



# Scalable & Reconfigurable Software Defined Radio: Digital Front-End Architecture FOR Wideband Channelizer

#### TU Delft Computer Engineering EONIC



Gil Savir





## What EONIC BV does?

• PowerFFT – World's fastest FFT-coprocessor

ESM

SDR



SAR





DAR









# Problem Statement & Methodology

- How to improve critical functionalities in WB SDR digital front-end?
- Phase 1 Investigating existing channelization algorithms
  - Literature study
  - Comparison & algorithm choice for implementation
- Phase 2 Investigating critical functionalities
  - Parameterized Matlab<sup>®</sup> model
  - Test case & critical functionalities choice
- Phase 3 Implementation
  - Implementing critical functionalities
  - Optimization & evaluation





#### **Presentation Outline**

- Introduction
  - What is SDR?
  - SDR Channelization & Applications
- Channelization Algorithms
  - 3 Algorithms
  - Comparison & Conclusions
- Polyphase FFT Wideband Channelizer Architecture
  - Matlab<sup>®</sup> demonstration





# Introduction: What is SDR?

• Traditional Radio Receiver







## Ideal SDR

- Digitization as close as possible to the antenna
- Further processing by software





digitally mastering the spectrum

# Ideal SDR Receiver vs. Traditional Receiver

- Why do we need SDR?
- Flexibility reprogrammable
- Analog components:
  - inaccurate









# Ideal SDR Receiver Limitations

- Antenna
- ADC
  - Sampling Rate, Resolution, Jitter, Noise
- Computing Capacity







SW Signa

Ideal

#### Intermediate Solution

- Analog Front-End
- Digital Front-End
  - Reconfigurable components
  - Parametrizable components









# Channelization

- FDM Frequency Division Multiplexing
- Multi-Channel Parallel Real-Time Channelization







### Wideband SDR Channelizer Applications

- Civil
  - Base Stations
  - Comm. Sat.





- Military
  - Coordination
  - Intelligence & Surveillance









# **Channelization Algorithms**

- Traditional Per Channel Approach
- Binary Tree Channelization
- Polyphase FFT Channelization





#### Per Channel Approach

• Single Channel Channelizer







#### Per Channel Approach

• Stacked Single Channel Channelizers







# **Binary Tree Channelization**

• Spectrum recursively divided to upper and lower half bands.







# **Binary Tree Channelization**

• Structured as a binary tree







## **Binary Tree Channelization**







- Improvement of the per-channel approach.
- Considering overall sample-rate parameters.
- Exploiting FFT algorithm.





• Equivalence theorem: DDC + LPF = BPF + DDC







• Exploiting sample rate conversion







•  $k^{th}$  channel center frequency:  $?_k = k 2p/M$ 







# Constructing Filterbank

• Normal Filter





digitally mastering the spectrum

### Decomposed Filterbank







• Filterbank decomposition of the k<sup>th</sup> Channel







• Applying the noble identity on the the k<sup>th</sup> Channel













• Implementing the DFT using FFT







• Replacing the SRC's and delays by input commutator









#### 











### Qualitative Comparison

| Aspect                                               |                                  | Algorithm              |                           |                               |
|------------------------------------------------------|----------------------------------|------------------------|---------------------------|-------------------------------|
|                                                      |                                  | Per-Channel            | Binary Tree               | PFFT                          |
| Computational Complexity for high number of channels |                                  | Poor                   | Good                      | Excellent                     |
| Silicon Cost Efficiency                              |                                  | Up to 3-20<br>channels | Up to 128-256<br>Channels | Above 256<br>channels         |
| Group Delay                                          |                                  | Better                 | Good                      | Good                          |
| Initial Design Flexibility:                          | Independent channels             | Yes                    | No                        | No                            |
|                                                      | Number of channels               | Selectable             | 2 <sup>INT</sup>          | Preferably<br>2 <sup>™™</sup> |
|                                                      | Intermediate outputs             | No                     | Yes                       | No                            |
| Flexibility for<br>Reconfiguration:                  | Addition / removal of channels   | Excellent              | Poor                      | Poor                          |
|                                                      | Filtering performance adaptation | Poor                   | Poor                      | Good                          |





# Comparison Conclusions

- Traditional algorithm is infeasible within the requirements
- The binary tree and the Polyphase FFT algorithms out performs the Stacked single-channel Channelizers algorithms
- The Polyphase FFT algorithm:
  - outperforms the binary tree algorithm for high nr. of channels
  - implementation is practical (low complexity)
  - is the chosen algorithm for implementing wideband receiver





Polyphase FFT Wideband Channelizer Architecture (Current Work)

- A/D
- IQ-Demodulator
- Filterbank
- FFT coprocessor
- Phase correction









# Matlab Model









The Horizon became a Thousand Waves

Astrid Dahl