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Opportunistic Beamforming with Limited Feedback
Shahab Sanayei, Member, IEEE, and Aria Nosratinia, Senior Member, IEEE

Abstract— This work investigates the following question: sub-
ject to strictly limited (finite-rate) feedback in a multi-user
multi-antenna system, what channel state information (CSI)
should we send back to the transmitter, and how should it be
used? Considering the class of single-beam systems, we suggest
a combination of beamforming (array gain) and multi-user
diversity. It has been shown that in single antenna systems, one
bit of feedback per user can capture almost all gains available
due to multi-user diversity, therefore we propose and analyze
a compound strategy that uses one bit for multi-user diversity
and any further feedback bits for beamforming. We obtain the
scaling laws of this compound strategy, showing that it scales as
well as any single-beam system with full transmit-CSI.

Index Terms— MIMO, multiuser diversity, opportunistic com-
munication, limited feedback.

I. INTRODUCTION

IN opportunistic beamforming [1] the base-station acquires
the channel state information (CSI) from the mobiles

(users), then transmits to the user with the best link during
each interval. Other methods of multi-user scheduling also
exist, for example the base-station may use transmit-CSI is
round-robin scheduling for users, by transmitting to each user
along the eigen-direction of its channel.

Each of these methods nominally requires feedback of
continuous-valued coefficients, which implies unlimited re-
liable feedback. In [2], [3] the question of opportunistic
scheduling with limited feedback has been broached, showing
that only one bit of feedback per user is sufficient to capture
most of the gain of multi-user diversity for a single antenna
transmitter. Also, there exists a good amount of work on
quantized beamforming (see [4] for an overview).

In this work we show how multi-user diversity and transmit
beamforming can coexist in a practical scenario of limited
feedback. In other words, we ask the following question:
in the presence of limited feedback, what combination of
the two methods (opportunistic multi-user vs. deterministic
beamforming) should we use, how can this combination be
accomplished, and how well does it perform.

We propose a combined strategy where one bit of feedback
per user is dedicated to multi-user diversity, and any remaining
feedback is used for beamforming. The one-bit multi-user
feedback indicates whether each user’s channel is above a
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certain threshold, and the remaining bits choose the beamform-
ing vector using a pre-designed code-book. In the simplest
form, this method reduces to opportunistic antenna selection
whose sum-rate capacity grows asymptotically as well as
opportunistic beamforming with full CSI, as we show in the
sequel. By using this as a lower bound to more feedback-
intensive methods, we show that all such methods achieve the
same capacity growth as full-CSI single-beam systems.

We mention a number of related works in this area. The
concept of thresholding for opportunistic communication is
due to Gesbert and Alouini [5]. One way of interpreting
our work is that we facilitate threshold-based techniques by
providing a finite-rate feedback for them. Also several other
works in the area of opportunistic communication are related
to this work to varying degrees, including [6], [2], [7], [8],
[9], [10], [11] . Our emphasis and contribution is on strategies
to achieve finite feedback in single-beam systems. Sharif and
Hassibi [8] propose a multi-beam system that has a higher
capacity growth than single-beam systems. We conjecture that
methods similar to the ones developed in this correspondence
can be derived for multi-beam systems. In the remainder of
the paper, whenever we mention “full-CSI system” we are
referring to the single-beam full-CSI system.

II. SYSTEM MODEL

We consider a network of n users each having N antenna
for receiving data from the base-station. The base-station has
M antennas. For kth user we assume the linear time invariant
flat fading model:

yk(t) = Hk · xk(t) + nk(t)

where yk(t) ∈ C
N is the received signal and xk(t) ∈ C

M×1 is
the transmitted signal for user k at time t. The transmit power
is limited by ρ, i.e. E[‖x‖2] ≤ ρ, nk(t) is an i.i.d. circularly
symmetric complex Gaussian noise distributed according to
nk(t) ∼ CN (0, IN ) and Hk is an N × M channel matrix
whose ijth element, Hij,k represents the channel gain between
the ith transmit antenna at the base-station and the jth receive
antenna of the kth user. We use the following notation: E[ ]
refers to expected value of a random variable, γ ≈ 0.577 is the
Euler-Mascheroni constant and log(.) is the natural logarithm.
We use an

◦= bn to denote the asymptotic equivalence of an

and bn defined as: limn→∞ an

bn
= 1.

