
Chapter 10

Timing Recovery

From the eye patterns presented in Chapter 6, we recall that a demodulated digital
communication signal has to be sampled at a proper timing phase before successful
detection of the transmitted data. In systems where channel distortion is minimal
and noise level is low, e.g., the cases shown in Figures 6.2 and 6.3, the timing phase,
obviously, has to be at the point where the eye pattern has maximum opening. In
such cases, visual identification of the best timing phase from an eye pattern is
straightforward. Accordingly, one may think of and develop simple algorithms for
timing recovery and tracking. On the other hand, when the distortion introduced
by the channel is significant, e.g., the case shown in Figure 6.4, it is not obvious
what criterion should be used for timing recovery.

As in any adaptive algorithm, a timing recovery algorithm is also developed based
on a cost function whose optimization leads to the desired timing information. In
this chapter, we discuss two classes of timing recovery methods: (i) non-data aided
methods; and (ii) data aided methods.

In non-data aided timing recovery methods, the statistical characteristics of dig-
ital data signals are used in choosing a relevant cost functions. For instance, a
detailed study of digital data signals reveals that their ensemble average power is
a periodic function of time whose period equal to the incoming symbol interval.
Moreover, the peak point of this function gives a timing phase which is optimum in
a sense that is defined later, in this chapter. Hence, a PLL that locks to this periodic
function can be used to generate a clock synchronous with the received signal. In
addition, aligning the generated clock with the peaks of the proposed cost function
allows one to design an optimum timing recovery loop.

Data aided methods are based on cost functions that depend on the transmitted
data symbols. Since the transmitted data symbols are unknown to the receiver,
tentative decisions at the receiver are replaced for the transmitted symbols. Such
algorithms perform well as long as the decision errors are at an acceptably low level.

271

272 Timing Recovery Chap. 10

10.1 Non-Data Aided Timing Recovery Methods

10.1.1 Fundamental results

We recall from Chapter 3 that a communication channel, in general, is characterized
by an equivalent complex-valued baseband impulse response cBB(t). Accordingly,
the demodulated received signal at the baseband (assuming that carrier recovery
has already been established) is given by

y(t) =
∞
∑

n=−∞

s[n]cBB(t− nTb) (10.1)

where s[n]s are data symbols and Tb is the baud/symbol interval. The data symbols
are in general from a complex-valued constellation.

The key idea in development of non-data aided timing recovery stems from
the following observation. If s[n]s are a set of independent and identically dis-
tributed symbols with mean of zero and variance of σ2

s , we obtain the ensemble
mean-square/power of y(t) as

ρ(t)
∆
= E[|y(t)|2] = σ2

s

∞
∑

n=−∞

|cBB(t− nTb)|2. (10.2)

By direct inspection, we note that ρ(t) is a periodic signal with period of Tb. It thus
can be expanded using Fourier series as

ρ(t) =
∞
∑

n=−∞

ρne
j2πnt/Tb (10.3)

where ρns are the Fourier series coefficients given by

ρn =
1

Tb

∫ Tb

0
ρ(t)e−j2πnt/Tbdt. (10.4)

Substituting (10.2) in (10.4), we obtain

ρn = =
1

Tb

∫ Tb

0

(

σ2
s

∞
∑

n=−∞

|cBB(t− nTb)|2
)

e−j2πnt/Tbdt

=
σ2
s

Tb

∞
∑

n=−∞

∫ Tb

0
|cBB(t− nTb)|2e−j2πnt/Tbdt

=
σ2
s

Tb

∫ ∞

−∞
|cBB(t)|2e−j2πnt/Tbdt (10.5)

where the second line follows by changing the order of the integral and summation,
and the third line follows by introducing the change of variable t−nTb to t and noting
that the resulting integrals add up to a single integral over the range −∞ < t <∞.

Sec. 10.1 Non-Data Aided Timing Recovery Methods 273

Next, we recall from Chapter 2 that, for any pair of functions x(t) and y(t),

F [x(t)y(t)] = X(f) ⋆ Y (f). (10.6)

Also, we note that in (10.5),
∫∞
−∞ |cBB(t)|2e−j2πnt/Tbdt is the Fourier transform of

|cBB(t)|2 = cBB(t)c∗BB(t) at f = n/Tb,. Hence, substituting x(t) = cBB(t) and
y(t) = c∗BB(t) in (10.6), and noting that F [c∗BB(t)] = C∗

BB(−f), we get

ρn =
σ2
s

Tb
CBB(f) ⋆ C∗

BB(−f)|f= n

Tb

=
σ2
s

Tb

∫ ∞

−∞
CBB(f)C∗

BB

(

f − n

Tb

)

df. (10.7)

From (10.7), the following observations are made:

•
ρ0 =

σ2
s

Tb

∫ ∞

−∞
|CBB(f)|2df (10.8)

is a real and positive number.

•
ρ1 =

σ2
s

Tb

∫ ∞

−∞
CBB(f)C∗

BB

(

f − 1

Tb

)

df (10.9)

and

ρ−1 =
σ2
s

Tb

∫ ∞

−∞
CBB(f)C∗

BB

(

f +
1

Tb

)

df

=
σ2
s

Tb

∫ ∞

−∞
CBB

(

f − 1

Tb

)

C∗
BB(f)df

= ρ∗1. (10.10)

• In almost all practical channels, the excess bandwidth of the transmit pulse
shaping filter is less than 100%; e.g., when pT(t) is a square-root raised-cosine
pulse shape with role of factor α ≤ 1, the excess bandwidth is 100α%. In
such cases, CBB(f) = 0 for |f | > 1/Tb. Using this, one finds that ρn = 0, for
|n| > 1.

From the above observations, we conclude that

ρ(t) = ρ0 + ρ1e
j2πt/Tb + ρ∗1e

−j2πt/Tb

= ρ0 + 2|ρ1| cos
(

2π

Tb
t+ 6 ρ1

)

(10.11)

where |ρ1| and 6 ρ1 are the amplitude and phase of ρ1, respectively.

