
ARM
Architecture and

Instruction Set

Ingo Sander
ingo@imit.kth.se

August 31, 2004 2B1447 Embedded Systems 2

ARM Microprocessor Core

ARM is a family of RISC
architectures, which
share the same design
principles and a
common instruction set
ARM does not
manufacture the CPU
itself, but licenses it to
other manufacturers to
integrate them into their
own system

ARM
Core

Mem

I/O
Units

DSP

ASIC

The ARM Core as part
of a system-on-chip

August 31, 2004 2B1447 Embedded Systems 3

ARM Microprocessor Core

The ARM core is widely used in mobile phones, handheld
organizers, and many other portable consumer devices
Depending on the application ARM processors are available with
e.g.

Different Cache Sizes
Different Bus Widths
Varying Clock Speeds

Different Versions use different architectures, e.g.
ARM 7: von Neumann
ARM 9: Harvard
The assembly programs are not affected by the underlying
architecture

August 31, 2004 2B1447 Embedded Systems 4

ARM assembly language

The assembly language reflects the instruction set (almost one to
one)

One instruction per line

Labels provide names for addresses (usually in first column)

Instructions often start in later columns.
Columns run to end of line

Example:
MOV r1, #100000

Loop SUB r1, r1, #1 ; a wait loop

BGE Loop

Cont …

Label
CommentInstructions

August 31, 2004 2B1447 Embedded Systems 5

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Von Neumann Architecture

Consists of CPU and one single memory
Memory holds instructions and data

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

Instruct. Register

August 31, 2004 2B1447 Embedded Systems 6

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

Start Address: 0x100
Fetch Instruction

0x100

R

0x100

LDR R1, =0x400

LDR R1, =0x400

August 31, 2004 2B1447 Embedded Systems 7

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

Execute Instruction

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

0x100

LDR R1, =0x400

R

0x400

2

2

August 31, 2004 2B1447 Embedded Systems 8

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

Increment Program Counter
Fetch Instruction

0x104

R

0x104

LDR R2, =0x404

LDR R1, =0x400

2

LDR R2, =0x404

August 31, 2004 2B1447 Embedded Systems 9

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

• Execute Instruction

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

0x104

LDR R2, =0x404

R

0x404

3

2
3

August 31, 2004 2B1447 Embedded Systems 10

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

Increment Program Counter
Fetch Instruction

0x108

R

0x108

ADD R3, R2, R1

LDR R2, =0x404

3
2

ADD R3, R2, R1

August 31, 2004 2B1447 Embedded Systems 11

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

Execute Instruction

0x108

LDR R2, =0x404

3

ADD R3, R2, R1

2

5

2
3

5

August 31, 2004 2B1447 Embedded Systems 12

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

Increment Program Counter
Fetch Instruction

0x10C

R

0x10C

STR R3, =0x408

LDR R2, =0x404

3
2

5

STR R3, =0x408

August 31, 2004 2B1447 Embedded Systems 13

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

IR

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...
... ...
0x400: 2
0x404: 3
0x408: ?
... ...

In
st

ru
ct

io
ns

D
at

a

Single Memory

Addressbus

Databus

Read/Write

Example
Von Neumann Architecture

Increment Program Counter
Fetch Instruction

0x10C

W

0x408

5
LDR R2, =0x404

3

STR R3, =0x408

2

5

5

August 31, 2004 2B1447 Embedded Systems 14

The von Neumann architecture

Memory holds data, instructions.
Central processing unit (CPU) fetches
instructions from memory.

Separate CPU and memory distinguishes
programmable computer.

CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

August 31, 2004 2B1447 Embedded Systems 15

... ...
0x100: LDR R1, =0x400
0x104: LDR R2, =0x404
0x108: ADD R3, R2, R1
0x10C: STR R3, =0x408
... ...

In
st

ru
ct

io
n

M
em

o
ry

D
at

a
M

em
o

ry

Addressbus 1

Databus 1

Harvard Architecture

Consists of CPU and two single memories
In the original Harvard, one memory holds
instructions and the other data

Register 1

Register 2

Register 3

PC

Status Register

ALU

Simple CPU

Instruct. Register

...
0x400: 2
0x404: 3
0x408: ?
... ...

Addressbus 2

Databus 2

August 31, 2004 2B1447 Embedded Systems 16

Comparison
von Neumann and Harvard

Harvard allows two simultaneous memory
fetches.
Harvard can’t use self-modifying code
Most DSPs use Harvard architecture for
streaming data:

greater memory bandwidth
more predictable bandwidth

Additional hardware, since two address and
data busses are needed

August 31, 2004 2B1447 Embedded Systems 17

Programming Model:
Registers available in User Mode

The ARM processor has 17
active registers in user mode

16 data registers (r0-r15)
1 processor status registers

The registers r13-r15 have a
special task

r13 is the stack pointer (sp)
r14 is the link register (lr)
r15 is the program counter (pc)

r1

r0

r3

r2

r5

r4

r7

r6

r9

r8

r11

r10

r13 sp

r12

r15 cp

r14 lr

cpsr

spsr
not available
in user mode!