The antennas at the base-station are uncorrelated and
users experience independent channels. We assume a reliable,
limited-rate feedback channel for the CSI. The network is
assumed to be under power control so that path loss and
shadowing do not come into play.
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III. SCHEDULING WITH LIMITED FEEDBACK OF CSI

When the base-station has one antenna (M = 1), Sanayei
and Nosratinia [3] proposed a downlink scheduling algorithm
with only one bit of feedback per user, as follows: The base-
station sets a threshold α for all users. Each user will send a
“1” (eligible user) to the base-station if their channel gain
exceeds the threshold, otherwise a “0” is sent. The base-
station selects randomly from among eligible users for data
transmission. If all the feedback bits received by the base-
station are zero, then no signal is transmitted in that interval.1

For a single-beam system, it was shown [3], that the 1-
bit algorithm achieves the same capacity growth as full-CSI
feedback subject to judicious choice of the threshold. It was
also shown that the 1-bit scheduling actually improves fairness
over a full-CSI feedback. The interested reader is referred
to [3] for details.

Fig. 1 compares the sum-rate capacity of the 1-bit schedul-
ing and full CSI scheduling, suggesting that there is not much
gain in spending more than one bit for quantizing channel
gains. Therefore it is reasonable to use any extra feedback,
over and above one bit, for other purposes. Another way we
can use transmit-side CSI is beamforming, and we propose
that any excess channel state information, over and above one
bit, can be used to exploit beamforming gain.

We assume the feedback rate is limited to L bits per
channel. A beamforming code-book U = {u1, · · · , u2L} is
shared by all users and the base station. Each user picks the
beamformer that leads to the highest gain, i.e.

ûk = arg max
u∈U

‖Hku‖2

then it compares the corresponding channel gain ηk =
‖Hkûk‖2 to the threshold value α advertised by the base-
station. If the channel gain is above the threshold, the user
sends its L-bit feedback information to the base-station, oth-
erwise it does not transmit any feedback information. Thus the
reception of L bits from user k by the base-station indicates
that

1) The user k is eligible for transmission
2) The base-station should use the beamforming vector

ûk ∈ U for transmission to user k.

For scheduling, the base-station randomly selects one of the
eligible users and when there is no eligible user in the network,
it does not transmit to any user.

IV. SUM-RATE OF OPPORTUNISTIC BEAMFORMING WITH

LIMITED FEEDBACK

The performance of any opportunistic beamforming system
is bounded above by the full-CSI performance, and bounded
below by antenna selection (assuming feedback rate no less
than log�M�). We shall show that opportunistic antenna selec-
tion has capacity growth log log n, where n is the number of
users, i.e., it has the same capacity growth as the full-CSI case.
Therefore a sandwich argument shows that any opportunistic
beamforming method can attain capacity growth log log n with

1When all feedback bits are “0”, the base-station can also randomly pick
a user for transmission to avoid waste, however, in the asymptote of large
number of users this has vanishing advantage.
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Fig. 1. Comparison of sum-rate capacity for limited and full CSI feedback
scheduling for different values of SNR (M = 1).

the number of users. The remainder of this section is dedicated
to demonstrating the key fact in the argument above, namely
to show that opportunistic antenna selection attains log log n
growth.

When the beamforming codebook is of size M (hence L =
�log2 M�) then the best choice for the code-book is to take
ul’s as columns of identity matrix of size M ,

U =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1
...
0

⎞
⎟⎠ , · · · ,

⎛
⎜⎝

0
...
1

⎞
⎟⎠

⎫⎪⎬
⎪⎭ .

