Design of Generic and Adaptive Protocol Software (DGAPS)

Matthias Siebert, Bernhard Walke

Communication Networks
RWTH Aachen University of Technology, Germany
E-Mail: {mst|walke} @comnets.rwth-aachen.de
WWW: http://www.comnets.rwth-aachen.de/"{mst|walke}

ABSTRACT

Within the evolution of mobile communication systems
from second over third to fourth generation, existing
air-interfaces will be improved and new ones will be
added. Based on the experiences from today’s mobile
networks, it appears appropriate to extract and re-use
the approved features for future systems. This approach
is valid especially for protocol software. This paper in-
troduces a new design technique for enhancing existing
and developing future protocol stacks. It is proposed to
identify commonalities of signalling, user data transfer
and management protocols of e.g. ISDN BRI, GSM,
DECT, 3G, Bluetooth and HiperLan/2. The goal is to
develop a generic protocol stack to be complemented
to become a dedicated air-interface protocol stack by
adding the standard specific parts as supplements. This
approach offers the potential to design highly adaptive
and reusable protocol software for Software Defined
Radios.

Keywords — Software (Defined) Radio, Generic Protocol
Stack, Reconfigurable Protocol Software, Network Mo-
bility, SW Reusability

Introduction

The different existing air-interfaces together with the
different services they support still require the use of mul-
tiple physical handsets. Cordless telephone systems like
DECT and cellular systems like GSM are examples, where
dedicated mobiles are being used. Similar situations apply
if the mobile is to be used abroad. First solutions to this
problem offer multi-band, multi-mode portables that mainly
represent a number of dedicated devices integrated into a
single cover. This way of solution means that a certain
overhead has to be accepted, due to the multiple protocol
software having basically the same structure and function-
ality. Furthermore, updating of software in a terminal is
difficult or even impossible. The introduction of new ser-
vices like GPRS, HSCSD or EDGE reveals the disadvan-
tage of the aforementioned solution: Though only a part of
the air-interface related software has to be changed, newly
developed devices will be necessary.

Software (Defined) Radios (SDRs) [1][2] maybe a more
efficient solution. An SDR is based on processors and wide

band front-ends and all kind of functionality is achieved by
means of dedicated control software. Thus it is possible to
design a multi-mode radio capable of supporting multiple
air-interfaces and protocol stacks.

1. Requirements on SDRs

As indicated in Figure 1, SDRs will be able to meet vari-
ous demands. The support of several air-interface standards
provides the ability to roam across access networks with one
single handset, called network mobility. Since all modules
of an SDR are under software control, a change of the func-
tionality is easier to realize. Dedicated interfaces will allow
to add new services without the need of hardware modifica-
tions.

Generation bridging will be eased, an important aspect
since current and new standards like e.g. GSM and UMTS
will have to coexist for a transitional period.

Another goal is reconfigurability: By modifying a ra-
dio’s configuration software, its use with different access
networks and the adaptation to different air-interfaces can
be achieved. Since the protocols running at the base station
(BS) and mobile station (MS) are basically symmetrical-
ly, reconfigurability is applicable to both network elements.
Thereby an operator can built up an infrastructure that eas-
ily can be reconfigured to support a new standard in addi-
tion when necessary. This is interesting for both, developed
countries that are in the migration from 2G to 3G mobile ra-
dio networks and for developing countries that are planning
to introduce mobile technology but do not want to decide
for a standard now due to the unpredictable acceptance of
the systems under construction.

DECT network mobility

/ ge@)n bridging

different standards

reconfigurability
multiple protocols GPRS

modular software design

new services

UMTS

Access networks

o\ EDGE
multiple air-interfaces
software reuseability

HIPERLAN HSCSD
flexibility<—>adaptiveness

Figure 1: Requirements on Software Defined Radios

Reusability of software is a big concern. New air-
interface standards typically rely on well-understood
protocol stacks of predecessor systems. Cost intensive
re-engineering of software can be avoided and software
can be re-used if designed in a suitable way. Modular soft-
ware design entails several advantages. On the one hand,
portability of dedicated functionality is supported. Using
well defined interfaces, the same module can operate within
different systems. On the other hand software-upgrades are
easily facilitated, as the respective modules can be changed
individually.

