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SUMMARY

Software radios (SWR) have been proposed for wireless communication systems to en-

able them to operate according to incompatible wireless communication standards by im-

plementing most analog functions in the digital section on software-reprogrammable hard-

ware. However, this significantly increases the required computations for SWR function-

ality, mainly because of the digital front-end computationally intensive filtering functions,

such as sample rate conversion (SRC), channelization, and equalization. For increasing the

computational efficiency of SWR systems, two new SRC methods with better performance

than conventional SRC methods are presented. In the first SRC method, we modify the

conventional CIC filters to enable them to perform SRC on slightly oversampled signals

efficiently. We also describe a SRC method with high efficiency for SRC by factors greater

than unity at which SRC in SWR systems may be computationally demanding. This SRC

method efficiently increases the sample rate of wideband signals, especially in SWR base

station transmitters, by applying Lagrange interpolation for evaluating output samples hi-

erarchically using a low-rate signal that is computed with low cost from the input signal.

A new channelizer/synthesizer is also developed for extracting/combining frequency mul-

tiplexed channels in SWR transceivers. The efficiency of this channelizer/synthesizer, which

uses modulated perfect reconstruction (PR) filter banks, is higher than polyphase filter

banks (when applicable) for processing few channels, and significantly higher than discrete

filter banks for processing any number of variable-bandwidth channels where polyphase

filter banks are inapplicable. Because the available methods for designing modulated PR

filter banks are inapplicable due to the required number of subchannels and stopband at-

tenuation of the prototype filters, a new design method for these filter banks is introduced.

This method is reliable and significantly faster than the existing methods.

Modulated PR filter banks are also considered for implementing a frequency-domain

xi



block blind equalizer capable of equalizing SWR signals transmitted though channels with

long impulse responses and severe intersymbol interference (ISI). This blind equalizer adapts

by using separate sets of weights to correct for the magnitude and phase distortion of

the channel. The adaptation of this blind equalizer is significantly more reliable and its

computational requirements increase at a lower rate compared to conventional time-domain

equalizers making it efficient for equalizing long channels that exhibit severe ISI.

xii



CHAPTER I

INTRODUCTION

Many of the communication standards that define the specifications for today’s wireless

digital communication systems, among which are the Interim Standard-95 (IS-95) [96], the

Global System for Mobile Communication (GSM) [25], and code-division multiple access

2000 (cdma2000) [97], are highly incompatible. This incompatibility between communica-

tion standards is attributed to the use of different air interface specifications, for they may

have different

• access methods, such as frequency-division multiple access (FDMA), code-division mul-

tiple access (CDMA), or time-division multiple access (TDMA),

• modulation schemes, such as quadrature-phase shift keying (QPSK), minimum shift

keying (MSK), or Gaussian minimum shift keying (GMSK),

• radio frequency (RF) operation bands such as VHF, UHF, SHF, or EHF,

• RF allocations within a single band such as the 800 MHz, 900 MHz, or 1900 MHz

cellular allocations, all of which are in the UHF band,

• channel bandwidths such as 30 kHz, 200 kHz, 1250 MHz, or 5 MHz.

The specifications of the widely adopted analog and digital cellular communication stan-

dards listed in Table 1 [12] clearly illustrate the significant incompatibilities that exist among

the different cellular standards. The incompatibility between cellular and non-cellular wire-

less standards, such as wireless local area network (WLAN) standards, is even higher. Since

reprogramming of the analog front-ends of conventional digital wireless communication sys-

tems, where many functions are performed, may be difficult or inapplicable, deploying these

systems for different standards may require the replacement of virtually all the analog hard-

ware in the radio’s front-end. It may also be necessary to replace the non-reprogrammable
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digital hardware and the hardware that does not provide sufficient reprogrammability for

implementing the new standards in these systems.

Table 1: Comparison of different analog and digital cellular standards [12].

AMPS GSM/ IS-136 IS-95 cdma2000 WCDMA/

DCS-1900 UTRA

Standard Type Analog Digital Digital Digital Digital Digital

Generation 1 2 2 2 3 3

Frequency Band Cellular Cellular Cellular/ Cellular/ PCS PCS

PCS PCS PCS

Uplink (MHz) 824-849 890-915/ 824-849/ 824-849/ 1850-1910 1920-1980

1850-1910 1850-1910 1850-1910

Downlink (MHz) 869-894 935-960/ 869-894/ 869-894/ 1930-1990 2110-2170

1930-1990 1930-1990 1930-1990

Access Method FDMA TDMA TDMA CDMA CDMA CDMA

Channel 30 kHz 200 kHz 30 kHz 1.25 MHz 1.25, 3.75, 5, 10,

Bandwidth 7.5, 11.25, 20 MHz

15 MHz

Modulation FM GMSK π/4-DPSK QPSK and QPSK and QPSK and

Type OQPSK BPSK BPSK

Max. O/P Power

Base: 20 W 320 W 20 W 1.64 kW 1.64 kW Unspecified

Mobile: 4 W 8 W 4 W 6.3 W 2 W 1 W

Users/Channel 3 8 3 Up to 63 Up to 253 Up to 250

Data Rate/User 19.2 kbps 22.8 kbps 13 kbps 19.2 kbps 1.5 kbps– 100 bps–

2.0736 Mbps 2.048 Mbps

The use of software radio (SWR) technology has been proposed for implementing future

generations of wireless communication systems, including third-generation cellular systems

(3G). SWR systems are capable of reducing or eliminating the problems experienced when

deploying wireless communication systems for operation according to standards with differ-

ent air interfaces. An SWR communication system typically uses a single wideband high-

dynamic-range analog-to-digital converter (ADC) in the receiver side and a single wideband

high-dynamic-range digital-to-analog converter (DAC) in the transmitter side. The wide-

band ADC and DAC of SWR systems are placed as close to the antenna as possible. Ideally,

simple wideband receiving and transmitting RF stages, respectively, separate the ADC and
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DAC from the SWR antenna, as shown in Fig. 1 [39, 60, 62, 111]. By placing the ADC and

DAC of the system close to the antenna, most of the communication functions can be per-

formed in the digital section of the radio. Consequently, these functions can be implemented

on software-reprogrammable platforms such as DSPs and, therefore, can be reconfigured by

reprogramming the processors on which they are implemented. To switch from GSM to

CDMA operation in an SWR cellular base station transceiver, for example, all digital filter

bandwidths and center frequencies are readjusted to the suitable values for transceiving

CDMA signals, and the GSM modulator and demodulator are reprogrammed to perform

CDMA spreading and despreading [59]. The parameters of other functions that may also be

required, such as sample rate conversion (SRC), are also adjusted to suit CDMA reception.

The reconfigurability of SWR systems gives them the flexibility required for supporting

arbitrary air interfaces within the ADC and DAC bandwidth and dynamic range limita-

tions, and the processing power limitations of the signal processors that are used [64]. SWR

systems with sufficient computational power may also be capable of communicating using

multiple air interfaces simultaneously. Implementing this feature in military SWR base

stations, for example, gives them the capability of bridging incompatible communication

networks, while implementing this feature in commercial SWR base stations allows them

to provide global roaming capability to conventional mobile units. SWR technology also

allows software updates and bug fixes to be downloaded to base stations and user terminals

quickly and easily or distributed via smart cards without the need for issuing equipment

recalls. Finally, software-reprogrammability enables wireless service providers to offer new

or temporary services to users with SWR-capable equipment, such as advanced multimedia

applications and vocoders for different languages, via over-the-air software downloads [59].

Although the SWR concept is applicable for applications such as satellite mobile com-

munications, mobile military communications, air and sea traffic control, and WLAN [62],

it is particularly attractive for commercial cellular systems. This is mainly due to the

rapidly increasing number of cellular standards, the wide spread of cellular systems, and

the increasing demand for cellular mobile units that are flexible for incorporating new ser-

vices easily and quickly and permit global roaming. However, the increased flexibility and

3
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Figure 1: The ideal SWR wireless communication system [39,60].

features that SWR systems provide to digital communication applications come at a cost.

Performing many of the functions that are confined to the analog section of conventional

digital communication systems, such as channelization, digitally in SWR systems results in

a significant increase in the computational requirements of the receiver. The computational

requirement of SWR systems is further increased by the functionality of SWR systems that

enables the support of standards with different air interfaces. This functionality forces the

use of digital functions that are normally not required in conventional digital communica-

tion systems such as SRC [37, 39]. Also, feeding wideband signals that may contain the

complete transmission band of a particular wireless air interfaces to a single ADC may gen-

erate digital signals with very high dynamic ranges because of variations in the propagation

environment of the different channels that compose the received signal [39, 77]. Likewise,

the dynamic range of the digital input signals to the DAC that contain a complete trans-

mission band of an air interface may be high because of power management that may be

used in SWR transmitters [111]. The processing of high-dynamic range signals in SWR

systems further increases the computational requirements because higher word-length op-

erations and longer digital filters are required. Typical signals processed by SWR base

stations may have bandwidths of 25 MHz and dynamic ranges of 90 dB [25, 60, 64]. In ex-

treme cases, SWR systems may process signals with bandwidths and dynamic ranges that

exceed 100 MHz and 100 dB, respectively. Extracting a single channel for example, from

a digitized wideband signal followed by the required baseband processing of the extracted

channel may require computational resources far exceeding those of fast DSPs [6,39,62,85].

Therefore, SWR base stations may require a large number of currently available DSPs for
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performing the required digital signal processing. The high computational requirements

for processing wideband SWR signals may result in high design, implementation, operation

and maintenance costs, and high power consumption. Therefore, this may render SWR

systems inefficient to build and operate. Since the digital front-end can consume a sizeable

fraction of the available DSP resources in an SWR system, and since DSPs are currently

the bottleneck of SWRs, computationally efficient methods for performing the functions of

the digital front-end are essential.

The aim of the research in this thesis is to investigate new techniques for performing

computationally demanding functions in the SWR digital front-end. Lowering the compu-

tational cost and/or improving the performance of SRC, channelization, and equalization in

SWR systems lowers the cost of implementing and operating these systems. For improving

the computational efficiency of SRC in SWR systems, we have modified the conventional

cascaded integrator-comb (CIC) filter to improve its performance and make it more suitable

for SWR systems. We also develop an SRC method based on the use of Lagrange interpo-

lation. This SRC method is particularly efficient for SWR base station transmitters where

SRC by factors greater than unity of wideband signal is generally required. For channel-

ization/synthesis of frequency-division multiplexed (FDM) wideband signals, we present a

new channelizer/synthesizer that uses modulated perfect reconstruction (PR) filter banks

as building blocks. The channelizer/synthesizer is capable of operating at a higher com-

putational efficiency than polyphase filter banks for processing a small number of channels

and discrete filter banks for processing any number of channels. Since the methods for

designing modulated PR filter banks proposed in the literature are generally inapplicable

for this channelizer/synthesizer because of demanding design parameters, we derive an effi-

cient method for designing these filter banks. The designed modulated PR filter banks are

shown to be also suitable for implementing efficient and powerful frequency-domain blind

equalizers that are capable of equalizing channels with very long impulse responses and

sever intersymbol interference (ISI). These blind equalizers are block equalizers that are

computationally efficient for equalizing channels with impulse responses that extend over a

large number of symbols periods.
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The remainder of this thesis is organized as follows. Chapter 2 provides brief back-

ground on SWR systems and discusses issues related to the computational requirements

of critical SWR functions. In Chapter 3, the modified cascaded-integrator-comb filters for

performing SRC in SWR systems are discussed. Chapter 5 discusses the efficient channel-

izer/synthesizer that is introduced for channelizing and synthesizing the discrete channels

in SWR receivers and transmitters, and Chapter 6 discusses the method that we derive for

designing modulated PR filter banks with high number of subchannels and high stopband

attenuations to be used in the channelizers/synthesizers of Chapter 5. The details of the

frequency-domain blind equalizer are discussed in Chapter 7, and some concluding remarks

are given in Chapter 8.
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CHAPTER II

BACKGROUND

Commercial and military software-reconfigurable communication systems provide their users

with many features that cannot be supported by non-software-reconfigurable communica-

tion systems. Commercial SWR wireless base stations, for example, can be deployed quickly

and easily for operation according to any desired communication standard with minimal

setup cost. After deployment, firmware upgrades and software bug fixes can be downloaded

over the air to base stations and mobile units without the need for equipment recall. Also,

a wider range of enhanced voice and multimedia services can be offered by SWR systems,

and band congestion can be reduced by efficiently distributing users over the available

band [6, 64, 111]. Furthermore, SWR base stations can probe the communication channel

to a particular user terminal and choose the best air interface and the different parame-

ters of the selected air interface in an attempt to achieve the highest possible quality of

service [60]. Also, the ability of SWR systems to switch between air interfaces provides

global roaming capability and permits backward compatibility with older communication

equipment. An SWR wireless PC card, for example, may provide a notebook PC with

WLAN access through access-points operating with any of the IEEE 802.11 standards.

When WLAN access points are unavailable, the SWR PC card may attempt to connect to

a cellular communication tower. If cellular service is also unavailable, the SWR wireless PC

card may initiate a satellite communication link.

The flexibility offered by SWR systems comes at a cost. The design of SWR communi-

cation systems is much more complicated than conventional communication systems. The

challenges of designing SWR systems are different for commercial and military applications.

The design of SWR base stations also generates a different set of challenges than the design

of SWR mobile units. For example, commercial SWR cellular systems, in extreme cases,

operate at RFs that are scattered in part of the UHF band (800–2200 MHz), while military
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SWR systems, in extreme cases, operate at RFs that may be scattered in all frequency bands

from HF to EHF (3–30000 MHz), as illustrated in Fig. 2 [113]. Also, unlike the relatively

friendly environment of commercial SWR wireless systems, where an attempt is made to

minimize the co-channel interference experienced by the different users, military radios are

designed to operate in environments where the signal may experience high Doppler and may

be subjected to intentional interference in the form of jamming. However, the bandwidth

efficiency of commercial systems may be significantly higher than that of military systems.

Also, military SWR mobile units are less constrained by cost considerations that constrain

commercial SWR mobile units, where inexpensive customer equipment is usually desired.

The design of SWR base stations and mobile units has different sets of challenges.

For example, SWR mobile units usually communicate with a single base station using a

single air interface at any particular time, while SWR base stations may be required to

simultaneously communicate with a large number of mobile units that have different air

interface specifications. The multimode operation of SWR base stations imposes demanding

computational requirements. Although power consumption is not a critical factor in SWR

base stations, designing power-efficient SWR base stations reduces the cost of operating

such systems and, therefore, increases their profitability. The computational requirements

of SWR mobile units are much lower than the requirements of SWR base stations because

they communicate with a single base station; however, the computational requirements may

be relatively high for a hand-held mobile unit considering the limited size and limited power

supply. Therefore, restrictions on size and weight place constraints on the amount of power

storage and consumption in SWR mobile units [64]. In conclusion, successful design of SWR

systems is constrained by finding solutions to the different problems facing the design of

base stations and mobile units of military or commercial SWR systems.

2.1 Brief History of SWR Systems

The general concept of SWRs, in which radio functions run on software-reprogrammable

platforms, was introduced in 1992 by Joseph Mitola III [60] as a method for reducing the

cost, providing an extended range of services, and reducing the deployment time of military
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Figure 2: Frequency bands of operation of military mobile and civilian cellular radio
systems [113]. The bands labelled U and D are the mobile unit uplink and downlink bands,
respectively, corresponding to the base station downlink and uplink bands, respectively.

and commercial wireless communication systems. Since then, an increasing amount of

research has been devoted to the design and implementation of SWR systems. The greatest

interest in SWR systems has been shown by the U.S. Department of Defence (DoD) with the

objective of eliminating the need for multiple radio transceivers with different air interfaces

for different military applications. The interest of the DoD in SWRs has led to the design,

implementation, and testing of the first SWR system: Speakeasy Phase I in August 1994.

Because military communication applications use different frequency bands for different

communication topologies and different transmission data rates, Phase II of the Speakeasy

radio has the capability of emulating more than 15 military radios, which have different

modulation schemes and different RF carrier frequencies scattered in the HF, VHF, UHF, L,

C, and X-bands. The Speakeasy Phase II has a reconfigurable DSP unit with computational

power of 1 billion 16-bit integer operations/s and 200 million floating-point operations/s
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(MFLOPS). It has the ability to simultaneously operate in up to four modes of operation

and the ability to bridge incompatible networks, thereby allowing two or more users with

incompatible radio transceivers to communicate seamlessly using the Speakeasy system as

a user-transparent bridge [52,61,98,111].

The development and testing of the multiband and multimode (i.e., operates in differ-

ent frequency bands and capable of emulating radios with different air interfaces) military

Speakeasy SWR spurred the development of commercial SWR cellular systems [6,9,18–22,

24, 36, 37, 39, 41, 42, 45, 47, 50, 52, 59, 61, 62, 64, 66, 85, 88, 93, 101–103, 111, 113, 114, 117, 120].

In November 1999, the International Telecommunication Union (ITU) introduced the stan-

dards for the global 3G mobile communication system IMT-2000 [81]. The introduction of

the IMT-2000 standard, which supports five different air interfaces, is a major motivation

for developing SWRs for 3G cellular applications to facilitate global roaming and provide

backward compatibility for second-generation (2G) base stations and mobile units [45].

2.2 The Bottleneck of SWR Systems

The greatest challenges in designing SWR systems result from the unavailability of ADCs

and DSPs that are fast enough to support the high levels of SWR reconfigurability and the

high computational requirements of the different processes in SWR systems. The speeds of

currently available ADCs generally lag the conversion rates required by SWR systems for

supporting wideband reception. However, it is expected that sufficiently fast ADCs that

are capable of supporting the different SWR applications will soon be available because

of advances in different ADC technologies. Therefore, the DSPs that are available today

represent the bottleneck of SWRs [6]. Increasing the computational efficiency of the SWR

functions, in particular, becomes essential for successful and profitable operation of SWR

systems. Two methods have been considered in the literature for accomplishing this. Signif-

icant research has been devoted to improving the SWR architecture and exploring the com-

monalities between the different communication standards to reduce the complexity of im-

plementing SWR systems [10,30,41,42,47,59,61,65,92,93,113]. Relatively less emphasis has

been given to improving the SWR signal processing algorithms [26,37,38,50,117,119,120].
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SRC and channelization are two functions that have been considered for optimization in

SWR systems because of their high computational requirements, especially in SWR base

stations [36, 111].

Most, if not all, processing in conventional digital wireless communication systems is per-

formed using analog hardware or fast non-programmable digital hardware, such as ASICs.

Unlike these conventional systems, where narrowband channels with low-dynamic ranges are

usually transceived, SWR wireless systems may transceive extremely wideband signals with

high dynamic ranges using slower highly reprogramable digital hardware, such as DSPs.

This causes the digital signal processing in SWR systems to be computationally intensive,

where a large number of currently available DSPs may be required for applying functions,

such as SRC and channelization (or channel synthesis), on the signals that are transceived by

SWR systems. Since increasing the efficiency of the signal processing algorithms in SWRs

reduces the overall required computations and, therefore, lowers the required number of

DSPs and/or reduces the size and power consumption of the required DSPs, improving the

signal processing algorithms is key for the success of SWR systems.

2.3 Reconfigurability of SWR Systems

The main feature of SWR communication systems that distinguishes them from their con-

ventional radio counterparts is their ability to mutate depending on the air interface(s) of

the communication system(s) with which they are attempting to communicate. The mu-

tation is performed by software-reprogramming of the signal processing components while

avoiding any form of modification or upgrade to the hardware of the radio [62]. Differ-

ent SWR implementations may have different levels of software-reconfigurability. An SWR

system may be fully software-reprogrammable, software reconfigurable only, or partially

software-reprogrammable and partially software reconfigurable. Therefore, the terms SWR

and software defined radio (SDR) are often used in describing digital radios that have the

capability of being altered by means of software [59, 64, 91]. The research discussed in this

thesis adopts the definitions for SWRs and SDRs given in [64], which states that SDRs

implement the desired set of capabilities using software-reconfigurable elements, such as
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application-specific integrated circuits (ASIC), while SWRs implement the desired capabil-

ities using software-reprogrammable elements, such as DSPs. This means that the software

of an SWR defines the functions of the air interface, while the software of an SDR defines

the parameters of the air interface, and possibly the particular ASIC to be used for per-

forming a specific communication function. Therefore, SWRs provide a higher degree of

reconfigurability and are more flexible than SDRs. The main scope of the research dis-

cussed here is to increase the efficiency of the computational algorithms required in SWR

communication systems specifically, although applying the algorithms described herein to

SDRs may reduce their hardware complexity as well.

A fully reconfigurable SWR system like the ideal SWR shown in Fig. 1 is impractical for

real applications. In a real communication application, the simplicity of the RF stage im-

poses the use of extremely wideband and high dynamic-range ADCs and DACs for covering

the frequency bands of all signals of interest and the dynamic ranges of the different signals

that may be processed. Besides being computationally demanding, processing the digital

signals in the system of Fig. 1 is wasteful because the useful information for a particular

mobile unit or base station generally occupies a small fraction of the frequency band covered

by an ideal SWR system [113]. In general, the computations that an ideal SWR cellular

system requires cannot be delivered by DSPs that are available today or will be available in

the foreseeable future [6]. Therefore, lower software reconfigurability levels of SWR systems

may be considered for more practical implementations.

