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Abstract— Sharing of the frequency spectrum between licensed
primary users and unlicensed secondary users (SUs) requires
reliable detection of spectrum occupancy by the SUs. Due to
fading, single terminal detection is unreliable and results in a
high probability of missed detection. This is solved by applying
cooperative detection. In this paper two novel energy-based
cooperative detection methods using weighted combining for
Dynamic Spectrum Access are presented and analyzed. Weighting
is based on the local mean SNR and the optimum log-likelihood
ratio. Simulation results show a substantial improvement for the
proposed weighting methods compared to equal gain combining
and hard decision combining.

I. INTRODUCTION

Frequency spectrum is a scarce resource which generally
is regulated by governmental agencies. Traditional spectrum
management is rather inflexible with exclusive licenses for
the use of specific frequency bands. Despite all the frequency
bands being already allocated, recent measurements indicate
low spatial and/or temporal utilization of parts of the licensed
spectrum [1]. A novel way to increase spectrum efficiency is
to share the spectrum between licensed primary users (PUs)
and unlicensed secondary users (SUs). Unlicensed SUs are
allowed to access the spectrum only when they do not interfere
with the PU. This sharing is called Dynamic Spectrum Access
(DSA).

In the most common scenario there is no cooperation
between PUs and SUs. The SU has to determine empty
spectrum slot, i.e. a frequency channel which is unused in a
certain area and time interval, by sensing a licensed frequency
band, and transmit only when it does not detect the PU.
A classical technique to detect unknown signals in noise is
energy detection [2]. It is simple to implement but suboptimal
since no signal signature information is exploited. The detec-
tion quality of the SU, indicated by the probabilities of false
alarm, PF , and missed detection, PM , is mainly determined
by the signal-to-noise ratio of the received PU signal, which is
location dependent due to pathloss, shadowing and multipath
fading. For a user in a bad location (low signal-to-noise ratio),
it will be difficult to make a distinction between an empty
channel and an occupied channel. The likelihood that multiple
users with independent channels experience a bad channel is
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Fig. 1. Block diagram of the energy detector.

smaller than for a single user. Therefore, cooperation between
a number of SUs by combining the sensing results taken under
the same condition: PU present or PU not present, will enhance
the detection performance.

Previous studies on cooperative detection for DSA, i.e. [3],
[4], [5], [6], [7], have focused on detection techniques which
combine the decisions from the SUs with equal weights. In this
paper, we introduce two new techniques for weighted com-
bining of the channel sensing results of users: weighted gain
combining and log-likelihood combining. Due to shadowing, or
slow fading, some secondary nodes will receive the PU signal
on average with a higher power than others. Since shadowing
changes relatively slow over time, it is possible to estimate
the expected average signal power at a secondary node. This
information, which is a direct measure for the detection quality
of the nodes, is exploited by both techniques to weight the
information of the SU to enhance the detection quality. We
quantify the performance of these techniques with the help
of simulations and show the performance increase to hard
decision combining and equal gain combining.

The remainder of this paper is organized as follows. Sec-
tion II describes the performance of single node energy detec-
tion in fading channels. The proposed cooperative detection
techniques are given in Section III, and accompanied with
simulations in Section IV. Finally, this paper is concluded in
Section V.

II. ENERGY DETECTION IN FADING CHANNELS AND

SYSTEM MODEL

A block diagram of the energy detector is given in Fig. 1.
The received signal r(t) can be written as r(t) = hs(t)+n(t),
where s(t) is the detected signal waveform, n(t) is additive
white Gaussian noise (AWGN) and h = 0 under hypothesis
H0 (no PU signal present) and h = 1 under hypothesis H1 (PU
signal present). First, the received signal is filtered by an ideal
bandpass filter with impulse response f(t) and bandwidth W
to limit the noise power. The filtered signal rf (t) = f(t)∗r(t)



is squared and integrated over time T resulting in the decision
statistic Y =

∫ T

0
r2

f (t)dt, which is described by [2]

Y ∼
{

χ2

2u, under H0,

χ2

2u(2γ), under H1,

where χ2

2u is a chi-square distribution with 2u degrees of
freedom, χ2

2u(2γ) is a non-central chi-square distribution with
2u degrees of freedom and non-centrality parameter 2γ, u =
TW is the time-bandwidth product and γ = Es

N0

is the ratio of
signal energy to noise spectral density (SNR). It is assumed
that T and W are chosen such that u only takes integer values.