There are a number of research issues that need to be
addressed, like

o the definition of elementary commonalities of the various
mobile communication systems

e resource-sharing within telecommunication software
e modular software design and interfaces

o reusability of software

e interworking of different systems

e structure of a generic protocol stack

e nature of software extensions to an existent system

e composition of an adaptive protocol stack architecture

2. Design of a Software Defined Protocol Stack

In this section we describe how to design generic and
adaptive protocol software (DGAPS).

Since the configuration software and an implemented
protocol stack represent one important part of a device, their
structural composition, implementation and realization is
of fundamental research interest. Having the 1SO/OSI
reference model in mind a high degree of similarity can
be found for different air-interface standards. Concerning
the control software many features can be implemented as
shared resources. Applying DGAPS results in a generic
protocol stack, that provides a common basis for a num-
ber of different systems. Specialization by introducing
standard-specific functions to the generic stack stepwise
results in a specific realization towards a specific protocol
stack.

2.1 A Software Defined Protocol Stack

All the software specifications are being done for-
mally with the help of SDL (Specification and Description
Language)[3][4]. SDL is an object orientated programming
language that supports features like inheritance and infor-
mation hiding. Because of its graphical (besides an equiva-
lent phrase-) representation and an easy to understand finite
state machine basis, SDL has been accepted worldwide for
the specification of communication protocols.

To obtain the portable source code from an SDL speci-
fication, an automatic translator, called SDL2SPEETCL [5],
is used. It takes the phrase representation (SDL/PR), gener-
ated by the SDT-Analyzer [6] (thus syntactical and seman-
tical errors are excluded), as input and maps the system be-
haviour to classes of SPEETCL (SDL Performance Eval-
uation Tool Class Library) [7]. SPEETCL is a C++ class
library developed for the integration of protocols specified
in SDL into an event-driven simulation environment.

The proposed DGAPS approach to develop a software
defined air-interface protocol stack is as follows:

1) Identification of commonalities In a first step (step 1)
different systems, say System | and System I, are analyzed
layer by layer to identify their commonalities. A more de-
tailed description of the analysis process (exemplarily for
DECT and GSM) together with a reference implementa-
tion is described in [8]. The number of different systems
to be considered may be two or larger. The result will be
an SDL specification of a common subset of the access pro-
tocol stacks for the systems, see Figure 2. Since this stack
provides the common characteristics of the considered air-
interface standards it is called a generic protocol stack.

System x I

System | System Il

T~ |

Common Subset
=> generic protocol stack

Figure 2: Generic protocol stack for various system types

2) Development of standard-specific supplements The
next step (step 2), cf. Figure 3, is to develop SDL-
specifications specific to given air-interface standards, say
for System | or System Il. These include functions that are
specific to respective standards and thus represent the in-
dividual behaviour of a system. Different approaches can
be taken to achieve that goal. In order to make use of
the object-oriented properties of SDL together with inheri-
tance, it is suggested to implement these parts as subclasses
derived from base classes implemented within the generic
stack. This is of special advantage, if more than two sys-
tems are considered; procedures that are common to most
but not necessarily to all standards still will be implemented
within the generic stack. The standard-specific supplements
than will have to redefine the respective procedures and the
behaviour required is achieved then.

3) Integration of a dedicated air-interface standard To
end in a dedicated air-interface standard, the generic pro-
tocol stack and the standard-specific supplement, have to
be merged (step 3). This is done by means of inheritance.

mmuniti
same communities same

properties System_II properties

<
<

same functionality

step 2 step 2
System_|_specific_part ‘ l Generic_protocol_stack ‘ l System_lI_specific_part ‘
step 3 step 3 step 3

4‘ System_|_specific_protocol_stack ‘ l System_lI_specific_protocol_stack

Figure 3: Interaction of components for an SDR protocol
stack

Figure 3 shows the correlations and dependencies of the
aforementioned parts in the notation of UML. In order to
distinguish between a specific protocol stack that is de-
signed either conformant with the above presented approach
or not, the notation System_X (non-conformant) and Sys-
tem_X_specific_protocol_stack (conformant) is used.

4) Optimization of the SDL-Specifications To resultina
run-time efficient code after translation it is necessary to un-
dertake some code optimization. Investigations have shown
that the following rules will result in a substantial speed-up:

e use of pointers in SDL instead of parameter lists
o decrease the number of process switching

o reduce the number of events and timers

o replace SDL data types by C-code constructs

5) Further Optimizations and Validation In a final step
those parts of the code are to identify that are most fre-
quently used during runtime and the respective functions
have to be considered to be implemented in hardware, say
in FPGAs etc.