The computational requirements of the digital functions that are reconfigured for han-

dling different air interface specifications are generally proportional to the sample rates and

dynamic ranges of the signals being processed. Therefore, the bandwidth and dynamic

range of the ADC and DAC, which is specified by their location in the system, determine

the level of software reconfigurability of the SWR system as well as its computational re-

quirements. Moving the ADC and DAC closer to or further away from the antenna results

in a tradeoff between the complexities of the radio’s analog and digital sections, which con-

sequently results in a trade-off of the SWR system reconfigurability with its computational

requirements [113]. The level of reconfigurability of an SWR system is also determined by
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the type of components used for signal processing, such as ASICs, function programmable

gate arrays (FPGA), dedicated DSPs, or general-purpose processors [18,21,61]. The SWR

configurations that are applicable for SWR base stations and mobile units are discussed

next. It is important to note that either bandpass or baseband digitization may be used in

these configurations. In baseband digitization, analog downconverters are used to mix the

signals to baseband as in-phase and quadrature (I and Q) signals that are then digitized

using two balanced ADCs. In bandpass digitization, the analog band of interest is centered

around a nonzero frequency and is digitized using a single bandpass ADC such that the

folding of the digital band downconverts the desired band. Digital downconversion may

further be used to center the signal around zero frequency. Both of these configurations are

equivalent in the sense that they eventually result in similar sample rates, except that RF

digitization reduces the system complexity at the expense of an increase in the complexity

of the sample-and-hold circuit to reduce the noise caused by ADC aperture jitter.

2.3.1 Reception of the Complete Transmission Band of Air Interfaces

Moving the interfaces between the analog and digital sections of the SWR system away

from the antenna by inserting analog bandlimiting filters significantly limits the required

ADC bandwidth and DSP computations. Such a filter may be part of an IF stage with the

purpose of bandlimiting the input signal to the ADC and output signal from the DAC to

the transmission bandwidths of the air interface being processed [113]. This configuration

is shown in Fig. 3 for an SWR cellular system. In this configuration, a software tunable

analog bandpass filter passes only the transmission band of a particular air interface to

the ADC. Therefore, the maximum bandwidth and dynamic range values of the fixed-

sample-rate ADC are equal to the widest band and highest dynamic range of the different

communication standards that may be served by the SWR system. The required resolution

of the ADC is computed by considering that the maximum theoretical signal-to-noise ratio

(SNR) of an ADC in dBs [112] is given by

SNR = 6.02B + 1.76 + 10 log10

(
fs

2fmax

)
dB, (1)

13



where B is the number of bits, fs is the sampling frequency, and fmax is the maximum

frequency of the input signal, and also considering that the actual SNR of an ADC falls

short of the theoretical SNR by roughly two bits of resolution. For cellular SWR applica-

tions, for example, the required wordlength of the ADC may be in the range of 17–19 bits

to support the highest dynamic ranges of 90-100 dBs that GSM transmission bands may

have [25]. Since the largest transmission band of the different air interfaces is that of the

3G IMT-2000 standard with bandwidth of around 150 MHz [113], ADC and DAC sample

rates on the order of 350 Msamples/s may be required. Although such ADCs may soon be

available, the computational cost for up/downsampling and channelizing/synthesizing the

digital wideband signals is extremely high. For example, applying a high-quality filtering

process to the wideband digital signal to extract a single channel may require processing

power on the order of 100 operations per sample [6], or approximately 35,000 million op-

erations per second (MOPS) with wordlengths up to about 20 bits. The computations in

this configuration may overwhelm SWR DSPs since the fastest currently available DSPs,

like the Texas Instruments TMS320C6416 [95], perform on the order of 3000 MOPS (32-bit

operations). This configuration is most suited for SWR base stations since it retains a high

level of system reconfigurability and the computations may be manageable if efficient DSP

algorithms are employed.

RF
Stage

IF
Stage

Digital

Signal
Processing

A/D

Interface

Public Network
or

Single User

∼ 1400 MHz ∼ 25–150 MHz ∼ 25–150 MHz ∼ 30 kHz–5 MHz

Single or Multiple Channels

Figure 3: Typical bandwidths of the signals at different stages of an SWR cellular system
employing reception of the complete transmission band of air interfaces.
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2.3.2 Single Channel Reception

For an SWR client unit, where single channels are received and transmitted, the SWR con-

figuration in which the complete transmission band of a particular air interface is transceived

may be impractical because of the wasted computational power of wideband reception for

extracting a relatively narrowband signal. The computations required in SWR mobile sta-

tions can be reduced significantly to manageable values by introducing an analog software

tunable bandpass filter as part of a second IF stage with the purpose of passing the band

of the desired channel only.

For SWR systems that operate on individual channels of a particular air interface at

any specific time, as shown in Fig. 4 [113], the passband or baseband ADC and DAC

bandwidths must be at least equal to the largest channel bandwidth of the different air

interfaces that may be transceived. For cellular SWR mobile units, for example, the required

ADC and DAC bandwidths may be 5 MHz to support wideband-CDMA (W-CDMA) and

all communication standards with channels of lower bandwidths such as GSM. The required

dynamic ranges of the ADCs and DACs are generally lower than the ADC and DAC dynamic

ranges required in the configuration described in Section 2.3.1, because the near-far effect

in the received signal has been eliminated and power-management in the transmitted signal

can be performed easily in the analog RF stage. However, the reconfigurability of this

SWR architecture is severely limited by the significant use of analog mixers and filters

in the analog RF and IF stages. Consequently, this configuration is suitable for SWR

mobile units only, where the transmission and reception of only individual channels of a

particular air interface is desired. Because of the relatively narrow bandwidth and low

dynamic range of the processed signals, and because many of the functions are performed

in the analog section of the radio, the amount of required computations in this configuration

is limited. The limited computations are generally suitable for limited-power SWR mobile

units with the use of optimized signal processing functions. The use of this configuration is

generally not suitable for SWR base stations that transceive multiple channels because of

the limitations imposed by the significant use of analog components.
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Figure 4: Typical bandwidths of signals at different stages of a cellular SWR with single-
channel reception.

2.4 Computationally Demanding DSP Functions in SWR

Systems

The total rate of operations that a single-input single-output process or a process such as

SRC or a multi-input and/or multi-output process such as channelization and channel syn-

thesis in an SWR system performs is a function of several factors. These factors include

the sample rate(s) of the input signal(s) and output signal(s) and the number of operations

that are required for computing each sample of the output signal(s). The number of oper-

ations per output sample may itself be a function of the different parameters of the input

signal such as the oversampling factor and dynamic range. For processing a specific signal,

the input and output sample rates of the process are generally fixed. Therefore, increasing

the efficiency of this process demands that the number of operations per output sample be

reduced. Since the parameters. In this subsection, we describe processes of SWR systems

that are computationally demanding [36, 111], i.e., they require high number of operations

per output sample.

2.4.1 Sample Rate Conversion (SRC)

Since an SWR system uses software-reprogramable hardware that runs at a fixed master

clock rate regardless of the air interface being used, the sample rates of the ADC and

DAC are fixed and are often incompatible with the sample rates required for channelizing,

synthesizing, and processing the baseband channels [37, 39]. Therefore, SRC is necessary

for interfacing the ADC and DAC to the remainder of the SWR system. Since SRC can

consume a sizeable fraction of the available DSP resources in an SWR, and since DSPs are
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currently the bottleneck of SWRs due to the large amount of computations that is required,

efficient SRC is highly desirable. Different methods for performing SRC by a rational factor

of L/M exist [14, 73, 83, 107], and different techniques have been proposed for efficient

implementation of SRC in SWR systems [37, 39, 43, 53]. Considering only rational-factor

SRC in SWR systems is due to the fact that the ratios of the sample rates required for

processing the signals of the different air interfaces can always be represented by rational

values. Irrational SRC factors, nevertheless, can be approximated with high accuracy using

rational factors L/M with sufficiently large values of L and M .

SWR transceivers may require several SRC blocks along the signal path for interfacing

functions that operate at different sample rates. For example, SRC may be required at

the ADC/channelizer interface in SWR base station receivers [37, 39] and the channel-

synthesizer/DAC interface in SWR base station transmitters. Since the fixed-sample-rate

ADC and DAC must accommodate the largest possible bandwidths and dynamic ranges of

the signals that may be transceived, the sample rates of the ADC and DAC may be much

higher than the values that are actually required for processing a particular signal. For

example, processing the complete transmission band of different wireless air interfaces in the

SWR base station of Fig. 5(a) may require the use of ADCs and DACs with bandwidths on

the order of 150 MHz and dynamic ranges of 100 dB to accommodate the extreme IMT-2000

transmission bandwidth and the maximum GSM dynamic range [25, 77, 85, 113], although

the transceived signal at a particular time may have much lower bandwidth and/or dynamic

range. Similarly, the ADC and DAC of an SWR mobile unit, as that shown in Fig. 5(b),

may have bandwidths of 5 MHz for processing individual channels of different air interfaces

with bandwidths up to the 5 MHz channel bandwidth used in W-CDMA, even when a

200 kHz GSM channel, for example, is being processed by the ADC and DAC. In such

cases, downsampling after the ADC and upsampling before the DAC may be required [50].

As shown in Fig. 5, SRC by factors that are close to unity may also be required at the

channelizer/demodulator and modulator/channel-synthesizer interfaces because the sample

rates of the baseband channels output by a channelizer or input to a channel-synthesizer

may be different from the chip- or bit-rates of the received or transmitted data [39,85,120].

17



RF

RF

Stage

Stage

IF

IF

Filter

Filter
ADC

DAC SRC

SRC

SRC

SRC
L/M<1

L/M>1

Channelizer

(Despreader)

Combiner

(Spreader)

Demodulator

& Decoder

Encoder &

Modulator

BW∼
1400 MHz

BW∼
25–150 MHz

Multiple Channels
Public

Network

Receiver

Transmitter A/D

Interface

Analog Digital

Section Section

(a) Construction of an SWR wireless base station

RF

RF

Stage

Stage

IF1

IF1

IF2

IF2

Filter

Filter

Filter

Filter
ADC

DAC SRC

SRC

SRC

SRC
L/M<1

L/M>1

Channelizer

(Despreader)

Combiner

(Spreader)

Demodulator

& Decoder

Encoder &

Modulator

BW∼
1400 MHz

BW∼
25–150 MHz

BW∼
30 kHz–5 MHz

One Channel User

Receiver

Transmitter A/D

Interface

Analog Digital

Section Section

(b) Construction of an SWR wireless mobile unit

Figure 5: Construction of SWR wireless systems. The bandwidths of the different stages
are typical for cellular wireless systems.

SRC in SWR systems may be computationally-intensive due to the relatively wide band-

width and high dynamic range (near-far effect in SWR receivers [39] and power management

in SWR transmitters) of SWR signals. The rate of computations for upsampling in SWR

transmitters may be significantly higher than the rate for downsampling in SWR receivers,

because the number of samples that are computed in the former case may be several orders

of magnitude higher than the number of samples that are computed in the latter. Consider,

for example, an SWR base station that uses ADC and DAC sample rates of 350 Msam-

ples/s to accommodate the different IMT-2000 standards. When the base station is actually

transceiving a standard GSM 900 transmission with bandwidth of 25 MHz [25], SRC by

factors close to 1/7 and 7 may be required in the receiver and transmitter sections of the
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base station, respectively. Assuming the use of simple single-stage sample rate increase and

decrease processes with filters of equal guard bandwidths that require equal number of op-

erations for computing an output sample in both cases, the rate of computations for sample

rate increase would roughly be 7 times higher than the rate of computations for sample rate

reduction. Using efficient SRC methods such as CIC filters may allow performing sample

rate reduction in SWR at a high efficiency as illustrated by the results given in [37] (Fig.

6 and Table 1), which indicate that less than 10 MPOS may be required for downsampling

in an SWR system regardless of the air interface, channel bandwidth, and output sample

rate. For sample rate reduction processes in SWR systems that require filters with narrower

transition bandwidths, the rate of computations may be higher but generally lower than

the required rate for sample rate increase in SWR transmitters. In the literature, However,

significantly more emphases has been directed towards the study of sample rate reduction

in SWR systems compared to that directed towards sample rate increase. In this thesis, we

present two SRC methods, one of which is applicable for increasing the sample rate of the

signals in SWR transmitters in particular.

2.4.2 Channelizing/Synthesizing Wideband SWR Signals

A significant fraction of the computational power of wideband SWR base station receivers

may be dedicated to channelizing the received wideband signals digitally and preparing

the extracted channels for baseband processing. SWR base station transmitters may also

dedicate a sizable fraction of their computational power for synthesizing the individual

channels into a wideband signal for transmission. The high computational cost for chan-

nelizing/synthesising SWR channels is attributed to the long filters that are required for

processing wideband high-dynamic-range signals that consist of a large number of chan-

nels. Reducing the computations for channelization/synthesis of wideband signals in SWR

transceivers is vital for reducing the cost and power consumption of DSPs in SWR systems.

Channelizing a subset with Nc channels from the N FDM channels contained in the

received SWR wideband signal can be performed efficiently by polyphase decomposing the

filters of modulated discrete filter bank (DFB) channelizers. This is applicable when the
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desired sample rate of the extracted channels is 1/L of the sample rate of the input signal,

such that

L = K ×N (2)

is satisfied for an integer K, and the digital band is equally divided among all N chan-

nels [117,119,120]. If these very restrictive conditions are not satisfied because the different

channels in the input signal to the channelizer have different bandwidths or the channels

unequally divide the digital spectrum, then polyphase decomposition of the DFB is in-

applicable. In this case, the computationally inefficient DFB channelizer may be the only

applicable method for channelizing the signal. Polyphase decomposing the DFB of a channel

synthesizer, which combines a set of Ns narrowband channels into an N -channel wideband

signal in the SWR transmitter, requires similar conditions to those required for polyphase

decomposing the channelizer filter bank. For the channel synthesizer, the input channels

must have equal sample rates, and the sample rate increase factor L must also satisfy (2)

for an integer K. Compared to the computations of DFB channelizers and synthesizers,

the use of polyphase filter bank (PFB) channelizers and synthesizers reduces the required

computations for channelizing Nc channels and synthesizing Ns channels roughly by factors

equal to Nc and Ns, respectively.

The computational requirements for performing channelization/synthesis in the SWR

base station and mobile unit may be extremely high. Because of the high sample rates

and dynamic ranges of the input signals to the channelizer or output signals from the

synthesizer, extracting a single channel from wideband received signals or synthesizing a

single channel into a wideband transmitted signal may require the complete computational

power of fast DSPs [6, 39, 62, 85]. Typical values of the sample rates and dynamic ranges

of the input signals to the channelizer and output signals of the synthesizer may be in

the ranges of 60–350 Msamples/s and 90–100 dB, respectively. The computational re-

quirements for fully channelizing/syntheisizng such signals may require the use of 50–100

currently available DSPs. Even when DFB channelizers/synthesizers are applicable, the

channelization/synthesis requirements may still be high. Therefore, efficient methods for

channelizing/syntheising SWR signal are essential for constructing efficient SWR systems.

20



2.4.3 Blind Equalization of Wideband SWR Received Signals

The received signals in digital wireless applications, including SWR systems, experience

additive noise that results from internal or external sources. The effect of additive noise

can be reduced by use error correction codes to detect and correct errors in the received

signal. The received signals may also have a much severe and more destructive type of

corruption known as intersymbol interference (ISI), which results from the transmission

of the digital information over non-ideal finite-bandwidth or multipath channels [54, 79].

In communication systems that suffer from ISI, extracting the digital information from

the received signal requires an equalizer that uses a filter to invert the channel response

before detecting the symbols in the received signal. The output of such an equalizer is a

noisy delayed form of the transmitted signal with an amount of ISI that is small enough

to permit the detection of the digital information with an acceptable probability of error.

Reducing the ISI requires that coefficients of the equalizer be adjusted such that its response

is close to that of the channel inverse. Fig. 6 shows the different modes for equalizer weight

adaptation. In the trained equalizer mode, a training sequence is used in conjunction

with an applicable adaptation algorithms to adjust the equalizer coefficients [5, 23, 67].

Blind equalization requires only the knowledge of the statistics of the transmitted signal

to adapt the coefficients [8, 13, 32, 33, 44, 74]. When successful adaptation in a trained

or blind equalizer is reached, adaptation directed by decisions performed on previously

received symbols (decision-directed equalization) may be used to track slow variations in

the channel. [49, 56,94,116].

Adapting the weights of an equalizer may be difficult and computationally demanding,

especially for equalizers with high number of weights needed to compensate for long channels

with severe ISI. The complexity of adapting an equalizer is increased further by the lack of

a training sequence in blind equalizers. Equalizers are implemented either in time-domain

(TD) or frequency-domain (FD) [82,89,90,100] forms. While TD equalizers generally have

lower input-to-output delays, FD equalizers are more computationally efficient and adapt to

channels in a smaller number of iterations but possibly longer time period. In SWR signals

that are transmitted through long channels with severe ISI, conventional TD and FD blind
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equalization methods generally fail to reduce the ISI and may even fail to adapt to the

communication channel at all. Therefore, developing powerful blind equalization methods

that are capable of equalizing channels that experience severe ISI and have long impulse

responses that extend over a large number of symbol periods may be necessary.
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CHAPTER III

MODIFIED CIC FILTER FOR SAMPLE RATE

CONVERSION IN SOFTWARE RADIO SYSTEMS

Among the methods described in literature for sample rate conversion (SRC) [14, 15, 83],

only a few have the computational efficiency that is required for software radio (SWR)

systems. Cascaded-integrator-comb (CIC) filters [40,110] perform SRC efficiently by using

only additions/subtractions which makes them attractive for SWR applications. However,

conventional CIC filters may be unsuitable for SWR, especially for SRC factors that are

close to unity, because they have a limited number of tuning parameters and they exhibit

a passband droop.

Fig. 7 shows a CIC filter of order N1 + N2 that performs SRC by a rational factor of

R/L [40], where N1 and N2 are the number of comb-integrator stages in the interpolation

and decimation sections, respectively. For fixed R/L, the performance of CIC filters can be

altered by changing the filter order which controls the image attenuation, and/or the delay

of the comb stages M that controls the filter bandwidth.

The remainder of this chapter is organized as follows. Section 3.1 briefly describes the

construction of the conventional CIC filter. Section 3.2 then discuss the modified CIC

filter and its computational requirements compared to the conventional CIC filter. Finally,

Section 3.3 compares the results of simulating the modified CIC filter to the conventional

CIC filter.

3.1 Conventional CIC Filter

The transfer function of the CIC filter for SRC by a factor R/L is obtained by reflecting

the low sample rate combs across the upsampler and downsampler to the intermediate high

sample rate (IHSR) section. This results in a transfer function with respect to the IHSR
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Figure 7: Conventional CIC filter of order N1+N2 for SRC by R/L.

given by

H(z) =

(
1 − z−RM

)N1
(
1 − z−LM

)N2

(1 − z−1)N

=

(
RM−1∑

k=0

z−k

)N1

·
(

LM−1∑
k=0

z−k

)N2

, (3)

where R is the interpolation factor; L is the decimation factor; N is the order of the CIC

filter (N = N1 +N2); and M is the delay of each comb stage. The power response P (f) of

the CIC filter is

P (f) =

(
sin(πRMf)

sin(πf)

)2N1 (
sin(πLMf)

sin(πf)

)2N2

, (4)

where f is normalized with respect to the IHSR. Eq. (4) shows that the CIC filter is a lowpass

filter with zeros occurring at multiples of f = 1/RM and f = 1/LM . The distribution

of zeros, over which there is limited control, is uneven resulting in a low attenuation at

some image frequencies. The effect of the uneven distribution of zeros over the undesired

images becomes more significant with input signals that have wide dynamic ranges because

insufficiently attenuated parts of the images may alias over low power parts of the desired

baseband signal.
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3.2 Modified CIC Filters

The construction of CIC filters makes their frequency response unsuitable for specific SWR

applications. An SWR system must be capable of processing narrowband channelized sig-

nals at wideband reception. Due to variations in the propagation environment, the wideband

input signal to an SWR has a very high dynamic range. For example, in accordance with

GSM 5.05, a GSM receiver should be capable of withstanding a blocking signal that is 85 dB

above the desired signal (when the two signals are from 0.8 MHz to 1.6 MHz apart) [25].

Depending on the location of the high-power narrowband channels in the wideband signal,

the attenuation of their images may be insufficient. To achieve better performance, we sug-

gest an SWR receiver that locates the high-power channels and accordingly sets the zeros

of the CIC filter close to their images to provide them with higher attenuation.

The CIC filter is modified by spreading the delays in the CIC filter comb stages. While

the delays of the combs in the conventional CIC filter are equal to RM or LM delay units

at the IHSR, the delays are either distributed evenly to provide a more uniform image

attenuation or they are set around specific values to provide additional suppression to

particularly strong image components. The modified CIC filter has transfer function

Hm(z) =

(
1−z−M1

) (
1−z−M2

)
· · ·

(
1−z−MN

)
(1 − z−1)N

=


M1−1∑

k=0

z−k




M2−1∑

k=0

z−k


· · ·


MN−1∑

k=0

z−k


, (5)

and power response

Pm(f) =
sin2(πM1f) sin2(πM2f) · · · sin2(πMNf)

sin2N (πf)
, (6)

whereM1,M2, . . . ,MN is a set of comb delays in delay units of the IHSR section that provide

the power response of the CIC filter with zeros at multiples of the normalized frequencies

f = 1/M1, 1/M2, . . . , 1/MN . Fig. 8 shows the modified CIC filter of order N . For the

best performance, the delays M1,M2, . . . ,MN are experimentally set to values in the range

max(MR,ML) to max(2MR, 2ML) depending on the power spectrum of the input signal

such that the modified CIC filter provides the most uniform image attenuation.
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Figure 8: Modified CIC filter of order N for SRC by R/L.