In a non-fading environment the single node probability of
detection PD and the single node probability of false alarm
PF are given by [8]

PD = Pr(Y > λ|H1) = Qu(
√

2γ,
√

λ), (1)

PF = Pr(Y > λ|H0) =
Γ(u, λ/2)

Γ(u)
, (2)

where λ is the threshold of the energy detector, Γ(.) and Γ(., .)
are the complete and upper incomplete gamma function, re-
spectively, and Qu(., .) is the generalized Marcum Q-function.
From (2) it is clear that the probability of false alarm PF is
independent of γ, since no signal is present under H0.

When the receiver is in a fading channel, the received
signal energy and SNR are location dependent. Therefore, the
average probability of detection PD is derived by averaging
(1) over the fading statistics

PD =

∫

∞

0

Qu(
√

2γ,
√

λ) fγ(x)dx, (3)

where fγ(γ) is the probability density function (pdf) of the
SNR due to fading. The probability of false alarm is the same
for all locations, since it does not depend on the SNR.

A. Rayleigh fading

When a signal experiences an NLOS multipath channel,
the signal amplitude follows a Rayleigh distribution, and γ

is exponentially distributed as fγ(γ) = 1

γ
exp

(

−γ
γ

)

, where
γ is a mean SNR value. A closed-form expression for PD is
obtained, by substituting fγ(γ) in (3) [8, Eq. (16)].

B. Shadow fading

Empirical measurements show that on a log scale the
attenuation due to shadowing follows a zero mean Gaussian
distribution [9], which is characterized by the standard devia-
tion σdB , or dB-spread. When γ is log-normal distributed the
probability of detection can be evaluated numerically.

C. Shadow plus Rayleigh fading

It is likely that a channel will experience both shadowing
and multipath fading. The pdf of this composite log-normal

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

SNR =  0 dB
SNR = −3 dB
SNR = −10 dB

Fig. 2. Complementary ROC curve under log-normal shadowing plus
Rayleigh fading at different SNR values for u = 10 and σdB = 6 dB.

shadowing plus Rayleigh fading channel is found by averaging
the log-normal over the exponential distribution, i.e.

fxm
(xm) =

∫

∞

0

1

xs

exp

(

−xm

xs

)

10

σdB

√
2π ln(10)xs

× exp

(

− (10 log
10

(xs) − µ)2

2σ2

dB

)

dxs.

Here xs is the log-normal random variable, xm the random
variable after shadowing and multipath and µ is the mean of
the shadow fading. To the best of the author’s knowledge there
is no closed form expression for a log-normal plus Rayleigh
distribution, and therefore in this paper the performance of
local energy detection is evaluated with Monte Carlo simula-
tions.

The performance of the energy detector in this case may be
characterized by the complementary receiver operating charac-
teristic (ROC) curve. The complementary ROC, which is a plot
of the probability of missed detection PM = 1 − PD versus
the probability of false alarm PF , is shown in Fig. 2. These
results indicate that the detection performance is degraded
by log-normal shadowing plus Rayleigh fading. For example,
PF > 0.8 for PM < 0.1, which indirectly results in a low
spectrum utilization.

D. System model

A geographical overview of a DSA Network (DSAN)
sharing the spectrum with a PU is illustrated in Fig. 3(a).
The DSAN, consisting of several SUs, is at a distance d
from the primary transmitter (PT). Around the PT there is
a region of decodability with a radius of rdec. In the absence
of interference and fading a PU receiver can only decode the
signal if it is inside this region of decodability. The secondary
users are clustered in a DSAN with a radius rs. We see that
all the SUs are within the region of decodability, so they can
only use the spectrum when the PT does not transmit.
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Fig. 3. System model: (a) Geographical overview of the considered network,
(b) Parallel cooperative detection topology with fusion center [10, Fig. 1].

III. COOPERATIVE TECHNIQUES

In order to improve the performance of spectrum sensing,
the SUs can cooperate to detect the presence of the PU. The
detection topology used for cooperative detection is a parallel
network with a fusion center as shown in Fig. 3(b). This
topology consists of N ≥ 2 local detectors all observing
the same phenomenon. The local detectors transmit their
measurement statistics to a fusion center, one dedicated node
in the DSAN, which makes a global decision.

