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On the Capacity of MIMO Broadcast Channels
With Partial Side Information

Masoud Sharif, Student Member, IEEE, and Babak Hassibi

Abstract—In multiple-antenna broadcast channels, unlike
point-to-point multiple-antenna channels, the multiuser capacity
depends heavily on whether the transmitter knows the channel
coefficients to each user. For instance, in a Gaussian broadcast
channel with M transmit antennas and n single-antenna users,
the sum rate capacity scales like M log log n for large n if perfect
channel state information (CSI) is available at the transmitter, yet
only logarithmically with M if it is not.

In systems with large n, obtaining full CSI from all users may
not be feasible. Since lack of CSI does not lead to multiuser gains,
it is therefore of interest to investigate transmission schemes that
employ only partial CSI. In this paper, we propose a scheme that
constructs M random beams and that transmits information to
the users with the highest signal-to-noise-plus-interference ratios
(SINRs), which can be made available to the transmitter with very
little feedback. For fixed M and n increasing, the throughput of
our scheme scales as M log log nN, where N is the number of
receive antennas of each user. This is precisely the same scaling
obtained with perfect CSI using dirty paper coding. We further-
more show that a linear increase in throughput with M can be
obtained provided that M does not not grow faster than log n.
We also study the fairness of our scheduling in a heterogeneous
network and show that, when M is large enough, the system be-
comes interference dominated and the probability of transmitting
to any user converges to %, irrespective of its path loss. In fact,
using M = «logn transmit antennas emerges as a desirable
operating point, both in terms of providing linear scaling of the
throughput with M as well as in guaranteeing fairness.

Index Terms—Broadcast channel, channel state information
(CSI), multiuser diversity, wireless communications.

I. INTRODUCTION

ULTIPLE-antenna communications systems have gen-

erated a great deal of interest since they are capable of
considerably increasing the capacity of a wireless link. In fact,
it was known for a long time that, if perfect channel state in-
formation (CSI) were available at the transmitter and receiver,
then they could jointly diagonalize the channel, thereby cre-
ating as many parallel channels as the minimum of the number
of transmit/receive antennas and thus increase the capacity of
the channel by this same factor. More surprisingly, it was later
shown that the same capacity scaling is true if the channel is not
known at the transmitter [1], [2] and even if it is not known at the
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receiver [3], [4] (provided the coherence interval of the channel
is not too short).

While these are all true for point-to-point communications
links, there has only been recent interest in the role of mul-
tiple-antenna systems in a multiuser network environment, and
especially in broadcast and multiple-access scenarios. There has
been a line of work studying scheduling algorithms in mul-
tiple-input multiple-output (MIMO) broadcast channels [5] with
the main result being that, due to channel hardening in MIMO
systems, many of the multiuser gains disappear. There has been
another line of work studying the sum-rate capacity, and in fact,
the capacity region, of MIMO broadcast channels [6]-[8]. It
has been shown that the sum-rate capacity is achieved by dirty
paper coding and, moreover recently, it has been shown that
dirty paper coding in fact achieves the capacity region of the
Gaussian MIMO broadcast channel [9].

While the above results suggest that capacity increases
linearly in the number of transmit antennas, they all rely on the
assumption that the channel is known perfectly at the trans-
mitter. Moreover, the dirty paper coding scheme, especially in
the multiuser context, is extremely computationally intensive
(although suboptimal schemes such as channel inversion or
Tomlinson—-Harashima precoding [10]-[12] give relatively
close performance to the optimal schemes). One may speculate
whether, as in the point-to-point case, it is possible to get the
same gains without having channel knowledge at the trans-
mitter. Unfortunately, it is not too difficult to convince oneself
that, if no channel knowledge is available at the transmitter,
then using any conventional scheduling scheme, capacity scales
only logarithmically in the number of transmit antennas. In
fact, in this case, increasing the number of transmit antennas
yields no gains since the same performance can be obtained
with a single transmit antenna operating at higher power.

In many applications, however, it is not reasonable to assume
that all the channel coefficient to every user can be made avail-
able to the transmitter. This is especially true if the number of
transmit antennas M and/or the number of users n is large (or if
the users are mobile and are moving rapidly). Since perfect CSI
may be impractical, yet no CSI is useless, it is very important to
devise and study transmission schemes that require only partial
CSI at the transmitter. This is the main goal of the current paper.

The scheme we propose is one that constructs M random
orthonormal beams and transmits to users with the highest
signal-to-noise-plus-interference ratios (SINRs). In this sense,
itis in the same spirit as the work of [13] where the transmission
of random beams is also proposed.

However, our scheme differs in several key respects. First, we
send multiple beams (in fact, M of them) whereas [13] sends
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only a single beam. Second, whereas the main concern in [13]
is to improve the proportional fairness of the system (by giving
different users more of a chance to be the best user) our scheme
aims at capturing as much of the broadcast channel capacity as
possible. Fairness! is achieved in our system as a convenient
by-product.

We should remark that our scheme requires far less feedback
than one that provides full CSI. To have full channel knowl-
edge at the receiver, each user must feed back M complex num-
bers (its channel gains) to the transmitter. Here each user needs
only to feed back one real number (its best SINR) and the corre-
sponding index which is an integer number. In fact, it turns out
that only users who have favorable SINRs need to do so, which
can considerably reduce the amount of feedback required.

Based on asymptotic analysis, we show that, for fixed M and
n increasing, our proposed scheme achieves a throughput? of
M loglognN, where N is the number of receive antennas of
each user. Happily, this is the same as the scaling law of the
sum-rate capacity when perfect CSI is available [14], and so,
asymptotically, our scheme does not suffer a loss in this regime.
One may ask how fast may M grow to guarantee a linear scaling
of the throughput R with M ? We show that the answer is M =
O(logn): more precisely, if % — « then % — o, whereas
if oy — oo then 17 — 0.

In schemes (such as ours) that exploit multiuser diversity
there is often tension between increasing capacity (by transmit-
ting to the strongest users) and fairness, the reason being that
the strongest users (here meaning the users closest to the base
station) may dominate the network. Fortunately, we show that in
our scheme, provided the number of transmit antennas is large
enough, the system becomes interference dominated and so, al-
though close users receive strong signal they also receive strong
interference. Therefore, it can be shown that, for large enough
M and in a heterogeneous network, the probability of any user
having the highest SINR converges to %, irrespective of how
strong their signal strength is. A more careful study of this issue
reveals that the choice of M = « log n transmit antennas is a de-
sirable operating point, both in terms of providing linear scaling
of the throughput with M as well as in guaranteeing fairness.

The remainder of this paper is organized as follows. Sec-
tion II describes the formulation of the problem. Our proposed
scheduling algorithm is introduced in Section III. In Section IV,
the asymptotic analysis of the throughput of our scheme is pre-
sented for the case where the number of users is increasing, M
(number of transmit antennas) is fixed, and each user has a single
receive antenna (N = 1). Section V considers the case where
M is allowed to grow to infinity as well. In Section VI, different
scenarios for N > 1 is considered and the asymptotic behavior
of their throughput is obtained. Fairness of our scheduling when
the users have different SNRs is considered in Section VII. Sec-
tion VIII presents the simulation result for the throughput and
fairness of our proposed scheduling. Finally, Section IX con-
cludes the paper.

ITn this paper, by fairness we mean that the probability of choosing users with
different SNRs is equal.

2In this paper, throughput refers to the achievable sum average rate by the
scheduling scheme.
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II. PROBLEM FORMULATION

In this paper, we consider a multiple-antenna Gaussian broad-
cast channel with n receivers equipped with N antennas and
a transmitter with M antennas. We consider the block-fading
model for the channel described by a propagation matrix which
is constant during the coherence interval of 7'. Since in a typ-
ical cellular system, the number of users is much larger than the
number of transmit antennas and also the number of antennas in
the base station (or the transmitter) is greater than the number of
antennas in the receiver, we often assume n > M and N < M
throughout the paper.

Let S(t) be the M x 1 vector of the transmit symbols at time
slot ¢, and let Y;(¢) be the N X 1 vector of the received signal at
the :th receiver related by

1,...,n )

~.