The optimized SDL specification can be guaranteed to
be conformant to the original SDL specification, since er-
rors would appear when run against each other and confor-
mance will be reached after removal of these errors in the
informally implemented code.

2.2 Reusability of software modules

An attracting property of the DGAPS is the reusabil-
ity of software modules. Assume an existing air-interface
standard, say System |, is available, designed according to
the proposed technique (System_I_specific_protocol _stack).
The following steps would be necessary to end with a pro-
tocol stack for a new system, referred to as System |11, see
Figures 4 and 5.

6) Adaptation of the generic protocol stack Firstly, the
genericity property of the generic protocol stack part of Sys-
tem | (Generic_protocol_stack_S_I) need to be checked with
respect to genericity for System Il1 (step A). If applicable,

those parts that are not generic have to be removed so that a
new protocol stack generic to Systems I and 111 is achieved
(step B).

7) Design of a system specific part To re-use as much
code as possible the design of the specific part of System
Il starts by taking the system specific part of System | as
an input (step C). The specific parts of the System I stack
that are formulated as blocks with external signal paths
have to be identified. Analysis of the usability of these
blocks with respect to their applicability to cover System
Il specific functions has to be done next. Implement-
ing modifications required together with introducing new
supplements finally results in a System Il intrinsic part
(System_I11_specific_part). Afterwards new functions not
contained in the System | air-interface have to be identified.
They are assigned either to existing or to blocks newly to
be developed.

In order to end with the System 111 air-interface protocol
stack, the two parts, generic protocol stack and System 111
specific supplement, have to be brought together (step D).
Having regarded the strategy presented above, the further
proceeding is similar to the steps described in subsection
2.1.3 and thereafter.

3. Example of applying DGAPS

In the following we show how to apply DGAPS. Instead
of two abstract systems | and Il, the systems DECT and
GSM are considered.

1) Example: Identification of commonalities According
to subsection 2.1 the first step is to analyze the systems layer
by layer to identify their commonalities. We here concen-
trate on the Call Control (CC) entity within the network
layer, a central service instance in both systems dealing with

commonalities

System_III

same properties

‘ System_|_specific_protocol_stack ‘

A
genericity
step A | property

‘ System_|_specific_part ‘ ‘ Generic_protocol_stack_S_| ‘ ‘ System_llI_specific_part

removal of non—
generic parts stepB
v

Generic_protocol_stack

same
properties

System_lll_specific_protocol_stack R

step D

re-use of code elements

step C

Figure 4: Design of a new protocol stack by re-using exist-
ing software modules

MNCC-SETUP-REQ

SETUP MNCC-SETUP-IND

Call Initiated | NULL. ‘

MNCC-CALL-PROC-IND CALL PROCEEDING MNCC-CALL-PROC-REQ

MNCC-ALERT-IND ALERT MNCC-ALERT-REQ

MNCC-SETUP-CNF CONNECT MNCC-SETUP-RSP

fSystem_lil_specific_protocol_stack|

Figure 5: Design of a new Protocol Stack with DGAPS

call establishment -maintenance and -release. The logical
steps that have to be taken can be modeled with the help
of Extended Finite State Machines (EFSMs) notation. Each
step within the three phases can be represented then by a
well defined state with related state transitions. The latter
are specified to signals incoming and outgoing to/from the
states or to expiration of timers whereby locally kept vari-
ables can be manipulated. The signals can either have a
peer-entity as addressee and thus are transmitted across the
air-interface, or belong to the internal (vertical) communi-
cation between two adjacent layers.

The two different EFSMs of the CC entities of the sys-
tems show a high similarity. This is because both are de-
rived from the Digital Subscriber System No. 1 (DSS1),
specifying the ISDN User-Network interface on layer 3 for
basic call control, see [9] and [10].

A generic CC entity can be designed, as a result of step 1
for the generic protocol stack.