It is assumed that all the N SUs experience indepen-
dent and identically distributed (iid) fading. The sensors are
conditionally independent, which means that the SUs’ mea-
surements are independent, but that for each SU the same
hypothesis {H0, H1} applies. We now introduce two new
cooperative detection techniques: weighted gain combining
and log-likelihood combining.

A. Measurement combining

In measurement combining, the fusion center weights and
combines the measurement values of the N local detectors.
Based on a threshold test a global decision is generated.
The test statistic YWC is the weighted sum of the N local
measurements

YWC =

N
∑

n=1

wnYn,

where Yn is the non-quantized output of the energy detectors
and wn is the weight for node n.

1) Weighted gain combining: In a channel experiencing
shadowing, some nodes will have a better location depen-
dent SNR than others. To gain from this SNR diversity, the
fusion center can give different weights to different nodes.
For weighted gain combining (WGC), the proposed SNR
dependent weights are given by

wn =
γn

∑N

n=1
γn

,

where γn, the mean SNR over k measured SNR values of user
n, is defined as

γn =
1

2k

i
∑

j=i−k

(Yn,j − 2u), (4)

and Yn,j is is the non-quantized jth measurement of the SU
n. This results in a high weight for nodes with a high SNR
and low weight for SU nodes with a low SNR. The weights
are calculated by the fusion center, since it already receives
the SNR measurements of all the nodes. When no information
about the nodes’ SNRs is available at start-up or after a long
time without a signal, the weights are set to wn = 1

N
. To

make WGC adaptive, the fusion center only uses the last k
measurements to compute the weights.

2) Equal gain combining: A special case of measurement
combining is equal gain combining (EGC). In EGC the fusion
center combines the measurements with equal weight, e.g.
wn = 1 for all n.

The global probability of detection QD and global probabil-
ity of false alarm QF for both schemes for the AWGN channel
are derived in [8]. However, for the log-normal shadow fading
and log-normal plus Rayleigh fading channel QD has to be
derived numerically.

B. Log-likelihood combining

The optimal solution to the distributed detection problem
with conditionally independent sensors, is obtained by apply-
ing a likelihood ratio test (LRT) at the fusion center [10]. The
LRT performed at the fusion center is given by

Λ(Y) =
p (Y|H1)

p (Y|H0)

H1

≷
H0

λ. (5)

Here, Y = (Y1, Y2, . . . , YN ) is the vector of SU energy
detector outputs. To employ the LRT, it is assumed that the
conditional pdf’s p (Y |H0) and p (Y |H1) are known. In reality
this is not the case because the SNR is not known a priori.
To employ the LRT, an estimate of the SNR can be used to
derive the pdf’s.

We can see that the LRT of the fusion center is the same as
a threshold test, and therefore we can use (5) to construct the
test statistic Y at the fusion center. Due to the independence
assumption (5) can be written as

YLLC =
N
∏

n=1

p(Yn|H1)

p(Yn|H0)
=

N
∑

n=1

log

[

p(Yn|H1)

p(Yn|H0)

]

.

In this form, the LRT can be seen as a sum of weights from the
local detectors, each given by the local ratio of the likelihood
of H1 and the likelihood of H0.

C. Hard decision combining

For comparison, we recall the classical cooperative mea-
surement technique: hard decision combining. Here, the local
detectors have their own decision rule and make a decision
based on their own measurements, which takes the value 0 or
1. Previous studies on cooperative detection for DSA with hard
decision detection [3], [4] use energy detection with a fixed
threshold identical for all sensors. This cooperative scheme is
suboptimal [11], however, the local and global decision rules
are simple and easy to implement.

The fusion center decides H1 if any of the N local decisions
decide H1. This fusion rule is a threshold rule and is also
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Fig. 4. Complementary ROC curve for the iid composite fading channel for
several cooperative techniques with N = 10, SNR=-8 dB and u = 10.

known as OR-rule or 1-out-of-N rule [11]. In this case the
global probability of detection QD = 1 − (1 − PD)N and
global probability of false alarm QF = 1− (1 − PF )

N , where
PD and PF are given by (1) and (2), respectively.