Yilt) = aiHiS(t) + W,

where H; is an N x M complex channel matrix, known perfectly
to the receiver, W; is an /N x 1 additive noise, and the entries
of H; and W; are independent and identically distributed (i.i.d.)
complex Gaussian with zero mean and unit variance CN (0, 1).
Moreover, the total transmit power is assumed to be M, i.e.,
E{S*S} = M; in other words, the transmit power per an-
tenna is one.3 Therefore, the received SNR of the sth user will
be E {p;|H;S|*} = Mp;, however, to simplify the notation we
refer to p; as the SNR of the ¢th user.

To analyze the throughput of the system, we consider a ho-
mogeneous network in which all the users have the same SNR,
ie., p; = pfori = 1,...,n. However, in the last part of the
paper, we look into the fairness issue when the network is het-
erogeneous in which the users have different SNRs.

III. SCHEDULING ALGORITHM USING RANDOM BEAMFORMING

The capacity of point-to-point multiple-antenna systems has
been investigated with different assumption for the CSI, whether
the receiver/transmitter knows the channel or not. As it is shown
in [1], [2], if the receiver knows the channel, the capacity scales
like min(M, N) log p no matter whether the transmitter knows
the channel or not. Indeed, it is shown in [3], [4] that when the
receiver does not know CSI, the capacity scales like

min(M, N) (1 - W) log p

where T is the coherence interval of the channel.

While the full CSIin the transmitter does not seem to be bene-
ficial in the point-to-point communication, the knowledge of the
channel is crucial in broadcast channel [5], [15]. For the case
with the full CSI available at both the transmitter and the re-
ceivers, it is shown that the sum rate capacity of the Gaussian
broadcast channel can be achieved by using dirty paper coding

3This is in contrast to the convention used in single-link MIMO channels
where the total transmit power E{5*.S} = 1 is fixed. There this is done to make
a fair comparison with a single-antenna channel operating at the same transmit
power. Here, however, since we will be transmitting to M different users, we
would like to make a comparison to M independent single-antenna links each
operating at unit power. Hence, our normalization will be E{S*S} = M.
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[6]-[8]. More precisely, for the case where N = 1, the sum rate

capacity RPT can be written as
RPP :E{ max log det (1 +y H;*PiHi>}
{P1,...P,,Y  Pi=Mp} P

2

where H; is a 1 X M channel matrix and M p is the total average
power. In Appendix B, the following lemma is proved.

Lemma 1: Suppose both the transmitter and receivers know
the channel perfectly in a Gaussian broadcast channel with n
single-antenna receivers with average transmit power of Mp,
and the transmitter has M antennas. Let also M and p be fixed,
then for sufficiently large n, the sum rate capacity scales like
M loglogn.

Therefore, when the transmitter and receivers have full CSI,
the sum rate capacity scales linearly with M. On the other hand,
having full CSI in both sides requires a lot of feedback and prac-
tically it is unrealistic. This motivates the question of how much
partial side information is needed in the transmitter that provides
us a linear scaling of the throughput with M and reduces the
amount of feedback [5], [15], [16].

In this paper, in order to exploit having multiple antennas in
the transmitter without having full CSI in the transmitter, we
propose a scheme that constructs M random beams and trans-
mits to the users with the highest SINRs. For simplicity, we as-
sume N = 1 and we choose M random orthonormal vectors
¢m (M x 1) form = 1,..., M where ¢;’s are generated ac-
cording to an isotropic distribution [4]. Then at time slot ¢, the
mnth vector is multiplied by the mth transmit symbol s, (t), so
that the transmitted signal is

M
S =Y bm®)sm(t), t=1...T.  (3)
m=1

Following our earlier assumption and using the independence
of s;’s, the average transmit power per antenna is one, equiva-
lently, £ {|sZ |2} = 1, and henceforth the total transmit power
is E{S*S} = M. After T channel uses, we independently
choose another set of orthonormal vectors {¢,,}, and so on.
In this paper, we assume s,,,’s are letters from codewords of a
Gaussian capacity-achieving codebook. We further assume that
the coding is performed across several blocks.

From now on, for simplicity, we drop the time index from
S;(t) and Y;(t), and therefore, the received signal at the ith re-
ceiver is

M
Y=Y Himsm+Wi, i=1,....n (4)

m=1
We assume that the ¢th receiver knows H;¢,, form =1,..., M

(this can be readily arranged by training). Therefore, the ith re-
ceiver can compute the following M SINRs by assuming that
sm 18 the desired signal and the other s;’s are interference as
follows:

|Hi¢m|2
1/p+ 2 pm | Hitk|*

SINR; ,,, =

Note that on average the SINRs behave like*

1 1
Upt(M—1) " M—-1
Thus, if we randomly assign beams to users, the throughput will
be

SINR, ,,, =

M
R=E {ng (1+ SINRi,m)}

i=1
= MElog(1 + SINR; ,,,)
< Mlog(1 + E{SINR;,,,,})

1 M
~M10g<1—|—M_1><M_1~1. 6)

Thus, even though we are sending M different signals, we do
not get an M -fold increase in the throughput. Therefore, the side
information in the transmitter is crucial to exploit the multiuser
diversity.

Suppose now each receiver feeds back its maximum SINR,
i.e.,, maxi<m<nm SINR; ,,, along with the index m in which the
SINR is maximized. Therefore, in the transmitter, instead of ran-
domly assigning each beam to one of the users, the transmitter
assigns s, to the user with the highest corresponding SINR,
i.e., maxi<i<n SINR; n,. So if we do the above scheduling, the
throughput can be written roughly as

M
R~E { > log <1 + lrgianINRi,m) }
m=1 -

=ME {log <1 + max SINRi7m> } @)

where we used “~” instead of “="" since there is a small prob-
ability that user ¢« may be the strongest user for more than one
signal s,,,. In Section IV, we shall see that this is very unlikely
as n increases, and so the above approximation approaches
equality.

It is important to note that compared to (6), we have a max-
imization over ¢ inside the logarithm. Thus, we need to study
the distribution of maxj<;<, SINR; ,, which as we shall see,
has a huge effect on the end result. We also remark that, as we
shall see in Section IV, it is not even necessary for all users to
send back their strongest SINR, which considerably reduces the
required feedback.

IV. ASYMPTOTIC ANALYSIS OF THE THROUGHPUT:
N =1, M Is FIXED

In this section, we obtain lower and upper bounds for the
throughput when M is fixed, N = 1, and n is going to in-
finity. Using M random beams and sending to the users with
the highest SINRs, we can bound the throughput R as

M
< -
R<E { 2_:1 log <1 + i:nllﬁ%nSINRL,m) } ®)
where this is an upper bound since we ignored the probability
that user ¢ be the maximum SINR user twice (if this is the case,
the transmitter has to choose another user with SINR less than

4This can be made more precise, however, for the sake of brevity we just
mention a sketchy argument.
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the maximum SINR which therefore decreases the throughput).
On the other hand, the following lemma states a lower bound
for the throughput as well.

Lemma 2: Let R be the throughput of the random beam-
forming scheduling. Then

R > M (1—{Pr{SINR;; < 1}}")
.E{log(l + Inax SINRm) |'71111ax SINR; 1 > 1}. 9)
Proof: First of all, we make the following observation: for
any r € {1,..., M}, conditioning on the fact that
SINR;, = max SINR,, > 1
1<i<n ’

then SINR; ;. has to be the maximum over m = 1,..., M as
well, i.e.,

SINR; » = max SINR; 1, .
This can be easily proved as follows; assuming SINR;,, > 1,
we have

\Hipol> > 1/p+ Y [Hidul* > |Hjpm|?, m=1,...,M.

k#r
Now we can write SINR; ,, and m # r as
|H jpm|? |Hjpum|*
SINR; ,, = < <1 (10)
! 1p+ Xk 1 Hibk? |Hjgr|?
and hence, SINR; ,. is the maximumoverm = 1..., M as well,
i.e.,
SINR; , = max SINR; 1, -

yenes

Therefore, it is impossible for a user to be the max-
imum SINR for two signals conditioning on the fact that
maxi<;<n SINR; ;. > 1. Thus, the throughput can be bounded
as