274 Timing Recovery Chap. 10

10.1.2 The timing recovery cost function

Let us consider the case where the received signal y(t) is sampled at the time instants
τ + nTb, where τ is called timing phase. From the above results, one readily finds
that E[|y(τ + nTb)|2] = E[|y(τ)|2] = ρ(τ). Hence, we obtain

ρ(τ) = ρ0 + 2|ρ1| cos
(

2π

Tb
τ + 6 ρ1

)

. (10.12)

We refer to ρ(τ) as the timing recovery cost function.
Figure 10.1 presents a plot of the timing recovery cost function ρ(τ) versus the

timing phase τ . As seen, and, of course, could be understood by direct inspection
of (10.12), ρ(τ) is a periodic function of τ with a period of Tb, the maximum value
of ρ0 + 2|ρ1|, and the minimum value of ρ0 − 2|ρ1|. Moreover, either the minima or
maxima points of ρ(τ) provide reference points where one may choose to lock the
symbol clock rate to. This leads to algorithms that keep the receiver synchronized
with the incoming symbols. In addition, a timing phase that results in the best
performance of the receiver should be chosen. We refer to this as the optimum
timing phase.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

τ/T
b

ρ(
τ)

Figure 10.1: The timing recovery cost function ρ(τ).

10.1.3 The optimum timing phase

It turns out that, in general, the optimum timing phase is obtained by maximizing
the cost function ρ(τ). To provide a clear understanding of this interesting result, we

Sec. 10.1 Non-Data Aided Timing Recovery Methods 275

first consider the case where the channel is ideal. In this case, CBB(f) = P (f) is a
Nyquist pulse. Also, we recall from Chapter 4 that p(t) = F−1[P (f)] is a real-valued
function of time. This implies that P (f) = P ∗(−f). Moreover, for convenience of
discussion, we assume that P (f) has zero phase. It is thus a real-valued function of
f and, hence, P (f) = P (−f). On the other hand, we recall the Nyquist criterion

1

Tb

∞
∑

n=−∞

P

(

f − n

Tb

)

= 1. (10.13)

We also recall from Chapter 4 that the Fourier transform of the sampled signal

ps(t) =
∞
∑

n=−∞

p(nTb)δ(t − nTb) (10.14)

is

Ps(f) =
1

Tb

∞
∑

n=−∞

P

(

f − n

Tb

)

= 1 (10.15)

Figure 10.2 visualizes this result, for 0 ≤ f ≤ 1
Tb

. We may also note that the graphs
are given for the important case where P (f) has an excess bandwidth of less than
100% and in this case, for 0 ≤ f ≤ 1/Tb,

Ps(f) =
1

Tb

(

P (f) + P

(

f − 1

Tb

))

. (10.16)

Next, consider the case where p(t) is sampled at the time instants τ + nTb, i.e.,
at a timing phase τ . This results in the sampled signal

ps(t, τ) =
∞
∑

n=−∞

p(τ + nTb)δ(t− τ − nTb). (10.17)

Applying the Fourier transform to both sides of (10.17), we get

Ps(f, τ) =
∞
∑

n=−∞

p(τ + nTb)e
−j2πf(τ+nTb)

= e−j2πfτ
∞
∑

n=−∞

p(τ + nTb)e
−j2πfnTb

=
1

Tb
e−j2πfτ

(

P (f)ej2πfτ + P

(

f − 1

Tb

)

ej2π(f−1/Tb)τ
)

=
1

Tb

(

P (f) + P

(

f − 1

Tb

)

e−j2πτ/Tb

)

(10.18)

where the third line is obtained by noting that
∑∞
n=−∞ p(τ + nTb)e

−j2πfnTb is the
Fourier transform of the sampled version of p(t+τ) at the time instants nTb, F [p(t+
τ)] = P (f)ej2πfτ , and applying (10.16) to this case.

276 Timing Recovery Chap. 10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fT
b

A
M

P
LI

T
U

D
E

(1/T
b
)P(f−1/T

b
) (1/T

b
)P(f)

P
s
(f)

Figure 10.2: Visualization of (10.16).

The phase-shift introduced by the delay τ will put P (f) and P (f − 1/Tb) out
of phase and as a result over the portion of the frequency band where P (f) and
P (f − 1/Tb) overlap, Ps(f, τ) reduces in amplitude. In particular, when τ = 0.5Tb,
e−j2πτ/Tb = −1 and, hence, (10.18) reduces to

Ps(f, τ) =
1

Tb
e−j2πfτ

(

P (f) − P

(

f − 1

Tb

))

. (10.19)

Figure 10.3 presents plots of |Ps(f, τ)| for three choices of τ = 0.2Tb, 0.3Tb and 0.5Tb.
Here, p(t) is a raised-cosine pulse with roll-off factor α = 0.5. We note that as τ
increases from 0 to 0.5Tb, a notch is developed in the transfer function Ps(f, τ).

Another important and relevant point which needs our attention is that the
data sequence s[n] and the output sequence y[n, τ] = y(τ +nTb) are related through
a discrete-time channel whose impulse response is the sequence p(τ + nTb). The
frequency response of this channel is given by the Fourier transform of the sequence
p(τ + nTb), viz.,

P (ej2πf , τ) =
∞
∑

n=−∞

p(τ + nTb)e
−j2πnf . (10.20)

Also, using the results of Section 4.3.1, one may find that

P (ej2πf , τ) = Ps

(

f

Tb
, τ

)

. (10.21)

This result is obtained by direct application of (4.45), replacing x(t) by p(τ + t)
and Ts by Tb. This observation show that the channel, here, may be treated as

Sec. 10.1 Non-Data Aided Timing Recovery Methods 277

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fT
b

A
M

P
LI

T
U

D
E

τ = 0.2T
b

τ = 0.3T
b

τ = 0.5T
b

Figure 10.3: The impact of sampling phase on the amplitude of Ps(f, τ).

a discrete-time system with input s[n] and output y[n, τ]. Accordingly, the power
spectral density of the output signal y[n, τ] is given by

Φyy(e
j2πf , τ) = Φss(e

j2πf)|P (ej2πf , τ)|2 = Φss(e
j2πf)

∣

∣

∣

∣

Ps

(

f

Tb
, τ

)∣

∣

∣

∣

2

(10.22)

where Φss(e
j2πf) is the power spectral density of the discrete-time sequence s[n].

Moreover, using the Rayleigh’s relation (4.36), we obtain

E[|y[n, τ]|2] =

∫ 1

0
Φyy(e

j2πf , τ)df =

∫ 1

0
Φss(e

j2πf)

∣

∣

∣

∣

Ps

(

f

Tb
, τ

)∣

∣

∣

∣

2

df. (10.23)

Finally, considering the plots of |Ps(f, τ)| in Figures 10.2 and 10.3, we find that
τ = 0 maximizes E[|y[n, τ]|2]. Also, τ = 0 is the optimum timing phase since it
maximizes the eye-opening. This follows from

p(0 + nTb) = p(nTb) =

{

1, n = 0
0, otherwise

(10.24)

which implies y[n, 0] = s[n] and this corresponds to the case where there is no ISI.
On the other hand, for any τ 6= 0, in the range of 0 < τ < Tb, p(τ +nTb) is non-zero
for any n, hence, ISI will be present and the presence of ISI reduces the eye-opening.