Fig. 9 illustrates the power response of fourth order conventional and modified CIC

filters for SRC by 9/10. The zeros of the conventional CIC filter are located at multiples of

f = 1/10 and 1/9, while the delays of the modified CIC filter are 16, 14, 12, and 10, which

produce zeros at multiples of f = 1/16, 1/14, 1/12, and 1/10. For a signal occupying 3/4

of the digital band, the conventional and modified CIC filters provide signal-to-noise ratios

(SNR) of 15 dB and 50 dB, respectively, where the SNR is defined as the power ratio after

lowpass filtering of the lowest power level in the desired signal to the highest power level in

the images.

The complexities of the conventional and modified CIC filters of orderN=N1+N2 can be

compared in terms of their memory requirements and number of additions (or subtractions)

per output sample (APOS). While the conventional CIC filter requires (N1 +N2)(M + 1)

memory elements, the modified CIC filter requires (N1 +N2) max(3M/2 + 1, 3ML/2R+ 1)

memory elements on average. The N1+N2 integrators of the conventional and modified CIC

filters require the same number of APOS. Since the integrators operate in the IHSR section,

every integrator requires R APIS. Therefore, the N1 +N2 integrator stages require a total

number of (N1 +N2)L APOS. The interpolation and decimation combs of the conventional

CIC filter require N1 APIS (N1L/R APOS) and N2 APOS, respectively. When expanded in
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Figure 9: Power response of 4th-order conventional (N1 = N2 = 2) and modified (N = 4)
CIC filters for SRC by R/L = 9/10.

tree structure, the transfer function of the modified CIC filter comb section has a maximum

of 2N1+N2 branches and operates on a signal that has R−1 zero samples between consecutive

sample of the input signal. This results in every branch requiring one addition/subtraction

every R samples of the IHSR signal and the comb stages requiring a maximum of 2N1+N2

APIS or 2N1+N2L/R APOS. Therefore, the conventional and modified CIC filters require

(N1+N2)L+N1L/R+N2 and a maximum of (N1+N2)L+2N1+N2L/R APOS, respectively.

For practical values of R/L close to unity, the modified CIC filter requires approximately

3/2 the number of memory elements and performs a maximum of (2N1+N2 −N1)L/R−N2

more APOS than the conventional CIC filter. The extra number of APOS is small for

practical SRC factors and filter orders when compared to the total number of computations

that the conventional CIC filter requires.

3.3 Simulation Results

In this example, the signal shown in Fig. 10 is processed by a fourth-order CIC filter to

perform SRC by a factor of 9/10. The input signal, chosen to illustrate the benefits of the

modified CIC filter, occupies 0.83 of the available digital band and contains 31 equal-power

frequency multiplexed channels and two 25 dB higher power channels. Fig. 11(a) shows
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that the conventional CIC filter fails to attenuate the high-power images resulting in visible

aliasing and a SNR of −13 dB. Fig. 11(b) shows that the modified CIC filter provides a

SNR of +28 dB. Fig. 12 shows the output signals of both filters where the output of the

conventional CIC filter [Fig. 12(a)] contains visible aliasing while the modified CIC filter

[Fig. 12(b)] does not. A second-order infinite impulse response (IIR) filter (requiring two

multiplications per output sample) is used to correct for the passband droop in the output

signals of both CIC filters. Fig. 12 shows that all low power channels have approximately

equal power, i.e., there is little passband droop.

0.01 0.02 0.03 0.04 0.05

40

20

0

0

−20

−40

−60

−80

P
o
w

e
r

S
p
e
c
tr

u
m

(d
B

)

Normalized Frequency f

31 Low-Power Channels

2 High-Power Channels

Figure 10: Input signal to conventional and modified CIC filters containing of 33 frequency
multiplexed channels (f is normalized with respect to the intermediate high sample rate).
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Figure 12: Output signals of (a) conventional CIC showing visible aliasing and (b) modified
CIC filter. Both filters are followed by second-order IIR filter to correct for the passband
droop of both filters.
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CHAPTER IV

EFFICIENT SAMPLE RATE CONVERSION FOR

SOFTWARE RADIO SYSTEMS USING HIERARCHICAL

COMPUTATION OF OUTPUT SIGNALS

The different methods that have been proposed in the literature for performing SRC in

SWR systems generally focus on reducing the sample rate of the received signals by rational

conversion factors [1, 37, 39, 43]. This SRC method increases the efficiency of SRC in SWR

systems by factors L/M > 1 by exploiting the fact that conventional SRC systems require a

constant number of computations for evaluating the different output samples of a particular

stage in a SRC process. For example, computing each output sample of the two stages in

a two-stage conventional SRC process that increases the sample rate of a wideband input

signal by a rational factor requires roughly a constant number of computations ignoring

possible symmetry of the coefficients of the filters that are used, which may reduce the

number of computations for some output samples. Reducing the number of computations

for evaluating some of the output samples of one or more stages may result in significant

lowering the overall rate of computations required by the complete SRC process. While

conventional SRC methods compute the output samples of a particular stage serially, this

chapter describes a SRC method that is effective for reducing the computational requirement

for SRC processes with rational factors L/M > 1 by computing the output sample in

a progressive form, allowing the information obtained from the computed samples at a

particular instant to be used towards the computation of other samples. This process may

reduce the average number of computations per sample for some SRC stages and for the

whole SRC process significantly.

The remainder of this chapter is organized as follows. Section 4.1 describes the new SRC

method, and Section 4.2 compares its computational requirements to other SRC methods.
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Finally, Section 4.3 presents simulation results of this new method.

4.1 The New SRC System

The efficiency of the SRC method discussed in this chapter is generally higher than con-

ventional SRC methods for the computationally demanding case of increasing the sample

rate and, therefore, we consider rational SRC factors L/M that are greater than unity. To

describe the suggested new SRC method, we will consider first a single-stage conventional

SRC process with conversion factor L/M > 1, and then discuss extending the process to

multi-stage SRC processes. Since L/M is greater than unity, the cutoff frequency of the

filter that is required for the single stage SRC process is proportional to 1/L. Assume

that a (1/L)th-band lowpass filter [14], which has a cutoff frequency of π/L, is used after

the upsampling-by-L process to eliminate the images of the desired baseband signal before

downsampling by M . Therefore, the computation of each of the L/M samples that are

computed per input sample requires 2A multiplications, where A is an integer. The aver-

age number of multiplications for computing the output samples of this single-stage SRC

process can be reduced by computing a low-rate set of output samples that constitutes

a fraction q of the total output samples by using the (1/L)th-band lowpass filter. This

fraction q of output samples and the input samples can then be used for computing the

remaining output samples using a lower number of multiplications per output sample. Fur-

ther computational reduction may be achieved by applying the procedure described above

multiple times in a recursive fashion, as will be discussed later. Unlike a multi-stage SRC

process where the input samples to a particular stage are hidden from following stages, the

process of computing an output sample in the SRC method described here has access to all

previously computed output samples as well as all input samples.

Suppose that a sequence of samples x(nT1) for which SRC by a factor L/M > 1 is to

be applied have been obtained by sampling the continuous-time signal x(t) at a rate higher

than the Nyquist sampling rate, where n is the sample index and T1 is the sampling period.

A continuous-time lowpass filter with the impulse response

h(t)=w

(
t

AT1

)
sinc

(
t

T1

)
, −∞<t<∞, (7)
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where w(t/AT1) is a symmetric window with w(0) = 1 and w(t/AT1) = 0 for |t|>AT1, can

be used for evaluating the continuous-time waveform x(t) at any desired t from the samples

x(nT1) as

x(t) =

⌊
t

T1

⌋
+A∑

n=

⌊
t

T1

⌋
−A+1

x(nT1) w

(
t−nT1

AT1

)
sinc

(
t−nT1

T1

)
, (8)

where �t� is the largest integer not grater than t. The filter h(t) with the cutoff frequency

fc = 1/2T1 Hz, is suitable for SRC by factors L/M >1. For factors L/M < 1, h(t) can be

used only if the bandwidth of the input signal x(nT1) is limited to a maximum of L/M of

the digital band so that aliasing is avoided when the sample rate is reduced. In the following

discussion, we consider the case of SRC in SWR systems by rational factors L/M >1. We

also restrict the SRC factors to rational values since the ratios of the sample rates of the

different air interfaces that SWR systems transceive are always rational numbers. Using

(8), SRC can be performed by periodically resampling x(t) at some desired sample rate

1/T2, to give

x(lT2) =

⌊
l
T2
T1

⌋
+A∑

n=

⌊
l
T2
T1

⌋
−A+1

x(nT1) w

(
lT2−nT1

AT1

)
sinc

(
lT2−nT1

T1

)
, (9)

where l is an integer, and T2 = MT1/L. Compared to an ideal SRC process, where an

infinite number of input samples contribute to each output sample, the image attenuation

of the non-ideal SRC process given in (9) is finite and the transition bandwidth is nonzero

because only 2A input samples are used for computing each sample of the output signal.

Different windows can be used in (9), the simplest of which is the rectangular window,

which has poor spectral characteristics in the sense that it provides the undesired SRC

images with low attenuation. For better SRC performance, windows that are continuous

at the edges like the Blackman and Kaiser (with large values of the parameter β) windows

can be used [73]. Substituting for T2 in terms of T1 and expanding the sinc(·) function in

(9) gives

x

(
lMT1

L

)
=

sin
(
π lM

L

)
π

� lM
L �+A∑

n=� lM
L �−A+1

(−1)nx(nT1) w
(

lM−nL
AL

)
lM
L − n

, (10)
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where the identity sin(t + nπ) = (−1)n sin(t) has been used. Excluding the effect of the

window w(t/AT1), (10) shows that an input sample influences the magnitude of an output

sample in proportion to the inverse time difference between the two samples. Equation (10)

also shows that an output sample with an integer value of l/L is coincident and equal to an

input sample and, therefore, need not be calculated.

Now assume that output samples x(lMT1/L) have already been computed for a small

fraction of the possible values of l using (10) for example. The output samples for all

the remaining values of l can be represented in terms of the input samples and this set of

computed output samples. This representation of x(lMT1/L) can be obtained by assuming

that x([l+k]MT1/L) for all k ∈ Φ have been computed, where Φ = {φ1, φ2, · · · , φb} is a set

of b nonzero integers with φ1<φ2< · · ·<φb such that {l + φ1, l + φ2, · · · , l + φb} represents

the indexes of all the output samples used along with the input signal for computing the

output sample x(lMT1/L). Representing the (l+ k)th output sample x([l+ k]MT1/L) in a

form similar to that of the lth output sample x(lMT1/L) in (10) gives

x

(
[l + k]MT1

L

)
=

sin
(
π [l+k]M

L

)
π

⌊
[l+k]M

L

⌋
+A∑

n=
⌊

[l+k]M
L

⌋
−A+1

(−1)nx(nT1) w
(
[l+k]M−nL

AL

)
[l+k]M

L − n
. (11)

Define Sl and Sl+k to be the summations appearing in (10) and (11), respectively, i.e.,

Sl ≡
� lM

L �+A∑
n=� lM

L �−A+1

(−1)nx(nT1) w
(

lM−nL
AL

)
lM
L − n

, (12)

Sl+k ≡
⌊

[l+k]M
L

⌋
+A∑

n=
⌊

[l+k]M
L

⌋
−A+1

(−1)nx(nT1) w
(
[l+k]M−nL

AL

)
[l+k]M

L − n
. (13)

The summation Sl+k for different values of k ∈ Φ of the sample x([l+ k]MT1/L) represents

additional information that can be used for computing Sl, from which the value of the target

output sample x(lMT1/L) can be easily computed. Using the Lagrange interpolation func-

tion (LIF) [83], which is defined for a set of points {(t1, f(t1)), (t2, f(t2)), · · · , (tN , f(tN ))}
as

f(t) =
N∑

j=1

N∏
s=1
s �=j

(t− ts)

N∏
s=1
s �=j

(tj − ts)

f(tj), (14)

34



we can define RΦ(l) as the LIF of the points (kM/L, Sl−Sl+k), for all k ∈ Φ, i.e.,

RΦ(l) ≡
∑
k∈Φ



[
αk

∏
s∈Φ
s �=k

(
sM

L

)]
(Sl − Sl+k)


 , (15)

where the coefficients {αk, k ∈ Φ} of the Lagrange polynomials satisfy

∑
k∈Φ

[
αk

∏
s∈Φ
s �=k

(
sM

L

)]
= 1. (16)

Therefore, RΦ(l) in (15) simplifies to

RΦ(l)=Sl−
∑
k∈Φ



[
αk

∏
s∈Φ
s�=k

(
sM

L

)]
Sl+k


 . (17)

Substituting Sl and Sl+k defined in (12) and (13) into (17) permits the representation of

RΦ(l) in terms of all the input samples that contribute to Sl+k for all k ∈ Φ. If the elements

of Φ = {φ1, φ2, · · · , φb} satisfy φ1 < 0 < φb, roughly 2A+M(φb−φ1)/L input samples will

contribute to RΦ(l) as shown by

RΦ(l)=

A+Mφb/L∑
n=−A+Mφ1/L+1

λl(n) x

[(
n+

⌊
lM

L

⌋)
T1

]
. (18)

The coefficient λl(n) in (18) for a particular n is obtained by collecting the coefficients of

the input sample x[(n+ �lM/L�)T1] when Sl and Sl+k, for all k ∈ Φ, that are given in (12)

and (13), respectively, are substituted into (17). Fig. 13 plots |λl(n)| against |n| for a Kaiser

window (β = 9.5 and size 2A= 122) for a virtual SRC factor L/M = 1. The figure plots

|λl(n)| for Φ = ∅ (i.e., the magnitude of the coefficients of a Kaiser-windowed lowpass filter),

and Φ = {−1, 1}, {−3,−1, 1, 3}, {−6,−2, 2, 6}, {−5,−3− 1, 1, 3, 5}, {−10,−6,−2, 2, 6, 10},
and {−20,−12,−4, 4, 12, 20}. The plots in Fig. 13 are normalized with respect to the

maximum value of each plot. Fig. 13 shows that |λl(n)| decays at different rates for different

Φ, meaning that some terms in the summation in (18) can be dropped if their contribution

to RΦ(l) is negligible. For other values of L/M , the plots of |λl(n)| generally have the same

form as the plots in Fig. 13, but have different rates of decay.

A Kaiser-windowed (β = 9.5 and 2A = 122) lowpass filter, for example, has a transition

bandwidth that is 10% of the passband width and provides a stopband attenuation of
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Figure 13: Normalized magnitude of the coefficients λl(n) in RΦ(l) versus |n| for different
Φ sets for the Kaiser window of size 2A=122 and a virtual value of L/M = 1.

approximately 95 dB. For a Kaiser window, plots of the coefficients |λl(n)| shown in Fig. 13

for Φ = ∅, {−1, 1}, {−3,−1, 1, 3}, {−6,−2, 2, 6}, {−5,−3−1, 1, 3, 5}, {−10,−6,−2, 2, 6, 10},
and {−20,−12,−4, 4, 12, 20} drop below the −95 dB level for |n| greater than or equal to 57,

25, 11, 18, 9, 17, and 31, respectively. Consequently, RΦ can be computed to a high degree

of accuracy using fewer than 2A+M(φb−φ1)/L terms such that the error in computations

caused by dropping terms is much less than the error introduced by the finite precision of

the computations. Due to the small discontinuities at the Kaiser window edges, some plots

of |λl(n)| in Fig. 13 experience a sudden increase as |n| approaches A, which is equal to 61

in this case. Careful inspection of these plots for |n| near 61 reveals that they remain below

−112 dB, which is much lower than the stopband attenuation of the filter and, therefore,

the effect of this sudden increase of |λl(n)| on the accuracy of the computed output samples

is negligible.

Using (17), we can write Sl in terms of RΦ(l) and Sl+k for k ∈ Φ, and substitute the

result into (10). This results in

Sl =
∑
k∈Φ

[
αk

∏
s∈Φ
s �=k

(
kM

L

)]
Sl+k +RΦ(l), (19)
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and

x

(
lM

L
T1

)
=

sin
(
π lM

L

)
π

Sl. (20)

Using (19) and (20) yields a systematic method for computing the target output sample

x(lMT1/L) from the input samples that are embedded in RΦ(l) and the additional informa-

tion given by Sl+k for all k ∈ Φ. Since |λl(n)| for small values of |n| and Φ different from ∅
generally decays faster than the decay of the coefficients of a windowed lowpass filter, RΦ(l)

can be computed to a specified accuracy by using only 2B (� 2A) terms. Fig. 13 shows

that the value of B required to achieve the desired accuracy generally decreases as size b of

the set Φ increases and as the magnitude of its elements decrease. The minimum required

value of B is determined by the value of L/M , the desired SRC image attenuation, and the

error due to finite-precision computations. Proper selection of the value of B will guarantee

that the contribution of the summation terms in (18) to RΦ(l) for which n<−B+1 and

n>B is negligible and, therefore, these terms can safely be dropped from the summation.

Fig. 13 and similar figures for other values of L/M can be used for estimating B, where

B is roughly equal to the minimum n above which the value of |λl(n)| for a given Φ drops

sufficiently below the desired image attenuation or the finite-precision error.

Reducing the number of terms in the summation of RΦ(l) in (18) to 2B terms, and

substituting it into (19) and (20) results in the approximation

x

(
lM

L
T1

)
≈

sin
(
π lM

L

)
π

Ŝl, (21)

where Ŝl is an approximation of Sl given by

Ŝl =
∑
k∈Φ

[
αk

∏
s∈Φ
s�=k

(
sM

L

)]
Sl+k+

B∑
n=−B+1

λl(n) x

[(
n+

⌊
lM

L

⌋)
T1

]
. (22)

Assuming that Sl+k for a particular l and all k ∈ Φ are available, (21) and (22) can be

used for computing a highly accurate value of x(lMT1/L) by using a total of 2B + b + 1

multiplications, where all coefficients are pre-computed for all values of (l mod L). The

multiplication by the periodic sin(πlM/L)/π in (21) can be embedded into the coefficients

αk
∏

s∈Φ
s�=k

(
lM
L

)
and λl(n) in (22) to reduce the number of multiplications to 2B+b. Therefore,
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this SRC method discussed here requires the computation of a low-rate sequence of Sl values

at nonconsecutive periodic series of l values using (12). Such a low-rate sequence of Sl values

can then be used for evaluating the corresponding output samples x(lMT1/L) using (20)

as well as for getting the approximate values of Sl using (22), which in turn can be used for

evaluating other output samples. Multiple steps of this process can be performed until Sl

(or its approximation Ŝl) becomes available for all l so that x(lMT1/L) can be evaluated

for all l.

To compute the SRC output samples x(lMT1/L) using the SRC method described here,

the sequence of the required Sl or its approximation, Ŝl, can be computed in multiple steps

to increase the efficiency of the SRC process. This allows the use of the results obtained

from previous steps in the following steps. Consider that the computation of Sl or Ŝl for all

integer values l are computed in P steps. We define Ψj , for j = 1, 2, · · · , P , to be different

sets consisting of all the values of l at which Sl (or Ŝl) have been already computed and are

available at the beginning of the jth step. The computation of Sl for a particular l in the

jth step is then performed using any set Φ = {φ1, φ2, · · · , φb} that satisfies

{l + φ1, l + φ2, · · · , l + φb} ⊂ Ψj . (23)

That is, RΦ(l) in (17) is represented using Sl+k for values of k ∈ Φ, or equivalently l+k ∈ Ψ,

only. It is important to note that different Φ sets may be required for the computation of Sl

for different values of l depending on the relative position of Sl to Sl+k that are available.

Higher computational efficiency of our SRC method is achieved by optimizing the elements

of the Ψj sets. Increasing the sparsity of the elements in Ψj will increase the values of B

and b that are required for achieving a specified computational accuracy of Sl in the jth

step. By trading-off the sparsity of the sets Ψj , the computations of the SRC method can

be optimized. Fig. 14 shows a flow chart of the steps in the SRC method described here,

where the flow of computations goes from left to right and top to bottom. Proper delays

may be required to guarantee the availability of all the required intermediate results before

carrying out the different computations.

Computing Sl for specific values of l may be more computationally efficient than other
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values of l. The increased efficiency in computing Sl at particular values of l results from

using symmetry of the coefficients of the input samples in (12) to reduce the number of

multiplications, where the number of multiplications required for computing Sl may be

reduced by approximately one half. This coefficient symmetry can be used to provide a

more efficient SRC process for SRC factors that are generally close to unity. In this scenario,

a stage of the SRC process with factor L/M can be broken into two stages with SRC factors

L1/M1 and L2/M2 such that L/M = (L1/M1) · (L2/M2). The SRC factor L1/M1 of the

first stage can be chosen such that S∗
l for some or all integer l take advantage of the

symmetry and therefore can be computed efficiently. Following the computation of this

efficiently computed sequence S∗
l , the second SRC stage is applied where another sequence

Sl is computed at low cost and directly used for obtaining the output samples x(lMT1/L).

For example, the computation of S∗
l is efficient for L1/M1 = 2, where lM1T1/L1 lies over

an epoch of an input sample for even values of l and halfway between epochs �l/2�T1 and

(�l/2�+1)T1 of the (�l/2�)th and (�l/2�+1)th input samples for odd values of l, respectively.

Therefore, the computation of S∗
l in the first stage for any odd value of l can be performed

using a modified form of (12) that takes symmetry in consideration. This modified form of

(12) at l = 2i+ 1 for integer i is given by

S∗
l=2i+1 =

A∑
n=1

(−1)nw
(
1−2n
2A

)
1
2 − n

{x([2i+n]T1)−x([2i−n+1]T1)} . (24)

The approximation of an Sl value given in (22) can also be modified to take advantage of

symmetry for a symmetric Φ, i.e., the elements of Φ are symmetric about zero, as

Ŝ∗
l=2i+1 ≈

∑
k∈Φ∗

[
αk

∏
s∈Φ
s�=k

s

2

]
{S2i+1+k + S2i+1−k}

+
B∑

n=1

λ2i+1(n) {x([2i+n]T1)−x([2i−n+1]T1)} , (25)

where Φ∗ = {φ1, φ2, · · · , φb/2}. The sequence of S∗
l for a sparse set of odd values of l can be

computed using (24) and then used for computing the approximations Ŝ∗
l of S∗

l for other

values of l using (25) in multiple steps until S∗
l or Ŝ∗

l have been computed for all odd l.