M
R>>" Pr{l max SINR; . > 1}
ooy} 1=1,...,n

.E{log(l-ﬁ-i_llllaanINRi’m) | i—HllaXnSINRi’m > 1}. (11
Since @ = (¢1 ... ¢nr) is a unitary matrix, so H,;® is a vector
with i.i.d. CN(0, 1) entries. This implies that | H;¢,,, |* are i.i.d.
over m (and also over 4) with x?(2) distribution. Therefore,
SINR; ,, for 2 = 1,...,n are i.i.d. but not independent over
y.-., M. Thus,

Pr{ max SINR; »,, < 1} = (Pr{SINR,;; <1})". (12)

Substituting (12) in (11) completes the proof. O

As we shall show later, the lower and upper bounds for
the throughput become tight for sufficiently large n and
when 1imn_,oo% = 0. In this case, conditioning on
maxi<;<ym SINR;,, > 1 in Lemma 2 can be replaced by
maxi<;<m SINR;,, > 7 where 7 is a constant indepen-
dent of n and the bounds remain tight. This implies that the
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receiver is only required to feed back its maximum SINR if
it is greater than n along with the index m corresponding to
the signal. Therefore, the amount of feedback here will be
nPr{maxj<m<ar SINR; ,, > n} real numbers and M integers
(at most). However, in the case with full CSI in the transmitter,
the amount of feedback is 2nM real numbers which is roughly
2M times bigger than what we need in our scheme. Further-
more, the complexity of our scheme is much less than the
proposed schemes to implement dirty paper coding with full
CSI using nested lattices or trellis precoding [10], [11].

In order to evaluate the lower and upper bounds, we have
to obtain the distribution of SINR; ,,. As mentioned earlier,
|H;$,,|? s are i.i.d. over m (and also over i) with x2(2) dis-
tribution. Thus,

2
SINR; ,, = | Higm| =
’ Lo+ ks [ Hitr* 1/p+y

where 2 has x%(2), and y has x?(2M — 2) distributions (de-
noted by fy (-)). Conditioning on y, the probability distribution
function (pdf) of SINR,; ,.,, fs(z), can be written as

(13)

fulz) = / 7 Fav (el fr ()

. M-2_,—y
- 1 —(/pty)z o Y € 4
/0 (1/p+ye <=
e=e/p 1

We can also calculate the cumulative distribution function (cdf)
of SINR; .., Fs(x), as

Fs(m):/;%<%(l+z)+M—l> dx

-1 ol x>0 15
= . > (.
Since SINR; ,,, for ¢ = 1,...,n are ii.d. random variables,

the cdf of maxi<;<, SINR; ., form = 1..., M is (F,(z))".
Using the obtained cdf we can now evaluate the throughput of
our proposed randomly chosen beam-forming technique.

Lemma 3: For any p, M, and n, the throughput of the ran-
domly chosen beamforming satisfies

M /'00 log(1 + 2)nfs(z)F' = (z)dx
J1
<R<M /'00 log(1 + 2)nfs(z)F' Y (x)dx  (16)
Jo

where fs(x) and F;(x) are as defined in (14) and (15), respec-
tively.

Proof: The upper bound clearly follows from (8) by sub-
stituting the distribution of the maximum SINR in (8). To prove
the lower bound, we can write the conditional distribution of
maxi<;<n SINR; 1 given that maxi<;<, SINR; 1 > 1 as

n

Pr{max

1=1,.

SINR/L'J < a|‘_rr11ax SINRi,1 > 1}

oy

1-Fr(1)

?

a7

_{w 0> 1
a
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Now taking the derivative of the cdf, and substituting the pdf in
(9), we can derive the lower bound as stated in (16). O

Lemma 3 can be used to evaluate the throughput for any n,
p, and M. However, in many systems, p and M are fixed, but n
(the number of users) is large. It is therefore useful to investigate
this regime. In what follows, we will focus on the scaling laws
of the throughput for large n.

In fact, the asymptotic behavior of the distribution of the max-
imum of n i.i.d. random variables has been extensively studied
in the literature [17]-[19]. In Appendix A, we review results that
we need in this paper. Corollary A.1 in Appendix A can be used
to state the following result.

Lemma 4: Let SINR; ,, 7 = 1,...,n, be n ii.d. random
variables with distribution function fs(x) as in (14). Then, for
M and p fixed and n sufficiently large

Pr { plogn — pM loglogn + O(logloglogn)

< max SINR,; ,,, < plogn — p(M — 2)loglogn

1
+ O(logloglogn)} >1-0 < ) . (18)
logn

In particular

max SINR; ..,
1<i<n ’

Pr _il<o (M)
logn

21—O<L>. 19)
logn

Remark 1: Lemma 4 shows that when M is fixed and n in-
creases, the maximum SINR behaves like

plogn

plogn 4+ O(loglogn).

On the other hand, from the expression for the SINR defined in
(5), it is clear that the numerator is a x*(2) random variable and
the interference terms constitute a x2(2M — 2) random vari-
able. It is well known that (see Example 1 in Appendix A) the
maximum of n i.i.d. x?(2) behaves like logn for large n. One
may then suspect that max;—1 ., SINR; ,, should behave like
T ri["; 7> arguing that when the numerator takes on its maximum
the denominator takes on its average value. What is interesting
about Lemma 4 is that this heuristic argument is not true. It turns
out that max;—1,...., SINR; ,,, is achieved when the numerator
behaves as log n and the interference terms are arbitrarily small,
this yielding the behavior plog n.

Proof: We use Corollary A.1 in Appendix A to find the
asymptotic distribution of the maximum of 7 i.i.d. random vari-
able SINR,; ,,, fori = 1,...,n. The growth function g,(z) for
x > 0 here is

e *F

1— Fy(x) T =T
gs(x) = = —x/p
f@(x) W(%(1+«T)+M_1)
_ 1+x
C(+a@)/p+M-1
p(M —1)

= i)/t M =T .

Clearly, lim, . gs(z) = p > 0 so that the first condition of
Corollary A.1 is met. To verify the second condition, we need
to find w,, defined via the equation 1 — F(u,,) = 1/n. Thus,

—un/p 1
e
b ) = T T

= Iy (M —1)log(1+ uy,) =logn. (21)
p
Equation (21) implies that
un = plogn — p(M — 1)loglogn + O(logloglog n)

for large n and fixed M . Taking derivatives, it is straightforward
to verify that

o) =0 (1)

for large n. Corollary A.1 therefore applies and so

Pr {plog logn < [max SINR; , — up, < plog logn}

21—O<L>. (22)
logn

The theorem follows by substituting the value of u,, in (22). [

We can now state the following theorem to prove the asymp-
totic linear scaling of the throughput with M when M is fixed.

Theorem 1: Let M and p be fixed and N = 1. Then
R

lim ———— =1 23
oo M loglogn 23)
Proof: We derive upper and lower bounds for R when n is
sufficiently large. For large n, using the upper bound in (8) and

(19), we may write

M
R<FE { Z log (1 + .llllaX SINRi7m> }

Ko N 0 B
<M Pr { ‘_HllaX SINR; ,, < u,, + ploglogn}

x log (1 4 u, + ploglogn)

—f—MPr{._max

=1,...,

SINR; 1, > uy, + plog logn}

x log (14 pn)
< Mlog(1 + u, + ploglogn)
+ MO(1/logn)log(1+ pn)
< Mlog(1 + uy + ploglogn) 4+ O(1)
where
u, = plogn — p(M — 1) loglogn + O(logloglog n)

as derived in Lemma 4 and we used the fact that the throughput
is bounded by M log(1 + pn) (the capacity of a MIMO point
to point system with M transmit and n receive antennas). In
order to find a lower bound, We can use the lower bound in (9)
and Lemma 4 to write (24) at the top of the following page,
where we used the definition of the conditional probability. The
corollary follows by substituting the value of u,, and observing
that both the lower and upper bounds converge to M log logn+
O(logloglogn). O
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Z log

<1+ rrllax SINle> |

max SINR; ,, > 1

n

}

n 2ttty

m=1
Mlog(1 + u,, — ploglogn)Pr , nax SINR; v, > Up, — ploglogn}
> Pr{ max SINR; , > 1} et
e Pr{ max SINR;;, > 1}
= M log(u,, — ploglogn)(1 — O(1/logn)) (24)
Remark 2: Using (18) it is not hard to obtain the next order where a = 7(1 + ¢) log (1 + ¢). Consequently
term in 2 as follows:
lim ——— = 27)
R > Mlog(plogn — pM loglogn) + o(logloglogn). (25) n=oo Mlog(1+c)
Proof: First of all, note that
Theorem 1 states that for fixed M as n grows to infinity, the | Fy(e) = e—clp _ /ot Dlog(ite) (o)
throughput scales like M loglog n. Interestingly, in Lemma 1, s (14 c)M-1 :
we showed that M log logn is in fact the best sum rate capacity ) ) ) L
that can be achieved with full knowledge of the channel using }F;emfng the value of M in (28) yields 1 — Fi(¢) = ;g5
erefore,

dirty paper coding [6]—[8]. Therefore, as far as the scaling law of
the throughput is concerned, we are not losing anything in terms
of the throughput provided that M is fixed. This in fact raises
the question of how far can we increase M and still maintain
the linearly scaling of throughput with M. This question will be
answered in Section V.

