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Abstract— In a system with n users, the sum-rate capacity
of the downlink channel grows as log log n, assuming optimal
scheduling. However, optimal scheduling requires that the down-
link channel state information (CSI) for all users be fully available
at the base station. In this paper we show that the same capacity
growth holds even if the feedback rate from the mobiles to the
base station is reduced to one bit. We propose a simple scheduling
method to achieve this multiuser capacity and furthermore we
show that by a judicious choice of the one-bit quantizer, not only
the growth rate, but also most of the capacity of a fully informed
system can be preserved.

I. INTRODUCTION

Diversity, in its various forms, provides advantages for
communication in fading wireless channels. The usual forms
of diversity in single-user channels include time, frequency,
and space diversity. In a multi-user environment with multiple
independent wireless links, it is highly probable that at any
given point in time, at least one of those links has high quality.
This advantage is called multiuser diversity. Obviously, multi-
user diversity requires the base station to know the channel
coefficients for all users, which is usually estimated at the
mobiles and fed back to the base station.

In this work, we address the question of the quantity of
information required at the base station. In particular, we show
that with only one bit of feedback per user, it is possible to
achieve the optimal capacity growth rate (with the number of
users). We present a scheduling algorithm that provides this
optimal growth rate with modest computational requirements
and only a minimal overall loss in capacity. We also address
the choice of optimal threshold that maximizes the sum-rate
capacity which has not been explored in the previous works.
The results proved in this paper answers the question raised
in [1] and the answer is that only one-bit per user per block
transmission is required to achieve the growth rate and a
significant part of the multiuser diversity capacity.

The notion of multiuser diversity was raised by Knopp and
Humblet [2] for the uplink, where they mentioned that the best
strategy is to always transmit to the user with the best channel.
Tse [3] provided similar result for the downlink. Bender et
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al. [4] examined practical aspects of downlink multi-user
diversity in the context of IS-95 CDMA standard. Viswanath,
Tse and Laroia [5] examined this problem for the downlink and
presented a method of opportunistic beamforming via phase
randomization. Hochwald, Marzetta and Tarokh [6] investigate
the problem of scheduling and rate feedback in the case
of MIMO channels. Sharif and Hassibi [7] generalized the
opportunistic beamforming of [5] to the case where mobiles
also have multiple antennas.

Some of these works consider the question of the required
feedback rate, but to our knowledge, only [6] and [1] explicitly
consider the question of quantifying the required feedback.
However, they do not consider capacity growth rates, nor
optimize the quantization to minimize capacity loss. In this
work we present, effectively, a one-bit quantization strategy
and the associated scheduling algorithm that guarantees opti-
mal capacity growth rate. The idea of exploiting multiuser
gain by limited feedback was first proposed in [7]. In [1]
and [8] the idea of thresholding for reducing the feedback
load required to exploit multiuser diversity has been proposed,
however, as will be discussed in Section III, their scheduling
scheme and the amount of information fed back to the base
station are different from our scheme. In particular, our method
guarantees optimal growth rate with number of users via one-
bit fixed-rate feedback, while[1], [8] requires a variable-rate
feedback of real-valued numbers and, to our understanding, it
has not been proved to guarantee optimal growth rates.

A brief note on notation: E[ ] refers to expected value of a
random variable, γ ≈ 0.577 is the Euler-Mascheroni constant
and e ≈ 2.718281 is the base of natural logarithm. We use
an

◦= bn to denote the asymptotic equivalence of an and bn

defined as: limn→∞ an

bn
= 1. We use the natural logarithm

throughout this paper so the capacity unit is in Nats/Sec/Hz.