The second stage of the SRC process can then be applied for computing Sl and the output
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samples using the results of the first stage. The efficiency of computing S∗
l at odd l implies

that for roughly the same cost twice as many S∗
l values can be computed using (24) as Sl

using (12) may be computed. This generally reduces the SRC computational cost without

sacrificing performance.
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Figure 14: Flow of computations in a typical implementation of the SRC method described
in this chapter, where computations flow from left to right and top to bottom. Proper
delays are required before performing computations to guarantee that intermediate results
are available. Solid lines from input samples to S3, S6, S9 are computations in (12), dashed
lines from input samples to RΦ(1), RΦ(2), · · · , RΦ(8) are computations in (18), and dotted
lines from S3, S6, S9 and RΦ(1), RΦ(2), · · · , RΦ(8) to Ŝ1, Ŝ2, Ŝ4, Ŝ5, Ŝ7, Ŝ8 are computations
in (22).

4.2 Computational Requirements of the New SRC Method

The computations requirements of the new SRC method are determined by several factors,

including the choice of conversion factors for the different SRC stages, the desired spurious-

free dynamic range (SFDR) of the SRC process, and the bandwidth, oversampling ratio,
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and sample rate of the input signal. In a two-stage SRC process, for example, the efficiency

of this method compared to a conventional SRC method generally increases as the ratio of

the conversion factors in the first to second stages increases, as the SFDR increases, and as

the oversampling ratio of the SRC input signal decreases, i.e., as the sample rate approaches

the Nyquist rate.

The computational requirements of the new SRC method will be compared to conven-

tional single- and two-stage SRC methods that use equiripple FIR lowpass filters in all

stages. The order of an FIR lowpass filter that is required for attenuating the undesired

SRC images by a fixed amount in a particular stage of a conventional SRC process with

factor L/M > 1 is proportional to the value of L and inversely proportional to the transition

bandwidth [14]. Therefore, a conventional single-stage SRC process that requires a filter of

order 2CL will perform 2C MPOS, where the value of C depends on the oversampling ratio

of the input signal and the maximum passband and stopband ripples. This can be extended

to a two-stage SRC process with first- and second-stage conversion factors of L1/M1 > 1 and

L2/M2 > 1, respectively, where the overall conversion factor is L/M = (L1/M1) · (L2/M2).

Assuming (1/L1)th- and (1/L2)th-band lowpass filters of orders 2DL1 and 2EL2 are used

for the first and second stages, respectively, where D and E depend on the oversampling

ratio of the input signal and the maximum passband and stopband ripples, the first and

second stages would perform 2DM2/L2 and 2E MPOS, respectively. Therefore, the total

required MPOS for this two-stage SRC process is 2DM2/L2+2E. The values of C for the

single-stage and D for the two-stage SRC processes are typically close to the required value

of A in the SRC process discussed here.

Our SRC method may significantly reduce the computations required for SRC compared

to a conventional single- or multi-stage SRC approach. Assume that the computation of Sl

for all the required values of l in a particular SRC stage is performed in P + 1 hierarchical

steps indexed 0, 1, · · · , P . In the zeroth step, a fraction q0 of all Sl values are computed

using (12) at a cost of 2A multiplications for each computed Sl. The jth step, where

j = 1, 2, · · · , P , of the proposed method then approximates a fraction qj of all the Sl values

using (22) at an average cost of 2B̄j + b̄j multiplications per computed Sl, where B̄j and
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b̄j represent averages of Bj and bj . The use of averages of Bj and bj is attributed to the

fact that approximating Sl may require different Φ sets for different values of l, which may

result in the use of different values of Bj and bj for different values of l. Finally, one MPOS

may be required for obtaining an output sample from Sl or its approximation for any value

of l. Therefore, this SRC stage performs a maximum number of MPOS of

MPOS = 2q1A+ 1 +
P∑

j=1

qj
(
2B̄j + b̄j

)
. (26)

The use of symmetry as described by (24) and (25) may further reduce the MPOS given by

(26) for some SRC factors. The required MPOS of the new SRC method in (26) assumes

that all the coefficients of the input samples in (12) and (22) and all the coefficients of Sl+k

for all k in (22) for the different Φ sets that would be used are pre-computed and stored.

The Φ sets required for different output samples are periodic if each step of the process

computes Sl for a periodic set of l values. Therefore, only a finite number of coefficients

need to be computed and stored.

To illustrate the computational efficiency of the SRC method discussed here, we consider

two different SRC processes with factors 7 and 7/5 and compare the MPOS required by the

method described here for performing these processes to the MPOS required by conventional

SRC methods. Configuration I of the proposed method is a single-stage five-step SRC

process. For the SRC factor L/M = 7, the zeroth step of this configuration evaluates Sl for

l = 24i at all integer i using a Kaiser window with A = 61 and β= 9.5. Then, the values

of Sl that have not been computed in previous steps for l = 12i, l = 8i, l = 3i, and l = i

at all integer i are computed in steps 1, 2, 3, and 4, respectively, using the average values

B̄1 = 19.58, B̄2 = 7.58, B̄3 = 4.87, B̄4 = 2.76 and b̄1 = 8.55, b̄2 = 9.00, b̄3 = 7.13, b̄4 = 7.45.

Taking into consideration the ratios of the total Sl that are computed in each step, it is

seen that this configuration requires on average 19.35 MPOS. Compared to a single-stage

conventional SRC process with L/M = 7 that uses a filter with C = 57, the required MPOS

is 114 MPOS. A two-stage process with L1/M1 = 3 and L2/M2 > 7/3 would require values

of D = 58 and E = 4, which result in the SRC process requiring 57.71 MPOS. Since the

new SRC method requires optimization of the different values of l at which Sl is computed
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and the required averages B̄j and b̄j in the different steps of the different stages, evaluating

the MPOS for the new SRC method at different values of L/M is nontrivial.

Configuration II of the SRC method described above uses a two-stage process that

depends on coefficient symmetry illustrated by (24) and (25), where the conversion factor

of the first stage is 2. This SRC method uses a four-step process in the first stage and a single

step in the second stage. The zeroth step of the first stage evaluates Ŝl at l = 8i for all integer

i that do not correspond to input samples by using (12) with A = 61. Step 1 then computes

Ŝl for all l = 4i that have not been computed with Φ1 = {−20,−12,−4, 4, 12, 20} and B1 =

34. Step 2 computes Ŝl for l = 2i with Φ2 = {−10,−6,−2, 2, 6, 10} and B2 = 19. Using

all previously computed Ŝl, Step 3 computes Ŝl for l = i with Φ3 = {−5,−3,−1, 1, 3, 5}
and B3 = 10. Performing this step gives known values of Ŝl for all integers l. Therefore,

the second stage of the process with a single step computes Sl of the second stage for all

integer l that correspond to the desired output sample using a small value of A = 14.

Since the fractions q0, q1, q2, and q3 of all Ŝl values computed in the different steps of

the first stage are equal to 1/8, 1/8, 1/4, and 1/2, respectively, this configuration requires

24.25M/L + 15(L − 1)/L MPOS on average. A two-stage conventional SRC system that

provides similar performance with a half-band filter in the first stage would have D = 60

and E = 7 and, therefore, perform an average of 60M/L+14 MPOS. This demonstrates

that the new SRC method in this case requires less MPOS than a conventional two-stage

SRC method with a half-band filter in the first stage for a range of SRC factors.

4.3 Simulation Results

Configuration I of the SRC process described in Section 4.2 is applied to an input signal for

SRC by a factor L/M = 7, where a minimum image attenuation of 95 dB and a transition

bandwidth equal to 10% of the passband are desired. The wideband signal that is shown in

Fig. 15, which has an amplitude resolution of 19 bits and is constructed by adding 38 equal-

power frequency division multiplexed (FDM) channels that occupy 95% of the available

digital band, is input to this configuration. The output signal of the SRC process is shown

in Fig. 16. It is seen that our SRC provides all image spurs with an attenuation of at least
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95 dB relative to the peak power of the desired baseband signals, and therefore provides

a SFDR of 95 dB using 19.35 MPOS on average compared to 114 and 57.71 MPOS for

the single- and two-stage conventional SRC methods, respectively, at the same SRC factor

L/M = 7.

The input signal in Fig. 15 is also applied to Configuration II of the new SRC method

described in Section 4.2, where the intermediate high-sample-rate and output signals of this

configuration are shown in Fig. 17(a) and 17(b), respectively. This configuration performs

SRC by a factor of L/M = 7/5 in two stages. The intermediate high-sample-rate signal

indicates that this configuration also achieves a SFDR of 95 dB using 30.18 MPOS. The

computational requirement of Configuration II is significantly lower than the computational

requirement of the two-stage SRC method with a half-band filter in the first stage, which

requires 56.85 MPOS. All the computations in the two examples given in this section are

performed using fixed-point operations, where the signals, including all intermediate results,

are represented with 19 bits of accuracy. Lowering the accuracy of computations below 19

bits will reduce the achievable SFDR of the new and traditional SRC methods below the

desired 95 dB, because the quantization noise becomes dominant over the noise of the 95 dB

attenuated images when the accuracy of computations is lower than 19 bits.
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Figure 15: The input signal to the suggested SRC system occupying 0.95 of the available
digital band.
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Figure 16: The output signal of Configuration I of the suggested SRC method with SRC
factor L/M = 7. This configuration is a single-stage five-step process that requires only
19.35 MPOS on average.
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Figure 17: (a) The filtered high-sample-rate signal and (b) output signal of Con-
figuration II of the suggested SRC system for L/M = 7/5. The system uses Φ2 =
{−20,−12,−4, 4, 12, 20} with B2 = 34, Φ3 = {−10,−6,−2, 2, 6, 10} with B3 = 19,
Φ4 = {−5,−3,−1, 1, 3, 5} with B4 = 10 in the first stage and uses Φ0 = {−2,−1, 0, 1, 2}
with B0 = 5 for the second stage. This configuration requires 30.18 MPOS on average.
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CHAPTER V

EFFICIENT WIDEBAND CHANNELIZER FOR

SOFTWARE RADIO SYSTEMS USING MODULATED

PERFECT RECONSTRUCTION FILTER BANKS

Due to the variations in the propagation environment of the FDM channels in the SWR

received signal and the desired SWR flexibility obtained by using single wideband ADC

and DAC, SWR channelizers are forced to operate on channels with high dynamic ranges

and high sample rates. The signals processed by an SWR transceiver may contain the

complete transmission band of a wireless air interface with a dynamic range in excess of

90 dB and bandwidth of 25–150 MHz, i.e., a sample rate of 350 Msamples/s. Satisfying the

computational requirements for fully channelizing or synthesizing such signals may demand

the use of a large number of currently available DSPs for the SWR base station transceiver

functionality [6, 39, 63,85].

This chapter describes a simple channelization method that is capable of significantly

reducing the number of computations for channelization in cases where polyphase decom-

position of the channelizer filters is inapplicable and discrete filter bank (DFB) channelizers

must be used. The new channelizer can also be modified for synthesizing a set of baseband

channels into a wideband signal for transmission. As for DFB channelizers in SWR systems,

SRC may be required after this channelizer to change the sample rates of the channels to

the proper rates required for further baseband processing. The new channelizer uses mod-

ulated perfect reconstruction (PR) filter banks. Because the required modulated PR filter

banks have extremely high number of subchannels and prototype filters with high stop-

band attenuations, design methods of these filter banks that are described in the literature

are generally impractical. A procedure that is based on an efficient PR filter bank design

method in the literature is suggested for designing the required modulated PR filter banks
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in the next chapter.

The remainder of this chapter is outlined as follows. Section 5.1 discusses the chan-

nelization of SWR signals. In Section 5.2, the modulated filter banks that are used in

the new channelizer are described. Section 5.3 describes the channelization method. Sec-

tion 5.4 compares the computations for the new and the DFB channelization methods, and

Section 5.5 shows simulation results of the new channelizer.

5.1 Channelization of SWR Signals

Extracting a subset of the N channels contained in the received SWR wideband signal

can be performed efficiently by polyphase decomposition of the filters of modulated DFB

channelizers when the desired sample rate of the extracted channels is 1/L of the sample rate

of the input signal, such that L = K ×N is satisfied for an integer K, and the digital band

is equally divided among all N channels [117,119,120]. Since SWR systems are expected to

transceive channels of different air interface specifications simultaneously, the bandwidths

of the different channels transceived at a particular time may be different and therefore,

these conditions may are not satisfied. In this case, polyphase decomposition of the filter

bank may be inapplicable and DFB channelizers may be the only applicable method for

channelizing the signal. Compared to the DFB channelizer, polyphase filter bank (PFB)

channelizers reduce the required computations for channelization by a factor roughly equal

to the number of extracted channels.

The ability of SWR systems to efficiently channelize signals with variable-bandwidth

channels, where the conditions for polyphase decomposition of the filters of DFB chan-

nelizers are not satisfied, may be necessary to provide the flexibility to process single- or

multi-standard signals having channels of differing bandwidths [26]. Various filter bank

channelization methods that may be applicable for channelizing specific single- or multi-

standard SWR signals have been proposed [26,117–120]. However, the only known channel-

ization method for SWR signals that contain single- or multi-standard channels of differing

bandwidths where no restriction is placed on the individual channels is the DFB channel-

izer. The channelizer described in this chapter is capable of channelizing SWR signals that
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contain single- or multi-standard channels with nonequal bandwidths at an efficiency that

is much higher than that of the DFB channelizer, especially for large number of extracted

channels.

5.2 Exponentially-Modulated Perfect Reconstruction Filter

Banks

The design and implementation of PR and near-PR finite impulse response (FIR) filter

banks have been extensively studied in the literature [16, 17, 31, 48, 68–72, 87, 104–106, 109,

115]. We are interested in this chapter in a class of filter banks known as modulated PR

filter banks. Since the filters of modulated PR filter banks are obtained by modulating

a prototype filter, they can be efficiently constructed using polyphase decomposed forms

of the filter banks. It was shown in [57, 78, 108] that modulated PR filter banks exist for

linear-phase prototype filters of length 2M , where M is the number of subchannels in the

cosine-modulated filter bank. This result was extended in [58] for prototype filters of length

2mM , where m is an arbitrary positive integer, and an efficient method for designing

prototype filters of modulated PR filter banks was proposed in [51]. Compared to the

quadrature mirror filter (QMF) bank design methods, the design method of [51] requires

the optimization of at most half the number of parameters that are optimized in pseudo-

QMF bank design methods, and a smaller fraction of the number of parameters that are

optimized in modulated-QMF bank design methods for similar filter lengths.

Most discussion on modulated PR filter banks in the literature is dedicated to cosine-

modulated PR filter banks. In the efficient method for designing prototype filters of cosine-

modulated PR filter banks proposed in [51], length-2mM prototype filters h(n) are designed

by optimizing m�M/2� parameters. The kth filters, ĥk(n) and f̂k(n), of the analysis and

synthesis sections, respectively, of the filter bank in this design method are obtained by

cosine modulating the real-valued linear-phase filter h(n) as

ĥk(n) = 2h(n) cos
[
(2k + 1) π

2M

(
n− 2mM−1

2

)
+ (−1)k π

4

]
,

f̂k(n) = 2h(n) cos
[
(2k + 1) π

2M

(
n− 2mM−1

2

)
− (−1)k π

4

]
,

(27)

for n = 0, 1, · · · , 2mM−1, and k = 0, 1, · · · ,M−1. Due to the cosine modulation, the PR
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filter bank requires only M branches for PR of the input signal.

In SWR systems, the real-valued analog signal received by the antenna is eventually

converted into a complex-valued digital signal X(z) that is feed to the channelizer in the

form of real-valued in-phase and quadrature signals with bandwidths that may be close to

half the sample rates and therefore, the bandwidth of X(z) may be close to the sample

rate. The use of cosine-modulated PR filter banks in the channelizer discussed here, which

is based on modulated PR filter banks, causes aliasing of the components of X(z) that are

in the digital frequency bands [0, π] and [π, 2π] over each other in the channelized output

signals. Consequently, the complex-exponential modulation (CEM) is used in the PR filter

banks of this channelizer to eliminate this aliasing at the expense of requiring 2M branches

in the filter bank compared to M branches for the cosine-modulated PR filter bank. It is

shown in the Appendix that the cosine modulation in (27) is actually a form of the CEM.

As a result, PR prototype filters designed for cosine-modulated PR filter banks are also

applicable for CEM PR filter banks. The CEM that will be used for the channelizer is given

by

hk(n) = fk(n) = h(n)ej
kπ
M (n− 2mM−1

2 ) = h(n)W
−k(n− 2mM−1

2 )
2M , (28)

where WM =e−j2π/M , n = 0, 1, · · · , 2mM−1, and k = 0, 1, · · · , 2M−1. The discrete filter form

of the CEM filter bank is shown in Fig. 18(a), and its output can be expressed in terms of

the input X(z) as

X̂(z) =
1

M

M−1∑
p=0

X (zW p
M )

2M−1∑
k=0

Hk (zW p
M )Hk(z), (29)

where Hk(z) is the z-transform of hk(n). The signal X̂(z) in (29) can be decomposed into

two parts as

X̂(z) =
1

M
X(z)

2M−1∑
k=0

H2
k(z) +

1

M

M−1∑
p=1

X (zW p
M )

2M−1∑
k=0

Hk (zW p
M )Hk(z), (30)

where the first term is the desired signal and the second term is the aliasing signal. The

aliasing term nearly cancels out when H(z), from which all filters of the bank are derived,

is a PR prototype filter. The remaining aliasing signal has a power spectrum density (PSD)

that is extremely lower than the PSD of the desired signal over the complete frequency

spectrum [51].
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Figure 18: The CEM PR filter bank in (a) DFB form, and (b) PFB form.

To increase the computational efficiency of the CEM filter bank of Fig. 18(a), the analysis

and synthesis filters are expressed in terms of the length-m polyphase components of H(z)

by writing

Hk(z) = Fk(z) =
2mM−1∑

n=0

h(n)W
−k(n− 2mM−1

2 )
2M z−n

=
2M−1∑
q=0

m−1∑
r=0

h(q + 2Mr)W
−k(q+2Mr− 2mM−1

2 )
2M z−q−2Mr

=
2M−1∑
q=0

W
−k(q− 2mM−1

2 )
2M z−q

m−1∑
r=0

h(q + 2Mr)z−2Mr

︸ ︷︷ ︸
Eq(z

2M )

. (31)

Denoting Eq(z) to be the qth polyphase component of H(z) permits writing Hk(z) and

Fk(z) as

Hk(z) = Fk(z) = W
k 2mM−1

2
2M

2M−1∑
q=0

Eq(z
2M )W−kq

2M z−q, (32)
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which allows the representation of the analysis and synthesis filters as sums of the modulated

2M polyphase components of H(z). The CEM of the polyphase components in the analysis

and synthesis sections can be performed easily using a 2M -point inverse discrete Fourier

transform (IDFT) and a 2M -point discrete Fourier transform (DFT), respectively. For

highly composite values of 2M , especially power-of-two values, the Cooley-Tukey 2M -point

inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT), respectively, can

be used instead [73]. The polyphase decomposed CEM filter bank is shown in Fig. 18(b).

For consistency with most of the literature, the number of subchannels that is associated

with a PR prototype filter in this chapter will be set to the number of subchannels in the

corresponding cosine-modulated filter bank. Therefore, M -subchannel PR prototype filters

can be used in either M -subchannel cosine-modulated filter banks or 2M -subchannel CEM

filter banks.

5.3 The New Channelization Method

The use of DFB channelizers for channelizing SWR signals is computationally demanding,

especially for channelizing high dynamic-range wideband SWR signals composed of a large

number of FDM channels. Although polyphase decomposition of the channelizer filter bank

can significantly reduce the number of computations for channelization, it is applicable only

if some stringent conditions are satisfied. The strict conditions for using PFB channelizers

imply a limitation in the ability of SWR systems to receive and process single- or multi-

standard signals comprised of channels having differing bandwidths. The traditional method

for extractingNe channels from a signal withN variable-bandwidth channels is to use a DFB

channelizer with Ne variable bandwidth filters and constant transition bandwidths equal to

the minimum guard bandwidth in the signal. The required number of computations for the

DFB channelizer may be impractical for large values of Ne.

In this section, a new channelizer is described, which can channelize large-N signals that

do not satisfy the conditions for polyphase decomposition of the DFB. It is assumed that

the N channels in the complex-valued input signal X(z) occupy most of the digital band

[0, 2π], and that the channels Xi(z), for i = 0, 1, · · · , N − 1, possibly have different channel
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and guard bandwidths. Moreover, the channels are generally compacted, where the guard

bands are small compared to the channel bandwidths. Let the spectrum of the ith channel,

Xi(z), in X(z), for i = 0, 1, · · · , N − 1, satisfy

Xi(e
jω) =



X(ejω), ωl

i ≤ ω ≤ ωu
i

0, elsewhere
, (33)

where ωl
i and ωu

i are the lower and upper frequency limits of Xi(z), respectively, such that

ωl
i < ωu

i < ωl
i+1. The ith guard bandwidth Gi is defined to be the width of the band

between the ith and (i+ 1)th channels, or

Gi = ωl
i+1 − ωu

i , i = 0, 1, 2, · · · , N − 1, (34)

where ωl
N = ωl

0 + 2π. Let Gmin be the minimum among all N guard bands, i.e.,

Gmin = min
i=0,1,···,N−1

(
ωl

i+1 − ωu
i

)
. (35)

Assuming that it is possible to design an M -subchannel length-2mM lowpass PR prototype

filter h(n) with frequency response H(ejω) that satisfies 20 log10 |H(ejω)/H(ej0)| ≤ −As dB

for all ω ∈ [π/M, 2π−π/M ], where As is the stopband attenuation of H(ejω) in dBs, we will

define ω ∈ [0, π/M ]
⋃

[2π − π/M, 2π] as the transition band of H(ejω) and the remainder

of the digital band as the stopband. Consequently, the kth CEM analysis filter, hk(n),

and synthesis filter, fk(n), obtained from (28) have ω ∈ [π(−1 + k)/M, π(1 + k)/M ] as

transition band and the remainder as stopband. The designation of the transition bands of

these filters as such indicates that they individually do not have passbands. However, the

combination of a set of hk(n) or fk(n) filters with consecutive values of k results in filters

with nonzero passbands. We will restrict the stopband edges ωs of the PR prototype filters

used in this chapter to ωs = π/M . This provides the best performance for the channelizer,

which corresponds to the highest attenuation of the undesired aliasing in the output signals.