V. How FAST CAN M GROW TO RETAIN LINEAR SCALING
OF THROUGHPUT WITH M ?

In this section, we consider the case where the number of
transmit antennas M is allowed to grow to infinity. Similar to
the previous section, we assume each receiver has a single an-
tenna and the total average transmit power is M, i.e., the average
transmit power per antennas is one.

Since M is also going to infinity, the results in Appendix A do
not apply. Therefore, we need to directly analyze the asymptotic
behavior of the maximum SINR when both n and M grow to
infinity. Of course, the asymptotics will depend on the growth
rate of M relative to n.

In what follows, we first show that if lim,,_, o oo [ is a con-
stant, the throughput of our scheme still exhibits hnear growth,
ie.,lim,_ 1\_}3 is a constant independent of n. Furthermore, we
show that if M grows faster than log n, i.e., lim,,_ o 101:;171 = 00,
then the ratio of the throughput to M tends to zero. Therefore,
throughput will linearly scale with M provided that M does not
grow faster than logn.

Theorem 2: Suppose the transmitter has M antennas, each
receiver is equipped with a single antenna, and that we use

random beamforming to users with the highest SINRs. Then,
logn+3loglogn—c/p

it M = Tog (1+0) + 1, where c is a positive constant.
Then
loglogn
Pric—a—"— max SINR; ,,, <
logn 1 <i<n

) (26)

1
21—0< :
log” n

>n/
_ n log(l—ﬁ)

_ 71/10g n+0(—nl%6n)

=1-0(1/log®n) (29)

r{

1
max SINRzm<c}:{FS(0)}n: <1— 3
1<i<n nlog”n

where we used the fact that log(1 — ') = —+O (22

Similarly setting

) for small .

, aloglogn
— o 205708

¢ logn

we have
1—F,(c)
_ e—c/p+%+(]\/l—l) log(1+4c)—(M-1) log(l— (oircg)llii'; )

aloglogn
plogn

e—c/p—l—(]\f[—l) log(1+c) X e

—(M=1)log(1

_ oaloglogn )

X e (Ite)logn
aloglog n

64(1+F);50g(51+r) +O(log logn/logn)

nlog®n
. log*n x (1 + O(loglogn/ logn))
B n
B log* n + o(log* n)
n

where in the third step we used & = 7(1 + ¢) log(1 + ¢) and in
the forth step we used the identity ¢” = 1 + O(z) for small .
We can now state that

&
log* n + o(log* n)
n

1
n*

log1
max SINR; , < ¢ — 828"
1<i<n

(Fu(e))" = (1 -

4 1
— e log” n+o(log” n) _ 10) (

logn

_ )

(30)
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where in the last step we have been very conservative. Now,
using (30) and (29), we get

Pr {c — ailog log n < max SINR; ,,, < }
logn

> Pr{ max SINR; ,,, < c}

1<i<n

1<i<n
+ Pr {c —
logn

o).
log” n

In order to find bounds on the throughput, we use a similar ar-
gument as in the proof of Theorem 1 to show (32) at the bottom
of the page, where we used the fact the sum rate is bounded by
Mlog (1 + pn) and M = O(logn). In order to derive a lower
bound for the throughput, for ¢ > 1 we can use Lemma 2 and
the fact that the maximum SINR is almost surely equal toc > 1,
to obtain a lower bound as

=) (1 o(1) oo

for ¢ > 1. Clearly, for ¢ < 1, the lower bound in Lemma 2 is
not tight. Therefore, in order to find a lower bound, we define
the event A as the event that for all m

Lloslogn oo SINRLm} -1

T 1<i<n

€29

R2M10g<1+c—

c— ¢ < max SINR;,, <c
1<i<n ’
where € = alc‘lgol%. We also define the event B as the event

that each user ¢ can at most be the maximum for one signal s,,,.
Therefore, the throughput can be written as

R = E{rate} = E{rate|AN B} Pr{AN B}
+ E{rate| A’ U B'}(1 — Pr{AnN B})
> E{rate|] AN B} Pr{AN B}
> M log <1+c—aloglﬂ

Tog n ) Pr{B|A}Pr{A} (34

where in the last inequality we used the fact that given the events
A and B, the transmission rate corresponding to the signal s,
is greater than

log1
10g<1+c—aw>.

logn
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Now we can use the union bound to find a lower bound for
Pr{A} as

Pr{A} = Pr {V m, 1max SINR; , € [c — ¢, c]}
>1—-Pr {Elm7 max SINR; ., & [c — ¢, c]}
1<i<n

>1- MPI‘{ max SINR; ,,, € [c — ¢, c]}
1<i<n

1ofi)
log” n

where we used (31) in the last inequality. In Appendix C, it is
shown that

(35)

Pr{B[A}>1-0 (%) .

Therefore, inserting (36) and (35) into (34), we get

loglogn (loglog n)?
a————|1-0 | —=—=—=~
logn Viogn

" <1_O<log§5n
log” n

Theorem 2 follows using (37) and (33) for ¢ < 1.

(36)

)
)

O

R2M10g<1+c—

Theorem 2 shows that when M grows like logn, the
throughput still scales linearly with M. In the next theorem,
we show that increasing M at a rate faster than logn results
in sublinear scaling of the throughput with M. It is also worth
noting that the sum rate capacity of the broadcast channel with
full CSI also scales linearly with M, i.e., lim,,_, . R2T «
where « is a constant independent of n [14]. Therefore, in this
regime, up to a constant multiplicative factor, the scaling law
of the throughput of our scheme is still the same as that of dirty
paper coding.

Remark 3: Similar to Remark 1, from the SINR expression

one may expect that max;—1, ., SINR; ,, behaves as

logn
logn/log(1+ c) og(1 +c)

logn
M

The argument being that the maximum is achieved when the
numerator behaves as log n and the denominator behaves as the
mean of x%(2M — 2) (here it is not reasonable to assume that
the numerator can be log n and the interference terms arbitrarily

M
< .
R<E { 2;1 log <1 + izrﬁl?_%fn,SINRl»m> }
= P <
Pr {iznll?_)fnSINR“m < c} {Z log

m=1

>
—}—Pr{znll ax SINR; c} {Zlog

m=1
< Mlog(1 + ¢) + O(Mlogn/ log® n)
= M log(1 +

¢) +0(1/logn)

(1 + HllaX SINR; m>|

(1 + HllaX SINR; m>|4_nllax SINR,; ,,, < c}

max SINR; ,,, > c}

=1,...,n

(32)
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small, since we have O(logn) interference terms). However,
careful analysis of Theorem 2 shows that this heuristic is false:
maxX;—1,....n SINR; , is achieved when the numerator behaves
as log n and the interference terms as

logn logn
c log(1+¢)’

Theorem 3: Consider the setting of Theorem 2. If
lim,, oo % = 00, then lim,,_, o % =0.
Proof: Let wu, be a positive sequence

lim,, oo u,, = 0. For such a u,,, let

such that

_ 2logn )
o log(l4u,)
clearly
) M
lim =00
n—oo logn

if and only if lim,,_, , u,, = 0. With the choice of u,,, we have

6_“‘71//)
7—L2

1— Fs(un) — e—un/P—(]\[—l)log(l—l—un) — (38)

and therefore,

Pr{ max SINR; ,,, < un} = {Fs(un)}" =

1<i<n

v
Y
=
|
3~
N—

3

Using a similar argument as in the proof of Theorem 2, we can
therefore bound the throughput as

M log
R < Mlog(1 + up) + O (ﬂ) (39)
n
Equation (39) implies that lim, . % = 0 since
lim,, oo %, = 0. O

It is worth mentioning that with full CSI at the transmitter,
the sum rate capacity linearly scales with M even when M is of
the order of n [20]. This can be seen by a simple zero forcing
beamforming scheme that creates M parallel channels as long
as the channel matrix is full rank [12]. Our scheme has access
only to partial CSI, and can therefore only guarantee a linear
scaling in M, provided that M does not grow faster than log n.

