RF-MEMS for frequency agile software defined RF Systems

Analog Software Radio Techniques for Multiband RF

Bell Labs Europe

Bell Labs Europe

Dr. Georg Fischer Consulting Member of Technical Staff Lucent, Nuremberg

- Why frequency agile RF Systems? 1)
- 2) Relation to SDR
- 3) RF System design approach
- **RF MEMS** 4)
- 5) **Demonstration activities**
- Summary 6)

Research reported here was performed in the context of the network TARGET- "Top Amplifier Research Groups in a European Team" and supported by the Information Society Technologies Programme of the EU under contract IST-1-507893-NOE, www.target-net.org

Bundesministerium und Forschung

Part of this work is funded by the German Federal Ministry of Research and Education (BMBF).

> Grants 01BU173 RMS, 01BU387 ERGAN and 01BU571 MARIO

The content of the publications is under the complete responsibility of the author.

1) Why frequency agile RF Systems?

Evolution of standards (air Interface protocols)

1) Why frequency agile RF Systems?

Mode=Band+Standard

Standards

Band Standard Width G P P 2, IS 95 D M A 2000, G 1 X E V G S M / G P R S / E D G E G P P J M T S D D Sub Chip Rate UMTS 3 G P P U M T S T D D LAN IFI IMAX IS 1 3 6 T D M A (digita A M P S (analo 10 or 30 1.25 or 2. 1.25-20 MHzMH 30 kH 30 kH 200 kH 5 M H .25 M H 5 M H M ilita ry 300 410 PMR/PAMR future ? 10 × PMR/PAMR PMR/PAMR (Former C-Net 420 future 450 future ? 7.3 Bands PMR/PAMR х х future ? 7.2 480 Former T V alpha 1.0 New US 15 750 <u>Cellular</u> PMR/PAMR future ? 850 2 5 870 6 GSM future ? 35 900 х PMR/PAMR Korea - PCS 915 6 1700 х 1800 DCS 1900 PCS future ? 75 future ? 60 x (UWC 136) 2100 IM T-2000 FD D future ? 60 2100 IM T -2000 TD D 2300 U S W C S 2400 ISM 11b/g 2500 M M D S future ? 20 15 8.0 90 10 MHz OFDM New IM T 2000? 2600 180 3300 F W A 100 FWA -UNIIband 3500 200 5100 200 WRCnew 5400 255 5700 UNIIband 125 Problem: So far each "x" a new product → More bands (22) than 3G+ standards (3) → Multiband more important than Multistandard ! Bell Labs Europe

1) Why frequency agile RF Systems?

Motivation factors

Lucent OneBTS

a) Basestation/handset variants

- Huge variety of products:
 - serving different markets
 - serving different frequency bands
 - serving different standards
- e.g. numbers of bands increasing beyond 4 (Quattroband)

Already some sort of ambient intelligence

b) Spectrum deliberalization

- New frequency bands being opened up
- Design cycle to introduce appropriate hardware?
- Cognitive radios seek for unused spectrum and use it according agreed policies

c) Future end to end reconfigurable networks

• See EU project E2R

d) Network migration strategies

Transition phases between standard generations

Bell Labs Europe

2) Relation to SDR

What is a frequency agile RF System?

- All RF units of RF system are reconfigurable, not only the radio!
- · Allows remote setting of frequency band
- No need to exchange part of the hardware, when changing band

2) Relation to SDR

A refined view at SDR

SDR - classical

- Only characteristics of digital and baseband part defined by software
- Analog part stays fixed, only single band
- No reduction of information in analog part

Bell Labs Europe

2) Relation to SDR

Analog Signal Conditioning to knock down information

Filtering=bandwidth limitation

Let's use **RF-MEMS**

- Coarse filtering analog domain, precise filtering digital domain •
- Reduces sampling bandwidth \rightarrow less data to process
- Eliminates/Attenuates blockers → less SFDR sufficient for converters
- Limits noise bandwidth

AGC=Gain Ranging

- Adjust gain to signal of interest
- Reduced dynamic range \rightarrow less resolution sufficient for converters •
- Less bits \rightarrow less data to process

Find the right balance in doing a signal processing job analog or digital !

2) Relation to SDR

New Method for analyzing complexity of architecture

- Wish: One metric for analog and digital !
- Def.: Overhead factor
 - Amount of data relative to net data stream
 - Defined for each signal processing stage
- Net Data stream: Typical 12.2 kbit/s for voice
- Calculations:
 - Analog domain: Use Shannon B=bandwidth, SNR=Signal-to-Noise-ratio

N=resolution, r=clock frequency

$$C_{Analog} = B \cdot ld \left(1 + \frac{S}{N} \right) = B \cdot ld \left(1 + 10^{SNR_{dB}/10} \right)$$
$$C_{Digital} = N \cdot r$$
$$O_i = \frac{C_i}{12.2 \, kbit \, / \, s}$$

9

10

- Overhead factor:

Digital domain:

- By definition
 - Decoders output / Coders input:
 - air interface:
- Method applicable for TX and RX

Bell Labs Europe

2) Relation to SDR

Graph showing overhead factor

 $O_i = 1$

 $O_i = \infty$

 \rightarrow Factor 400 (80000/200) reduction in complexity!