II. SYSTEM MODEL

We consider a multi-user cellular network with n users who
receive data from the base station. We assume the block fading
model for each user’s channel. The channel state information
of each user is assumed to be fully known to that user, and it
is constant over a coherence interval of length T . We assume
a SISO case in which all users and also the base station
is equipped with only one antenna. We conjecture that the
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extension of our algorithm to the multi-antenna case will yield
similar results. Under the block-fading assumption, we have
the following model for received signal for each user:

yi(t) =
√

ρihisi(t) + νi(t) (1)

In the above model, we assume that si(t) ∈ C
T is the vector

of transmitted symbols of the ith user at time t with power
constraint E[‖si(t)‖2] = T , and yi(t) ∈ C

T is the received
signal of the ith user at time t, νi(t) ∼ CN (0, IT ) is the i.i.d.
complex Gaussian noise, hi is the channel gain of the ith

user, which is assumed to be zero mean circularly symmetric
complex Gaussian random variables with unit variance per di-
mension. We also assume that users have mutually independent
channel gains. Moreover we assume a homogeneous network
in which all users have the same SNR, i.e. ρi = ρ. We also
assume that for each user there exits a low-rate but reliable
and delay-free feedback channel to the base-station.

III. SCHEDULING VIA SINGLE-BIT FEEDBACK

In this section we present a simple scheduling algorithm
that requires only a single bit of feedback at the base station.

A. Scheduling Mechanism

The base-station sets a threshold α for all users. Each user
compares the absolute value of their channel gain to this
threshold. Whenever the channel gain exceeds the threshold,
a “1” will be transmitted to the base station; otherwise a “0”
will be transmitted. The base station receives feedback from
all users and then randomly picks a user whose feedback bit
was set to one for data transmission.1 If all the feedback
bits received by the base-station are zero, then no signal is
transmitted in that interval.2

Our work is distinct from that of Gesbert and Alouini [1],
[8] in the following manner. Even though the idea of thresh-
olding the users’ channel SNR’s has also been mentioned by
Gesbert and Alouini, the requirements for their scheduling
scheme are considerably different from ours. In particular,
their method requires the users that have channel gains above
a certain threshold to report those channel gains to the
base station. This requires a feedback channel of variable-
rate, but more importantly, a feedback channel that must
still accommodate the transmission of real-valued variables
back to the base station. So even though in their scheme,
fewer parameters than before are transmitted, still the rate is
considerable. In comparison, we are interested in a strictly
limited-rate feedback scenario.

1The scheduling to users with favorable channels may also be implemented
via round robin. In long run, both these strategies have the same average
throughput per user. However, the round-robin version may be more appealing
from a fairness point of view.

2In this case the base station can also randomly pick a user for data
transmission, although for large number of user this has vanishing advantage
over no transmission when all the received feedback bits are “0”.

B. The Sum-Rate Capacity

Upon receipt of each set of feedback bit, the base-station
only transmits to users whose channel gain is above the
threshold α. Let p = Pr[|hi|2 > α] = e−α since the channel
gains are all mutually independent, the probability of having
k feedback bits equal to one obeys a binomial law, i.e.

pk =
(

n

k

)
pk(1 − p)n−k (2)

the ergodic capacity upon receiving k ones by the base-station
is:

Ck =
k∑

i=1

Pr[the ith best user is selected] Ci

=
1
k

k∑
i=1

Ci (3)

where Ci =
∫∞
0

log(1 + ρx)dFi(x) and Fi(x) is the CDF of
the ith highest absolute value of all channel gains. In other
words if {X1, . . . , Xn} is a permutation of {|h1|2, . . . , |hn|2}
such that 0 ≤ Xn ≤ · · · ≤ X1, then Fi(x) = Pr[Xi < x].
When the channel gains are iid, it can be shown that [9]:

Fi(x) =
i−1∑
l=0

(
n

l

)
(F (x))l (1 − F (x))n−l (4)

where F (x) = 1 − e−x is the CDF of |hi|2 for i = 1, . . . , n.
Thus the sum-rate capacity of the network with one-bit feed-
back can be formulated as:

C1 bit =
n∑

k=1

pkCk (5)

C. Optimal Threshold

The sum-rate capacity is a function of ρ, p and n. On the
other hand the threshold α is uniquely determined by p from
the following formula, because the channel magnitude squared
obeys an exponential law.