Figure 6 illustrates the EFSM graph of the generic CC
entity of the mobile station. The states on the left hand side
belong to a mobile originated call, the states on the right
hand side belong to a mobile terminated call, respectively.

mobile termibated call
—— adaptiv
rrrrr DECT specific

GSM/UMTS specific
Call
Present

mobile originated call

Mhaczon
& end%g A

Call
Initiated

a
Call
Confirmed

;Z: ,,,,,,
{ Overlap !
\ Sending !
Pe -

Release
Request

Disconnect: | : Disconnect

Call
Received
N Request :! Indication
S 7
S Connect e B
< . Request

Figure 6: EFSM of a generic CC entity

CONNECT ACK MNCC-SETUP-COMPL-IND

DATAFLOW

ACTIVE

MNCC-DISC-REQ DISCONNECT MNCC-DISC-IND

MNCC-REL-IND RELEASE MNCC-REL-REQ

REL REQ

RELEASE CNF MNCC-REL-CNF

NULL

Figure 7: Generic MSC with respective CC states

In the same way one can also determine the relationships
between the two systems DECT and GSM for the signals to
be exchanged. Thus it is possible to draw a generic Mes-
sage Sequence Chart (MSC) as indicated in Figure 7. The
generic states of the mobile station during CC are in the
same greyscales as shown in Figure 6.

2) Example: Development of standard-specific supple-
ments As shown in Figure 6, the generic CC entity does
not contain all states, needed for a specification conformant
to the respective standards DECT and GSM. An example
of this is the GSM specific state MMConnectionPending
that is part of the establishment of a mobile originated call.
In the DECT reference model [11] the MM service entity is
arranged in the same layer as the CC entity [12]. Thus the
operation of CC and MM does not directly depend on each
other in DECT. In GSM, however, the setup of a CC link re-
quires an MM connection to be established in advance [13].

Consequently the MMConnectionPending state has to
be implemented in a GSM-standard-specific supplement.
As said in section 2 this supplement has to be realized within
a GSM CC entity that is inherited from the generic CC en-
tity within the generic protocol stack. The implementation
is done in such a way, that the original transition from the
state NULL to the state Calllnitiated is split up and the sys-
tem specific state MMConnectionPending is inserted.

Figure 8 shows a simplified SDL realization of this ap-
proach. On the left hand side we can see a part of the
SDL flow chart of the generic CC entity (<< System Type
stGeneric/Block Type btNetwork>> ptCCEntity) created
in step 1. Being defined as virtual (Virtual Process Type) of-
fers the possibility to make use of inheritance which means
that a redefinition or an add-on of supplements in derived
implementations is possible. The latter is done with the
code presented on the right hand side (Redefined Process
Type). The topic (< <System Type stGSMMS/Block Type
btNetwork>> ptCCEntity) shows, that this flow chart is

valid for GSM mobile terminals only. As it is derived
from the implementation of the generic CC entity (Inher-
its stGeneric/btNetwork/ptCCEntity) the complete generic
code implicitly is contained within this implementation as
well and in addition the changes/supplements shown.

On the left hand side, some of the generic states pre-
sented in the EFSM and the MSC within the previous sec-
tion can be recognized. Running a simulation with this SDL
code, the CC entity (of either system) will start with the state
NULL. On receiving the signal SMNCC _Setup_req that is
also generic since it belongs two both systems a certain pro-
cedure is called and a new state is archived. This is the point
where DECT and GSM differ, thus the system-specific sup-
plement has to take over and to perform the aforementioned
’split-up’ of the state-transition. As sSMNCC_Setup_req
was defined to be virtual/redefined in the respective code,
a GSM mobile will continue by working out the code on the
right hand side, calling the procedure pdMM_Connect_req
that ends in the GSM specific state MMConnectionPend-
ing, whereas a DECT handset will continue executing the
generic code, calling the procedure pdCC_Calllnit_MS. Fi-
nally both implementations end up in the generic state Call-
Initiated.

3) Example: Integration of a dedicated air-interface
standard The two preceding sections have shown the ap-
proach of applying DGAPS on the example of a generic and
system-specific CC entity of the network layer. Similar con-
siderations have to be taken for remaining other service en-
tities, e.g. Mobility Management (MM), of layer three and
the other layers, respectively. Additionally this concept has
to be applied on signals, management services (like Lower
Layer Management Entity, LLME) and the whole structural
composition of protocol stacks. The result will be a generic
protocol stack that inherits its features to a system-specific
stack making use of the system-specific supplements and
changes, compare Figure 3, step 3. In such a way, a highly

Virtual Process Type <<System Type stGeneric/ Redefined Process Type <<System Type stGSMMS/
Block Type btNetwork>> ptCCEntity Block Type btN: k>> ptCCEntity
Desc1(13) , Desci(7)

J"Mobile
NuLL Station
MS initiated Call

establishment*/

virtual

SMNCC_
Setup_req
pdCC_
Callinit_Ms

Callinitiated

(=)

redefined

SMNCC_
Setup_req

pdMM_
(Connect req

Callinitiated

Calllnitiated

MMConnec—
tion Pending
SNWK_CC.
(Connect

SNWK_CC. SNWK_CC.
Call_Proc Alerting

‘ pdCCCall_ ‘

Delivered
<Pmcc:e"£n9> <CaIIDehvered> < Active >

pdCC.