The above discussion clearly shows that in a communication system with an
ideal channel, the timing phase that maximizes the power of the signal samples is

278 Timing Recovery Chap. 10

the optimum timing phase. We also note that this corresponds to the case where
the aliased signal components are in phase and thus augment. Any deviation of
the timing phase from the optimal phase results in attenuation of the signal spectra
over the aliased band. Theoretically such distortion could be compensated through
a channel equalizer which will be designed to amplify the signal over the bands
that the spectra attenuation has occurred. However, such amplification also results
in amplification/enhancement of the channel noise which clearly has a detrimental
effect on the receiver performance.

When the channel is non-ideal, also, it is intuitively understandable that a tim-
ing phase that results in significant cancellation of aliased components reduces the
power of the sampled signal. This clearly should correspond to a timing phase near
the minimum of the timing recovery cost function ρ(τ). Moreover, equalization of
sampled signal results in significant noise enhancement and thus poor performance
of the receiver is expected. On the other hand, a timing phase that maximizes the
power of the sampled signal corresponds to a case where the aliased components
are mostly in phase and thus will augment. From this, one may argue that a tim-
ing phase that maximizes the cost function ρ(τ) leads to, at least, a near optimum
timing phase.

10.1.4 Improving the cost function

Figure 10.4 presents plots of the cost function ρ(τ) for an ideal channel where
CBB(f) = P (f) and P (f) is the Fourier transform of a raised-cosine pulse-shape.
The plots are given for three values of the rolloff factor α = 0.25, 0.5 and 1. An
important point to note here is that the variation/gradient of ρ(τ) reduces with α.
Also, in an adaptive setting, a stochastic gradient (similar to the one in the LMS
algorithm) is used to search for the timing phase that maximizes ρ(τ). In addition,
we note that the variance of a stochastic gradient is approximately proportional to
the magnitude of the underlying signal power. Hence, noting that when the timing
phase is near it optimal value, the signal power is almost independent of α (see
Figures 10.2 and 10.3), one may argue that the stochastic gradients used for timing
recovery become less reliable as α decreases.

To overcome the above problem, we proceed with an intuitive reasoning of why
the gradient of ρ(τ) reduces with α and from there suggest a method of modifying the
cost function ρ(τ) such that it will be less dependent on α. Referring to Figure 10.3,
one finds that the variation of the received signal power as a function of timing
phase, τ , is a direct consequence of augmentation or cancellation of the aliased
signal components as τ varies. Moreover, if we note that the amount of aliased
components reduces with α, it becomes obvious that the variation of ρ(τ) with τ
reduces with α. Extending this argument, we suggest, to obtain a cost function
which will be less dependent on α, one should only concentrate on the signal power
over the band of the aliased components. This can be done easily by passing the

Sec. 10.2 Non-Data Aided Timing Recovery Algorithms 279

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

τ/T
b

ρ(
τ)

α = 0.25

α = 0.5

α = 1

Figure 10.4: Plots of the timing recovery cost function ρ(τ) for an ideal channel and
a raised-cosine pulse-shape with three values of rolloff factor α.

received signal through a bandpass filter that is centered around 1/2Tb and choosing
the output power of this filter as the timing recovery cost function.

Figure 10.5 presents a set of plots of a modified cost function that is obtained
by taking the Tb-spaced samples of the received signal and passing them through a
single pole highpass filter with the transfer function

B(z) =

√

1 − β2

1 + βz−1
(10.25)

where 0 < β < 1 determines the bandwidth of the filter and the factor
√

1 − β2 is to
normalize the power gain of the filter, for a white input, to unity. We refer to this
cost function as ρβ(τ). We also note that ρ(τ) can be thought as a special case of
ρβ(τ) which is obtained by choosing β = 0. For the results presented in Figure 10.5,
β is chosen equal to 0.95. As expected, unlike ρ(τ) which varies significantly with
α, ρβ(τ), for β close to one, remains nearly the same for all values of α.

10.2 Non-Data Aided Timing Recovery Algorithms

Application of the cost function ρ(τ), or its modified version ρβ(τ), leads to a va-
riety of timing recovery/tracking algorithms. Here, we emphasize and introduce
algorithms that operate based on samples of y(t) that are taken at a spacing of
Tb/L, where L is an integer. This we have found convenient and relevant to the

280 Timing Recovery Chap. 10

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

τ/T
b

ρ β(τ
)

α = 0.25
α = 0.5
α = 1

Figure 10.5: Plots of the improved timing recovery cost function for an ideal chan-
nel and a raised-cosine pulse-shape with three values of the rolloff factor α. The
parameter β is set equal to 0.95.

content of this text since in a software radio setting, the demodulated baseband
signal is always obtained by decimating a higher rate signal. For example, in the
all digital receiver structure that was presented in Chapter 5, Section 5.8.3, the
baseband signal is obtained by decimating a signal that originates from an IF signal
whose sampling rate is usually an order of magnitude or more greater than the baud
rate fb = 1/Tb. Moreover, if the interpolation method mentioned in Section 5.8.1 is
used, signal samples at a much higher rate will also be accessible and thus quantized
values of the timing phase τ at any desired precision can be made available.

10.2.1 Early-late gate timing recovery

Early-late gate is one the most common methods of timing recovery and can be
applied to the variety of cost functions. To develop an early-late gate timing recovery
algorithm based on the cost function ρ(τ) we proceed as follows.

We recall that the goal of timing recovery is to choose a timing phase τ = τopt

which maximizes ρ(τ) (or its modified version, ρβ(τ)). We also note that when
τ = τopt and δτ is a timing phase deviation, ρ(τ + δτ) − ρ(τ − δτ) = 0. On
the other hand, for a non-optimum timing phase τ and a small δτ , we note that
ρ(τ + δτ) − ρ(τ − δτ) > 0, when τ < τopt, and ρ(τ + δτ) − ρ(τ − δτ) < 0, when
τ > τopt. The is demonstrated in Figure 10.6 for a case where τ < τopt.