In this case, beamforming is equivalent to antenna selection
in the base-station (since only one antenna at a time is active).

Let hi,k denote the ith column of the channel matrix Hk.
The user k finds the column of its channel matrix with the
maximum norm

îk = arg max
1≤i≤M

‖hi,k‖2

and then compares ‖h
�ik,k‖2 with the threshold value α

advertised by the base-station. If ‖h
�ik,k‖2 > α, then the

antenna index îk is transmitted to the base station, otherwise,
no feedback is sent. Note that îk indicates the best transmit an-
tenna for downlink transmission to the user k. Upon receipt of
this information from eligible users, the base station randomly
chooses one user for transmission from among all users whose
feedback information has been successfully received and for
that user, it uses the corresponding antenna determined by the
feedback received from that user.

A. Sum-Rate Capacity

The equivalent channel gain for the user j is

ηj = max
1≤i≤M

‖hi,j‖2.

Under the Rayleigh fading assumption, each channel gain
‖hi,k‖2 is χ2 distributed with 2N degrees of freedom, thus
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the CDF of ηj is

F (x) = (1 − eN (x)e−x)M , (1)

where eN(x) =
∑N−1

l=0
xl

l! . Let p = Pr[ηk > α]. Since the
channel gains are all mutually independent, the probability of
having k users above the threshold obeys a binomial law, i.e.

pk =
(

n

k

)
pk(1 − p)n−k. (2)

The ergodic capacity upon having k users above the threshold
is:

Ck =
k∑

i=1

Pr[the ith best user is selected] Ci

=
1
k

k∑
i=1

Ci (3)

where Ci =
∫ ∞
0 log(1 + ρx)dFi(x) and Fi(x) is the CDF

of the ith highest equivalent channel gain. In other words
if {X1, . . . , Xn} is a permutation of {η1, . . . , ηn} such that
0 ≤ Xn ≤ . . . ≤ X1, then Fi(x) = Pr[Xi < x]. When
the channel gains are i.i.d., it can be shown that [12]:

Fi(x) =
i−1∑
l=0

(
n

l

)
(F (x))n−l (1 − F (x))l

. (4)

Thus the sum-rate capacity of the network with limited feed-
back can be formulated as:

CLF =
n∑

k=1

pkCk (5)

Thus CLF can be characterized as follows:

CLF =
n∑

i=1

πi

∫ ∞

0

log(1 + ρx)dFi

=
∫ ∞

0

log(1 + ρx)dFπ (6)

where Fπ =
∑n

i=1 πiFi is a mixture probability measure of
all order statistics of the family with parent CDF F (.) and
{πi}n

i=0 is a discrete probability measure defines as

πi =
1
np

n∑
k=i

pk, i = 1, . . . , n. (7)

The exchange of summation and integral leading to Eq. (6)
is due to Fubini’s theorem, since F (·) and therefore Fπ have
exponential tails, so log(1 + ρ) is absolutely integrable with
respect to Fπ.

1) Optimal Threshold: The sum-rate capacity is a function
of ρ, p and n. The relation between the threshold α and the
probability p is given by

α = F−1(1 − p). (8)

The inverse function of the CDF given by (1) in general can
not be explicitly calculated. When users have only one receive
antenna (N = 1), however,

α = − log
(
1 − (1 − p)

1
M

)
. (9)

To find the optimal threshold, we choose p such that
the sum-rate capacity CLF is maximized. The cost function
CLF (p) is a weighted sum of functions of the form pk(1 −
p)n−k which are concave over the interval [0, 1], hence CLF

is a concave function of p and has a unique maximum over
[0, 1]. To calculate the value of p that maximizes the sum-rate
capacity, we must solve ∂CLF (p)

∂p = 0 for p, i.e.,

n∑
k=1

(k − np)pkCk = 0. (10)

A closed form solution to this equation is in general not
tractable. However, a numerical solution is possible with O(n)
complexity.