α = − log p (6)

In order to find the optimal threshold we choose p such
that the sum-rate capacity C1 bit is maximized. The cost
function C1 bit(p) is a weighted sum of functions of the form
pk(1 − p)n−k which are all concave over the interval [0, 1],
hence C1 bit is a concave function of p. Therefore it has a
unique maximum over the interval [0, 1]. To calculate the value
of p that maximizes the sum-rate capacity, we must solve
∂C1 bit(p)

∂p = 0 for p. By differentiating Eq. (5) with respect
to p we get:

n∑
k=1

(k − np)pkCk = 0 (7)

A closed form solution to this equation is in general not
tractable. However, a numerical solution is possible with O(n)
complexity.
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D. Extension to MIMO Systems

The effectiveness of multiple antennas at both transmit and
receive side has been demonstrated in the past few years [10].
MIMO systems lead to increased capacity and/or the reliability
of a wireless link. However, as mentioned in [6], increasing
the number of antennas at transmit or receive side hardens the
channel, meaning that the channel will have little variability. It
is further shown that the statistics of the mutual information
is Gaussian in the asymptote of large number of antennas,
and a scheduling algorithm is proposed to achieve multiuser
diversity gain. In this scheduling mechanism the users send
their instantaneous channel capacity to the base-station, which
then offers a wireless link to the user with the highest capacity.
In [7] a scheduling mechanism based on random beamforming
has been proposed for MIMO broadcast channel, which is
a generalization of opportunistic beamforming of [5]. In this
scheme, only the signal to interference plus noise ratio of each
user (instead of full CSI) is sufficient to achieve the double
logarithmic growth of sum-rate capacity of a fully informed
multiuser network. However in both these methods, a real
number must be sent to the base-station, requiring substantial
rate.

We conjecture that, similar to the method presented in this
paper, quantizing each of the above parameters (instantaneous
capacity in [6] and signal to interference plus noise ratio in
case of [7]) by an optimally chosen threshold can still capture
a significant part of the multiuser diversity gain. Further
investigation of this conjecture is a subject of future research.

IV. ASYMPTOTIC ANALYSIS

In order to explore the asymptotic behavior of the sum-rate
capacity we first need to prove some preliminary results:

Lemma 1: Let {Xi}n
i=1 be a sequence of positive iid ran-

dom variables with finite mean µn and finite variance σ2
n, also

E[log2(Xn)] < ∞, if limn→∞ σn

µn
= 0 , then:

log(µn) − E[log(Xn)] −→ 0
as n → ∞ .

Proof: See the appendix.
Lemma 1 states that if the probability measure associated

with the random variable Xn is well concentrated around its
mean value for large n, then Jensen’s inequality for log() is
asymptotically tight. Note that Xn can be either a discrete or
a continuous random variable.

When channel state information is fully available at the base
station, the base station only transmits to the user with the best
channel, hence the ergodic sum-rate capacity of the network
can be calculated by the following formula:

Cfull CSI = C1 =
∫ ∞

0

log(1 + ρx)dF1

= n

∫ ∞

0

log(1 + ρx)e−x(1 − e−x)n−1dx

Let µ1 =
∫∞
0

xdF1 and σ2
1 =

∫∞
0

(x − µ1)2dF1, then it is
known [9] that: µ1 =

∑n
i=1

1
i and σ2

1 =
∑n

i=0
1
i2 , therefore
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Fig. 1. Comparison of sum-rate capacity for 1-bit and full CSI
scheduling for different values of SNR

σ1
µ1

→ 0 as n → ∞. Combined with Lemma 1, it follows that:

Cfull CSI
◦= log(1 + ρµ1)
◦= log(log n) + log ρ. (8)

where
◦= indicates asymptotic equivalence, as defined earlier.

We are interested to investigate the behavior of the sum-
rate capacity of the 1-bit feedback scheduling proposed in
Section III in the asymptote of large number of users. This
is accomplished via the following result.

Theorem 1: The sum-rate capacity of a wireless network
with 1-bit feedback and optimal choice of threshold, behaves
as O(log(log n) + log ρ), exactly the same as the sum-rate
capacity of a fully informed network.
Proof: See the appendix.

V. SIMULATION RESULTS

Fig. 1 shows the simulation results for sum-rate capacity of
a SISO network. As it can be seen in the figure, our proposed
scheduling, with only 1-bit feedback, has the same double
logarithmic growth rate as the fully informed network. The
capacity loss is minimal. Scheduling with 1-bit feedback also
captures most of the capacity of the fully informed network
for a wide range of SNR, thus the scaling law proved in
Theorem 1 is verified by the simulation. Fig. 2 shows the
optimal threshold for various of SNR values. It can be seen
that the optimal threshold scales logarithmically with number
of users (in Fig. 2 the x-axis is in logarithmic scale).