Call_Proc onnect

dCC H

Figure 8: Generic CC entity and GSM supplement

modular protocol stack based on a generic skeleton (and
thus reusable for other standards) is achieved. Additionally,
it is possible to support different standards by one single
handset that needs less memory since the generic parts only
have to be allocated once.

4, Conclusions

Software Defined Radios promise to be an efficient solu-
tion within the further development of mobile radio systems
since different existing and future air-interfaces can be sup-
ported just by software reconfiguration. In order to follow
the rapid development from 2G to 3/4G systems, protocol
software also has to be evolutionary. Within this paper the
requirements on protocol software were shown and a design
technique called DGAPS (Design of Generic and Adaptive
Protocol Software) was introduced. Thereby basic features
of various mobile radio systems are provided by a generic
kernel (generic protocol stack) and dedicated system be-
haviour is achieved by adding specific supplements. Fol-
lowing DGAPS allows the realization of highly structured
and modular designed code that can be used to support dif-
ferent air-interfaces (adaptive) by minimizing the overhead.
A further attracting property of the here mentioned tech-
nique is the reusability of the code for future air-interface
designs to avoid cost-intensive re-engineering.

|. REFERENCES

[1] “http://www.sdrforum.org.” Homepage SDR Forum Web
Site.

[2] J. Mitola, “Technical challenges in the globalization of soft-
ware radio,” in IEEE Communications Magazine, February
1999, pp. 84-89, February 1999.

[3] ITU-T, “Specification and description language (sdl).” ITU-T
Recommendation Z.100, Nov. 1999.

[4] A. Olsen, O. Fergemand, Mgller-Pedersen, R. Reed, and
J. Smith, Systems Engineering Using SDL-92. ELSEVIER
SCIENCE B.V,, 1994.

[5] M. Steppler, SDL2SPEETCL — An SDL to C++ code gen-
erator, Rel. 4.1.0. AixCom GmbH (www.aixcom.com), Dec.
2000.

[6] Telelogic, Malmd, Sweden, SDL Design Tool (SDT) 4.1 Ref-
erence Manual, 2000.

[7] M. Steppler, SPEETCL — SDL Performance Evalua-
tion Tool Class Library, Rel. 3.2.0. AixCom GmbH
(www.aixcom.com), Dec. 2000.

[8] M. Siebert, “Design of a Generic Protocol Stack for an Adap-
tive Terminal,” (Proc. of the 1st Karlsruhe Workshop on Soft-
ware Radios, Institut fiir Nachrichtentechnik Karlsruhe, Ger-
many), pp. 31-34, March 2000.

[9] ITU-T Recommendation Q.930, Digital Subscriber Sig-
nalling System No. 1 (DSS 1) - ISDN User-Network interface
layer 3 - general aspects. 1TU, 1994.

[10] ITU-T Recommendation Q.931, Digital Subscriber Sig-
nalling System No. 1 (DSS 1) - ISDN User-Network interface
layer 3 specification for basic call control. 1TU, 1994.

[11]

[12]

[13]

[14]

ETSI, “Digital european cordless telecommunications (dect)
common interface part 1: Overview.” European Telecommu-
nications Standards Institute, October 1992. ETSI European
Telecommunication Standard ETS 300 175-1.

ETSI, “Digital european cordless telecommunications (dect)
common interface part 5. Network layer.” European
Telecommunications Standards Institute, October 1992.
ESTI European Telecommunication Standard ETS 300 175-
5.

E. T.-S. 3, “Digital cellular telecommunications system
(phase 2+); mobile radio interface layer 3 specification (gsm
04.08),” Technical Specification 5.3.0, European Telecom-
munications Standards Institute, Sophia Antipolis, Frankre-
ich, July 1996.

B. Walke, Mobile Radio Networks. Chichester, UK: Wiley,
2nd ed., 2001.