B. Asymptotic Analysis

For simplicity we first assume each user has one antenna
(N = 1). Then

CFull CSI = E[log(1 + ρ max
1≤k≤n

‖hk‖2)] (11)

where hk is the 1 × M channel vector of user k.
Theorem 1: The sum-rate capacity of coherent opportunis-

tic beamforming with full CSI available at the base-station
scales as

CFull CSI
◦= log log n + log ρ.

Proof: The random variable Yk = ‖hk‖2 is distributed accord-
ing to χ2

2M . Using classical results in extreme value theory,
it is shown in [13], [14] that the mean and the variance of
Zn = max1≤k≤n Yk have the following asymptotic behavior

μn = E[Zn] ◦= log n + log
(

nM−1

(M − 1)!

)
+ γ (12)

σ2
n = E

[
(Zn − E[Zn])2

] ◦=
π2

6
(13)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Therefore
μn → ∞ and σn

μn
→ 0 as n → ∞ thus Zk satisfies the

condition in Theorem 4 (see Appendix) and we have

CFull CSI = E[log(1 + ρZn)]
◦= log(1 + ρE[Zn])
◦= log

(
1 + ρ(log n + log

(
nM−1

(M − 1)!

)
+ γ)

)
◦= log log n + log ρ. (14)

Theorem 2: The sum-rate capacity of opportunistic transmit
antenna selection scales the same as scheduling with full CSI
(coherent beamforming), i.e.

lim
n→∞

CLF

CFull CSI
= 1.

Proof: From Equation (6) we have CLF =
∫ ∞
0 log(1+ρx)dFπ

where

Fπ =
n∑

k=1

πkFk

and Fk’s are the probability measures associated with order
statistics with the parent distribution F (x) = (1 − e−x)M .
If X is a random variable distributed according to F (·), we
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define the function g(·) such that X = g(Y ) where Y is an
exponential random variable. We have

F (x) = Pr[X < x] = Pr[g(Y ) < x]

= Pr[Y < g−1(x)] = 1 − e−g−1(x)

thus

y = g−1(x) = − log(1 − F (x)). (15)

We have y
′

= f(x)
1−F (x) > 0 thus g−1(x) and hence g(x) are

strictly increasing functions, which means they preserve order.
Therefore if 0 < Xn ≤ · · · ≤ X1 are the order statistics with
parent distribution, F (·), 0 < Yn ≤ · · · ≤ Y1 with Yk =
g−1(Xk) are the order statistics of the exponential distribution.

CLF =
n∑

k=1

πkE[log(1 + ρXk)] =
n∑

k=1

πkE[log(1 + ρg(Yk)].

This can be written as

CLF =
∫ ∞

0

log(1 + ρ · g(x)) dνπ(x)

where νπ =
∑n

k=1 νk is the mixture probability distribution
of all order statistics of the exponential distribution. νk(x) is
the CDF of Yk and can be calculated as follows

νk(x) =
k−1∑
l=0

(
n

l

)
e−lx(1 − e−x)n−l

In the proof of Theorem 1, we showed that μπ(ν)
μ1(ν) and σπ(ν)

μπ(ν) →
0, as n → ∞ where

μ1(ν) =
∫ ∞

0

xdν1(x) = E[Y1] =
n∑

k=1

1
k

μπ(ν) =
∫ ∞

0

xdνπ(x) =
n∑

k=1

πkE[Yk]

and

σ2
1(ν) =

∫ ∞

0

(x − μ1(ν))2dν1(x) =
n∑

k=1

1
k2

σ2
π(ν) =

∫ ∞

0

(x − μπ(ν))2dνπ(x).

Definition 1: We define G as the set of measurable func-
tions g : R

+ �→ R
+ that are both increasing and concave with

g(0) = 0

G = {g : R
+ �→ R

+|∀x > 0, g
′
(x) > 0, g

′′
(x) < 0, g(0) = 0}.