VI. CONCLUSION AND FUTURE WORK

In this paper we investigate the asymptotic sum-rate capac-
ity of the downlink multiuser network. We show that reducing
the CSI feedback to one bit does not have an impact on
the scaling law of the sum-rate capacity. Simulation results
show the capacity loss is negligible; most of the multiuser
diversity gain is retained by a single bit of CSI fed back to
the base station. Future work includes the extension of these
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results to the MIMO case. One way of doing this is to utilize
the concept of capacity gain introduced in [11]. Investigating
the conjectures mentioned in Section III-D is also another
direction of interest.

VII. APPENDIX

Proof of Lemma 1: Using Tchebychev inequality for all
ε > 0 we have:

Pr

[∣∣∣∣Xn

µn
− 1
∣∣∣∣ > ε

]
≤ E[(xn − µn)2]

εµ2
n

=
1
ε

(
σn

µn

)2

hence Xn

µn

i.p.−→ 1 , now using the Slutsky’s theorem [12] we
have

log
(

Xn

µn

)
i.p.−→ 0 (9)

On the other hand, for a random variable whose second
moment is finite, we have:

E[|Z|] =
∫ ∞

0

zf|Z|(z)dz

= −z
(
1 − F|Z|(z)

)∣∣∞
z=0

+∫ ∞

0

(
1 − F|Z|(z)

)
dz (10)

E[Z2] =
∫∞
0

|z|2f|Z|(z)dz < ∞ therefore we should have
limz→∞ z2f|Z|(z) = 0 otherwise the integral does not con-
verge. Using L’Hopital rule we also have:

lim
z→∞ z(1 − F|Z|(z)) = lim

z→∞ z2f|Z|(z) = 0

Thus from Eq. (10) we can conclude:

E[|Z|] =
∫ ∞

0

(
1 − F|Z|(z)

)
dz =

∫ ∞

0

Pr[|Z| > z]dz

now let Z = log
(

Xn

µn

)
, then :

E[Z2] = E[(log Xn − log µn)2]
≤ E[(log Xn)2] + (log µn)2 < ∞ (11)

therefore:

|E[log Xn] − log µn| ≤ E

[∣∣∣∣log
(

Xn

µn

)∣∣∣∣
]

=
∫ ∞

0

Pr

[∣∣∣∣log
(

Xn

µn

)∣∣∣∣ > a

]
da (12)

but Eq. (9) says that for all a > 0, Pr[| log(Xn

µn
)| > a] → 0

as n → ∞. We know, Pr[| log(Xn

µn
)| > a] ≤ 1 , hence using

the dominated convergence theorem we can conclude that
E[log(Xn)] − log(µn) → 0 , Q.E.D.

Proof of Theorem 1: Eq. (7) can be re-written as:

C1 bit =
1
np

n∑
k=1

kpkCk (13)

For a p satisfying Eq. (13) we have:

C1 bit =
1
np

n∑
k=1

kpkCk

=
1
np

n∑
k=1

kpk

(
1
k

k∑
i=1

Ci

)

=
1
np

n∑
k=1

k∑
i=1

pkCi

=
n∑

i=1

(
1
np

n∑
k=i

pk

)
Ci (14)

we notice that πi = 1
np

∑n
k=i pk, i = 1, . . . , n is a valid

p.m.f. because
∑n

i=1 πi = 1, hence:

C1 bit =
n∑

i=1

πiCi

=
n∑

i=1

πi

∫ ∞

0

log(1 + ρx)dFi

=
∫ ∞

0

log(1 + ρx)d

(
n∑

i=1

πiFi

)

=
∫ ∞

0

log(1 + ρx)dFπ (15)

where Fπ =
∑n

i=1 πiFi is a mixture probability measure of
all order statistics of the exponential family. Now we show
that Fπ satisfies the required condition for Theorem 1.