In the light of the above observation, one may propose the following update

Sec. 10.2 Non-Data Aided Timing Recovery Algorithms 281

ρ(τ)

τ

τ

τopt −
Tb

4
τopt +

Tb

4

τopt +
Tb

2
τopt −

Tb

2

τopt

ρ (τ + δτ) − ρ (τ − δτ)
τ + δτ

τ − δτ

Figure 10.6: A demonstration of the early-late timing recovery information.

equation for adaptive adjustment of the timing phase:

τ [n+ 1] = τ [n] + µ (ρ (τ [n] + δτ) − ρ (τ [n] − δτ)) (10.26)

where µ is a step-size parameter. Moreover, we note that in practice the cost function
ρ(τ) is not available and only could be estimated based on the observed signal
samples. Say, by taking the average of the squares of a few recent samples of y(t). Or,
we may follow the philosophy of the LMS algorithm and simply use |y(τ +nTb)|2 as
an estimate of ρ(τ). Applying such coarse estimates, we obtain the update equation

τ [n+ 1] = τ [n] + µ
(

|y (τ [n] + δτ + nTb)|2 − |y (τ [n] − δτ + nTb)|2
)

. (10.27)

The timing phase deviation δτ is a design parameter whose value (as long as it
stays smaller than Tb/4) has very little effect on the algorithm performance; see the
numerical results presented in Figure 10.7, below. Its value is usually dictated by
the implementation consideration.

To be more specific, the equations used for realization of the early-late gate
timing recovery with the modified cost function are summarized as follows:

y1[n] =
√

1 − β2y (τ [n] + δτ + nTb) − βy1[n− 1], (10.28)

282 Timing Recovery Chap. 10

y−1[n] =
√

1 − β2y (τ [n] − δτ + nTb) − βy−1[n− 1], (10.29)

τ [n+ 1] = τ [n] + µ
(

|y1[n]|2 − |y−1[n]|2
)

. (10.30)

Note that y1[n] and y−1[n] are, respectively, sequences obtained by passing the signal
samples y (τ [n] + δτ + nTb) and y (τ [n] − δτ + nTb) through the highpass filter B(z).

To explore the performance of the timing recovery recursions presented above
and also to show how they may be implemented in software, we present and use the
MATLAB script ‘TR ELG.m’. This script is presented below and is available on
the accompanying CD. The reader is encouraged to use this program to gain bet-
ter understanding of the behavior of the early-late gate timing recovery algorithm.
‘TR ELG.m’ is similar to the script ’CRExp2.m’ that was presented in Chapter 9,
with the last part of the program replaced by the timing recovery algorithm.

MATLAB Script TR ELG.m: Early-late gate timing recovery
Tb=0.0001; L=100; M1=20; Ts=Tb/L; fs=1/Ts; fc=100000;
delta c=0; N=8*L; phi c=0.5; sigma v=0; alpha=0.5; c=1;
b=sign(randn(10000,1));
M=input(’QAM size (4, 16, 64, 256) =’);
if M==4 s=b(1:2:end)+i*b(2:2:end);
elseif M==16 s=2*b(1:4:end)+b(2:4:end)+i*(2*b(3:4:end)+b(4:4:end));
elseif M==64 s=4*b(1:6:end)+2*b(2:6:end)+b(3:6:end)+...

j*(4*b(4:6:end)+2*b(5:6:end)+b(6:6:end));
elseif M==256 s=8*b(1:8:end)+4*b(2:8:end)+2*b(3:8:end)+b(4:8:end)+...

j*(8*b(5:8:end)+4*b(6:8:end)+2*b(7:8:end)+b(8:8:end));
else print(’Error! M should be 4, 16, 64 or 256’); end
pT=sr cos p(N,L,alpha); xbbT=conv(expander(s,L),pT);
t=[0:length(xbbT)-1]’*Ts; xT=real(exp(i*2*pi*fc*t).*xbbT);
xR=conv(c,xT); xR=xR+sigma v*randn(size(xR));
t=[0:length(xR)-1]’*Ts; y=exp(-i*(2*pi*(fc-delta c)*t-phi c)).*xR;
pR=pT; y=conv(y,pR);
%%%%%%%%%%%%%%%%%%%%%%%%
% TIMING RECOVER: Early-late Gating %
%%%%%%%%%%%%%%%%%%%%%%%%
beta=0; mu0=0.01; dtau=12; mu=mu0*(L/4)/dtau;
Ly=length(y); tau=0.3*ones(1,round(Ly/L)); kk=1; yp=0; ym=0; start=5*L+1
for k=start:L:length(tau)*L

tauTb=round(tau(kk)*L);
yp=sqrt(1-betaˆ2)*y(k+tauTb+dtau)-beta*yp;
ym=sqrt(1-betaˆ2)*y(k+tauTb-dtau)-beta*ym;
tau(kk+1)=tau(kk)+mu*(abs(yp)ˆ2-abs(ym)ˆ2); kk=kk+1;

end
figure, plot(tau(1:kk),’k’)
xlabel(’Iteration Number, n’), ylabel(’tau[n]’)

Sec. 10.2 Non-Data Aided Timing Recovery Algorithms 283

From Figure 10.6, we observe that the difference ρ (τ [n] + δτ) − ρ (τ [n] − δτ),
for 0 < δτ ≤ L/4 increases as δτ increases. This variation is almost linear with δτ .
Hence, µ should be given a value proportional the inverse of δτ . This is taken care
of in the script ‘TR ELG.m’.

Figure 10.7 presents a set of plots of τ generated by the MATLAB script
‘TR ELG.m’. The following parameters are used: β = 0, µ0 = 0.01, 4QAM symbols,
and four choices of δτ = 25 (= L/4), 18, 12 and 1. From these results and further
experiments that may be performed (using the MATLAB script ‘TR ELG.m’), one
may observe that the convergence behavior of the early-late timing recovery algo-
rithm remains independent of the parameter δτ over a relatively wide range within
the interval 1 to L/4. Only when δτ approaches L/4, some drop in the conver-
gence rate is observed. This observation can be explained, if we note that the ratio
ρ(τ [n]+δτ)−ρ(τ [n]−δτ)

δτ reduces as δτ increases.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of iterations, n

τ[
n]

δτ = 25
δτ = 18
δτ = 12
δτ = 1

Figure 10.7: Plots of the timing phase update of the early-late gate timing recovery
algorithm. The parameters used are : β = 0, µ0 = 0.01, and four choices of
δτ = 25 (= L/4), 18, 12 and 1.

Figure 10.8 presents a plot of τ [n] as a function of n, when β = 0.9, µ0 = 0.005,
data symbols are from a 4QAM constellation, and δτ = 12. Comparing this result
with those in Figure 10.7, we note that increasing β leads to an improved convergence
rate, as predicted in Section 10.1.4. In addition, we observe a significant reduction
in the timing phase jitter after convergence of the algorithm. This observation is
also in line with the discussion in Section 10.1.4.

284 Timing Recovery Chap. 10

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of iterations, n

τ[
n]

Figure 10.8: A plot of the timing phase update of the early-late gate timing recovery
algorithm. The parameters used are : β = 0.9, µ0 = 0.005, and δτ = 12.