Now we show that the function g(·) belongs to G, thus we
can apply Theorem 7 to show that CLF scales the same as
CFull CSI . Recall g(·) is strictly increasing and g−1(0) =
− log(1 − F (0)) = 0 hence g(0) = 0. To prove that g(·) is
concave, it is sufficient to show y = g−1(x) = − log(1− (1−
e−x)M ) is convex. We have 1 − e−y = (1 − e−x)M hence

y
′
e−y = Me−x(1 − e−x)M−1

y
′′
e−y − (y

′
)2e−y = Me−x(1 − e−x)M−2(Me−x − 1)

after some algebra we get

y
′′

y′ e−y(1 − e−x) = Me−x − (1 − (1 − e−x)M )

= Me−x − e−x
M−1∑
i=0

(1 − e−x)i

= e−x
M−1∑
i=0

(1 − (1 − e−x)i) > 0.

The latter inequality means that y
′′

> 0 for all x > 0,
hence g−1 is convex, therefore g ∈ G. Furthermore, we prove
limx→∞

g−1(x)
x = 1,

lim
x→∞

g−1(x)
x

= lim
x→∞− log(1 − (1 − e−x)M )

x

= lim
x→∞

− log
(
1 − (1 − Me−x + · · · + (−1)Me−Mx)

)
x

= lim
x→∞ 1 +

log
(
M − (

M
2

)
e−x + · · · + (−1)Me−(M−1)x

)
x

= 1.

We also have limx→∞ g−1(x) = limx→∞ g(x) = +∞, let
y = g(x), then

lim
x→∞

g(x)
x

= lim
y→∞

y

g−1(y)
= 1

Therefore g(·) satisfies all the conditions of Theorem 7, hence

CLF =
∫ ∞

0

log(1 + ρx)dFπ(x)

=
∫ ∞

0

log(1 + ρg(x))dνπ(x)

◦= log(1 + ρg(μπ(ν)))
◦= log(1 + ρμπ(ν))
◦= log(1 + ρμ1(ν))
◦= log(1 + ρ logn)
◦= log log n + log ρ.

Thus from Theorem 1 we conclude

CLF
◦= Cfull CSI

Figure 2 shows a comparison of the throughput of various
methods mentioned in this paper. The best performance is
that of coherent opportunistic beamforming (CO), where the
multiple-antenna transmitter has full knowledge of the (vector)
channel of all users, and in each time interval beamforms
towards the best user. This method requires generous amounts
of feedback.

With a slight loss of throughput, one may use antenna selec-
tion, where instead of full beamforming, the transmitter selects
one of the antennas. In other words, with the knowledge of
user (vector) channels, the transmitter picks the best transmit
antenna and user among all possible such pairs.

Opportunistic beamforming (OB) as suggested by
Viswanath et al [1] has performance below that of
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Fig. 2. Comparison of the throughput of various methods at SNR=10dB.

opportunistic antenna selection. Finally, each of the last
two cases can be quantized, resulting again in some loss
of throughput. The quantized methods shown in Figure 2
are simulated with one bit per user, i.e., with two transmit
antennas at the base station, where for transmission to each
user the better transmit antenna is selected.

V. DISCUSSION AND CONCLUSION

In this paper we investigate communication in the presence
of strictly limited feedback in the downlink of multi-antenna,
multi-user systems. We propose and investigate a method
where one bit of feedback is used for multi-user diversity and
the remainder of feedback bits are used for array gain, showing
that it has growth rate as good as single-beam opportunistic
beamforming with unlimited feedback.

It is possible to reduce the feedback rate even further
through MAC layer mechanisms. For example, we may allow
the users to send their CSI feedback not in dedicated channels,
but jointly in a contention-based channel. In this case, the
signaling can be designed such that any users whose downlink
channel is below the prescribed threshold will stay silent,
and only transmit-eligible users will send feedback. This
will reduce the load on the feedback channel. A similar
approach applies to a CDMA feedback channel, where the
users below the threshold stay silent, thus reducing the load
on the interference-limited feedback channel and achieving
better efficiencies.