The CEM PR filter banks required for the channelizer discussed in this section have

relatively large power-of-two number of subchannels 2M . The power-of-two value for 2M

for channelizing a particular X(z) is chosen such that none of the transition bands of the

analysis filters of the 2M -subchannel CEM filter bank overlaps the band of more than
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one channel in X(z), i.e., none of the guard bands in X(z) is fully contained within the

transition band of a single analysis filter. Therefore, a specific value of M can be used in

the channelizer if there exist an arbitrary set of integers {ki, i = 0, 1, · · · , N−1} satisfying

ωu
i ≤ πki

M
≤ ωl

i+1 −
π

M
. (36)

For X(z) with a specific value of Gmin, the worst case value for an integer R, where M = 2R,

is π/2R = Gmin/2, which results in a value of M that is given by

M = 2

⌈
log2

(
2π

Gmin

)⌉
. (37)

For values of M that satisfy (37), the analysis filters of a 2M -subchannel CEM filter bank

are able to divide the spectrum of X(z) into 2M narrowband signals that can be grouped

into N mutually exclusive sets of Mi subchannels, for i = 0, 1, · · · , N − 1, such that the

band of Xi(z) is fully contained within the transition bands of the inner Mi − 2 filters of

the ith set. Recombining the ith set of narrowband signals allows the reconstruction of the

ith channel of X(z).

Let Ql
i and Qu

i specify the lower and upper values of k, respectively, of a contiguous set

of CEM analysis filters Hk(z) that is associated with the ith channel Xi(z), such that

Ql
i =

⌊
Mωl

i

π

⌋
, and Qu

i =

⌈
Mωu

i

π

⌉
, (38)

and let Mi = Qu
i −Ql

i + 1 be the number of filters in this set. Assuming M satisfies (36) or

(37) for a specific X(z), the outputs Vk(z) of the analysis section of a 2M -subchannel CEM

PR filter bank, for k = 0, 1, · · · , 2M − 1, are given by

Vk(z) =
1

M

M−1∑
p=0

Hk

(
z

1
M W p

M

)
X

(
z

1
M W p

M

)
. (39)

The ith channel can now be extracted from X(z) by reconstructing it from the Mi signals

Vk(z), for k = Ql
i, Q

l
i + 1, · · · , Qu

i . For the modified CEM filter bank in Fig. 19, where

Vk(z) for k = Ql
i, Q

l
i + 1, · · · , Qu

i are fed to the Mi inputs of the synthesis section starting

at the (Ql
i mod 2)th synthesis branch (i.e., the zeroth branch for even values of Ql

i and first

branch for odd values of Ql
i) and the inputs to all other synthesis branches are set to zero,
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the signal labelled Yi(z) becomes

Yi(z) =
1

M

M−1∑
p=0

X (zW p
M )

Qu
i −Ql

i+ηi∑
k=ηi

Hk+Ql
i−ηi

(zW p
M )Hk(z), (40)

where ηi = (Ql
i mod 2). Using (32), Hk+Ql

i−ηi
(zW p

M ) can be written as

Hk+Ql
i−ηi

(zW p
M ) = W

(Ql
i−ηi)

2mM−1
2

2M Hk

(
zW

p+
Ql

i
−ηi
2

M

)
. (41)

Since (Ql
i−ηi) is even, the term indexed p = M−(Ql

i−ηi)/2 in the outer summation of (40)

can be separated and using (41), Yi(z) becomes

Yi(z) =
1

M
W

(Ql
i−ηi)

2mM−1
2

2M X

(
zW

−
Ql

i
−ηi
2

M

) Qu
i −Ql

i+ηi∑
k=ηi

H2
k(z)

+
1

M
W

(Ql
i−ηi)

2mM−1
2

2M

M−1∑
p=0

p �=M−(Ql
i
−ηi)/2

X (zW p
M )

Qu
i −Ql

i+ηi∑
k=ηi

Hk

(
zW

p+
Ql

i
−ηi
2

M

)
Hk(z), (42)

where the first term is the desired signal corresponding to the ith extracted channel and the

second term is the aliasing signal due to downsampling by M in the analysis section. The

summation in the first term of (42) for PR filters Hk(z) is equivalent to a filter that passes

the ith channel Xi(z) of the input signal and attenuates the remaining N − 1 channels.

Unlike the aliasing term in (30), the aliasing term in Yi(z) is significantly larger because

Vk(z), for k = 0, 1, · · · , Ql
i − 1, Qu

i + 1, Qu
i + 2, · · · , 2M − 1, are not included in the second

term of (42) to provide the nearly complete alias cancellation. Therefore, even when filter

banks that satisfy the PR criterion exactly are used in the channelizer discussed here, the

output channels are not exactly equal to the channels of the input signal.

Since the bandwidth of Yi(z), for i = 0, 1, · · · , N − 1, is narrower than the bandwidth

of X(z) for values of N > 1, the sample rate of Yi(z) can be lowered by a maximum factor

that depends on the bandwidth of Xi(z). Define M̂i to be a power-of-two integer that is

related to Mi by

M̂i = 2�log2 Mi�−1. (43)

The sample rate of Yi(z) can be safely reduced by a factor of M/M̂i without causing

significant aliasing to the ith output channel since the other N − 1 input channels have

55



H0(z) H0(z)

HQl
i−1(z)

HQl
i
(z)

HQu
i
(z)

HQu
i +1(z)

H2M−1(z) H2M−1(z)

H1(z)

HQu
i −Ql

i
(z)

HQu
i −Ql

i+1(z)

HQu
i −Ql

i+2(z)0

0↓M

↓M

↓M

↓M

↓M

↓M

↑M

↑M

↑M

↑M

↑M

↑MX(z)

X̂i(z)

Yi(z)

...

...

...

...

...
...

...

...

...

...

...

↓M
Mi

ηi = 0

ηi = 0

ηi = 1

ηi = 1

Figure 19: The building block of the new channelizer used for extracting the ith channel
in the input signal.

been attenuated. Downsampling Yi(z) by a factor M/M̂i produces the ith channelizer

output signal X̂i(z) given by

X̂i(z) =
M̂i

M2
W

(Ql
i−ηi)

2mM−1
2

2M

M

M̂i
−1∑

q=0

M−1∑
p=0

[
X

(
z

M̂i
M W p+qM̂i

M

)
Qu

i −Ql
i+ηi∑

k=ηi

Hk

(
z

M̂i
M W

p+qM̂i+
Ql

i
−ηi
2

M

)
Hk

(
z

M̂i
M W qM̂i

M

)]
. (44)

The signal X̂i(z) in (44) is constructed by aliasing shifted, downsampled, and filtered forms

of X(z). The filtering provided by the inner-most summation of (44) guarantees that all

channels except Xi(z) are attenuated before aliasing takes place. By repeating the single

channel extractor of Fig. 19 for all the desired channels using a single analysis section for

all channels but different synthesis sections for the different channels that are extracted,

the complete construction of the new channelizer shown in Fig. 20 is obtained.

The channelizer in Fig. 20 is in discrete filter form and therefore, is not computationally

optimized, where the number of required computations per extracted channel far exceeds

that of the traditional DFB channelizer. Since the analysis and synthesis filters in Fig. 20

are obtained by modulating H(z), they can be polyphase decomposed in a form similar to
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the filter bank of Fig. 18(b) using the polyphase components Eq(z), for q = 0, 1, · · · , 2M−1,

of H(z). The polyphase decomposition of the synthesis sections of Fig. 20 results in the

cascade of upsampling by M , delay elements, and downsampling by (M/M̂i) for the ith

channel. Since M and M̂i are powers-of-two, with M ≥ M̂i, the upsampling by M can

be decomposed into cascades of upsampling by M̂i followed by upsampling by (M/M̂i) as

shown in Fig. 21(a). The polyphase identity [107] applied to delay elements as shown in

Fig. 21(b) simplifies the cascade, where only M̂i polyphase components are retained. Since

all but the (ηi)th to the (Qu
i − Ql

i + ηi)th inputs to the 2M -point FFT block are zero,

Qu
i −Ql

i+1 ≤ 2M̂i, and only the (M/M̂i)th, (2M/M̂i)th, · · ·, (2M)th outputs are required, a

2M -point decimated-in-time FFT block [73] can be replaced with a 2M̂i-point FFT block.

If (Qu
i − Ql

i + ηi) = 2M̂i for a particular channel, the value of M̂i can be doubled or the

last analysis signal, VQu
i
(z), for this channel can be fed to the zeroth input of the FFT. The

construction of the simplified synthesis section for the ith channel is shown in Fig. 21(c),

where the polyphase components E
(M̂i)
q (z), for q = 0, 1, · · · , 2M̂i − 1, are given by

E(M̂i)
q (z) = Eq M

M̂i

(z) =
m−1∑
r=0

h

(
q
M

M̂i

+ 2Mr

)
z−r. (45)

This results in the efficient reduced-complexity polyphase representation of the new chan-

nelizer shown in Fig. 22. For an input signal with equal-power channels, the output channels

of Fig. 22 have a signal-to-noise ratio (SNR) that is on the order of the stopband attenua-

tion As of H(z), where the SNR is defined as the ratio of the maximum PSD of the desired

channel to the maximum PSD of aliasing. The sample rate of the ith output signal is

proportional to M̂i, and some channels may require SRC to bring their sample rates to the

proper values required for further baseband processing. As shown later, doubling the value

of M̂i generally results in a marginal increase in the number of computations for extracting

the ith channel. Therefore, the value of M̂i for a channel that requires SRC can be doubled

if this reduces the computations for SRC significantly.

5.3.1 Aliasing and Amplitude Distortion

Aliasing in the ith output signal, X̂i(z), results from downsampling by M and (M/M̂i) in

the analysis and synthesis sections, respectively. To estimate the aliasing error in X̂i(z),
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consider the signal Yi(z) in (42), which experiences two errors. The first error caused by

downsampling by M is

ξY 1(e
jω) =

1

M




M−1∑
p=0

p �=M−(Ql
i
−ηi)/2

∣∣∣∣∣∣
Qu

i −Ql
i+ηi∑

k=ηi

Hk(e
jω)Hk

(
ejωW

p+
Ql

i
−ηi
2

M

)∣∣∣∣∣∣
2



1
2

. (46)

This error results in the first aliasing component in X̂i(z). The finite attenuation of the

undesired channels in Yi(z) gives rise to the error

ξY 2(e
jω) =

1

M

∣∣∣∣∣∣
Qu

i −Ql
i+ηi∑

k=ηi

H2
k(ejω)

∣∣∣∣∣∣ (47)

outside the interval π(ηi−1)/M≤ω≤π(Qu
i−Ql

i+ηi+1)/M that results in the second aliasing

component in X̂i(z). Assuming that the PR prototype filter H(z) of the CEM filter bank

that is used in the channelizer has a stopband attenuation of As dB and a stopband edge

of ωs = π/M , it is easy to show that the magnitudes of ξY 1(e
jω) and ξY 2(e

jω) are roughly

As and 2As dB lower than the peak magnitude of H2(z), respectively, which means that

ξY 2(e
jω) can be ignored. Therefore, the aliasing in X̂i(z) becomes

ξX(ejω)=
M̂i

M2




M

M̂i
−1∑

q=0

M−1∑
p=0

p �=M−(Ql
i
−ηi)/2

∣∣∣∣∣∣
Qu

i −Ql
i+ηi∑

k=ηi

Hk

(
z

M̂i
M W qM̂i

M

)
Hk

(
z

M̂i
M W

p+qM̂i+
Ql

i
−ηi
2

M

)∣∣∣∣∣∣
2



1
2

. (48)

The value of ωs of the PR prototype filter used in the new channelizer is restricted to π/M

because a larger ωs significantly increases the peak values of ξY 1(e
jω) and ξX(ejω) and a

smaller ωs reduces the As that can be achieved during the design of the prototype filter.

The peak magnitude of ξY 1(e
jω) was found to be generally within 1 dB from −As dB, and

the peak magnitude of ξX(ejω) was 2–3 dB higher. For example, the peak magnitudes of

ξY 1(e
jω) and ξX(ejω) using H(z) with M = 512 and m = 13 that has As = 98.04 dB

were −98.09 dB and −95.39 dB, respectively. Since the use of finite-precision computations

causes a noise floor in the channelized signals, the required precision of the computations

and filter coefficients for a particular application must be high enough to preserve the desired

SFDR of the system. Therefore, for a channelizer with a desired 95 dB SFDR, for example,

computations and filter coefficients with 18–20 bits of accuracy would be required.
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The peak-to-peak amplitude distortion in X̂i(z) [51] caused by passband ripples of the

filter Ti(e
jω) that extracts X̂i(z) is evaluated by considering

Ti(e
jω) =

1

M

Qu
i −Ql

i+ηi∑
k=ηi

H2
k(ejω). (49)

The peak passband ripple (Tmax−Tmin)/(Tmax +Tmin), where Tmin and Tmax are the

minimum and maximum values of |Ti(e
jω)| in the passband [πηi/M, π(Qu

i − Ql
i + ηi)/M ],

was found to be on the order of −2As dB for PR filter banks with different values of M ,

m, and Mi. For the PR prototype filter with M = 512 and m = 13, the peak passband

ripple was found to be −197.6 dB, which results in a peak-to-peak amplitude distortion of

−191.6 dB.

5.3.2 Use of the Channelizer for Channel Synthesis

The use of PFBs for channel synthesis requires similar conditions to the those that enable

the use of PFBs for channelization be satisfied. The input signals to a PFB synthesizer

must have the same sample rate and channel bandwidth, and the ratio L of the sample rate

of the synthesized signal to the sample rate of the input signals must be an integer multiple

of the number of channels. The channelizer can be easily modified for synthesizing a set

of channels that do not satisfy these conditions to generate a wideband signal with FDM

channels. For synthesizing a signal with sample rate Rs that has a minimum guard band

of Gmin between channels, the sample rates of the different channels are independently

adjusted to the lowest power-of-two multiples of Rs/M , where M is obtained by using (37).

The channelizer in Fig. 22 is then used in the reverse form to perform channel synthesis.

This is done by inverting the different blocks of the channelizer, i.e., downsampling by M ,

2M -point IFFT, 2M̂i-point FFTs, and upsampling by 2M̂i in reverse become upsampling

by M , 2M -point FFT, 2M̂i-point IFFTs, and downsampling by 2M̂i, respectively. The

input and outputs of the channelizer are also reversed so that they become the output and

inputs of the synthesizer, respectively.
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5.4 Computational Complexity of the New Channelizer

The computations for the new channelizer described in this chapter and the DFB channelizer

are compared for complex-valued input signals with sample rates Rs. The input signals are

assumed to have N channels from which Ne channels with indexes Ω ⊂ {0, 1, · · · , N − 1}
are to be extracted with SNRs of 95 dB. Due to the downsampling by M , the filters

and transforms in the new channelizer of Fig. 22 operate at a sample rate of Rs/M . For

power-of-two values of M and M̂i, a 2M -point IFFT and 2M̂i-point FFT, respectively,

require [4M log2(2M)−4M ] and [4M̂i log2(2M̂i)−4M̂i] real multiplications per application

[73]. Therefore, the analysis IFFT and synthesis FFTs for extracted channels perform

[4M log2(2M)−4M ]Rs/M and [
∑

i∈Ω(4M̂i log2(2M̂i)−4M̂i)]Rs/M real multiplications per

second (RMPS), respectively, and the analysis and synthesis filtering perform (4mM)Rs/M

and (
∑

i∈Ω 4mM̂i)Rs/M RMPS, respectively. The total RMPS of the new channelizer

becomes

ΓNew = 4Rs

(
m+ log2M +

1

M

∑
i∈Ω

(
M̂i log2 M̂i

)
+
m

M

∑
i∈Ω

M̂i

)
RMPS. (50)

Assuming that length-L equiripple baseband FIR filters with variable bandwidths are used

in a DFB channelizer such that the ith channel is frequency shifted to baseband and ex-

tracted at a reduced sample rate close to (ωu
i −ωl

i)Rs/2π, the number of RMPS for extracting

the Ne channels is approximately

ΓDFB = 2RsL
∑
i∈Ω

ωu
i − ωl

i

2π
RMPS. (51)

When applicable, the number of RMPS of the PFB is at least

ΓPFB = 2Rs

(
L

N
+ log2N

)
RMPS. (52)

Assuming equal passband and stopband ripples of the filters in the DFB channelizer,

the required value of L for a specific Gmin and channelizer SNR [46] is given by

L =
SNR − 13

2.324 ·Gmin
. (53)

For a channelizer with a SNR of 95 dB, for example, L = 35.284/Gmin. Substituting for

Gmin in (37) gives a bound on the required value of M in terms of L as

0.1781L ≤M < 0.3561L. (54)
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Substituting the upper limit of M given by (54) and the value of m = 13 that is required in

the new channelizer for achieving a SNR of 95 dB into (50) gives the worst case RMPS of the

new channelizer in terms of L. Since the value of
∑

i∈Ω M̂i is upper bounded by 2M , and,

consequently,
∑

i∈Ω

(
M̂i log2 M̂i

)
is upper bounded by 2M log2 2M , the maximum RMPS

for the new channelizer is Rs(12m + 8 + 12 log2M), or at most Rs(146.12 + 12 log2 L)

RMPS. Fig. 23 shows the approximate number of RMPS of the DFB channelizer, the PFB

channelizer (assuming applicability), and the worst case of the new channelizer versus the

number of extracted channels, Ne, for a SNR of 95 dB. It is seen that ΓNew is lower than

ΓPFB for Ne < 12, and is far lower than ΓDFB for all values of Ne. Furthermore, (50)

indicates that doubling the value of M or doubling M̂i for a specific channel increases the

number of RMPS of the new channelizer by a relatively small amount. Therefore, if SRC

is required for a particular channel that has Mi ≈ 2M̂i, the value of M̂i can be doubled

to reduce the length of the filters and the computational requirements of the SRC at the

expense of a small increase in the computations for the channelizer.
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Figure 23: Approximate RMPS versus Ne for the DFB, the PFB (when applicable), and
the worst case of the new channelizer.
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5.5 Simulation Results

The new channelization method is applied to the complex-valued input signal of Fig. 25(a)

with N = 40 channels of variable bandwidths ranging from 0.02π to 0.06π and guard bands

ranging in width from 0.004π to 0.006π. A 512-subchannel length-13312 PR prototype filter

shown in Fig. 24 that was designed using the procedure described in Chapter 6 was used in

the channelizer. Fig. 25(b) shows the 16th input channel at a low sample rate. The values

of Ql
16 and Qu

16 for this channel in the input signal are 368 and 396, respectively. The new

channelizer frequency shifts the input signal in Fig. 25(a) to bring the band of a desired

channel close to zero frequency. For example, the magnitude response in Fig. 25(c) is for

the filter T16(e
jω) that effectively extracts the 16th input channel. Fig. 25(d) represent

the maximum aliasing ξY 1(e
jω) that the 16th extracted channel shown in Fig. 25(e) may

experience. This aliasing raps around when the sample rate of the signal in Fig. 25(e)

is reduced by M/M̂i to form the aliasing ξX(ejω) that the output 16th channel shown in

Fig. 25(f) experiences. The signals in Fig. 25(e) and (f) are the extracted 16th channel at

the sample rate of the input signal and at the reduced output sample rate, respectively. The

16th output channel experiences a SNR of at least 96.45 dB. The new channelizer requires

a total of approximately 143Rs RMPS for full channelization of the signal in Fig. 25(a),

while the DFB channelizer requires approximately 2LRs = 5616Rs RMPS.
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Figure 24: PR prototype filter with M = 512, m = 13, ωs = π/512, and As = 98.04 dB
designed with the method presented in Chapter 6. (a) Coefficient magnitude and (b) mag-
nitude response (using log scale for ω to magnify details of the transition band).
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Figure 25: (a) Input to the new channelizer, (b) PSD of the 16th channel, (c) response of
T16(e

jω) with passband details, (d) aliasing ξY 1(e
jω) in the 16th channel with peak value of

−98.09 dB, (e) PSD of the extracted 16th channel at sample rate of input signal, and (f)
PSD of the extracted 16th channel at the output sample rate with SNR of 95.39 dB.
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CHAPTER VI

DESIGN OF MODULATED PR PROTOTYPE FILTERS

WITH LARGE VALUES OF SUBCHANNELS M

The design of perfect reconstruction (PR) and near-PR finite impulse response (FIR) filter

banks has been extensively studied in the literature [16, 17, 31, 48, 69–72, 87, 104–106, 109,

115,121]. Resorting to the use of near-PR filter banks instead of PR filter banks is usually

attributed to the relative ease of designing near-PR filter banks. Designing PR filter banks

with large number of subchannels that contain filters with high stopband attenuations is

difficult due to the complexity of parameter optimization caused by the high non-linearity

between the design parameters, filter coefficients, and the frequency response of the filters.