10.2.2 Gradient-based algorithm

Using the gradient algorithm, the following recursion may be used to find the timing
phase τ that maximizes the timing recovery cost function ρ(τ):

τ [n+ 1] = τ [n] + µ
∂ρ(τ)

∂τ
(10.31)

where µ is an step-size parameter.
The early-late gate timing recovery recursion (10.26) (and, thus, (10.27)) may

also be thought as a gradient-based algorithm, where the approximation

∂ρ(τ)

∂τ
≈ |y (τ [n] + δτ + nTb)|2 − |y (τ [n] − δτ + nTb)|2

2δτ
(10.32)

is used in (10.31) and the ratio µ/(2δτ) is redefined as the step size parameter.
We also note that in the early-late gate timing recovery algorithm, each iteration
requires computation of three samples of y(t); the desired sample y(nTb + τ) and
the lagged samples y (τ [n] + δτ + nTb) and y (τ [n] − δτ + nTb), with |δτ | < Tb/4.
Here, we present a lower complexity timing recovery algorithm that operates based
on only two samples y(τ [n] +nTb) and y(τ [n] +nTb + Tb/2) for each update of τ [n].

We begin with using (10.12) to obtain

∂ρ(τ)

∂τ
= −4π

Tb
|ρ1| sin

(

2π

Tb
τ + 6 ρ1

)

. (10.33)

Sec. 10.2 Non-Data Aided Timing Recovery Algorithms 285

Also, it turns out that when β is close to, but smaller than, one,

E [ℜ(y0(τ [n] + nTb)y
∗
1(τ [n] + nTb + Tb/2))] = −k sin

(

2π

Tb
τ + 6 ρ1

)

(10.34)

where y0(τ [n] + nTb) and y1(τ [n] + nTb + Tb/2) signal sequences obtained by pass-
ing y(τ [n] + nTb) and y (τ [n] + nTb + Tb/2) through the transfer function B(z)
of (10.25), respectively, and k is a positive constant. Following the same ap-
proach as the one used in the LMS algorithm and, also, in (10.27), we use
ℜ(y0(τ [n] + nTb)y

∗
1(τ [n] + nTb + Tb/2)) as a stochastic estimate proportional to

the gradient ∂ρ(τ)/∂τ in (10.31). This leads to the update equation

τ [n+ 1] = τ [n] + µℜ(y0(τ [n] + nTb)y
∗
1(τ [n] + nTb + Tb/2)). (10.35)

The above algorithm can be implemented in software through a simple modifi-
cation of the ‘for loop’ in the MATLAB script ‘TR ELG.m’. The modified ‘for loop’
may be written as:

Modified timing recovery loop for the realization of the recursion (10.35).
for k=start:L:length(tau)*L

tauTb=round(tau(kk)*L);
y0=sqrt(1-betaˆ2)*y(k+tauTb)-beta*y0;
y1=sqrt(1-betaˆ2)*y(k+tauTb+L/2)-beta*y1;
tau(kk+1)=tau(kk)+mu*real(y0*y1’); kk=kk+1;

end

Figure 10.9 presents a typical plot of τ [n] when the gradient-based algorithm is
used. The simulation setup is similar to the one used to generate Figures 10.7 and
10.8 and the parameters used, here, are β = 0.95 and µ = 0.01. From this result,
we may observe that the gradient-based timing recovery algorithm proposed here is
somewhat slower than the early-late gate algorithm proposed earlier. It also exhibits
a higher level of timing jitter; compare Figures 10.8 and 10.9.

10.2.3 Tone extraction algorithm

The identity ρ(t) = E[|y(t)|2] = ρ0 + 2|ρ1| cos(2πt/Tb + 6 ρ1), i.e., (10.11), implies
that |y(t)|2 has a spectral line at fb = 1/Tb. Moreover, from the results developed
in this chapter, we infer that the optimum timing phase coincides with the maxima
of ρ(t). Following this observation, one may suggest the block diagram shown in
Figure 10.10, for finding the optimum timing phase. In this figure H(z) is a narrow-
band filter tuned to the frequency 1/Tb. Variety of techniques are available and may
be used for realization of H(z). Here, we introduce one realization that has some
similarity (in structure) to the CIC filters that where introduced in Section 5.7.

Let us assume that the samples of y[n] are available at a rate of fs = L/Tb.
Figure 10.11 presents an example of the power spectral density of |y[n]|2 for the

286 Timing Recovery Chap. 10

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of iterations, n

τ[
n]

Figure 10.9: A plot of the timing phase update of the gradient-based timing recovery
algorithm. The parameters used are : β = 0.95 and µ = 0.01.

| · |2 H(z)

z−∆

y[n]

Sample at the
peaks of v[n]

v[n]

Figure 10.10: Block diagram of a timing recovery system based on tone extraction
algorithm.

Sec. 10.2 Non-Data Aided Timing Recovery Algorithms 287

case where L = 10. Note that the frequency axis is normalized with respect to the
sampling frequency fs. As one would expect, there are three spectral lines; a strong
spectral line at f = 0 and a pair of weaker spectral lines at f = ± 1

L = ±0.1. Our
goal is to extract the latter pair.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Normalized Frequency, f/f
s

M
ag

ni
tu

de

Figure 10.11: An example of the spectra of |y[n]|2 for the case where L = 10.

To develop a low complexity structure for extracting the spectral lines at f = ± 1
L ,

we proceed as follows. First, we design a narrowband filter G(z) whose passband is
located at the normalized frequency f = 0.5. Then, each delay in G(z) is replaced
by L/2 delays. This results in a comb filter that one of its passbands selects the
desired spectral lines at f = ± 1

L . A particular choice of G(z) that results in a very
low cost implementation is

G(z) = 1 − z−1 + z−2 − · · · − z−(K−1)

=
1 − z−K

1 − z−1
(10.36)

where K is the filter length. Here, we are interested in even values of K since such
choices result in a null at f = 0 and thus removes the undesirable DC component
ρ0. Figure 10.12 presents an example of the power spectra density of the signal
resulting from passing |y[n]|2 throughG(zL/2) for the case where L = 10 andK = 20.
Clearly, this filter has removed the DC component of the signal and also has greatly
suppressed the background noise, around f = 0, that is seen in Figure 10.11.