APPENDIX

ASYMPTOTIC TIGHTNESS OF JENSEN’S INEQUALITY

Let g : R �→ R be a measurable concave function and let
X be a random variable, then

E[g(X)] ≤ g(E[X ])

with equality if and only if the function g(·) is an affine
function or the probability measure is trivial. This result is
known as Jensen’s inequality. We wish to investigate when
Jensen’s inequality is tight for a family of random variables
{Xn}∞n=1.

Lemma 1: For all x, y ≥ 0 we have

| log(1 + ρx) − log(1 + ρy)| ≤ log(1 + ρ|x − y|).
Proof: Since g(x) = log(1 + ρx) is an increasing function,
without loss of generality we can assume x ≥ y ≥ 0.
Therefore we have ρ2y(x − y) ≥ 0. This inequality can be
re-written as 1+ρx

1+ρy ≤ 1+ρ(x−y), and by taking the logarithm
of both sides we arrive at the desired inequality.

Definition 2: The family of random variables {Xn} is said
to be uniformly integrable if

lim
c→∞ lim sup

n

∫ ∞

c

x dF|Xn|(x) = 0.

Theorem 3: [15] If Xn is a uniformly integrable random
variable and E[X ] < ∞, then convergence in distribution

implies convergence in mean, i.e., if Xn
i.p.−→ X then E[Xn] →

E[X ].
Lemma 2: If E[|Xn|] < ∞ for all n, then the random

variable Xn is uniformly integrable if

lim
c→∞ lim sup

n

∫ ∞

c

Pr[|Xn| > t]dt = 0.

Proof: For every n and c > 0 we have

c(1 − F|Xn|(c)) ≤
∫ ∞

c

x dF|Xn|(x) ≤ E[|Xn|] < ∞

hence limc→∞ c(1−F|Xn|(c)) = 0. Using integration by parts
we have

0 ≤
∫ ∞

c

x dF|Xn|(x)

= −x(1 − F|Xn|(x)) |∞c +
∫ ∞

c

Pr[|Xn| > x] dx

= −c(1 − F|Xn|(c)) +
∫ ∞

c

Pr[|Xn| > x] dx

≤
∫ ∞

c

Pr[|Xn| > x] dx

and this proves the lemma.

Lemma 3: If Xn
i.p.−→ 0 and an → 0, then, an · Xn

i.p.−→ 0
Proof: For every ε, δ1, δ2 > 0, there exits N1 such that for
all for all n > N1 we have |an| < δ1. Also there exits N2

such that for all n > N2, Pr[|Xn| > ε
δ1

] < δ2, thus for all
n > N = min{N1, N2},

Pr[|anXn| > ε] = Pr[|Xn| >
ε

|an| ] ≤ Pr[|Xn| >
ε

δ1
] ≤ δ2

thus anXn
i.p.−→ 0.

Now we prove the following theorems for asymptotic tight-
ness of Jensen’s inequality,

Theorem 4: Let {Xn} be a family of positive i.i.d. random
variable with finite mean μn and variance σ2

n, also μn → ∞
and σn

μn
→ 0 as n → ∞, then for all ρ > 0 we have

E[log(1 + ρXn)]
log(1 + ρE[Xn])

−→ 1. (16)
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Proof: Using Chebyshev’s inequality for all ε > 0 we have:

Pr

[∣∣∣∣1 + ρXn

1 + ρμn
− 1

∣∣∣∣ > ε

]
= Pr

[∣∣∣∣ Xn − μn

1/ρ + μn

∣∣∣∣ > ε

]

≤ E[(Xn − μn)2]
ε2(1/ρ + μn)2

=
1
ε2

(
σn

μn

)2

hence 1+ρXn

1+ρμn

i.p.−→ 1 . Using the continuous mapping theorem,
we have

log
(

1 + ρXn

1 + ρμn

)
i.p.−→ 0 .