VI. ASYMPTOTIC ANALYSIS OF THE THROUGHPUT:
N > 1, M Is FIXED

In the previous sections, we focused on the case where each
receiver is equipped with only one antenna. When the users
have multiple receive antennas, the sum-rate capacity of DPC

(dirty paper coding) scales as M loglogn/N [14]. In so far as
our scheme is concerned, there are three distinct possibilities.
1) Treating each receive antenna as an independent user.
In this case, we effectively have nN single antenna
receivers. Therefore, each receiver should feed back N
times the amount of information since each user has
N independent antennas and therefore it has N max-
imum SINRs corresponding to each receive antenna.
The transmitter then assigns s, for m = 1,... M
to the antenna of that user with the highest SINR, i.e.,
maxi<i<nN SINR; . Since we have nN ii.d. SINRs,
the maximization will be over n/V i.i.d. random variables
instead of n ones which was the case for V = 1.
2) Assigning at most one beam to each user. In this case, the
SINR can be written as

O H{ Hipm
L/p+ 3 jom PeH I Hir”
m=1,....M (40)

SINR; ,,, =

where as in (1), H; is the N x M channel matrix for
the sth user. Again we send the symbol s,, to the user
corresponding to maxi<i<n SINR; ,,,. Note that in this
case each user just feeds back its maximum SINR and the
corresponding index /m in which it is maximum.

3) Assigning multiple beams to each user. For simplicity,
let us assume K = M/N is an integer.5 In this case,
we either assign N beams to a user or no beams at all.
Therefore, to find the best user, instead of feeding back
SINRs, each receiver has to feed back its capacity, com-
puted as in (41) at the bottom of the page, where the ®;.’s
(k =1,...,K) are M x N random orthonormal ma-
trices chosen according to an isotropic distributions. In
other words, ® = (®; ... P ) is an M x M unitary ma-
trix.

As mentioned earlier, the first case is effectively the same as
having n N users with single receive antennas. The second case
is a generalization of the case with NV = 1, and it turns out the
analysis of this is very similar to that of the case with N = 1. On
the other hand, the last case is quite different from the previous
two and requires more effort to be analyzed. In terms of the
amount of feedback, clearly the first case requires N times more
feedback than that of the second and third cases.

Case 1:

Here, since we consider all the receive antennas as separate
users (no cooperation among receivers), we have nN users
with single receive antennas. In this case, the formulation of
the problem is the same as that in Section IV with the only
difference being that n is replaced by nN. Therefore, we can

5The more general case can be handled in a straightforward fashion, but will
not be done here for the sake of brevity.

1
Cim = log { det § [+ ®F HIH;®,, | —1+ Y @fH;H;®y :
P

-1

(41)

k#m
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state the following limit result as a simple consequence of
Theorem 1:

i R B
ntoo MloglognN

when M is fixed and for any N.

(42)

Remark 4: In fact, it has been recently shown in [14] that
when M is fixed, n is large, and for any /V, the sum rate capacity
scales like M loglog nN in the presence of full CSI in the trans-
mitter using dirty paper coding. Therefore, treating each antenna
as an independent user does give the right scaling law for the
throughput.

Case 2:

Here we send at most one symbol per user. Therefore, each
user has to feed back its maximum SINR calculated as in (40),
where H; is the N x M channel matrix for the ith user. Similar
to Section 1V, using the orthogonality of ¢,,’s, we first write
the SINR as SINR;,;, = 17> where 2 has x*(2V) and y has
x2(2N (M — 1)) distributions that are independent.6 Therefore,
we may write the pdf of the SINR; ,,, (denoted by f;, ) as

$2N—26—m/p
fsn (@) =

(2N — DI(NM — N — 1)

></ (w+ 1/p)2N 1y N M—N=1—u(l+a) g,
0

_ 2N —2¢—2/p 2%—:1 2N —1
2N -1(NM - N-1)! & i

1 (N(M—=1)4+i-1)!
IN—i—1 (1 + 2)NAI-D)+i

X

(43)

p
The preceding fs, () can be used to evaluate exactly the
throughput using Lemma 2. The asymptotic analysis can be
done similarly to that of Section IV, although the analysis
becomes more cumbersome.

Theorem 4: Let maxi<i<n SINR; ,,, where SINR; ,,, fori =
1,...,n be n i.i.d. random variables defined in (40) and let M
and N be fixed numbers. Then for sufficiently large n, we get
(44) at the bottom of the page, and therefore,

) R
nh—>H;oM loglogn L “45)
Proof: We use Corollary A.1 in Appendix A to prove the
first part of the theorem. We first check whether the growth func-
tion has a positive constant limit or not. Using Hopital’s rule and
(43) we get

(46)

lim g5, (z) = lim
r—00

=p>0.

6The reason being that ® is a unitary matrix and H; is a matrix of i.i.d.

So the first condition in Corollary A.l1 is met. Furthermore,
taking the integral of f;, () in (43), it is quite straightforward
to show that ¢\ (z) = O(1/z™) for large =.

To verify the last condition, we need to find u,, defined as
the solution of 1 — Fy (u,) = %. Since solving the equation
is involved, we can find upper and lower bounds for w,, i.e.,
ul, < u, < ul, by first deriving lower and upper bounds for

fSN (x)
NM+N -2 e—x/p
2N —1 (14 z)N(M+1)

2?25—1 (2Ni—1> W o—/p

- (@2N-1DY(NM-N-1)! (1+x)N(M=3)+2
forz > 1. The lower bound follows by replacing u+1/p by u in
the integral of (43) which then becomes an exponential integral.
The upper bound can be also derived by using x < =z + 1 and
1 < x + 1 in the expansion in (43).

Replacing fs, () by its lower bound allows us to compute

l .

U, via

— < fon (@)

(47)

= yie=®/P
o (Lt 2)NOT+1)=3

l
n

(48)

doe = —
n

NM+N-2

ON—1 ) Using the identity

where v = (

/:o ﬁdm = PBMID(—M 4+ 1,b(a + 1))
and the asymptotic expansion
D(-M +1,2) = aMe (1 + O(1/x))
for large || as in [21], we obtain
AT (—M +1, %(u; + 1)) = %
= ul, = plogn — p(N(M 4 1) — 3)loglogn
+O(logloglogn) (49)

where ~y only depends on N, M, p, and does not depend on n.
We can similarly find the upper bound as

up = plogn+ p(N(M —3)+ 1) loglogn + O(logloglogn).

Using Corollary A.1 and the bounds for u,,, we can use the same
argument as in the proof of Theorem 1 (i.e., (24)), to prove the
first part of the theorem. The second part of the theorem follows
by using the same argument as in the proof of Theorem 1 (i.e.,
(24)) and (44). O

Remark 5: Using (44) it follows that the next order term in
Ris
R < Mlog(plogn — p(N(M — 3) — 1) loglogn)

CN(0,1). + o(logloglogn). (50)
Pr{plogn — p(N(M 4 1) — 2)loglogn + O(log log log n)
1
< max SINR,; ,,, — O(logloglogn) < plogn — p(N(M —3) + 1) loglogn/ x2dx} >1-0 <1 ) (44)
<i<n ogn
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Note that using (25), the expansion for Case 1 is
R > Mlog(plognN — pMloglognN) + o(logloglog n)

which implies that the scheme of Case 2 is worse than that of
Case 1 (it is even worse than using N = 1 receive antenna,
which can be explained by the channel hardening that occurs
for N > 1).