This high non-linearity usually results in limiting the amount of stopband attenuation that

can be achieved for a specific number of subchannels. Because of this, the methods for

designing modulated PR filter banks that are described in the literature are generally im-

practical for designing PR filter banks with large number of subchannels and high stopband

attenuations.

In this chapter, we consider the design of a class of PR filters known as modulated

PR filter banks. Modulated PR filter banks are generally favored over non-modulated PR

filter banks because they only require the design of a lowpass prototype filter, from which

filters of the bank are obtained by modulation, and they can be implemented efficiently in a

polyphase filter bank form. It was shown in [57,78,108] that modulated PR filter banks exist

for linear-phase FIR prototype filters of length 2M , where M is the number of subchannels

in the cosine-modulated filter bank. This result was extended in [57] for prototype filters of

length 2mM , where m is an arbitrary positive integer, and an efficient method for designing

the prototype filters of modulated PR filter banks was proposed in [51]. Compared to

quadrature mirror filter (QMF) bank design methods, the design method of [51] requires

optimizing at most half the number of parameters that are optimized in pseudo-QMF bank
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design methods and a smaller fraction of the number of parameters that are optimized in

PR-QMF bank design methods for similar filter lengths. The design method described in

this chapter, which is based on the efficient design method of [51], admits the efficient design

of PR filter banks that have a large number of subchannels and filters with high stopband

attenuations.

The remainder of this chapter is outlined as follows. Section 6.1 describes the efficient

modulated PR filter bank design method and Section 6.2 gives a design example of the

presented design method.

6.1 Efficient Method for Designing Modulated PR Proto-

type Filters with Large Even Values of M

It was assumed in Section 5.3 that an M -subchannel PR prototype filter with high stopband

attenuation As and large power-of-two M exists. Channelizing a 40-channel SWR signal

with Gmin = 2π/400 and 95 dB dynamic-range, for example, requires a PR prototype filter

with M = 512 and m = 13 that has As slightly higher than 95 dB for building a 1024-

subchannel CEM PR filter bank. Designing such PR prototype filter is non-trivial and has

not been considered in the literature. It was stated in [72] that prototype filters of modulated

PR filter banks for values of M > 2 with As close to 100 dB have not been shown to exist

due to the high non-linearity that relates the design parameters to the filter coefficients. To

the best of our knowledge, the literature has only reported designs of modulated PR filter

banks with relatively small values of M ≤ 32 and prototypes with relatively low values

of As ≤ 75 dB that require optimizing on the order of 100 parameters. The complexity

experienced when designing modulated PR filter banks with extreme values of M and As

for the channelizer discussed in Chapter 5 may be several orders of magnitude higher than

the complexity of the design examples in the literature. Furthermore, the existence of a

large number of local minima in the optimization functions when designing PR filter banks

with M > 2 and m > 10 limits the values of As that can be achieved.

The design method proposed in [51] is efficient in the sense that it requires optimizing

at most half the number of parameters that are optimized in the pseudo- or PR-QMF
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bank designs as shown in Table 2. However, its complexity increases sharply with the

number of design parameters, and attempts for designing prototype filters with high values

of As > 75 dB for M > 2 were unsuccessful. The design method in [7] was used for

designing prototype filters of modulated PR filter banks with power-of-two values ofM = 32.

However, the complexity of this method increases sharply as M increases, because it uses

the same objective functions that are used in [51] and it requires optimizing the parameters

of prototype filters of all the modulated PR filter banks with 2, 4, 8, · · · ,M/2-subchannels

first. We may safely conclude that designing PR filter banks with high values of M > 500

and As close to 100 dB, for example, is generally very difficult, if not impossible by using

the currently existing design methods in the literature.

Table 2: Number of parameters simultaneously optimized in different PR filter bank design
methods for prototype filters of length 2mM [51, 104]

Design Number of Number of

Method Parameters Optimizations

Pseudo-QMF Bank mM 1

PR-QMF Bank (2m−1)(M−1)+
(
M

2

)
1

Mod. PR Filter Bank m�M/2� 1

Our Design Method m 1 + �M/2�

A simple method for designing modulated PR filter banks with virtually any even value

of M is presented in this section. The method described here, which is based on the method

described in [51], will work well for large values of M and high As, and its complexity

increases linearly with the value of M . Considering only even values of M , which is the

case for the channelizer discussed in Chapter 5 and most practical applications, the design

method of [51] requires the simultaneous optimization of mM/2 parameters denoted θq,p,

for q = 0, 1, · · · ,M/2 − 1, and p = 0, 1, · · · ,m− 1. For a specific q, the m parameters θq,p,

for p = 0, 1, · · · ,m − 1, generate the pair of polyphase components Eq(z) and Eq+M (z) of

H(z) as
 Eq(z)

EM+q(z)


 =


cos θq,m−1 z−1 sin θq,m−1

sin θq,m−1 −z−1 cos θq,m−1




cos θq,m−2 z−1 sin θq,m−2

sin θq,m−2 −z−1 cos θq,m−2


· · ·
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cos θq,1 z−1 sin θq,1

sin θq,1 −z−1 cos θq,1




cos θq,0

sin θq,0


. (55)

The remaining M polyphase components are obtained from the symmetry of H(z) as

EM−q−1(z) = z−(m−1)EM+q(z

−1),

E2M−q−1(z) = z−(m−1)Eq(z
−1),

q = 0, 1, · · · ,M/2 − 1. (56)

The process of optimizing the mM/2 parameters θq,p starts with the initialization

θq,p =




π
4 , p = 0, q = 0, 1, · · · , M

2 − 1,

π
2 , p = 1, 2, · · · ,m− 1, q = 0, 1, · · · , M

2 − 1.
(57)

Substituting all θq,p into (55) and (56) gives the 2M polyphase components of H(z), from

which the frequency response H(ejω) is evaluated and used in either of the objective func-

tions

Φ1 =

∫ π

π
2M

+α
|H(ejω)|2dω, Φ2 = max

ω∈[ π
2M

+α,π]
|H(ejω)|, (58)

where 0 ≤ α ≤ π/2M . The design method of [51] optimizes the mM/2 parameters by

minimizing Φ1 first and then minimizing Φ2. Clearly, the simultaneous optimization of

mM/2 � 100 parameters as required by the channelizer of Chapter 5 may be difficult

because the optimization complexity increases sharply as mM increases, and because of the

demanding numerical computation of H(ejω) with sufficiently high frequency resolution.

The optimization in [51] for designing large-M modulated PR filter banks can be sig-

nificantly simplified by converting it to (M/2 + 1) optimizations each with m parameters.

Since only the m parameters of θq,p for a specific q and p = 0, 1, · · · ,m − 1 contribute to

Eq(z), EM−q−1(z), EM+q(z), and E2M−q−1(z), the prototype filter H(z) can be written in

terms of Bq(z), for q = 0, 1, · · · ,M/2 − 1, as

H(z) =

M
2
−1∑

q=0

(
Bq(z

M )z−q + z−(2mM−1)Bq(z
−M )zq

)
, (59)

where

Bq(z) = Eq(z
2) + z−1EM+q(z

2). (60)

Therefore, M/2 length-4m 2-subchannel PR prototype filters can be extracted from H(z),

where the qth filter that is completely specified by θq,p, for p = 0, 1, · · · ,m− 1, is (Bq(z
2) +
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z−(4m−1)Bq(z
−2)). The M/2 sets of parameters can now be decoupled and optimized sep-

arately by using M/2 reference functions for the M/2 sets of θq,p, for q=0, 1, · · · ,M/2− 1,

that generate Bq(z), for q=0, 1, · · · ,M/2 − 1, respectively.

Assume that the parameters θ
(2)
p , p = 0, 1, · · · ,m − 1, of a 2-subchannel length-4m PR

filter H(2)(z) have been fully optimized using the method of [51], which can generate 2-

subchannel PR prototype filters with high stopband attenuations. For the desired M , we

can now define a length-2mM filter H(M)(z) such that

h(M)(n) =
4m−1∑
i=0

h(2)(i)g

(
n− M(2i− 4m+ 1)

4

)
, (61)

for n = 0, 1, · · · , 2mM −1, where g(n) is the impulse response of a length-2mM type-II real

symmetric FIR filter with frequency response G(ejω) that satisfies


|G(ejω) − 1| � δ, 0 < ω ≤ π/M,

0 ≤ |G(ejω)| ≤ 1 + δ, π/M < ω ≤ 3π/M,

|G(ejω)| � δ, 3π/M < ω ≤ π,

(62)

where δ is the peak stopband ripple of h(2)(n). The process described by (61) represents an

upsampling of the coefficients of h(2)(n) by a factor of M followed by downsampling by a

factor of 2 such that the set of coefficients that is retained in the downsampling process is the

set that does not contain the coefficients of h(2)(n). The impulse and frequency responses

of the filters h(2)(n), g(n), and h(M)(n) that are given in Fig. 26(a) and (b) illustrate this

process for m = 3 and M = 8. In Fig. 26, a 2-subchannel PR filter h(2)(n) is interpolated

using a length-48 filter g(n) to give an 8-subchannel length-48 near-PR filter h(8)(n). In

general, any filter g(n) with a response that satisfies (62) can be used. However, it has been

found that g(n) filters that are designed using the robust Parks-McClellan equiripple FIR

filter design method [75, 76], which is capable of producing very long filters for well chosen

design parameters, provide the best results in terms of achieving the highest values of As

of the desired PR prototype filters for a particular value of m. The near-PR filter H(M)(z)

that results from (61) can be decomposed using its 2M length-m polyphase components
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E
(M)
q (z) as

H(M)(z) =

M
2
−1∑

q=0

(
B(M)

q (zM )z−q + z−(2mM−1)B(M)
q (z−M )zq

)
, (63)

where B
(M)
q (z), for q = 0, 1, · · · ,M/2 − 1, is

B(M)
q (z) = E(M)

q (z2) + z−1E
(M)
M+q(z

2). (64)

Now, the desired PR prototype filter H(z) can be obtained by optimizing θq,p, for q =

1, 2, · · · ,M/2 and p = 0, 1, · · · ,m − 1, to minimize the much simpler objective function Ψ

that is given by

Ψ =
2mM−1∑

i=0

∣∣∣h(i) − h(M)(i)
∣∣∣2 . (65)

Using the polyphase representation and symmetry of h(n) and h(M)(n), Ψ can be written

as

Ψ =
2M−1∑
q=0

m−1∑
n=0

∣∣∣h(mq + n) − h(M)(mq + n)
∣∣∣2 =

M−1∑
q=0

2m−1∑
n=0

∣∣∣bq(n) − b(M)
q (n)

∣∣∣2 = 2

M/2−1∑
q=0

ψq,(66)

where bq(n), and b
(M)
q (n) are the impulse responses of Bq(z) and B

(M)
q (z), respectively, and

ψq =
2m−1∑
n=0

∣∣∣bq(n) − b(M)
q (n)

∣∣∣2 . (67)

Since ψq is positive for all q, Ψ is minimized by minimizing ψq, for all q = 0, 1, · · · ,M/2−1,

independently. Minimizing ψq for a particular q requires that only θq,p for p = 0, 1, · · · ,m−1

be optimized. Upon minimizing Ψ, H(z) that inherently satisfies PR is obtained. Because

the complexity for minimizing Φ1 or Φ2 increases rapidly with increasing M , while it in-

creases linearly with M for minimizing Ψ, replacing the (mM/2)-parameter optimization

with (M/2 + 1) optimizations of m parameters reduces the optimization complexity signif-

icantly. We estimate that the optimization complexity is reduced by a factor of at least

M/2. While the original optimization method may be computationally impractical for large

M , the modified optimization method is computationally feasible, particularly because the

modified method does not require that the frequency response of H(z) be computed at all

and it does not suffer from local minima that limit the values of As that can be achieved.

The modified modulated PR prototype filter design procedure is summarized in the follow-

ing steps
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1. Using the method in [51], the m parameters θ
(2)
p , for p = 0, 1, · · · ,m−1, of H(2)(z) with

stopband edge of ωs = π/2 are optimized. The value of m is selected such that the

stopband attenuation of H(2)(z) exceeds that of the desired M -subchannel prototype

H(z) by several dBs.

2. Using the Parks-McClellan optimum equiripple filter design method, a length-2mM

filter g(n) satisfying (62) is designed and used for computing the coefficients of H(M)(z)

using (61).

3. The two sets of parameters θM/4−1,p and θM/4,p, for p = 0, 1, · · · ,m − 1, of H(z) are

initialized such that θM/4−1,p = θM/4,p = θ
(2)
p , and are independently optimized to

minimize ψM/4−1 and ψM/4.

4. For each q = M/4 + 1,M/4 + 2, · · · ,M/2 − 1, in this order, the set θq,p, for p =

0, 1, · · · ,m− 1, is initialized with the optimum θq−1,p and optimized to minimize ψq.

5. For each q = M/4−2,M/4−3, · · · , 0, in this order, the set θq,p, for p = 0, 1, · · · ,m−1,

is initialized with the optimum θq+1,p and optimized to minimize ψq.

Theoretically, the presented design method is also applicable for odd values of M . How-

ever, the highest stopband attenuations of the prototype filters of modulated PR filter banks

for odd values of M that can be achieved using this method are limited to approximately

50 dB even for large values of m. This limitation is attributed to the fact that two of

the 2M polyphase components of odd-M PR prototype filters must be pure delays. That

is, the �M/2�th and �3M/2�th polyphase components of H(z) must have the form βz−1

for the resulting filter bank to satisfy PR, where β is a real valued constant. These two

polyphase components are obtained by setting the parameters in (55) as given in (57) [51].

The restriction on these two polyphase components results in limiting the highest stopband

attenuation that can achieved for odd values of M .

6.2 Design Example

The design method of [51] was used for designing 2-subchannel PR prototype filters H(2)(z)

for several values of m, where the optimized parameters θ
(2)
p , for p = 0, 1, · · · ,m − 1, are
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given in Table 3. The corresponding H(2)(z) filters can be used in the modified modulated

PR filter bank design procedure for obtaining prototype filters with the desired M and

different stopband attenuations. The coefficients and magnitude response of a length-13312

PR prototype filter with M = 512 and m = 13 using θ
(2)
p for m = 13 from Table 3 were

shown in Fig. 24(a) and (b) in Chapter 5. The stopband attenuation of the filter is 98.04 dB,

and a total of 3328 parameters are optimized. Extensive testing of this method for designing

modulated PR filter banks reveals that the use of a particular set of parameters θ
(2)
p produces

prototype filters with stopband attenuations that are almost independent of the value of

M .
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CHAPTER VII

BLIND FREQUENCY DOMAIN EQUALIZATION OF

SEVERE ISI CHANNELS WITH LONG RESPONSES

Two main classes of blind equalization have been considered in the literature: second-order

statistics (SOS) blind equalizers that use the cyclostationarity of oversampled received sig-

nal, and higher-order statistics (HOS) blind equalizers that rely on third-order statistics or

higher to equalize the phase of the received signal [11, 27, 29, 34, 35, 44, 80, 86]. The use of

HOS in the latter class of blind equalizers is attributed to the fact that second-order statis-

tics lack the necessary phase information, which renders them unusable for equalizing the

phase of two-dimensional digital signals transmitted over non-minimum-phase channels [13].

Although blind equalization requires longer time and more computations to adapt, it may

be preferred over trained equalization in many applications when the initial transmission

or the retransmission of a training sequence after a communication interruption is inappli-

cable or undesired [35]. For communication systems with single transmitter and multiple

receivers, the transmission of a training sequence may be impractical if different receivers

access the transmitted signal at different times. With the lack of training sequences, blind

equalizers may be the only applicable equalization method for many applications.

In demanding communication applications that operate at high symbol rates like some

SWR applications, the communication channels may have spreads extending over tens or

hundreds of symbol periods and magnitude responses that exhibit high frequency-selective

fading on the order of 50 dB, for example. For such applications to operate, equalization

algorithms that are able to equalize these channels are necessary. While several TD-based

blind equalizers have the ability of equalizing channels with severe ISI, the increase in

complexity and the reduced ability to adapt as the channel length increases make them un-

suitable for equalizing long channels. The FD blind equalizers that have been proposed in
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the literature for equalizing very long channels are generally computationally efficient. How-

ever, they are able to equalize channels with relatively low ISI that have frequency-selective

fading on the order of 20 dB or less because of the use of simple TD–FD transformations

such as the FFT [100]. To the best of our knowledge, equalization of channels with long

impulse responses and severe ISI that have high frequency-selective fading of 50 dB or more

for QAM constellations have not been proposed. In this chapter, we present a relatively

computationally efficient FD blind equalizer based on modulated exact- or near-perfect re-

construction filter banks for performing the TD–FD transformations in the equalizer. The

equalizer presented in this chapter has the basic structure of the conventional FD equalizer

described in [90] and shown in Fig. 27. The error functions used in the adaptation process

in the equalizer discussed here are similar to those proposed by conventional LMS-based TD

blind equalizers proposed in [28, 29, 86]. However, the speed of adaptation in our equalizer

is increased and the computational requirements are reduced by modifying the LMS algo-

rithms of the TD equalizers to FD-transformed RLS algorithms. The RLS algorithms in our

equalizer are further modified to significantly improve the adaptation to long channels with

severe ISI by breaking the set of equalizer weights into magnitude and phase weights that

are optimized separately. Simulation results of the presented equalizer clearly show that

it is able to equalize long channels with complicated frequency responses. The simulation

results also show that this equalizer outperforms the FD blind equalizer that uses simple

IFFT and FFT blocks for the TD–FD transforms for all channels with severe ISI at the

expense of a relatively small increase in computation.

The remainder of this chapter is organized as follows. In Section 7.1, a brief discussion

of HOS blind equalizers is given. Section 7.2 discusses the new FD blind equalizer, and

Section 7.3 evaluates its computational requirements. Finally, the results of simulating our

equalizer under different conditions are discussed in Section 7.4.

7.1 Bussgang HOS Blind Equalizers

The HOS (third-order or higher) of a two-dimensional digital signal contain magnitude

and phase information of the signal that enables their use in blind equalizers to adjust
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Figure 27: Basic FD equalizer (D(z) is the desired response) [90].

for the magnitude and phase distortion of complex-valued channels. Since higher-order

cumulants or polyspectra are zero for Gaussian random processes [35], the use of this type

of HOS makes blind equalizers resilient to additive Gaussian noise because the higher-order

cumulants and polyspectra of a noisy received signal are equal to the those of a noiseless

form of the received signal [13]. Two special cases of the well studied Bussgang subclass

of HOS blind equalization are the Sato algorithm [86] and Godard (or constant modulus)

algorithm [29,44, 55, 99]. The generalized Sato algorithm (GSA) [28] for blind equalization

of two-dimensional symbol constellations minimizes

E
{
|e2GSA(n)|

}
=E

{[
�{y(n)} − γGSA · sgn(�{y(n)})

]2

+
[
�{y(n)} − γGSA · sgn(�{y(n)})

]2
}
, (68)

where E[·] is the expectation operator, y(n) is nth equalizer output sample, �{y(n)} and

�{y(n)} are the real and imaginary parts of y(n), respectively, sgn(·) is the sign function,

and

γGSA =
E

[
�
{
s2(n)

}]
E

[∣∣∣�{s(n)}
∣∣∣] =

E

[
�
{
s2(n)

}]
E

[∣∣∣�{s(n)}
∣∣∣] , (69)

where s(n) is the nth transmitted symbol. The GSA uses an LMS update for the vector of

coefficients C given by

C(n+ 1) = C(n) − µ

{[
�{y(n)} − γGSA · sgn(�{y(n)})

]
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+j
[
�{y(n)} − γGSA · sgn(�{y(n)})

]}
y(n)X∗(n), (70)

where X(n) is a vector of the recently received samples, µ is the update step size, and ∗ is

the complex conjugate operator. The Godard algorithm (GA) minimizes

E
[
e2GA

]
= E

[(
|y(n)|2 −BGA

)2
]
, (71)

where

BGA =
E

[∣∣∣s(n)
∣∣∣4]

E

[∣∣∣s(n)
∣∣∣2] . (72)

The filter coefficient update for the Godard algorithm is also an LMS-like update given by

C(n+ 1) = C(n) − µ

[∣∣∣y(n)
∣∣∣2 −BGA

]
y(n)X∗(n). (73)

The GSA and GA TD blind equalizers generally have low computational requirements for

short equalizers. However, the high computational complexity and slow convergence for

long equalizer lengths renders them unsuitable for equalizing long channels.

In this chapter, we describe the details of a FD blind equalizer that attempts to minimize

errors signals similar in form to those of the GSA and GA. While the conventional GSA and

GA use LMS-like adaptation algorithms, this blind equalizer uses an RLS adaptation algo-

rithm to speed the adaptation significantly for long complex-valued channels. Because this

equalizer processes blocks of samples of the received signal at once, its efficiency measured

as computations per equalized sample increases relative to conventional TD equalizers as

the number of equalizer weights increases. While the complexity and delay of the equalizer

increase linearly, its computational requirement increases in a logarithmic rate with the

number of equalizer weights, which may result in a significant saving in computations for

equalizers with an extremely large number of weights that may be required for equalizing

channels with long impulse responses.

7.2 New Frequency-Domain Blind Equalizer

Adapting a TD equalizer to a channel with complex-valued impulse response requires the

simultaneous optimization of the magnitudes and phases of all the equalizer coefficients.
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Since the modification of a TD equalizer coefficient directly affects the whole frequency

response of the equalizer, the optimization of a TD blind equalizer for long channels is often

lengthy and computationally demanding. A FD equalizer, however, uses a transformation

that divides the input signal into a set of partially or highly orthogonal narrowband signals

that each can be equalized using a set of a few coefficients [90]. Each set of coefficients forms

a filter that equalizes a signal with significantly narrower bandwidth than the received signal.