On the other hand μn → ∞, hence 1
log(1+ρμn) → 0 and we

can invoke Lemma 3 to conclude

log
(

1+ρXn

1+ρμn

)
log(1 + ρμn)

=
log(1 + ρXn)
log(1 + ρμn)

− 1
i.p.−→ 0

Thus
log(1 + ρXn)
log(1 + ρμn)

i.p.−→ 1.

We show that the random variable Zn = log(1+ρXn)
log(1+ρμn) − 1 is

uniformly integrable.

I =
∫ ∞

c

Pr

[∣∣∣∣ log(1 + ρXn)
log(1 + ρμn)

− 1
∣∣∣∣ > t

]
dt

=
∫ ∞

c

Pr

[ | log(1 + ρXn) − log(1 + ρ log μn)|
log(1 + ρμn)

> t

]
dt

≤
∫ ∞

c

Pr

[
log(1 + |Xn − μn|)

log(1 + ρμn)
> t

]
dt by Lemma 1

=
∫ ∞

c

Pr
[
ρ|Xn − μn| > At

n − 1
]
dt

where An = 1 + ρμn. Using Chebyshev’s inequality we have

I ≤
∫ ∞

c

Pr
[
ρ|Xn − μn| > At

n − 1
]
dt

≤ ρ2σ2
n

∫ ∞

c

dt

(At
n − 1)2

.

We use change of variable u = At
n − 1, dt = du

log(An)(u+1) ,
αn = Ac

n − 1

I ≤ ρ2σ2
n

1
log(An)

∫ ∞

αn

du

u2(u + 1)

≤ ρ2σ2
n

1
log(An)

∫ ∞

αn

du

u2

= ρ2

(
σn

μn

)2
A2

n

log(An)(An
c − 1)

.

Since μn → ∞, An → ∞ thus for all c > 2

A2
n

log(An)(Ac
n − 1)

→ 0.

Also σn

μn
→ 0, hence I → 0 and Zn = log(1+ρXn)

log(1+ρμn) − 1 is
uniformly integrable. Therefore from Theorem 3 we conclude

E[log(1 + ρXn)]
log(1 + ρμn)

−→
n→∞ 1 .

We now extend the asymptotic tightness, which was shown
for the Shannon function g(x) = log(1+ρx), to a larger class
of functions. To do so we return to functions in G (defined in
Section IV-B).

Theorem 5: G has the following properties

1) G is closed under function composition.
2) for every g ∈ G, g(x)

x is a decreasing function
3) g ∈ G is a sub-additive function, hence ∀x, y >

0 , |g(x) − g(y)| < g(|x − y|).
Proof: For part 1 we note that if g, f ∈ G then g ◦ f(x) =
g(f(x)) is defined in R

+. Also (g◦f)
′
(x) = f

′
(x)g

′
(f(x)) >

0 and (g ◦ f)
′′
(x) = f

′′
(x)g

′
(f(x)) + (f

′
(x))2g

′′
(f(x)) < 0

therefore g ◦ f ∈ G. For proving part 2, we use the concavity
of g(·). For all x, y > 0 and α ∈ (0, 1),

αg(x) + (1 − α)g(y) < g(αx + (1 − α)y).

Let y = 0, then αg(x) < g(αx). This can be written as
g(x)

x < g(αx)
αx which means that g(·) is a decreasing function.

In part 3, we first prove that g(·) is sub-additive. Using part 2,
for all x, y > 0 we have g(x+y)

x+y < g(x)
x hence we get

x

x + y
g(x + y) < g(x) ,

y

x + y
g(x + y) < g(y).

Adding these two inequalities gives g(x + y) < g(x) + g(y),
so g(·) is a sub-additive function. Without loss of generality
we assume x ≥ y ≥ 0, therefore g(x) = g(y + (x − y)) <
g(y) + g(x − y) hence g(x) − g(y) < g(x − y). But |g(x) −
g(y)| = g(x) − g(y) because g(·) is increasing. Thus

|g(x) − g(y)| < g(|x − y|).