Figure 10.13(a) presents the block diagram of a timing recovery system that
uses G(z) for tone extraction and accordingly for adjustment of the timing phase
of a receiver. This system operates based on the decimated output samples p[n]

288 Timing Recovery Chap. 10

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Normalized Frequency, f/f
s

M
ag

ni
tu

de

Figure 10.12: An example of the spectra of the signal resulting from passing |y[n]|2
through G(zL/2) for the case where L = 10 and K = 20.

and adjusts the time delay δ such that the extracted output samples coincide with
negative-crossings of p[n]. This corresponds to the midpoint between maxima and
minima points of the cost function ρ(t). Hence, the timing phase that coincides with
the peak point of signal power will be ∆ = δ+ N

4 . To adjust δ, the following update
equation may be used

δc[n+ 1] = δc[n] − µp[n] (10.37)

where µ is a step-size parameter and δc is a continuous-time variable. The integer
delay δ is obtained through rounding of δc, i.e., δ[n] = round(δc[n]).

We also note that the block diagram of Figure 10.13(a) can be simplified by
using the first noble identity (of Chapter 5) to move part of the decimator ↓ L
before G(zL/2). This simplification is presented in Figure 10.13(b).

10.3 Data Aided Timing Recovery Methods

The timing recovery algorithms that have been developed so far operate based on
the statical properties of the received signal samples. In this section, we present two
alternative algorithms that make use of the detected data for tracking the timing
phase. These algorithms performs well only when the receiver components, including
the equalizer, and carrier and timing recovery blocks have converged and thus the
data symbols are detected correctly with a low probability of error.

Sec. 10.3 Data Aided Timing Recovery Methods 289

Figure 10.13: Block diagram of a timing recovery system based on tone extraction.
(a) The complete system. (b) Detail of the comb filter and decimator blocks.

290 Timing Recovery Chap. 10

10.3.1 Muller and Muller’s method

In the Muller and Muller’s method, the goal is set to minimize a cost function which
is a linear sum of the channel impulse response samples taken at Tb intervals. One
particular choice of the cost function that is commonly used in practice is

η(τ) = |cBB(τ + Tb) − cBB(τ − Tb)|. (10.38)

Figure 10.14 presents an example of the channel impulse response cBB(t) and
its relevant samples. Since the optimum timing phase, τ = τopt, minimizes the cost
function η(τ), this corresponds to the case where cBB(τ+Tb) ≈ cBB(τ−Tb). It is also
intuitively understood (by visual inspection of Figure 10.14) that for an equalized
channel this condition positions c(τ) to around the peak of cBB(t) and the rest of
the samples near the zero-crossing points of cBB(t). This, of course, is desirable as it
leads to a situation where the sampled signal suffers from a small level of intersymbol
interference.

c(τ)

c(τ − Tb)

c(τ + Tb)

t
τ

Figure 10.14: A typical impulse response, cBB(t), of a channel and a set of relevant
samples pertinent to the Muller and Muller’s timing recovery method.

In a more general case, when cBB(t) is a complex function of time, the real part
of cBB(t) is a pulse similar to the one presented in Figure 10.14 and its imaginary
part is a low amplitude signal (ideally, zero). In that case, the cost function (10.38)
is modified as

η(τ) = |ℜ{cBB(τ + Tb) − cBB(τ − Tb)}|. (10.39)

To develop an adaptive algorithm for minimization of η(τ), we first note that
for τ > τopt, ℜ{cBB(τ + Tb) − cBB(τ − Tb)} < 0, and for τ < τopt, ℜ{cBB(τ + Tb) −
cBB(τ − Tb)} > 0. Hence, we suggest the update equation

τ [n+ 1] = τ [n] + µℜ{ĉBB(τ + Tb) − ĉBB(τ − Tb)} (10.40)

Sec. 10.3 Data Aided Timing Recovery Methods 291

where ĉBB(τ +Tb) and ĉBB(τ −Tb) are the estimates of cBB(τ +Tb) and cBB(τ −Tb),
respectively. On the other hand, we recall that

y(t) =
∞
∑

k=−∞

s[k]cBB(t− kTb) (10.41)

where s[k] is the sequence of the transmitted data symbols. Using (10.41) and
assuming that

E[s[n]s∗[m]] =

{

1, m = n
0, m 6= n

(10.42)

one finds that

E[y(nTb + τ)s∗[n− 1]] = cBB(τ + Tb) (10.43)

and

E[y((n − 1)Tb + τ)s∗[n]] = cBB(τ − Tb). (10.44)

Finally, following the philosophy of the LMS algorithm, we use the coarse estimates
ĉBB(τ + Tb) = y(nTb + τ)ŝ∗[n − 1] and ĉBB(τ − Tb) = y((n − 1)Tb + τ)ŝ∗[n], where
ŝ[n− 1] and ŝ[n] are the detected values of s[n− 1] and s[n], respectively, in (10.40)
to obtain the update equation

τ [n+ 1] = τ [n] + µℜ{y(nTb + τ [n])ŝ∗[n− 1] − y((n− 1)Tb + τ [n])ŝ∗[n]} . (10.45)

The MATLAB script ’TR MM.m’ on the accompanying CD allows the reader to
examine the performance of the Muller and Muller’s method for various QAM mod-
ulation sizes. The beginning part of this code is similar to ’TR ELG.m’. The timing
recovery part of the codes is replaced by the lines shown in the script presented in
the next page.

Muller and Muller’s timing recovery method.
mu=0.01; Ly=length(y); kk=1; yp=0; ym=0; start=5*L+1;
tau=0.3*ones(1,floor((Ly-start)/L)); x=tau;
for k=start:L:length(tau)*L-L

tauTb=round(tau(kk)*L);
sk=sign(real(y(k+tauTb)))+i*sign(imag(y(k+tauTb)));
skm1=sign(real(y(k+tauTb-L)))+i*sign(imag(y(k+tauTb-L)));
tau(kk+1)=tau(kk)+mu*real(y(k+tauTb)*skm1’-y(k+tauTb-L)*sk’);
kk=kk+1;

end
figure, plot(tau(1:kk-1))
xlabel(’Iteration Number, n’), ylabel(’tau[n]’)

Figure 10.15 presents an example of the learning curve of the Muller and Muller’s
method. The parameters use are M = 4 and µ = 0.01. As seen, the Muller and

292 Timing Recovery Chap. 10

Muller’s method has relatively fast convergence and a very low jitter after con-
vergence. There will be some performance degradation as the constellation size M
increases. However, still compared to other methods that have been discussed, so far,
in this chapter, the Muller and Muller’s method, usually, has a better performance.
However, it has the limitation that can only operate with carrier compensated and
equalized signals. Detail examination of the various timing recovery algorithms that
have been introduced in this chapter are left as exercise problems at the end of the
chapter.

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of iterations, n

τ[
n]

Figure 10.15: A plot of timing phase update of the Muller and Muller’s timing
recovery method .