3) RF System design approach

Opportunities to use RF-MEMS

3) RF System design approach

Duplex problem

Challenge

- Transmitter and Receiver have to be operated in parallel
- A TX/RX switch as with classical SDR cannot be used
- Huge Dynamic range between TX and RX (e.g. 120 dB)
- Risk that receiver is desensitized by wideband noise from own transmitter

Classical solution

- Large form factor duplexer
- Based on coaxial resonators, Q=5000
- High costs
- How to make this tunable over multiple octaves?

Broadband is not always good, it has high risks of spurious and blocking, so instead of broadband, go tunable narrowband

Alternative approach

- Distributed filtering
- Keep bandwidth small at every signal stage
- Balance between coarse analog and precise digital filtering
- Do more filtering at low power RF, to relax duplexer requirements at high power
- Coarse analog filtering supported by RF-MEMS

3) RF System design approach

Duplex problem

Classical solution

- Coaxial resonators
- Fixed characteristics
- Only a few % tuneable

Stepper motor tuning

Duplex filter

- 24cm x 36cm x 5cm
- Q=5000, silver plated
- 14 TX, 10 RX resonators

13

High costs, high weight

Bell Labs Europe

3) RF System design approach

Distributed filtering (preselector, postselector)

- Reconfiguration of analog path through a digital Interface
 - Analog properties set by software (new understanding of SDR)
- Encapsulation concept
 - Isolation amps (No detuning due to outer impedance variations)
 - Buried resonant structure (No detuning due to electromagnetic coupling)

3) RF System design approach

RFB (Radio Function Block) realized as a SIP (System in Package)

4) RF-MEMS

Likes, to dos, don't cares, needs...

Likes

- Separation of DC control and RF-path → reduces crosstalk
- No Bias-Ts! \rightarrow nice with complex topology of reconfigurable RF circuits
- Inherently linear on RF-path (not an active device)
- Near ideal switch (Low loss, high isolation)

To do

- Increase power handling capability (10....20W ?)
- Package shouldn't degrade superior RF performance at die level
- Step up from component to system building block function!
- Combine RF-MEMS with active devices and logic

Don't care about

- Actuation voltage / Actuation power
- Number of switching cycles (Only Reconfiguration)
- Dynamics/switching speed (Only Reconfiguration)

Devices needed

- RF Switch matrices e.g. SP4T (resistive switch, not capacitive)
- Varactors=tunable C, together with switchable bank of fixed cap
- Variometers=tunable L, together with switchable bank of fixed inductors
- Pre-/Postselector=tunable C+tunable L + switches combined

4) RF-MEMS

for a wide tuning VCO

- Wide tuning MEMS varactor
- Great Frequency ratio
- No Bias-T like with varactor diode, control isolated from RF
- Lowpass characteristic of control loop by mechanical damping of MEMS varactor

4) RF-MEMS

for a tunable duplex filter

New approach - Metamaterial duplexer

- Use of composite left and right handed structures
- Use of zero order resonance
- With zero order resonance losses in series tuning elements (R) don't degrade Q

Equivalent circuit unit cell of Composite Left Right handed transmission line CRLT

Bell Labs Europe

4) RF-MEMS

for a tunable duplex filter

20

5) Demonstration activities

MEMS Switch

Bell Labs Europe

5) Demonstration activities

MEMS switch matrix

5) Demonstration activities

Lucent Technologies Bell Labs Innovations

Frequency agile basestation

Bell Labs Europe

5) Demonstration activities

RXBP - Receive Bandpass

5) Demonstration activities

TXBP - Transmit Bandpass

Bell Labs Europe

5) Demonstration activities

TXMX - Transmit Mixer (top side)

6) Summary

- Frequency agile RF-System
 - Not only the radio, but also the antenna, the duplex filter and the PA has to be reconfigurable
- Ambient intelligence
 - Cognitive radio, seeking for free spectrum to be used
 - Adaptation to various bands and standards
- RF-MEMS
 - A Renaissance of Analog
 - Well suited for signal conditioning in analog
 - Key to distributed filter approach (pre-/postselector)
 - Beneficial characteristics from system view
 - Attractive for tunable metamaterial
- RF-MEMS to dos:
 - Increase power handling capability
 - Variometers (tunable L) needed
 - Combine different MEMS elements to form a system function
 - Combination RF-MEMS with active devices
- Demonstration
 - Benefits of RF-MEMS
- Bell Labs Europe Frequency agile basestation