Case 3:

Here each user feeds back its largest capacity C; ,,, defined in
(41), and so we need to analyze the (asymptotic) distribution of
‘max Cj;,, to find an upper bound for the throughput. While,

i=1l...,n

in principle, this can be done, the algebra is extremely tedious. It
turns out that an upper bound for the throughput can be derived
if we replace C; ,,, by the simple upper bound

Cim < O, =logdet (I + p®; HH;®,,). (51)

The analysis of CY,, is easier because the eigenvalues of
& HH,;®,, are readily characterized (via Wishart distribu-
tion [22]) than those appearing in C; ,,,. Since H;® has the
same distribution as H;, the N x N matrices H;®,, consists
of ii.d. CN(0,1) and are also independent over i and m.
Therefore, we need to study

Cyt = logdet(I + pGG;), (52)

where G; is N X N and has i.i.d. CN(0,1) entries. Conse-
quently, the throughput will be

1=1,...,n

M
< — ..., C
R< NE{lréliag(n(Cl/ 7Cn)}
since we have M /N random beams. Now letting A%, ..., A’ be
the eigenvalues of the matrix G} GG;, we can state the following
inequality for R:

N
P i
R<MFE {lrg?gxnlog <1 + N kg_l )\k> } (53)
where we used the inequality

NN
det(I+G§Gi)§<l+M> .

N

The next theorem presents an asymptotic result for the
throughput of Case 3.

Theorem 5: Let M and N be fixed and n increasing, then the
throughput of Case 3 is bounded by

R < Mlog (1 + % logn + O(loglogn)). (54)

Proof: In order to evaluate the upper bound in (53), we
may use the fact that tr{G*G} has x2(2N?) distribution. It is
in fact shown in Example 1 of Appendix A that for large n, the
maximum of n x?(2/N?) random variables satisfies the equation
at the bottom of the page. Therefore, we can use the preceding

result, (53), and using the same argument as in Theorem 1 (i.e.,
(24)) to show that

R < Mlog (1+ 2 logn + O(loglogn)) +O(1).  (55)

O

Again when M and N are fixed, the throughput achieved by

Case 3 has the leading order term of M log log 7. The only effect

is observed in the lower order terms (the log log log n term), and

therefore, we conclude that Case 1 is the best and Case 3 is the
WOrst.

A. Discussion

The analysis of the sum rate capacity of DPC shows that in-
creasing the number of receive antennas beyond N = 1 does
not substantially increase the total throughput [14]. Therefore,
one may ask whether it is beneficial for any user to have more
than one antenna. Thus, assume that some users have N > 1
antennas, and that we are employing the scheme of Case 1. It
is quite clear that a user with [V antennas will receive N times
the rate of a user with one antenna simply because the prob-
ability that it will be the strongest user and be transmitted to
increases IN-fold. Thus, users with more antennas will receive
higher rates. However, since more receive antennas does not in-
crease the throughput, this will come at the expense of all users
in the system.

VII. FAIRNESS IN SCHEDULING

So far, we have assumed a homogeneous network in the sense
that the SNR for all users was equal, namely, p = p;, 1 =
1,...,n. In practice, however, due to the different distances of
the users from the base station and the corresponding different
path losses, the users will experience different SNRs so that p;’s
will not be identical. Such networks are called heterogeneous.

In heterogeneous networks, there is usually tension between
the gains obtained from employing multiuser diversity and the
fairness of the system. More explicitly, if we transmit only to
the best user to maximize the throughput, the system may be
dominated by users that are closest to the base station. On the
other hand, if we insist on transmitting to users in a fair way
(for example, by insisting on proportional fairness [13]), then
we will be sacrificing throughput since we will not always be
transmitting to the strongest user.

A fortunate consequence of our random multibeam method is
that, if the number of transmit antennas is large enough then the
system becomes interference dominated. In other words, even
though the closest users will receive strong signal, they will also
receive strong interference. In this case, being the best user will
depend not so much on how close one is to the base station, but
rather on how one’s channel vector H; aligns with the closest

N
Pr {logn+(N2—2) loglogn+O(logloglogn) < nax Z i <logn+N? loglogn—f—O(logloglogn)} >1-0(1/logn).
_1_nk:1
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beam direction ¢,,,, m = 1,..., M. Therefore, one would ex-
pect that the probability that any user is the strongest will not
depend on its SNR p;.

In what follows, we will make this observation more precise.
We will show that if the number of transmit antennas M grows
faster than or equal to log n then the system will be fair, thus we
achieve maximum throughput and fairness simultaneously.

As usual, we consider M transmit antennas and N = 1 re-
ceive antennas at each user (recall that for N > 1, the best policy
is to have no cooperation between N antennas which basically
changes the problem to n/V single-antenna users). Denoting the
SNR of the ith user by p;, then the pdf of SINR; ,,, can be written

as
foi() = Mpic (M — 1)e=s/7:
5,i\T) = y
’ (14 z)M-1 (1+a)M
We are interested in computing the probability of transmitting

the mth signal to the 4th user with SNR of p; (denoted by P, 1),
ie.,

P,, =P, = Pr{SINR;,, > SINRy ,,, ...,

—=/pi

x> 0. (56)

SINR;_ 1., SINR; 4 1.1 - - ., SINR .y }
—[ [ ] gt
o Jo 0
H Jo; (@), ... doy (57)

J=1,#i
Note that due to the fact that SINR; ,,, form = 1,..., , M have
identical distribution, P,, ,,, does not depend on the index m
and P,, = P,, ,, form = 1,..., M. The following theorem
obtains bounds on the probability of choosing the weakest user
with pmin = minj<;<, p; and the strongest user with pp. =
maxi<i<n Pi-

Theorem 6: Let M be the number of transmit antennas and
p; is the SINR of the 7th user. Define

and  ppax = max p;

n = min p;
Pmin 1<i<n Pi 1<i<n

the SNR corresponding to the weakest and strongest user, re-
spectively. Then
) ) 2log n
(k) (-

1) )
. ()

(58)

M—1+-—-—
Pp ) Z Pmin €
win 2 V11

Pmax

and
(e ()
Pppes < - ts o (59)
where Pp .. and P, are the probability of choosing users

with minimum and maximum SNR, respectively.
Proof: Let

1 1

- > 0.

pmax

€ =

Pmin
We first find a lower bound for the probability of choosing the
user with minimum SNR by assuming all the other users have
the maximum SNR. Therefore, using (57), we get (60) at the
bottom of the page. Also, we can use the following inequality
forz > 0:

M-1+-L 4 M—1+(—+e)(l+x)
e
_ - _ 4=
M 1 + pmax M 1 + Pmax
1 +e
< Pmax (61)

- 1
Pmax
where we used the fact that the function being bounded is mono-
tonically increasing for x > 0. Now we define ug to be the so-
lution to

g
€ Pmax 1

T~ n2

x
5 Pmax

Clearly, TFn) =T is monotonically decreasing and there is a
unique solutlon for ug. Then for € > 0, we get the second equa-
tion at the bottom of the page. In order to find a lower bound, we
ignore the second integral and we use the fact that e =" > e~“"0
for e > 0 and 0 < ¢ < wug. Therefore, we get

M—1+L+6

Pmin =

M—1+ pmx
e €uo e migx "
x{ o |1 =7
= ( ) |
M-—-1+ + € p—euy
— Pnnxl € 0 (1 _ 1/n2)n—1
M-1+— n

Pmax

p S R ei(Pm'xx +e)m
Pmin = /0 (1 + x)]\/j

oo M—1+( )(1+:v)
0 M 1+(+-T)

Pmax

- n—1
1 e Pmax
1 M—-1 1—-——
{ (pmax + 6) ( + x) + } ( (1 + .Z’)A/j_l) du
1

P n—1 P
e~ Fmax d e~ Fmax
~TrorT x)M_l) e (_—(1 - x)M_l) dz. (60)

Pmin =

M—1+ + e{ uo
f)nnx e €U0 / 1—
M-1+ ﬂmx 0
4 g M0 / 1-—
Jug

d e pnnx
(1+a)M-1 de \ (1 +a)M—1 dz
4
dz

e pnnx

= n—1 =
e Pmax e Pmax d
_ _ x 7.
L+ )M 1 (4T
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Sum Rate Throughput