10.3.2 Decision directed method

In decision directed method, the timing phase τ is adjust such that the mean-square
error (MSE)

ξ = E[|e[n]|2], (10.46)

is minimized. In (10.46), e[n] = s[n]− y(nTb+ τ) where s[n] is the transmitted data
symbol. In practice, where the detected symbols ŝ[n], with a high probability, are
equal to the transmitted symbols, s[n] is replaced by ŝ[n]. Also, following the same
philosophy as the one used in the development of the LMS algorithm, we use the
noisy estimate ξ̂ = |e[n]|2 = e[n]e∗[n] of ξ and note that

∂ξ̂

∂τ
= e[n]

∂e∗[n]

∂τ
+ e∗[n]

∂e[n]

∂τ

Sec. 10.3 Data Aided Timing Recovery Methods 293

= 2ℜ
{

e∗[n]
∂e[n]

∂τ

}

= −2ℜ
{

e∗[n]
∂y(nTb + τ)

∂τ

}

. (10.47)

Moreover, we use the approximation

∂y[n]

∂τ
=
y(nTb + τ + δτ) − y(nTb + τ − δτ)

2δτ
. (10.48)

Substituting (10.48) in (10.47), the result in the update equation

τ [n+ 1] = τ [n] − µ
∂ξ̂

∂τ
(10.49)

and redefining µ/δτ as a new step-size µ, we obtain

τ [n+ 1] = τ [n] + µℜ{e∗[n](y(nTb + τ [n] + δτ) − y(nTb + τ [n] − δτ))} . (10.50)

The MATLAB script ’TR DD.m’ on the accompanying CD allows the reader to
examine the performance of the decision directed method for various QAM modu-
lation sizes. The beginning part of this code is similar to ’TR ELG.m’. The timing
recovery part of the codes is replaced by the following lines. Here, for brevity, we
have assumed that the transmitted symbols belong to a QPSK constellation, i.e.,
QAM with M = 4.

Decision directed timing recovery method.
mu=0.05; Ly=length(y); kk=1; start=5*L+1;
tau=0.3*ones(1,floor((Ly-start)/L));
for k=start:L:length(tau)*L-L

tauTb=round(tau(kk)*L);
sk=sign(real(y(k+tauTb)))+i*sign(imag(y(k+tauTb)));
skm1=sign(real(y(k+tauTb-L)))+i*sign(imag(y(k+tauTb-L)));
tau(kk+1)=tau(kk)+mu*real((sk-y(k+tauTb))*(y(k+tauTb+dtau)-y(k+tauTb-dtau))’);
kk=kk+1;

end
figure, plot(tau(1:kk-1))
xlabel(’Iteration Number, n’), ylabel(’tau[n]’)

Figure 10.16 presents an example of the learning curve of the decision directed
timing recovery method, when µ = 0.05. As seen, this learning curve is similar to its
counterpart from the Muller and Muller’s method. Further study of this algorithm
that is left as exercises for the reader, reveals that this observation is general an
applicable to all constellation sizes.

294 Timing Recovery Chap. 10

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration Number, n

τ[
n]

Figure 10.16: A plot of timing phase update of the decisiondirected timing recovery
method .

Problems

1. In this problem, we introduce a numerical method of evaluating the timing re-
covery cost function ρ(τ) from the samples of the equivalent baseband impulse
response cBB(t).

Substituting t = nTb + τ in (10.41), we obtain

y(nTb + τ) =
∞
∑

n=−∞

s[n]cBB((n− k)Tb + τ). (10.51)

(a) Using (10.51), and assuming that the data symbols s[n] are independent
of one another and E[|s[n]|2] = σ2

s , show that

ρ(τ) = E[|y(nTb + τ)|2] = σ2
s

∞
∑

n=−∞

|cBB(nTb + τ)|2.

(b) By letting cBB(t) = prc(t), where prc(t) is a raised-cosine pulse-shape with
the role-off factor α, examine ρ(τ) for 0 ≤ τ ≤ 4Tb and the choices of
α = 0.25, 0.5 and 1. Plot the results for σ2

s = 1 and compare them with
those in Figure 10.4. Comment on your observation.

(c) For α = 0.5, obtain and present plots of ρ(τ) when the link between the
transmitter and receiver is a multipath channel with the impulse response:

Sec. 10.3 Problems 295

i. c(t) = 0.3δ(t − 0.5Tb) + δ(t− Tb) − 0.2δ(t − 2.3Tb).

ii. c(t) = 0.45δ(t − 0.7Tb) + δ(t− Tb) − 0.53δ(t − 2.7Tb).

2. A naive pulse-shape that satisfies the Nyquist condition is p(t) = pT(t)⋆pR(t) =
Λ(t/Tb); see Chapter 2 for the definition of Λ(t/Tb). For this choice of p(t) and
an ideal channel c(t) = δ(t), consider the received signal

y(t) =
∞
∑

n=−∞

s[n]p(t− nTb).

(a) Assuming that the data symbols s[n] are independent of one another and
E[|s[n]|2] = σ2

s , evaluate and obtain an expression for

ρ(τ) = E[|y(nTb + τ)|2]

for 0 ≤ τ ≤ Tb.

(b) Present a plot of ρ(τ). You should find that in contrast to the fundamen-
tal results presented in Section 10.1.1, where ρ(τ) was a biased sine-wave,
here, ρ(τ) has a different form. Explain, what the source of this discrep-
ancy is.

(c) What is the value of τ that maximizes ρ(τ). For this choice of τ , find
samples of y(t) at the sampling times nTb+τ and show such choice results
in zero ISI. It, thus, is the optimum timing phase.

3. The plots presented in Figure 10.3 can be produced in two ways: (i) direct
evaluation of (10.18), and (ii) by taking the DFT of Tb-spaced samples of p(t)
starting with different timing phases. Develop a MATAB program for gener-
ation of Figure 10.3 through these methods and confirm that both methods
give the same results.

4. Recall that the results presented in Figure 10.7 are for the case where data sym-
bols are from a 4-QAM constellation. Using the MATLAB script ‘TR ELG.m’
on the accompanying CD:

Generate and present a set of plots similar to those in Figure 10.7. Note:
you should use the same received signal and run the timing recovery loop for
different choices of δτ . By running the experiment a few times, comment on
variation of the learning curves (plots of τ [n]) as data symbols vary, but still
are from a 4-QAM constellation.

5. By running the MATLAB script ‘TR ELG.m’ for the cases where data sym-
bols are from 16-QAM, 64-QAM, and 256-QAM check whether the early-late
gate timing recovery algorithm works for these constellations as well. You
may note that as the constellation size increases, to reduce the jitter of τ [n],

296 Timing Recovery Chap. 10

after convergence, you need to reduce the step-size parameter µ proportional
to the inverse of the received signal power. Add such a step normalization
to ‘TR ELG.m’ and examine the amended program. By presenting proper
results, comment on your observation.