IV. SIMULATION RESULTS

For most cooperative techniques, closed form solutions for
QD and QF do not exist. Therefore, the performance of the
techniques presented in the previous sections are determined
from simulations based on the system model as given in
Section II-D and using the Monte Carlo method. Except for
the simulations showing the influence of the distance, the
maximum distance between SUs is assumed much smaller than
the distance to the primary transmitter (PT), i.e. rs � d. In
this case, the differences in the distant dependent path loss
between the SUs is relatively small and can be neglected.
Unless stated otherwise, the following system parameters are
used: the measurement bandwidth of the SU is W = 100kHz,
the integration time T = 0.1 ms, thus u = TW = 10, the
number of nodes N = 10, and the standard deviation of the
shadow fading is σdB = 6 dB.

An overview of the performance of the cooperative tech-
niques is given in Fig. 4. The average SNR of the nodes over
the whole network is γ = −8 dB. The results indicate that
there is an increase in performance for all the cooperative
techniques when compared to the single node performance.
For QM = 1−QD < 0.1 the QF is reduced from 0.8 for single
node detection to 0.1 for 10-node log-likelihood detection. We
also see that the more information available for the global
decision the larger the performance improvement.

The global probability of false alarm QF versus SNR under
iid log-normal shadowing plus Rayleigh fading for different
cooperative detection techniques and number of sensors is
given in Fig. 5. The local and global decision thresholds are
chosen such that QD = 0.9. The results show an improvement
in QF when cooperative detection is used, and log-likelihood
combining shows the best performance for all SNRs. In
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particular for log-likelihood combining with N = 10 and
γ = −10 dB, QF is substantially lower than for hard decision
combining and EGC. This improvement can lead indirectly to
a higher spectrum efficiency.

The probability of false alarm QF versus the number of
nodes N under iid log-normal shadowing plus Rayleigh fading
is plotted in Fig. 6 for QD = 0.9. The results show an increase
of performance with increasing number of nodes. For low SNR
values the increase in performance is less than for higher SNR
values. It can also be observed that for low SNR values, log-
likelihood combining and WGC perform much better than hard
decision combining or EGC.

For a system where the maximum distance between SUs is
not much smaller than the distance to the PT, the variation of
the SUs’ distant dependent path loss can be significant. For a
DSAN with a radius of rs = 250m at a distance d = 1000m
from the PT, the difference in SNR can be approximately 9 dB
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when the path-loss exponent n = 4.
Fig. 7 shows QF versus distance under iid log-normal

shadowing plus Rayleigh fading for different cooperative tech-
niques and number of sensors for QD = 0.9. The average
SNR at the center of the DSAN is -10 dB. These results
show a smaller QF at a short distance from the PT because
the variation in SNR becomes larger compared to larger
distances, which results in improved detection performance.
For rs = 250m, the influence of the distance dependent path
loss becomes negligible for d > 3 km. In general, it is possible
to assume a large distance network for rs

d
< 1

12
.

The local mean SNR γn can be estimated from the last k
measurements using (4). The effect of the number of samples
to determine γn on the complementary ROC curves for log-
likelihood combining under iid log-normal shadowing plus
Rayleigh fading is shown in Fig. 8. The mean SNR of the
DSAN is -5 dB, and due to shadowing each local sensor
experiences a different γn. It is assumed that the log-normal
shadowing does not change between the k measurements,
but the Rayleigh fading is assumed independent for the k
measurements. These results indicate that the performance of
log-likelihood detection with k = 1 is approximately the same
as the performance of EGC. It also shows that the performance
increases with each additional measurement. For k ≥ 10
the performance is close to the performance of log-likelihood
combining with perfectly known local mean SNR values.

V. CONCLUDING REMARKS

In an environment with severe shadowing plus Rayleigh
fading single node detection is not sufficiently reliable for
DSA. Thus, secondary users may have to cooperate in sensing
the channel state to achieve reliable detection. The techniques
proposed in this paper for weighting the channel sensing
results from multiple users exploit the knowledge of the local
mean SNR, and result in a substantial improvement compared
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to existing techniques which do not use this information.
Especially, log-likelihood combining outperforms all the other
techniques in the case of low SNR and low number of
nodes in the network. Interestingly, distant dependent path loss
between the SUs, which becomes relevant if the DSAN is
close to the primary transmitter, results in improved detection
performance due to an increase of the SNR variance. Log-
likelihood combining assumes that the pdf of the energy
detectors output is known. More research is needed on how
to estimate the pdf and its required accuracy.
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