SNR=10db ||
SNR=0db ||
—6— SNR=5db [}

Fig. 1.

where ug is an upper bound for ug, i.e., ug > wup, and can be
calculated as

pmax
2logn
=e -1 —1=ug. (62)
Therefore, for any M and 7, the lower bound can be written as
M—1+-L
Pp ] Z pnim
min = Q14 1 T
,( 11 ) EE
e Pmin Pmax
X (1—1/2%)""" (63)
n

which leads to (58). We can also find an upper bound for P, __
by considering that all the other receivers have the minimum
SNR. Therefore, similar to (60), we may write

e P (1 + Q;)
P < +M-1
prmex = ./0 (1+2)M { Pmax }

e_(pn:T'H)'r nt

where we used the definition of €. We can further define

__z
e Pmax

(1+2)M—1
and we let u, be the solution to h(uo) = 1/n>. Therefore, sep-
arating the integral to two regions, we get

h(z) =

1

Prow € [ (@) (1= W) o

+ /OO (=h(x)) (1 = h(z)e™)" " da

< /Ouo (=1 (2)) (1 = h(z)e=™)"" dz
+ /oo (=1 (x))dz

0

Throughput versus the number of transmit antennas for different SNRs and n = 500.

where we used the fact that 1 — h(x)e™" < 1 — h(x)e™ 0 for
0 < z < up and € > 0. Similarly, for the second integral we
used 1 — h(z)e “* < 1. Noting that h(ug) = -, the upper
bound can be written as
EUn

{(@ = h(ug)e= )" — (1~
efuo 1
n n?
where uy < wug. We can therefore use the fact that ug <

2log n

e -1 — 1 as shown in (62), to get
( 1 _ 1 ) (e 21\110511 _1)
Pmin Pmax 1
: +— (69
n n
which leads to (59). O

e
<

Pmax —

e€)"} + h(uo)

<

Pmax —

Based on the result of Theorem 6, we can state the following
Corollary.

Corollary 1: 1If % = « then by increasing the average
transmit power, we have P, . — %, and so the system becomes
more and more fair. Alternatively, if we fix the SNR and increase
a, P, . — % and the system becomes fair.

Proof: 1tis clear from Theorem 6 that if % is fixed and

n
we increase the average power, P is going to % Moreover,

min

min

as lojgn goes to infinity, aggin P,_.. is approaching % There-
fore, the system becomes fair. O

VIII. SIMULATION RESULTS

In this section, we verify our asymptotic results with simula-
tions and numerical evaluation. As Lemma 2 states, bounds on
the throughput can be evaluated for any n, M, and p. We also
proved in Theorems 1 and 2 that the upper bound is tight when
M < alogn which is the region that we are interested in, there-
fore, we plot (7) as a good approximation for the throughput.
Figs. 1 and 2 show the throughput versus the number of transmit
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number of users: 100

10 T T T T

Sum Rate Throughput

T
— SNR=10db
-©- SNR=5db

- SNR=0db

Fig. 2.

antennas M, for different SNRs. Clearly, for M < 4 the curve
behaves linearly and as M becomes logn ~ 4 the throughput
curves become saturated.

We also investigate the fairness of the scheduling by simula-
tions. We compare the fairness of our scheduling with multiple
transmit antennas with that of the case with one antenna in the
base station M = 1, in which the base scheduling strategy (in
terms of maximizing the throughput) is to transmit to the user
with the maximum SNR. Suppose users have SNRs uniformly
distributed from 6 to 15 dB, therefore, the users corresponding
to the SNR of 15 and 6 dB are the strongest and the weakest
users, respectively. Fig. 3 shows the number of times that each
user with the corresponding SNR is chosen out of 50000 iter-
ations. Clearly, the user with the minimum SNR rarely gets to
be transmitted to. On the other hand, Fig. 4 shows the fairness
of our proposed algorithm by using M = 5(= logn) antennas
in the base station. As Figs. 3 and 4 show, the fairness has been
significantly improved by using multiple transmit antennas. For
instance, the ratio of the number of times that the strongest user
is chosen to the number of times that the weakest user is chosen,
is 700 for the case with M = 1 as opposed to 2.5 for the case
with M = 5 using our scheduling.

IX. CONCLUSION

This paper deals with multiple-antenna broadcast channels
where due to rapid time variations of the channel, limited re-
sources, imperfect feedback, full CSI for all users cannot be
provided at the transmitter. Since having no CSI does not lead

Throughput versus the number of transmit antennas for different SNRs and » = 100.

to gains, it is important to study MIMO broadcast channels
withpartial CSI. In this paper, we proposed using random beams
and choosing the users with the highest signal-to-interference
ratios. When the number of users grows and M is fixed, we
proved that the throughput scales like M loglogn which co-
incides with the scaling law of the sum-rate capacity assuming
perfect CSI and using dirty paper coding. We further showed
that with our scheme, the throughput scales linearly with M,
provided that M does not grow faster than logn. Moreover,
we considered different scenarios for the case with more than
one receive antenna N > 1, and we showed that by using
random beamforming, the throughput of our scheme scales as
M loglognN when M is fixed and for any N which is pre-
cisely the same as the scaling of the sum rate capacity using
dirty paper coding. This implies that increasing N has no sig-
nificant impact on the throughput.

Another issue that we addressed is to analyze the fairness in
our scheduling when the users are heterogeneous. We proved
that as M becomes large, the scheduling becomes more and
more fair and when M > «logn, the scheduling will be fair
irrespective of the SNR of the users. We conclude that using
M = «alogn emerges as a desirable operating point, both in
terms of guaranteeing fairness as well as providing linear scaling
of the throughput with M.

APPENDIX A
ON EXTREME VALUE THEORY

In this appendix, we review some results on the asymptotic
behavior of the maximum of 7 i.i.d. random variables when n
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is sufficiently large. This problem has been addressed in several
papers and books (see, e.g., [17], [19], and references therein).
It is known that for an arbitrary distribution, the density of the
maximum does not necessarily have a limit as n goes to infinity.
In [17], necessary and sufficient conditions for the existence of
a limit for the distribution of the maximum is established.

In what follows, Theorem A.1 presents all possible limiting
distributions for the cumulative distribution of the maximum of
n i.1.d. random variables. Theorem A.2 focuses on the class of
distributions that are of interest in this paper and establishes the
convergence rate to the limiting distribution. Finally, using The-
orem A.2, we deduce Corollary A.1, which is the main result.

Theorem A.1: (Gnedenko, 1947) Let z1,...,z, be a se-
quence of i.i.d. random variables and

Tmax = Max (T1,...,Ty).

Suppose that for some sequences {a,, > 0}, {b,,} of real con-
stants, @, (Zmax — by ) converges in distribution to a random vari-
able with distribution function G (). Then G(z) must be one of
the following three types:

i) G(z) —e ¢
i) Gz)=e ™"

i) G(z)= {6_(_”&

1, z > 0.
where u(-) is the step function.
Proof: Refer to [17], [23].

It turns out that the class of distribution functions we en-
counter in this paper are of type 7. Therefore, we further look
into sufficient conditions on the distribution of x; such that the
distribution of the maximum is of type .

We shall need the following definitions: let x;’s be positive
random variables with continuous and strictly positive distribu-
tion function fx (z) for x > 0 and cdf of Fx (z), and define the
growth function as gx (z) = 1;52()1 ). Further define u,, to be
the unique solution to

1

1— Fx(un) = - (AD)

(note that u,, is unique due to the fact that Fx (-) is continuous
and strictly increasing for x > 0). We now state the following
result from [18].

Theorem A.2: (Uzgoren, 1956) Letz1, ..., x, beasequence
of i.i.d. positive random variables with continuous and strictly
positive pdf fx (z) for z > 0 and cdf of Fix(z). Let also gx ()
be the growth function. Then if zh—>Holo g(z) = ¢ > 0, then

log {—log F" (un + ug(un))} = —u — %_

g™ () Lo (e—u+0(u‘ g'<un>>> ")

m! n

where u,, is as defined in (Al).
Proof: Refer to the proof of [18, eq. (19)].