We now establish the conditions so that Jensen’s inequality
for any g ∈ G is asymptotically tight.

Theorem 6: Let {Xn} be a family of positive i.i.d. random
variable with finite mean μn and variance σ2

n, so that μn → ∞
and σn

μn
→ 0 as n → ∞, then for every g ∈ G satisfying the

condition limx→∞
g(x)

x = K > 0, we have

E[g(Xn)]
g(E[Xn])

−→ 1. (17)

Proof: As shown in the proof of Theorem 4, σn

μn
→ 0 implies

Xn

μn
→ 1. Using the Chebyshev inequality and Theorem 1 (part

3) for every a > 0 we have

Pr

[∣∣∣∣g(Xn)
g(μn)

− 1
∣∣∣∣ > a

]
= Pr

[∣∣∣∣g(Xn) − g(μn)
g(μn)

∣∣∣∣ > a

]

≤ Pr

[
g(|Xn − μn|)

g(μn)
> a

]
≤ Pr

[|Xn − μn| > g−1(ag(μn))
]

≤
(

σn

μn

)2

·
(

μn

g−1(ag(μn))

)2

(18)

We have μn → ∞ as n → ∞. Also the condition
limx→∞

g(x)
x = K > 0, implies that g(x) → ∞ as
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x → ∞. g−1 is an increasing continuous function therefore
g−1(ag(μn)) → ∞, thus

lim
n→∞

μn

g−1(ag(μn))
= lim

n→∞
g(g−1(ag(μn))
ag−1(ag(μn))

=
K

a

Since σn

μn
→ 0 from 18 we can conclude that g(Xn)

g(μn)

i.p.−→ 1.

We need to show that the random variable Zn = g(Xn)
g(μn) − 1 is

uniformly integrable. Using Lemma 2 and 18 we have

In =
∫ ∞

c

Pr

[∣∣∣∣g(Xn)
g(μn)

− 1
∣∣∣∣ > a

]
da

≤ σ2
n

μ2
n

∫ ∞

c

μ2
nda

(g−1(ag(μn)))2
.

We use the change of variable u = g−1(ag(μn)), da =
g
′
(u)

g(μn)du, αn = g−1(cg(μn)), also we note that g
′
(·) is a

decreasing function thus for u ∈ (αn,∞) we have g
′
(u) <

g
′
(αn), hence

In ≤
(

σn

μn

)2

· μ2
n

∫ ∞

αn

g
′
(u)
u2

du

g(μn)

<

(
σn

μn

)2

· μ2
ng

′
(αn)

g(μn)

∫ ∞

αn

du

u2

=
(

σn

μn

)2

· μ2
ng

′
(αn)

g(μn)

∫ ∞

αn

du

u2

=
(

σn

μn

)2

· 1
c
· μn

g(μn)
· g(αn)

αn
· g′

(αn).

By L’Hospital’s rule, limx→∞ g
′
(x) = limx→∞

g(x)
x = K .

Also μn → ∞ implies αn → ∞, therefore limn→∞ μn

g(μn) ·
g(αn)

αn
· g

′
(αn) = K , hence limn→∞ In = 0 which means

Zn = g(Xn)
g(μn) − 1 is uniformly integrable thus E[Zn] −→ 0

Note: In the above theorem, if lim sup σn < ∞ then
the condition limx→∞

g(x)
x = K > 0 can be weakened to

limx→∞ g(x) = +∞.
The following theorem combines the results from Theo-

rem 4 and Theorem 6:

Theorem 7: Under the assumptions of Theorem 6 we have

E[log(1 + ρg(Xn))]
log(1 + ρg(E[Xn])

−→ 1.

Proof: The proof is straightforward and very similar to the
proof of Theorem 4.
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