µπ =
n∑

i=1

πiµi (16)

where µi =
∫∞
0

xdFi(x) is the mean of the ith order statistics
of the exponential family, and
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σ2
π =

∫ ∞

0

(x − µπ)2dFπ(x)

=
∫ ∞

0

x2dFπ(x) − µ2
π

=
n∑

i=1

πi

∫ ∞

0

x2dFi(x) − µ2
π

=
n∑

i=1

πi(σ2
i + µ2

i ) − µ2
π

=
n∑

i=1

πiσ
2
i +

n∑
i=1

πiµ
2
i − µ2

π (17)

where σ2
i =

∫∞
0

(x − µi)2dFi is the variance of the ith order
statistics of the exponential family. It is a known fact (e.g.
[9] Section 4.6) that:

µi =
n∑

j=i

1
j

= Hn − Hi−1

where Hk =

{ ∑k
j=1

1
j k > 0

0 k = 0
and also,

σ2
i =

n∑
j=i

1
j2

= Sn − Si−1

where

Sk =

{ ∑k
j=1

1
j2 k > 0

0 k = 0

We have to show that σπ

µπ
→ 0

µπ =
n∑

i=1

πiµi =
n∑

i=1

πi(Hn − Hi−1)

= Hn −
n∑

i=1

πiHi−1 < Hn = µ1 (18)

it is known [13] that for all k ≥ 1,

log k + γ +
1

2(k + 1)
< Hk < log k + γ +

1
2k

(19)

using Jensen’s inequality we have

µπ = Hn −
n∑

i=1

πiHi−1

> Hn −
n∑

i=1

πiHi

> Hn − γ −
n∑

i=1

πi log i − 1
2

n∑
i=1

πi

i

> Hn − γ − log

(
n∑

i=1

iπi

)
− 1

2

n∑
i=1

πi

> Hn − γ − 1
2
− log

(
n∑

i=1

iπi

)
(20)

on the other hand
n∑

i=1

iπi =
1
np

n∑
i=1

i

n∑
k=i

pk

=
1
np

n∑
k=1

pk

k∑
i=1

i

=
1
np

n∑
k=1

pk

(
k(k + 1)

2

)

=
∑n

k=1 k2pk +
∑n

k=1 kpk

2np

=
(n − 1)p

2
+ 1 (21)

from (18), (20) and (21) we get:

Hn − log (np + 2 − p) − γ − log(2
√

e) < µπ < Hn (22)

by inspecting Eq. (7) we also notice that popt
◦= 1

n because
in order to have equality, the number of positive and negative
terms in Eq. (7) should be of the same order in the asymptote
of large n. Equivalently the optimal threshold α scales loga-
rithmically in the asymptote of large n (this fact can also be
seen in Fig. 2 in which the X-axis is in logarithmic scale).
Therefore, (22) suggests that

Hn − µπ = Θ(1) (23)

or,

µπ
◦= log n (24)

as n → ∞. On the other hand:

σ2
π =

n∑
i=1

πiσ
2
i +

n∑
i=1

πiµ
2
i − µ2

π

< σ2
1 + µ2

1 − µ2
π

= σ2
1 + (µ1 + µπ)(µ1 − µπ)

< σ2
1 + 2µ1(µ1 − µπ)

= Sn + 2Hn(Hn − µπ) (25)

we also notice that Sn < S∞ = π2

6 < 2 (here π = 3.1416 . . . )
thus:

σ2
π < 2 + 2Hn(Hn − µπ) (26)

hence from (23), (24) and (26) we have:

0 ≤
(

σπ

µπ

)2

<
2
µ2

π

+ 2
(

Hn

µπ

)(
Hn − µπ

µπ

)
→ 0 (27)

as n → ∞. Thus we can conclude σπ

µπ
→ 0 as n → ∞. Also

from Eq. (4) it can be seen that CDF of all order statistics of
the exponential family can be explained as sum of exponentials
hence Fπ(x) is also consisted of weighted sum of exponential
functions therefore its second order logarithmic moment exits,
i.e.

∫∞
0

(log x)2dFπ < ∞. Now we can apply Lemma 1 and
Eq. (24) to show that:
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C1 bit =
∫ ∞

0

log(1 + ρx)dFπ

◦= log(1 + ρµπ)
◦= log(log n) + log ρ (28)

Q.E.D.
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