Hint: One possible method of step normalization is to evaluate the variance of
the received signal (‘y’ in the script ‘TR ELG.m’), say, σ2

y, and set µ = µ1/σ
2
y ,

where µ1 is a fixed step-size value.

6. Repeat Problem 4 for the case of the modified early-late gate timing recovery
algorithm, i.e., reproduce Figure 10.8.

7. Repeat Problem 5 for the case of the modified early-late gate timing recovery
algorithm. Set β = 0.9 for all the experiments that you perform.

8. Run and examine the results of the MATLAB script ‘TR ELG.m’ for the fol-
lowing paramters. For each case comment on your observation. Also, compare
the results in Parts (a) and (b) and comment.

(a) Constellation size M = 4, three values of µ = 0.01, 0.005 and 0.002, four
values of β = 0, 0.8. 0.9, and 0.95, and the roll-off factor α = 0.5.

(b) Constellation size M = 4, three values of µ = 0.01, 0.005 and 0.002, four
values of β = 0, 0.8. 0.9, and 0.95, and the roll-off factor α = 0.25.

9. This problem attempts to provide an in depth understanding of the gradient
based timing recovery algorithm that was introduced in Section 10.2.2.

Following the discussion in Section 10.2.2, one may draw the block diagram
shown in Figure 10.17(a) for generation of the sampled signals y0(τ +nTb) and
y1(τ + nTb + Tb/2). Note that since both input and outputs are discrete-time
signals, the channel is also replaced by a discrete-time equivalent. Accordingly,
H(z, τ) and H(z, τ + Tb/2) are the z-transforms of the equivalent channel
impulse responses sampled at the time instants τ + nTb and τ + nTb + Tb/2,
respectively.

(a) Following similar equations to those in Section 10.1.3, and replacing P (·)
by H(·), show that

H(ej2πf , τ) =
1

Tb

(

H

(

f

Tb

)

+H

(

f

Tb
− 1

Tb

)

e−j2πτ/Tb

)

(10.52)

where f is the frequency normalized to the baud rate fb = 1/Tb. Note that
while the function H(·) on the left-hand side of the above equation refers
to the transfer function of the discrete-time channel, the function H(·) on
the right-hand side refers to the transfer function of the continuous-time
channel.

Sec. 10.3 Problems 297

Figure 10.17: A plot of timing phase update of the decisiondirected timing recovery
method .

(b) The goal of the timing recovery algorithm is to find the value of τ that
maximizes |H(ej2πf , τ)|2 at the normalized frequency f = 0.5, i.e., the
goal is to maximize ρ(τ) = |H(ejπ, τ)|2. Show that

H(ejπ, τ) =
1

Tb

(

H

(

1

2Tb

)

+H

(

− 1

2Tb

)

e−j2πτ/Tb

)

(10.53)

(c) Let H(1
2Tb

) = H+e
jθ+ and H(− 1

2Tb
) = H−e

jθ− , and show that

ρ(τ) = H2
+ +H2

− + 2H+H− cos

(

2πτ

Tb
− (θ+ − θ−)

)

. (10.54)

(d) Using the result of Part (c), show that value of τ that maximizes ρ(τ) is

τopt =
θ+ − θ−

2π
Tb. (10.55)

(e) Show that the timing phase τ = τopt is the one that phase-align the two
terms on the right-hand side of (10.53).

(f) Show that

∂ρ(τ)

∂τ
= −4π

Tb
H+H− sin

(

2πτ

Tb
− (θ+ − θ−)

)

. (10.56)

298 Timing Recovery Chap. 10

(g) Show that

ℜ
{

H(ejπ, τ)H∗(ejπ, τ + Tb/2)
}

= −2H+H− sin

(

2πτ

Tb
− (θ+ − θ−)

)

(10.57)
where ℜ{·} denotes the real part of.

(h) Next, we note that the block diagram shown in Figure 10.17(a) can be
arranged as in Figure 10.17(b). Also, assuming that B(z) is a narrowband
filter, its output will be a narrowband signal centered around the center
frequency of the passband of B(z). To get better understanding of this
let s[n] be a random binary sequence. Develop a MATAB code that takes
s[n] and pass it through the filter B(z) defined in (10.25). Observe the
output of the filter for values of β = 0.95, 0.99 and 0.999. You should
observe that the output of B(z) is a sequence of the form +a, −a, +a,
−a, · · ·, where a is a slowly time-varing number whose rate of change is
determined by the size of β. Comment on the relationship between the
size of β and the rate of variation of a.

(i) Let us ignore the variation of the a, assume a = 1, and, thus, consider
the case where the input to the filters H(z, τ) and H(z, τ + Tb/2) is the
sequence +1, −1, +1, −1, · · ·. This sequence may be interpreted as
sine-wave with the amplitude 1 and the normalized frequency f = 0.5.
By giving clear explanation, show that when such sequence is passed
through the channels H(z, τ) and H(z, τ + Tb/2), the resulting outputs
are, respectively,

y0(τ + nTb) = (−1)nH(ejπ, τ)

and

y1(τ + nTb + Tb/2) = (−1)nH(ejπ, τ + Tb/2).

(j) Combining the results of Parts (f), (g) and (i), obtain the update equation
(10.35).

10. Run and examine the results of the MATLAB script ‘TR GB.m’, on the ac-
companying CD, for the following paramters. For each case comment on your
observation.

(a) Constellation size M = 4, two values of µ = 0.01 and 0.005, four values
of β = 0.7, 0.9, 0.95 and 0.99, and the roll-off factor α = 0.5.

(b) Constellation size M = 4, two values of µ = 0.01 and 0.005, four values
of β = 0.7, 0.9, 0.95 and 0.99, and the roll-off factor α = 0.25.

11. By running the MATLAB script ‘TR GB.m’ for the cases where data symbols
are from 16-QAM, 64-QAM, and 256-QAM constellation check whether the

Sec. 10.3 Problems 299

gradient based timing recovery algorithm works for these constellations as
well. You may note that as the constellation size increases, to reduce the
jitter of τ [n], after convergence, you need to reduce the step-size parameter
µ proportional to the inverse of the received signal power. Add such a step
normalization to ‘TR GB.m’ and examine the amended program. The decision
to which values of the parameters alpha, β and µ to use is left to you. By
presenting proper results, comment on your observation.

12. Tone extraction

13. M & M

14. Decision directed

