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e Apparent spectrum scarcity
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Spectrum: Allocation vs Usage

~

e Actual measurements show that > 70% of spectrum is unused.

\o Enough free spectrum for DVD-res cameras every few feet! /
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That was then,

Primitive analog hardware
Devices fixed to bands

Interference a severe

challenge
Long range applications
Bands allocated by law

Enforce by licensing devices

~

this 1s now...

Digital wideband hardware
More flexible spectrum view

Heterogeneous applications
— Different priorities

— Range of spatial scales
Require interoperability

Enforcement more difficult

What architectures will be needed to better exploit spectrum?

What’s the minimal change in regulation?
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Justification
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e Wireless interference is

primarily a local phenomenon.

e If a radio system
transmits in a band and

nobody else is listening,

\ does it cause interference?

Cognitive Radio \

Objectives

Protect primary users of the
spectrum

— Socially important services may
deserve priority on band

— Legacy systems may not be

able to change

Allow for secondary users to use
otherwise unused bands

— Not the UWB approach:
“speak softly but use a wide

band”

— Primary band usage may vary
in time

— May have to scavenge many

discontinuous bands

— May have to coordinate/coexist

with other secondary users /




Justification Cont.

Mice can get close...

Union of “no talk” zones. /

\ But keep the lions far away!
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A secondary user
might be in a local
shadow while his
transmissions could
still reach an
unshadowed primary

-

receiver.

Shadowing

Secondary user can
not distinguish
between positions
(1) and (2) - must
be quiet in both.

Multiuser diversity
should increase our
chances of an
accurate

measurement.
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/ A Fundamental tradeoff \
Interferer Power vs Detectable SNR
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e Glossary

Maximum interferer power vs. detectable SNR

— Ydec: Minimum SIN R for & ‘ ‘ w w : -
decodability at the primary 70 ~— -10dB shadioning
receiver.

60
— Ydet: Minimum SN R at which
the secondary can detect the

50

primary transmission. or

— (B: SNR loss in detectability
due to shadowing.

30

20

Max interferer power at any range(dB)

— M: Margin of protection given ol
to the primary receivers.
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/ Censored radius vs. interferer power and
protected radius

Effects as protected radius nears decodability bound (censored radius = 10 meters) Allowable intereferer power (4.5 km from transmitter)

~

\the cognitive radio to squeak. cognitive radios to roar.
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Hypothesis testing problem: is the primary signal out there?

Model

HO . Y[n] = W['n]
Hs : Y n] = Win] + x[n]

Moderate P¢q, Ppq targets

Potentially very low SNR at the detector: will need many

samples to distinguish hypothesis

How long must we listen?

~
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BPSK —— Detector Performance

Signal detection \
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T
Energy Detector
—— Undecodable BPSK
=— BPSK with Pilot signal
= Sub-optimal scheme ||
= Deterministic BPSK
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Low SNR

The optimal detector behaves

like an energy detector.

If one exists, just detecting a

pilot signal is nearly optimal.

Signals without pilots are
difficult to detect.

p=13 p=6/7 p=117

[-1,0] (6,01




V.

Receiving
antenna

Noise Uncertainty

Low-noise

amplifier

e Sources of uncertainty:

Frequency

down-
converter

Intermediate
frequency
amplifier

A/D

Converter

+ Unintentional (Close-by)
\ + Intentional (Far-away)

— Noise due to transmissions by other users

Demodulator

e In practice there is always uncertainty about the noise.

— Thermal noise in components (Non-uniform, time-varying)
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e Noise can be modeled as “Approximately Gaussian” to incorporate

Noise Uncertainty: Conservative Model

uncertainty.

— Like Gaussian noise, but x dB uncertainty in moments.

— EN?*~1 = 0. [Symmetry property]

— EN?* ¢ [EW?* o EW?*], where W ~ N(0,0?%) and a = 10%/1°,

e What are the consequences?

— SNR walls

e Theorem: For the case of detection of a weak BPSK signal,
the ‘2k-th moment detector’ encounters a threshold (wall)
below which detection is impossible. The threshold for
detection as a function of the noise uncertainty x is given by:

SNR* = 10log,, [10*/19 — 1] — 101og,, k

wall —

/




Noise Uncertainty: Threshold Behavior

e Moment detector performance e Noise uncertainty vs SNR wall
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Noise uncertainty + Quantization

e Our abstraction e Things get worse under
quantization
Seconday e Assumptions:
DemDo%II&aiion — Bounded dynamic range
Noise

on quantization bins

e There exists an SNR
threshold below which

detection is absolutely

Signal
Detection

0 : — Moment uncertainty
. S . |
: Sampler [~ Quantizey | model for noise

___________________________________

impossible.




/ BPSK example

e Detection can be absolutely impossible for 2-bit quantizer

— Adversarial noise can make the distributions identical under
both hypotheses if

o(5) =3 lo () e (*57)]

e Wall always exists for any detector.




Conclusions \

Cognitive radio can enable significant spectrum reuse.
To function, we must be able to detect the presence of
undecodable signals.

— Just knowing the modulation scheme and codebooks is

nearly useless: stuck with energy detector performance.

— Even small noise uncertainty causes serious limits in
detectability.

— Quantization makes matters even worse.
Primary users should transmit pilot signals.

If not, some infrastructure and/or collaboration will be needed

to support cognitive radio deployment.

Similar limits apply to secondary markets. /