Consider, for example, a x?(2) random variable with f(z) =
e “u(x). Then, it is quite easy to see that g(z) = 1, u, =

logn, and all the derivatives of g(z) are zero. Then, Theorem
A.2 simplifies to

,u+o(e;“)
Pr{maxz; <logn +u} — e~ ° . (A3)

Letting u = loglogn and u = —loglogn and using (A3) and
(A2), we can easily show that

Pr{logn — loglogn < maxz; < logn + loglogn}

>1-0(1/1logn). (A4)
Imposing a constraint on the derivatives of the growth function,
we can use Theorem A.2 to state the following corollary which
is used throughout the paper.

CorollaryA.1: Letzy,...,x, beasdefinedin Theorem A.2.
If u,, = O(logn) and g(z) is such that lim, _,..g(z) = ¢ > 0
and g™ (u,,) = O (1/u™), then

Pr{u, — cloglogn < maxz; < u, + cloglogn}

21—O<L>. (AS)
logn

Proof: Since the distribution of x;’s satisfies the condi-
tions of Theorem A.2, and g(u,) = ¢ + o(1), we can choose
u = loglogn and write the expansion of the distribution of
max I; as

Pr{maxz; < u, + cloglogn} = F"(u, + cloglogn)

20
—loglogn+0O (l(’glog!"ng o )
=e

_1-0 (L)
logn

where we used the identity ¢* = 1 + O(z) for small : and also
we used the fact that u,, = O(log n). Similarly, we may write

(A6)

Pr{maxz; < u, — cloglogn} =e~ logn(1+0(loglogn/logn))

oft)

Combining (A7) and (A6) completes the proof for this corollary.

O

Example 1: Suppose the ;s have a x?(2m) distribution and

we apply Corollary A.1 to obtain the asymptotic behavior of
max ;. We can write g(x) as

(AT)

— —1 g?
(m—1le™ 3000 &
e—mxm—l

_1-F(z) _

m=1 i (m-1)

:(m_l)!zxi—!

=0

(A8)

In order to find u,,, we use the asymptotic expansion of the in-
complete Gamma function to get [21]

1= F(un) =T(m,u,) = u™ e ™ (14 O0(1/u,))
1
=— = u, =logn+ (m —1)loglogn

n
+ O(logloglogn). (A9)
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We can also observe that (™) (u,,) = O (1/u"). Therefore, the
maximum value of 7 i.i.d. x%(2m) random variables satisfies

Pr{logn + (m — 2)loglogn + O(log loglog n)

< max z; < logn + mloglogn + O(logloglog n)}
1<i<n

>1-0 <L> . (A10)
logn

APPENDIX B
PROOF OF LEMMA 1

In this appendix, we prove that with full knowledge of the
channel at the transmitter, the maximum sum-rate throughput
scales like M loglogn as n is going to infinity and M is fixed.
The sum rate in MIMO broadcast channel has been recently
addressed by several others [6]-[8]. The asymptotic behavior
of the sum rate is also analyzed for the case where M /n is a
constant greater than one and 7 is growing to infinity [20]. Using
the duality between the broadcast channel and MAC, the sum
rate of MIMO BC, RPP is equal to [7], [8]

log det (1 +y H;*PiHi> }
=1

(B1)

where H; are 1 x M channel matrices with i.i.d. CN (0, 1) dis-

tributions, P; is the optimal power scheduling, and Mp is the

total transmit power.
Now we can prove Lemma 1, by using the inequality

oy = ()"

where A is an M x M matrix. Therefore, (B1) can be written as
(B2)—(B5) at the bottom of the page, where we used tr(AB) =
tr(BA) in the second equality and tr(H; H;) has x?(2M) dis-
tribution. It is shown in Example 1 of Appendix A that with high
probability the maximum behaves like logn + O(loglogn).

max
{P1,....P,,Y  Pi=Mp}

Therefore, we get R > M log(1 + plogn 4+ O(loglogn))
which completes the achievability part of the proof. The lemma
follows by using the upper and lower bounds for the sum rate
capacity.

O

APPENDIX C
PROOF OF (36)

In this appendix, we compute a lower bound for Pr{B|A}
where A is the event that for all m, c—e <maxj<;<, SINR<¢,
and B is the event that each user can be the maximum for at
most one signal s,,. Let us assume p,, = argmax; SINR; ,,.
Therefore, we can upper-bound 1 —Pr{B| A} by the probability
of the event that there exists an index p,, such that the corre-
sponding user is the maximum for at least two signals s,,, and
Sm,- Since this event is conditioned on the event A, both the
maxima should be between c and ¢ — € and clearly one of them
should be maxy<,,<ar SINR,, ,,,. Therefore,

1 - Pr{B|A}

< SINR

P1,M1>

max_ SINR,, ., < c}
1<m<M

< M Pr {c — € <SINRy ;p,,, max SINR; ,, < c} (C1)
1<m<M ’

where we used the union bound and the fact that all SINRs
have the same distribution over 7, and m is not the index cor-
responding to the maximum SINR over m. In order to com-
pute the probability in (C1), we define the random variables
Bm = |h1dm|* form = 1,..., M, and let r = argmax f3;.
Therefore, we want to compute the probability that

c> max SINR1 m = max 5

max [3; _
M -1
1<m<N % 3B ot Bm, +D
(C2)

M} and mq # 7 such that
Prm,

and that there exists m; € {1,...,

Therefore, c—e<SINRyp, = — 21— (C3)
’ = +maxfG; + D
R < Mlog(1+ plogn + O(loglogn)) . (B6) r
where
One way to prove that M loglog n is achievable, is to use our M
random beamforming scheduling which is shown to achieve D= Z B: — max B; — Bom, -
M loglogn in Theorem 1. Pt '
tr(H P;H;
RPP <ME max log <1 + L) (B2)
{P1, Po,y Pi=Mp} M
H,H})P;
=ME max log <1 + M) (B3)
{Pi,....Pn, S Pi=Mp} M
max tr(H;H*)Y P,
1<i<n
max log | 14+ —= (B4)
{Pr, PRy Pi=Mp} M
=ME {log <1—|—pmax tr(H; H*))} (BS)

1<i<n
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1—-Pr{B|A} SMPr{Hml e{l,...,M},my #7r:0m, > (1 — E) max[)’i}

:M/
Jo
M?

=5 (M -1) /Ooo G

M2
T2

€
C

s)a
) _

(M -1) /0 (u™ = 1)%u(1 — u)M2du

<J\2/[> Pr{a (1 - —) <pBi < a}2 (Pr{p < a})™ *da

2 )
e_“) (1 — e_“)M_2 da

(C4

Equations (C2) and (C3) imply that 3,,,; > (1 — £)max/3;. This
probability can be computed by integrating over a the proba-
bility that there are at least two (3;’s in the region [a(1 — %), a]
and all the (3;’s are less than a. Therefore, we get (C4) at the
top of the page, where in the second step we use the fact that
two 3;’s must be large (in fact, in the region [a (1 — <), a])
and (3;’s are i.i.d random variables. In order to compute (C4),
we define the function

1
T(e) = / W= (1 )M =2y,
0

Clearly, the integral in (C4) can be written as T'(¢) + T(—¢) —
2T(0). By mean value theorem, we can use the Taylor expansion
of the integral to get

/0 (= = 1)2u(1 — w)M~2du = T(c) + T(=€) — 2T(0)
=T"(() (C5)

where —e < ( < e. Now we can write the second derivative of

T(C) as

1
T (v) = /0 (log u)?ur=¢=¢(1 — u)M ~2du

1
< / (log u)?u®(1 — u)M~2du (C6)
Jo

where we used the fact that € is very small and —e < ( < e.
We know that u°-4(log u)? is a bounded function for u € [0, 1],

therefore,
1
0] </ u?(1 — u)M_Zdu>
0

o(Ha )

-0(57ws)

where we used the asymptotic expansion of the Gamma func-
tions [21]. Replacing (C7) in (C5) and then into (C4), we get

T"(v)

IN

(€7

_ 27 71.5\ _ (10g10gn)2>
1-Pr{B|A} < O(e"M"°)=0 <7\/m . (CY)
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