The different sets may be partially or highly decoupled and, therefore, may be optimized

independently. Applying an inverse transformation and properly recombining the equalized

narrowband signals produces an equalized form of the received signal. The discrete and

inverse discrete Fourier transforms (DFT an IDFT) may be suitable transformation and

inverse transformation for the FD equalization applications shown in Fig. 27. Practically,

a FD equalizer that uses the DFT and IDFT experiences debilitating limitations. The

DFT and IDFT result in equalizer coefficients that are significantly dependent because the

mainlobe of the frequency response of a particular DFT output is wide and the sidelobes

are relatively large and decay slowly. The first sidelobe, for example, is only 13.26 dB lower

than the mainlobe. Therefore, the orthogonality of the outputs of a DFT is generally low.

Dividing the input signal of the equalizer into highly orthogonal narrowband signals

requires the use of higher-quality transformations such as filter banks that have filters with

relatively high stopband attenuation and low filter-passband overlap. Since the output of

an equalizer in the absence of channel ISI and noise should be a delayed form of the input

signal, an appropriate transformation and inverse transformation for Fig. 27 would be the

analysis and synthesis parts of a perfect reconstruction (PR) filter bank, respectively. A PR

filter bank is computationally efficient when its filters can be polyphase decomposed, which

requires that the bank be a modulated PR filter bank [16, 48, 51, 58, 109]. The outputs of

the analysis section of a modulated PR filter bank are generally more orthogonal to each

other compared to the outputs of a DFT.

For a complex-exponentially modulated (CEM) PR filter bank with 2M subbands and

a length-2mM prototype filter h(n), the kth analysis and synthesis filters hk(n) are given
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by

hk(n) = h(n)W
−k(n− 2mM−1

2 )
2M , (74)

n = 0, 1, · · · , 2mM − 1, k = 0, 1, · · · , 2M − 1,

where WM =e−j2π/M , and m is a positive integer that determines the length and, therefore,

the stopband attenuation of the prototype and the filters in the bank. The z-transforms of

the analysis and synthesis filters can be written in terms of their polyphase components as

Hk(z) =
2mM−1∑

n=0

h(n)W
−k(n− 2mM−1

2 )
2M z−n

=
2M−1∑
q=0

m−1∑
r=0

h(q+2Mr)W
−k(q+2Mr− 2mM−1

2 )
2M z−q−2Mr

=
2M−1∑
q=0

W
−k(q− 2mM−1

2 )
2M Eq(z

2M )z−q, (75)

where Eq(z), for q = 0, 1, · · · , 2M − 1, are the 2M polyphase components of H(z) such that

Eq(z) =
m−1∑
r=0

h(q + 2Mr)z−r. (76)

The IDFT-DFT cascade is therefore a special case of the modulated PR filter bank shown

in Fig. 18 with Eq(z) being equal to some constant c for all q = 0, 1, · · · , 2M −1. Define the

correlation Cp between the frequency responses of the kth and (k + p mod 2M)th analysis

filters, Hk(z) and H(k+p mod 2M)(z), that have passbands centered pπ/M radians apart as

Cp =

∫ 2π
0 |Hk(e

jω)H(k+p mod 2M)(e
jω)|dω∫ 2π

0 |Hk(ejω)|2dω , (77)

p = 0, 1, · · · , 2M − 1,

where mod is the modulus operator. A plot of Cp, p = 0, 1, · · · , 2M − 1, for a (2M =64)-

point IDFT filter bank is shown in Fig. 28. The figure also shows Cp for (2M = 64)-

band CEM-modulated exact-PR filter banks with m = 5 and m = 13 that have prototype

stopband attenuations of 50.34 dB and 98.58 dB, respectively, and stopband edge frequencies

ωs = π/M . Note that Cp, p �= 0 for the IDFT bank is relatively large compared to that of

the modulated PR filter banks with m = 5 and m = 13. For modulated PR filter banks,

Cp, p �= 0, is roughly equal to the stopband attenuation of the filters in the banks, except
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for p = 1 and 2M − 1. Therefore, two narrowband signals produced by the analysis section

of a CEM-modulated PR filter bank with a sufficiently large value of m may be considered

orthogonal if they are separated by at least one output signal. Moreover, the relatively high

stopband attenuation of the analysis filters and the narrow bandwidth of the filters when

prototype filters with ωs = π/M are used reduce the aliasing from the downsampling-by-M

operation to a value on the order of the stopband attenuation of the prototype filter.

0 10 20 30 40 50 60
−120

−100

−80

−60

−40

−20

0
IDFT
PR filter bank, m = 5
PR filter bank, m = 13

C
p

p

Figure 28: The magnitude of the correlation Cp versus p for the DFT, and the modulated
PR filter banks with m = 5 and m = 13.

The adaptation of blind equalizer in systems that use symbol constellations with either

amplitude or phase information but not both is significantly simpler than the adaptation

for symbol constellations with both amplitude and phase information such as QAM. The

simplicity of the adaptation in the former case results from the knowledge of either the

phase of amplitude of the transmitted symbols, which can be used to simplify the adapta-

tion process. The adaptation of blind equalizers for QAM signals using conventional FD

adaptation techniques is difficult when the ISI introduced by the channel is severe. For

a QAM constellation, several factors contribute to both the magnitude and phase of the

84



error between a particular sample of the received signal and the corresponding transmit-

ted symbol. The magnitude and phase distortions of the communication channel, channel

noise, and possible miss-synchronization between the transmitter and receiver contribute

to both the magnitude and phase parts of the error between a transmitted sample and the

corresponding received sample. Applying simple adaptation algorithms often fails to adapt

blind equalizers for complicated channels with long impulse responses that lack a strong

line-of-sight path. The suggested blind equalizer with the basic structure of Fig. 27 uses the

analysis and synthesis sections of a modulated PR filter bank for the transformation and

inverse transformation blocks, respectively. The required modulated PR filter bank may

have a large number of subbands, 2M , to equalize long channels and a prototype filter that

has high stopband attenuation As and stopband edge frequency ωs = π/M .

Unlike TD equalizer weights, which are the coefficients of a filter, the weights in the

proposed FD blind equalizer are the complex-valued gains, Gk, for k = 0, 1, · · · , 2M − 1,

shown in Fig. 29. These weights scale the narrowband outputs of the analysis section of

the filter bank. The complex gains Gk in the proposed equalizer are decomposed into three

factors: R, |Ak|, and Pk/|Pk|, such that

Gk = R · |Ak| · Pk

|Pk| . (78)

As will be discussed later, the factor |Ak| adjusts the magnitude of the kth narrowband

signal Qk(z) in the proposed equalizer shown in Fig. 30, Pk/|Pk| adjusts the phase of Qk(z),

and R is a unit vector that rotates the constellation of the equalizer output signal to align

it with that of the transmitted signal.

85



↓M

↓M

↓M

↑M

↑M

↑M×

×

×

X(z)

Y (z)

...
...

...
...

...

z−1

z−1

z−1

z−1

z−1

z−1

E0(z
2)

E0(z
2)

E1(z
2)

E2M−1(z
2)

E2M−1(z
2)

E2M−2(z
2)

G0

G1

G2M−1

2M−
Point

IDFT

2M−
Point

DFT

Figure 29: The FD FIR filter. Ek(z
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After R, Ak, and Pk for all k = 0, 1, · · · , 2M − 1 have been optimized such that an error

signal is minimized, samples of the transmitted and equalized signals will differ because of

additive noise and residual ISI due to imperfect channel inversion. In the absence of noise

the error between the transmitted signal T (z) and the equalizer output signal Y (z) is

Te(z) = T (z) − Y (z), (79)

where Y (z) shown in Fig. 29 is given by

Y (z) =
1

M

M−1∑
p=0

C (zW p
M )X (zW p

M )
2M−1∑
k=0

GkHk (zW p
M )Hk(z), (80)

and C(z) is the z-transform of the communication channel. The successful equalizer adap-

tation reduces the power of the error signal Te(z) sufficiently to permit detection of the

received symbols with a relatively low probability of error. Fig. 31 shown the magnitude

response of a typical channel with two frequencies at which the response drops below the

peak response of the channel by approximately 35 dB. The figure also shows the power

spectrum density (PSD) of the error Te(z) for a noiseless 16-QAM received signal with

independent identically-distributed (iid) symbols that is equalized by a modulated PR fil-

ter bank equalizer with a value of M = 32. As illustrated in Fig. 31, the highest values

of the PSD of Te(z) occur at the zeros of the channels since the equalization of channel

zeros is difficult because they represent a loss of information. Channel poles also cause

a similar effect as channel zeros. To improve the performance of the equalizer, the value

of M used in the modulated PR filter bank is increased, which permits a more accurate

approximation of the channel inverse response and, therefore, reduces the error caused by

the imperfect equalization of channel poles and zeros. It is seen that �{te(n)} and �{te(n)}
generally approximate zero-mean Gaussian distributed random processes, where te(n) is the

TD representation of Te(z). The powers of �{te(n)} and �{te(n)} are determined by the

complexity of the channel and, particularly, by the number of zeros and poles of the chan-

nel. Bit errors in the output of the equalizer are, therefore, caused by the combination of

the two two-dimensional zero-mean Gaussian random processes: the channel noise and the

error of equalization Te(z). The noise is generally the dominant cause of bit errors at low

SNRs and the error signal Te(z) becomes the dominant source of bit errors at high SNRs.
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Figure 31: The magnitude of the correlation Cp versus p for the DFT, and the modulated
PR filter banks with m = 5 and m = 13.

The function of all equalizers, including the proposed one, is not to perfectly reproduce

the transmitted signal but only mitigate the ISI sufficiently to adequate signal detection.

Hence, the use of modulated near-PR filter banks may be preferred over modulated exact-PR

filter banks in the proposed equalizer, since near-PR filter banks require shorter prototype

filters than exact-PR filter banks to achieve the same stopband attenuation. The increase

in the probability of bit error due to the use of near-PR filter banks as opposed to their

exact-PR counterparts is generally very small.

The adaptation of the equalizer parameters in the suggested blind equalization method is

performed by optimizing the complex gainsGk, for k = 0, 1, · · · , 2M−1, between the analysis

and synthesis sections of a near- or exact-PR filter bank in three simultaneous processes.

While optimizing these complex parameters is relatively simple in the case of trained or

decision-directed equalization, it is difficult for blind equalization, especially for severe ISI-

causing long channels. The availability of only the statistics of the desired output of a blind
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equalizer makes the adaptation of the weights much slower and more complicated, especially

with received signals that have closed-eye constellations. The slow adaptation is attributed

to the high number of samples that are required to estimate HOS of the received signal.

The adaptation algorithms proposed for FD equalizers in the literature perform the weight

updates by adjusting the magnitudes and phases of the weights using a single adaptation

block. In the next subsections, we describe an optimization method that adapts the phases

of the equalizer weights separately from the magnitudes by using magnitude– and phase–

adjusting modified RLS algorithms. The phase–adjusting RLS algorithm further includes

a block to that smooths the phase response of the equalizer, which is found to significantly

improve the adaptation of the phase weights, especially for complicated channels.

7.2.1 Adapting the Magnitude Weights Ak

White QAM signals with iid symbols become colored when transmitted through a channel

that causes magnitude distortion. To correct for the magnitude distortion of the channel,

we define Ak, k = 0, 1, · · · , 2M−1, as a set of complex-valued weights such that |Ak| is used

to multiply the signal Qk(z) as shown in the magnitude correction block in Fig. 30. Since R

in (78), as will be discussed later, is a unit vector, |Gk| = |Ak|, for k = 0, 1, · · · , 2M−1. The

magnitudes of Ak are responsible for adjusting the PSD of the received signal to approximate

the PSD of the transmitted signal. For a white transmitted signal, the magnitude correction

block works to whiten the received signal and therefore, the cascade of the channel and the

equalizer described here with properly optimized Ak approximates an all-pass filter. For a

signal Uk(z) = |Ak|Qk(z), the kth weight Ak can be optimized such that

E

[∣∣∣ηk(n)
∣∣∣2]=E

{[
�{uk(n)} − γA sgn(�{uk(n)})

]2

+
[
�{uk(n)} − γA sgn(�{uk(n)})

]2
}

(81)

is minimized, where uk(n) is the TD representation of Uk(z) shown in Fig. 30. The optimum

value for γA depends on several factors: the statistics E[|�{s(n)}|] of the transmitted signal,

the response of the prototype filterH(z), and the lengthm of its 2M polyphase components.
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Table 4 lists optimized values of γ0 for four different filter banks, where

γA = γ0 · E
[∣∣∣�{s(n)}

∣∣∣]. (82)

The values of γ0 in Table 4 are those that resulted in the lowest average number of iterations

required by the equalizer to adapt to a set of randomly generated channels of different

lengths at different SNRs. The use of significantly lower or higher values of γ0 generally

result in the failure of the equalizer to adapt to the channel. The values of γ0 in Table 4

assume that the 2M -point DFTs and IDFTs used in the filters have scaling factors of 1 and

1/2M , respectively, and that the coefficients of prototype filter are normalized such that

2mM−1∑
n=0

|h(n)|2 = M. (83)

Table 4: Values of γ0 for different modulated filter banks

Filter Bank Type γ0

IDFT/DFT 1.0000/
√

2M

Modulated PR Filter Bank with m = 3 0.9945/
√

2M

Modulated PR Filter Bank with m = 5 0.9922/
√

2M

Modulated PR Filter Bank with m = 13 0.9392/
√

2M

The magnitude correction algorithm updates the magnitudes and the phases of the

weights Ak; however, only the magnitudes |Ak| are used in the equalizer. The phases of

Ak, represented by Ak/|Ak|, are retained for the adaptation algorithm only. Using the

initializations Dk(0) = δA and Ak(0) = 1, for k = 0, 1, · · · , 2M − 1, where δA is a small

positive number, an RLS algorithm given by the set of equations

Sk(n) =
Dk(n)Qk(n)

λ+Dk(n) |Qk(n)|2 , (84)

Uk(n) = |Ak(n)|Qk(n), (85)

ηk(n) = −
[(

�{Uk(n)} − γA sgn(�{Uk(n)})
)

+j
(
�{Uk(n)} − γA sgn(�{Uk(n)})

)]
, (86)

Ak(n+ 1) = Ak(n) + �
{
Sk(n)η∗k(n)

}
, (87)

Dk(n+ 1) = λ−1
[
Dk(n) − Sk(n)Dk(n)Q∗

k(n)
]
, (88)
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k = 0, 1, · · · , 2M − 1,

can be used for updating the kth weight Ak. The initialization Ak(0) = 1 ∀ k assumes an

automatic gain control (AGC) that adjusts the rms value of the equalizer input signal to

a value close to unity. If AGC is not used, Ak(0) are all set to the rms value of the input

signal.

7.2.2 Adapting the Phase Weights Pk

The magnitude correction block is followed by a phase correction block in the proposed

equalizer as shown in Fig. 30. The phase correction block computes a set of weights Pk, k =

0, 1, · · · , 2M − 1, and the phases Pk/|Pk| are used to modify the phases of the magnitude-

corrected narrowband signals Uk(z). After the magnitude distortion of the received signal

has been corrected by adjusting the weights Ak, the remaining ISI is mainly caused by the

phase distortion. This phase distortion results in an error between an output sample of the

equalizer and the corresponding transmitted sample. The radial part of this error provides

sufficient information that permits adjust the phase weights. Since both the magnitude

and phase distortions of the channel contribute to the radial part of this error, and since

updating the magnitude weights Ak takes precedence over updating the phase weights Pk,

the adaptation of Pk generally occurs when Ak have approached the optimum values.

Assume that Ak, k = 0, 1, · · · , 2M − 1 have been optimized. The phase weights are

optimized to minimize the power of the error êP (n) in the output signal given by

E

[∣∣∣êP (n)
∣∣∣2] = E

[∣∣∣y(n)(BP − |y(n)|)
∣∣∣2], (89)

where BP = E{|s(n)|2}. The error êP (n) is a TD error that is transformed by the error

analysis block of the equalizer to yield η̂k(n), k = 1, 2, . . . , 2M , using a transformation

similar to that of the equalizer input signal as shown in Fig. 30. The FD error signals

η̂k(n) can be used for adapting Pk. The optimization of Pk in the phase correction block

of Fig. 30 using an RLS algorithm demands that only the phases but not the magnitudes

of the input signals to this block be altered. This is achieved by dividing the inputs to the
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phase correction block, Uk(n), by |Pk| producing the signals

Vk(n) =
Uk(n)

|Pk(n)| , (90)

k = 0, 1, · · · , 2M − 1.

The weight Pk, for all k are then updated using properly delayed forms of the signals Vk(n)

and the FD error signals η̂k(n) by using the RLS algorithm described by the set of equations

Ŝk(n) =
D̂k(n)Vk(n− d)

λP + D̂k(n) |Vk(n− d)|2 , (91)

P̂k(n+ 1) = Pk(n) + Ŝk(n) η̂∗k(n), (92)

Pk(n+ 1) =
∣∣∣P̂k(n+ 1)

∣∣∣
[
(1 − 2α)

P̂k(n+ 1)

|P̂k(n+ 1)|

+α

(
P̂k−1(n+ 1)

|P̂k−1(n+ 1)| +
P̂k+1(n+ 1)

|P̂k+1(n+ 1)|

)]
, (93)

D̂k(n+ 1) = λ̂−1
P

[
D̂k(n) − Ŝk(n) D̂k(n)V ∗

k (n− d)
]
, (94)

k = 0, 1, · · · , 2M − 1,

where P̂2M (n + 1) = P̂0(n + 1), and α is a positive small number. The RLS algorithm

described in (91-94) uses the initializations Pk(0) = 1 and D̂k(0) = 1/δP , for all k =

0, 1, · · · , 2M − 1. Our observation of the magnitudes |Pk| reveals that they continuously

decrease during the optimization. The magnitudes |Pk| play a role in the optimization

process but not in the equalization and, therefore, the magnitudes of Pk can be reset if they

approach the processor precision, although this may cause the loss of several iterations to

enable contents of all affected memory elements to be flushed out.

The purpose of updating P̂k and using (94) for obtaining the actual weights Pk is that

using Pk(n + 1) = P̂k(n + 1), for example, instead of (94) often results in the failure of

the RLS algorithm to adapt Pk properly to channels with significant amplitude and/or

phase distortion. This is caused by the remaining ISI from the imperfect whitening of the

received signal interfering with the process of adapting Pk. To improve the convergence of

the Pk, and to permit convergence in situations where convergence was found to difficult

to achieve, the phase smoothing process described by (94) and represented by the phase

smoothing block in Fig. 30 is applied. This process is based on the fact that the phases of Pk
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for adjacent values of k are close when using filter banks with large values of M . Generally,

values of α in the range 0.005 − 0.01 work well for exact- and near-PR filter banks having

various values of M and m. The final outputs of the phase correction block Fk(z) are then

given by

Fk(n) = P ∗
k (n)R(n)Vk(n), (95)

where the weight R(n) causes a rotation of the constellation of the output signal as discussed

in the next subsection. Applying the inverse transformation of the equalizer to the set of

Fk signals produces the output signal of the equalizer.

7.2.3 Adapting the Rotation Weight R

After the magnitude Ak and phase Pk weights in the equalizer have been optimized, the

equalizer output signal may exhibit a rotated signal constellation. The reason is that the

error êP (n) used to optimize the Pk weights provides information about the relative phases

of the different Uk(n) signals, but not their absolute phases. This rotation must be corrected

before making decisions on samples of the equalized signal. For a constellation with symbols

that have one of N symbol-magnitudes {a1, a2, · · · , aN}, with a1 ≤ a2 ≤ · · · ≤ aN , the

rotation angle θR is initialized with θR = 0 and updated using

θR(n+1)=



θR(n), Da

(
|y(n)|

)
�=aN

θR(n)+µR�
{
y(n)

[
y(n)−D̂aN

s (y(n))
]∗}

, Da

(
|y(n)|

)
=aN ,

(96)

where µR is the adaptation step size. The operation Da(|y(n)|) is a decision that outputs

the magnitude from {a1, a2, · · · , aN} that is nearest to |y(n)|, and D̂aN
s is a decision that

outputs the symbol from the set of symbols having magnitude aN that is nearest to y(n).

The weight R that is used to correct for the rotation in the constellation of the equalized

signal is

R(n+ 1) = cos
[
θR(n+ 1)

]
+ j sin

[
θR(n+ 1)

]
. (97)

The process of updating θR uses only symbols that belong to the set having the largest mag-

nitude because they give the highest accuracy. The system may exhibit rotation ambiguity

equal to the angles separating the different symbols with magnitude aN .
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7.3 Computational Requirements of the Suggested FD Equal-

izer

The main parameters that determine the capabilities and computational requirements of

the proposed blind equalizer are the stopband attenuation As and stopband edge frequency

ωs of the prototype filter and the number of subbands 2M of the filter bank. While M

determines the maximum channel length that can be equalized, the value of As determines

the maximum channel distortion that can be corrected and ωs determines the amount of

correlation between the different equalizer weights and, therefore, the equalizer adaptation

speed. The values of As and M are also directly related to the computational requirements

of the equalizer. Since the equalizer uses DFT and IDFT blocks, the computations are most

efficient when M is a power-of-two, where fast Fourier transforms (FFT) and inverse fast

Fourier transforms (IFFT) can be used. This section derives the computational requirements

of the proposed equalizer during the phases of adaptation and equalization and compares

them to those of conventional TD blind equalizers.

