr ≥ 0,∀r

The Lagrangian for NETWORK problem is:

L2 =
∑

r

wr

xr
−

∑
r

µj(Ajx− cj) (10)

So, by KKT conditions, for the optimal solution we have:

∂L2

∂xr
= 0 ⇒ wr

xr
=

∑
j:j∈r

µj = λr (11)

So USER and NETWORK take part to satisfy the conditions 3. So we can take a primal-dual
approach. For users, λr =

∑
j:j∈r µj is the dual cost. They change their flow according to this

differential equation:
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dxr

dt
= λr − U ′

r(xr) (12)

From the intuition we have from previous sessions, we know that we should set µj = fj(
∑

r:r∈j xr)
for some increasing steep function fj . So we can converge to an equilibrium. When we reach to the
equilibrium we know that we are in optimum. And Kelly et. al showed that for appropriate choice
of f the system will converge to equilibrium. But it is kind of EE/Theory works, there is not much
about running time analysis, and as far as I know there are no general result when we have discrete
updates of flow rate which is what happens in real application. There are some partial results in
this area by Ramesh Johari and also Amin Saberi.

10.2 Pricing for Fairness: Distributed Resource Allocation for Multiple Ob-

jectives

So far we have seen it is not hard to optimize when we know what we exactly want to maximize
over the distribution of resource allocations in network. Garg and Konemann gave an algorithm for
problems maximize

∑
r xr or maximize minimumr xr. Also, TCP extensions like TCP RENO

when are we actually maximizing
∑

r arctg( 1
1+x2 ) or TCP VEGAS which approximately solves the

problem of maximize
∑

r log xr can be viewed as especial case of Kelly et. al [1] model.
But there is no universal agreement about what should be our optimization objective. So, this

motivates us to find an allocation which approximates all of the desired objective functions.
Let us start to find some common characteristics of the desired objective functions. Consider

the the following allocations for users A and B in the table bellow:
Allocation xA xB

P 10 10
Q 5 15
R 15 5
S 15 10

If someone asks which of the allocations Q and R is better, the answer is they are the same,
there is no way to distinguish between them. But P , is probably better than both of Q and R.
Also S seems to be more efficient that P . Let U(x1, x2, . . . , xn) be our desired objective function.
So, according to these observations, we can say that U should be symmetric, concave and non-
decreasing. We add additional constraint to U by requiring U(0) = 0. We call the family of
these functions Canonical functions. Our goal is to simultaneously maximize all of the canonical
functions.

Consider the following scenario. The are 3 nodes p1, p2 and p3 on a path where p1, is connected
to p2 and p2 is connected to p3 by edges of capacity 1. Also there are 3 flows, x1 from p1 to p2, x2

from p2 to p3, x3 from p1 to p3. Then the solution for maximize x1 + x2 + x3 is 2, for x1 = x2 = 1
and x3 = 0. But, the solution for maximize minimum{x1, x2, x3} is 1

2 , for x1 = x2 = x3 = 1
2 . So

we can not find a solution which maximize of all the canonical functions but we may hope for an
approximation solution.

Let first define Pj(x) as the some of the k-th minimum element in vector x, e.g. P1 is the mini xi
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and Pn is the sum over all xis. This is a theorem by famous mathematicians Hardy, Littlewoods
and Polya:

Proposition 10.1 U(x) ≥ U(y) for all symmetric concave U iff

•
∑n

1 xi =
∑n

1 yi

• Pj(x) ≥ Pj(y), 1 ≤ j ≤ n

If x and y satisfy the conditions above we say x is majorized by y which is denoted by x � y,
the notation may be confusing because in the original theorem they have considered the functions
convex. As we see there is no global minimum so we need the following variation of the theorem:

Theorem 10.2 U(x) ≥ U(y)
α , for all canonical function U iff:

Pj(x) ≥ Pj(y),∀j

In some sense we can say Pjs are complete for class of canonical utility functions. We prove
that Pjs are concave:

Lemma 10.3 Pjs are concave.

Proof: Let z = βz + (1− β)y, 0 ≤ β ≤ 1, and let σ(i) be the index of the ith smallest component
of z.

Pj(z) =
j∑

i=1

zσ(i) = β

j∑
i=1

xσ(i) + (1− β)
j∑

i=1

yσ(i) ≥ βPj(x) + (1− β)Pj(y)

As the very first step, lets find a n−approximation solution for all Pjs. Consider this example,
we have three flows, x1, x2 and x3 with the capacity constraint: x1 + 20x2 + 500x3 ≤ 1. Then

maxP1 : x1 = x2 = x3 = 1
521

maxP2 : x1 = x2 = 1
21 , x3 = 0

maxP3 : x1 = 1, x2 = x3 = 0

It is clear if we average all of this solutions the result will be at least 1
n of each of Pjs. Next

session we will complete our discussion about this topic.
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