The downsampling-by-M operation in the analysis sections of the equalizer results in

most of the processing being performed at the low sample rate of (1/M)th the sample rate of

the equalizer input signal. Therefore, each of the three sets of polyphase filters performs 4m

real multiplications per output sample (MPOS) and each of the IFFTs and FFT performs

4 log2(2M)−4 MPOS. The computational requirements for the RLS algorithms of Ak and

Pk for all k = 0, 1, · · · , 2M−1 are approximately 66 and 122 MPOS. The adaptation process

of θR for a 16-QAM signal constellation requires approximately 2 MPOS on average and

less for higher-order QAM constellations. Therefore, the total number of real MPOS that

the equalizer requires during the adaptation phase is, approximately,

ΓAdaptation =
[
12m+ 12 log2(2M) + 178

]
MPOS, (98)

and during the equalization phase, assuming no further adaptation is performed, is

ΓEqualization =
[
8m+ 8 log2(2M)

]
MPOS. (99)

The proposed equalizer has been observed to reliably adapt to severe-ISI channels of lengths

on the order of 2M/11. For an (L = 80)-channel with a 50 dB spread between the highest
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and lowest values of its magnitude response, for example, a power-of-two M = 512 and a

value of m = 5 for the modulated PR filter bank of the proposed equalizer may be required

for a 16-QAM signal. This equalizer requires approximately 358 and 120 MPOS during

adaptation and equalization phases, respectively.

For equalizing channels of length L, conventional equalizers may require FIR filters of

lengths 2L− 3L for low SNR conditions and lengths up to 5L for high SNR conditions for

providing the best performance [84]. Therefore, assuming that conventional GA or GSA

blind equalizers are able to equalize channels of length L = 80, for example, that have

complicated frequency responses, the length of the complex-valued FIR filters required

for arbitrary SNRs would be on the order of 5L. This means that conventional blind

equalizers require on the order of 20L MPOS for the filtering process and 20L MPOS for

the filter coefficients update process. For the (L = 80)-channel, a conventional TD blind

equalizer therefore requires roughly 3200 MPOS during adaptation and 1600 MPOS during

equalization, which are approximately 9 and 13 times the MPOS, respectively, required by

the proposed equalizer. The required number of weights in the proposed and conventional

blind equalizers generally increase as the channel lengths increase. However, the efficiency

of the proposed equalizer compared to that of a conventional TD blind equalizer increases,

since the computations of the proposed blind equalizer are on order O(log2M) while the

computations of the conventional equalizer are on order O(M). Conventional block blind

equalizers generally fail to equalize severe-ISI channels because of the significant correlation

between the equalizer weights that restricts the values these weights can have.

7.4 Simulation Results

The new FD blind equalization method was implemented and tested for different channels

with different characteristics and lengths at different SNR ratios. The SNR used in the

simulations is defined as the ratio of the power of the desired part of the signal at the input

of the equalizer to the power of the additive noise, and has the form

SNR =

σ2
S

L−1∑
n=0

|c(n)|2

σ2
N

, (100)
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where σ2
S is the power of the transmitted signal, c(n) is the nth coefficient of the channel,

and σ2
N is the power of the additive noise.

Example 1

The performance of the new blind equalization method in terms of the bit error rate

(BER) in the equalized signals versus the SNR is studied using near-PR filter bank equalizers

with m = 3 and 5 and for M = 128 and 256. The measurement of bit errors occurs while

the equalizer weights are fixed after an initial set of iterations during which the equalizer

weights are allowed to adapt. The performance of the new equalization method is compared

to that of a IFFT/FFT equalizer that uses the same adaptation method. The input signals

to the different equalizers are 16– and 64–QAM signals that have been transmitted through

the real-valued channel with the zero-pole and magnitude response plots that are shown in

Fig. 32. This channel is characterized by a gradual drop in the magnitude response that

results in an attenuation of roughly 49 dB of 0.03 of the signal band centered at half its

sampling rate. Such a channel illustrates the effect of the loss of different portions of the

received signal due to noise on the ability of an equalizer to adapt and equalize the received

signal. The parameters used in the adaptation algorithm for all equalizers, including the

IFFT/FFT equalizers, are given in Table 5.

The BER plots (assuming the use of gray coding) of the different equalizers are shown in

Fig. 33. Although equalizers that use prototypes with As less than the magnitude response

spread of the channel of approximately 49 dB are able to successfully adapt for high SNRs,

they fail to reduce the BER of the equalized signals below 0.05 regardless of the SNR. For

the new equalizer using prototypes with As > 49 dB (i.e., m = 5, the BER generally drops

as the SNR is increased. The effect of increasing M from 128 to 256 at a particular SNR

is seen to reduce the BER since more accurate approximation of the channel inverse can

be achieved. Changing the modulation from 16–QAM to 64–QAM significantly increases

the BER at a specific SNR since the Euclidean distance between the different symbols is

reduced. The values of |Ak| and phases of Pk for k = 0, 1, · · · , 511 of the equalizer with

m = 5 and M = 256 at a SNR of 50 dB are shown in Fig. 34(a) and (b), respectively. Parts

(c) and (d) of Fig. 34 show a set of samples of the input and output (equalized) signals of

97



−7 −6 −5 −4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

�{Z}

�{
Z
}

(a)

0
−50

−40

−30

−20

−10

0

10

Frequency ω

M
ag

n
it

u
d
e

R
es

p
on

se
(d

B
)

0.5π π 1.5π 2π

(b)

Figure 32: The channel used in Example 1, (a) zero-pole plot, and (b) magnitude response
|C(ejω)|.
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Table 5: Parameters of the new FD blind equalizer in Example 1

Parameter Value

Modulation Type 16– and 64-QAM, iid symbols

Maximum Number of Iterations for Adaptation 8000

SNR 25–65 dB

M 128 and 256

m 1 (IFFT/FFT), 3 and 5

ωs of the Prototype Filter π/M

As of Prototype Filter

∼ 13 dB (IFFT/FFT)

∼ 40 dB(m = 3)

∼ 50 dB(m = 5)

δA 0.01

λA 0.999

δP 0.01

λP 0.985

γ0 As in Table 4

µR 0.0005

ε 0.00655

the equalizer. For lower values of the SNR, where the PSD of the noise exceeds the PSD of

the desired part of the received signal at some frequencies, the magnification of the noise

stops when its PSD at these frequencies reaches the PSD of the transmitted signal and,

therefore, noise enhancement is limited.

Example 2

This example illustrates the performance of the new and the IFFT/FFT equalizers under

severe ISI resulting from the transmission of a 16–QAM signal through a complex-valued

FIR channel of length 90 with random coefficients. The real and imaginary parts of the

impulse response, the magnitude response, and the zero-pole plot of the channel are shown

in Fig. 35. The magnitude response of the channel clearly shows the severity of the ISI

that a transmitted signal through such a channel experiences, where the channel contains

several near-zero values of the magnitude response. The length and magnitude response

complexity of this channel is roughly the maximum that the new equalizer with M = 512
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Figure 33: BER versus SNR for 16– and 64–QAM signals transmitted through the channel
of Fig. 32 and equalized using the IFFT/FFT, and the m = 3 and m = 5 PR equalizers
with M = 128 and M = 256.

can successfully equalize. Channels that are more complicated may require a larger power-

of-two value of M . The parameters of the new and the IFFT/FFT blind equalizes are given

in Table 6.

The BER versus the SNR for the new and the IFFT/FFT equalizers are shown in

Fig. 36. For the PR equalizer withm = 5, both Gaussian and uniform noise distributions are

considered. While the m = 5–PR equalizer fails to converge for several low SNR values, the

IFFT/FFT equalizer, which also uses the suggested adaptation algorithm, fails to converge

for several high SNR values and is unable to reduce the BER below approximately 0.03

when the SNR is increased. The floor of the BER plot for the IFFT/FFT equalizer results

from the limited spread of the values of Ak to approximately 25 dB, which results in the

loss of a significant portion of the received signal and the failure to adapt several times.

The performance of the new equalizer in the presence of uniformly distributed noise is seen

to be very close to the performance with Gaussian noise.

For a 16–QAM received signal with a SNR of 30 dB, Fig. 37(a) and (b) show the
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Figure 34: Performance of the new FD equalizer in Example 1 for a 64–QAM constellation
at a SNR of 50 dB, (a) Magnitude of optimized Ak, (b) Angle of optimized Pk, (c) a set
of samples of the input signal x(n), and (d) a set of samples of the equalized output signal
y(n).
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Figure 35: The channel used in Example 2, (a) �{c(n)}, (b) �{c(n)}, (c) zero-pole plot,
and (d) magnitude response |C(ejω)|.
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Table 6: Parameters of the new blind equalizer in Example 2

Parameter Value

Modulation Type 16-QAM, iid symbols

Maximum Number of Iterations for Adaptation 4000

SNR 10–50 dB

M 512

m 1 (IFFT/FFT) and 5

Number of Weights 2M 1024

ωs of the Prototype Filter π/512

As of Prototype Filter
13.2 dB (IFFT/FFT)

47.85 dB(m = 5)

δA 0.01

λA 0.999

δP 0.01

λP 0.985

γ0 As in Table 4

µR 0.0001

ε 0.00655

adapted |Ak| and � Pk of the m = 5–PR equalizer, respectively. The figure also shows

part of the received and equalized signals. The adaptation of the different parts of the

equalizer and the equalizer as a whole are illustrated in Fig. 38. The adaptation of the

weights Ak and Pk are given in terms of the means of | log10(|Ak|)| and | � Pk| over the

values of k = 0, 1, · · · , 2M − 1 for every iteration, respectively, the adaptation of R is given

in terms of θR = � R, and the adaptation of the whole equalizer is given in terms of the

mean of the squared error (MSE) of the output signal y(n). Fig. 38(a) shows that the

adaptation of Ak continues throughout the process but slows in speed as the adaptation

process progresses. The adaptation of the Pk illustrated in Fig. 38(b) roughly continues at

a constant rate until the adaptation the is achieved, where it progresses slowly afterwards.

The phase of R remains unadapted until the weights Pk have approached their final values,

where the it quickly adjusts the rotation of the constellation to the proper value and nearly

remains constant as shown in Fig. 38(c). The MSE of y(n) shown in Fig. 38(d), which is

an indicator of the adaptation of the whole equalizer, remains almost constant until all the
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Figure 36: BER versus SNR for 16–QAM signals transmitted through the channel of
Fig. 35 and equalized using the IFFT/FFT and the m = 5–PR equalizers with M = 512.
For the m = 5–PR equalizer, noise that is Gaussian and unform distributed are considered.

equalizer weights have been adjusted successfully, where it then drops to its minimum.

Example 3

The new equalizer is tested for equalizing channels of different lengths using 7 sets of

channels with lengths ranging from 20 to 80 coefficient. Each set contains 25 channels of

a particular length with coefficients that are samples of a Gaussian random variable. An

equalizer with M = 512 and m = 5 was used for equalizing the different channels, where

the parameters of the equalizer were fixed to the values shown in Table 7. The plots of the

BER averaged over the 25 channels of each set versus the SNR for the new equalizer and

the IFFT/DFT equalizer are given in Fig. 39. For relatively long channels (i.e., L = 60,

70, and 80 in this example), Fig. 39 shows that the new equalizer experiences a BER floor

due to the domination of the error caused by the remaining ISI in the equalized signal

over the error due to the channel noise. The suggested adaptation algorithm successfully

adapted the PR filter bank equalizer for almost all the channels over the SNRs shown in

Fig. 39. For the IFFT/FFT equalizer, successful adaptation is achieved for almost all short

104



0 200 400 600 800 1000
−10

−5

0

5

10

15

20

25

30

k

|A
k
|(

d
B

)

0 200 400 600 800 1000

0

k
�
P

k
(r

a
d
ia

n
s)

−π

−0.5π

0.5π

π

(a) (b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

�{x(n)}

�{
x
(n

)}

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

�{y(n)}

�{
y
(n

)}

(c) (d)

Figure 37: Performance of the new equalizer in Example 2 for a 16–QAM constellation
at a SNR of 30 dB, (a) Magnitude of optimized Ak, (b) Angle of optimized Pk, (c) a set
of samples of the input signal x(n), and (d) a set of samples of the equalized output signal
y(n).
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Figure 38: Adaptation of the blind equalizer weights, (a) Measure of adaptation of the
magnitude of Ak, (b) Measure of adaptation of the phase of Pk, (c) Measure of adaptation
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106



channels while adaptation fails for a large portion of long channels. The average BER even

for the set of channels of length 20 floors for high SNRs at approximately 0.01, rendering

the IFFT/FFT nearly useless for equalizing such channels.

Table 7: Parameters of the new blind equalizer in Example 3

Parameter Value

Modulation Type 16-QAM, iid symbols

Maximum Number of Iterations for Adaptation 4000

SNR ≤ 15 – 45 dB

M 512

m 1 (IFFT/FFT) and 5

ωs of the Prototype Filter π/512

As of Prototype Filter
13.2 dB (IFFT/FFT)

47.85 dB(m = 5)

δA 0.01

λA 0.999

δP 0.01

λP 0.985

γ0 As in Table 4

µR 0.0001

ε 0.00655
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CHAPTER VIII

CONCLUDING REMARKS

The objective of the research described in this thesis was to investigate new methods for

performing some of the computationally demanding DSP functions in the front-end of SWR

systems in an effort to reduce their computational requirements and, therefore, reduce the

cost, DSP count, radio size, and power consumption of SWR base and mobile station

transceivers. The major contributions of this research are

• Modified CIC Filters: A modification to conventional CIC filters with improved

frequency characteristics was described,

• Efficient SRC for SWR Base Station Transmitters: A computationally efficient

method for performing SRC by factors greater than unity for use in SWR systems was

presented,

• Efficient Channelizer/Synthesizer Design: A computationally efficient channel-

izer and channel synthesizer for extracting and recombining baseband channels in SWR

systems was described,

• Design Method for Modulated PR Filter Banks: A fast and powerful method

for designing the prototype filters of modulated PR filter banks was discussed,

• Design of Robust FD Blind Equalizers: The design and adaptation method of

a robust and reliable FD blind equalizer for equalizing SWR wideband signals ware

presented.

These contributions and the conclusions derived from them are summarized as follows.
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8.1 Modified CIC Filter for Sample Rate Conversion in

Software Radio Systems

A modification to the conventional CIC class of filters for SRC in SWR systems was de-

scribed in Chapter 3. This modification was shown to enhance the frequency characteristics

of the conventional CIC filter. The modified CIC filter provides higher SNRs and better

image attenuation compared to the conventional CIC filter by adjusting the zeros of the

filter to target high-power image components. SWR systems can take advantage of this

flexibility when the wideband input contains narrowband channels with a high dynamic

range. An SWR receiver can measure the power of different channels and correspondingly

adjust the delays of the CIC filter to minimize aliasing caused by high-power narrowband

channels. The modified CIC filter gains this improved performance over the conventional

CIC filter at the expense of a small increase in the number of computations for a range of

SRC factors.

8.2 Efficient Sample Rate Conversion for Software Radio

Systems Using Hierarchical Computation of Output Sig-

nals

An efficient SRC method for SRC factors L/M > 1 was discussed in Chapter 4. This

SRC method is capable of reducing the number of MPOS that are required for performing

SRC of wideband and high dynamic range signals for a range of conversion factors that

is required at different stages of SWR communication systems in general, and in SWR

base station transmitters in particular. The computational efficiency of this method is

significantly higher than the efficiency of other SRC methods for conversion factors that

are greater than but close to unity and the efficiency generally decreases as the conversion

factor increases. This SRC method may require a fraction in the range 0.25–0.50 of the

MPOS required by efficiently-constructed multi-stage conventional SRC systems, especially

when the SRC factor is greater than but close to unity.
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8.3 Efficient Wideband Channelizer for Software Radio Sys-

tems Using Modulated Perfect Reconstruction Filter

Banks

In Chapter 5, we presented a new channelization method that uses modulated PR fil-

ter banks as building blocks. This channelizer significantly reduces the computations for

channelization in SWR systems when the input signal is composed of channels with dif-

ferent bandwidths, where polyphase decomposition of the DFB channelizer is inapplicable.

This channelizer is shown to have higher computational efficiency than DFB channeliz-

ers, especially when the number of extracted channels is large. For wideband signals with

equal-bandwidth channels, the efficiency of the channelizer is also higher than PFB chan-

nelizers for when only few channels are extracted. The new channelizer can also be used for

efficiently performing synthesis of channels with nonequal bandwidths and different sam-

ple rates. The computational complexity of the channelizer/synthesizer, which is of order

O(log2M), is significantly lower than the computational complexity of DFB channelizers,

which is of order O(M), when channelizing signals with large number of channels that are

separated by small guard bands.

8.4 Design of Modulated PR Prototype Filters with Large

Values of Subchannels M

A new method for designing modulated PR filter banks was described in Chapter 6. While

conventional methods for designing modulated exact-reconstruction filter banks fail to gen-

erate filters with both high number of subchannels and prototype filters with high stopband

attenuations, the new method is capable of designing such modulated exact-PR filter banks

efficiently and quickly. The efficiency of the design method was illustrated by designing a

prototype filter for a 512-subchannel modulated PR filter bank with stopband attenuation

As = 98.04 dB and stopband edge ωs = π/512. The complexity of the design method

increases linearly with the number of subchannels of the filter bank while the complexity

of the design methods in the literature increase at a much higher rate and generally fail to

design modulated PR filter banks with stopband attenuations on the order of 100 dB for
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filter banks with more than two subchannels.

8.5 Blind Equalization of QAM Signals Transmitted over

Severe ISI-Causing Channels

Chapter 7 described a FD blind equalization method that is capable of equalizing long

channels with severe ISI that conventional TD or FD blind equalizers have not been shown

to be able to equalize. The blind equalizer, which is suitable for QAM signals and other

two-dimensional symbol constellations, equalizes the transmission channel by adapting the

individual magnitudes and the individual phases of its FD weights independently. Further,

a rotation of the equalized signal is performed to compensate for the average error in the

adaptation of the phase part of the equalizer weights. The computational requirements of

the 2M -weight equalizer are of order O(log22M) and the delay of the system is of order

O(2M). The computational requirements of the new equalizer represent a small fraction

of the computational requirements of conventional TD blind equalizers, which have order

O(2M) when the number of weights in the equalizers is high. Simulations of the equalizer

show that it is capable of equalizing complex-valued channels of lengths on the order of

one-twelfth the number of weights with high reliability.

We propose the following extensions to the research performed in this thesis.

• Use of Filter Banks for SRC: The research in this thesis has shown the potential for

modulated near- and exact-perfect reconstruction filter banks for implementing several

signal processing algorithms such as channelizing/synthesizing narrow band channels

and equalization. We propose extending the use of modulated filter banks for SRC.

Modulated perfect reconstruction filter banks may have great potential for performing

SRC due to their inherent multi-rate structure,

• Combining Blocks of the SWR with Similar Construction: One of the widely

considered fields of research in SWR is dedicated to finding the commonalities between

the different wireless communication standards to reduce the computations of the SWR
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system. The channelization/channel-synthesis and blind equalization algorithms dis-

cussed in Chapters 5 and 7, respectively, and possibly the SRC systems if they can be

implemented using modulated filter banks would all have the same basic construction.

We think that significant amounts of computations can be eliminated by combing the

different blocks of the SWR front-end,

• Extending FD Blind Equalizers to Time-Varying Channels: The FD blind

equalization method described in Chapter 7 assumed a constant channel over the period

of equalizer adaptation. We propose studying the effect of complicated channels that

are slowly time-varying on the performance of this FD blind equalizer,

• Study of Practical Implementation of the Algorithms on ASICs and FPGAs:

The research in this thesis assumes that the different algorithms are implemented

on general-purpose DSPs. Implementing these algorithms on ASICs or FPGAs is

accompanied by a new set of problems, including the limited reconfigurability of these

units. We propose an extension to this research that studies the possibility of using

ASICs and FPGAs for the DSP algorithms discussed here.
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APPENDIX A

RELATION BETWEEN COSINE-MODULATED AND

EXPONENTIALLY-MODULATED PR FILTER BANKS

Representing Ĥk(z) and F̂k(z) in terms of H(z) using (27) and substituting into the output

signal of the cosine-modulated filter bank

X̂(z) =
1

M

M−1∑
p=0

X (zW p
M )

M−1∑
k=0

Ĥk (zW p
M ) F̂k(z) (101)

yields

X̂(z) =
1

M

M−1∑
p=0

X (zW p
M )

M−1∑
k=0

[
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H
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. (102)

We can define Sp(z) as the sum of the last two terms in (102) over all values of k =

0, 1, · · · ,M − 1, i.e.,

Sp(z) =
M−1∑
k=0

j(−1)kH
(
zW p

MW
(2k+1)
4M
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(
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. (103)

Expanding the two summations of Sp(z) in (103) gives

Sp(z) = j

[
H
(
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4M
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. (104)
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It can be easily shown that the first set of terms of Sp(z) in (104) cancel the second set of

terms for any p = 0, 1, · · · ,M − 1. Hence, Sp(z) = 0 for all p = 0, 1, · · · ,M − 1 and any z.

Therefore, (102) becomes

X̂(z) =
1

M
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p=0

X (zW p
M )

[
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k=0

W
(2k+1)( 2mM−1
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where

H̃k(z) = F̃k(z) = W
(2k+1)( 2mM−1

2 )
4M H

(
zW

(2k+1)
4M

)
. (106)

Therefore, the modulation of (27) in a cosine-modulated filter bank and the modulation

h̃k(n) = f̃k(n) = h(n)ej
π(2k+1)

2M (n− 2mM−1
2 ) (107)

in a CEM filter bank are identical. Since the cosine modulation of (27) is a form of the

CEM in (107), prototypes designed for cosine-modulated PR filter banks are also applicable

for CEM PR filter banks.
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