August 31, 2004 2B1447 Embedded Systems 18

Generic Program Status Register

The cpsr (Current Program Status Register)
is used to monitor and control internal
operations

N Z C V I... Status Extension F T ...

31 7 0Flags Control

Negative
Zero Carry

Overflow Interrupt
Fast Interrupt

Thumb State

August 31, 2004 2B1447 Embedded Systems 19

Addresses and Endianness

The ARM uses 32-bit addresses
A Word is 32 bits (4 bytes) long
An Address refers to a byte (not a word)
The ARM processor can be configured to use a little-endian or
big-endian memory system

Little-endian: lowest-order byte resides in the low-order bits of a
word
Big-endian: lower-order byte resides in highest bits of the word

byte 0 byte 1 byte 2 byte 3

bit 31 bit 0

big-endian

byte 3 byte 2 byte 1 byte 0

bit 31 bit 0

little-endian

August 31, 2004 2B1447 Embedded Systems 20

Data Movement

The ARM has a Load-Store architecture
Data operands must be loaded into registers
before they can be processed by an ALU
Data is moved between registers by means
of Move instructions

MOV r1, r2 ; r1 = r2

MOV r3, #1 ; r3 = 1

Data is moved between memories by Load
and Store Instructions

August 31, 2004 2B1447 Embedded Systems 21

Single
Register-Memory Transfers

Data operands must be loaded into registers before
they can be processed by an ALU
The Load and Store instructions can be combined
with different addressing modes
The basic Load instruction is LDR (load word into
register), but there are variations that work on byte
(LDRB), halfword (LDRH) and signed bytes
(LDRSB)
The basic Store instruction is STR (save word from
a register), variations are STRB och STRH

August 31, 2004 2B1447 Embedded Systems 22

Example for Load

Before:
r0 = 0x00000000

r1 = 0x00070000
mem32[0x00070000] = 0x00000005

LDR r0, [r1]

After:
r0 = 0x00000005
r1 = 0x00070000

August 31, 2004 2B1447 Embedded Systems 23

Useful addressing modes:
Preindexing

Before:
r0 = 0x00000000

r1 = 0x00007000

mem32[0x00007000] = 0x00001000

mem32[0x00007004] = 0x00002000

Preindexing: LDR r0, [r1, #4]

After:
r0 = 0x00002000

r1 = 0x00007000

August 31, 2004 2B1447 Embedded Systems 24

Useful addressing modes:
Preindexing with Writeback

Before:
r0 = 0x00000000

r1 = 0x00007000

mem32[0x00007000] = 0x00001000

mem32[0x00007004] = 0x00002000

Preindexing with Writeback: LDR r0, [r1, #4]!

After:
r0 = 0x00002000

r1 = 0x00007004

August 31, 2004 2B1447 Embedded Systems 25

Useful addressing modes:
Postindexing

Before:
r0 = 0x00000000

r1 = 0x00007000

mem32[0x00007000] = 0x00001000

mem32[0x00007004] = 0x00002000

Postindexing: LDR r0, [r1], #4

After:
r0 = 0x00001000

r1 = 0x00007004

August 31, 2004 2B1447 Embedded Systems 26

Multiple
Register-Memory Transfers

Load-store multiple instructions are used to transfer
multiple registers between memory and processor in
a single instruction

LDM (Load Multiple Registers)
STM (Save Multiple Registers)

There are four addressing modes: IA (increment
after), IB (increment before), DA (decrement after),
DB (decrement before)
Be careful, which addressing mode you select,
otherwise you may produce self-modifying code!

August 31, 2004 2B1447 Embedded Systems 27

Example
Load Store Multiple Instructions
Before:
r0 = 0x00000005
r1 = 0x00000006
r2 = 0x00000007
r3 = 0x00007000

STMIA r3!, {r0-r2}
MOV r0,#1
MOV r1,#2
MOV r2,#3

After (1):

mem32[0x00007000] = 0x00000005
mem32[0x00007004] = 0x00000006
mem32[0x00007008] = 0x00000007
r3 = 0x0000700C

LDMDB r3!, {r0-r2}

After (2):
r0 = 0x00000005

r1 = 0x00000006

r2 = 0x00000007

r3 = 0x00007000

Such pairs of Load-Store
Multiple Instructions can be
used to temporarily store
registers on the memory.

August 31, 2004 2B1447 Embedded Systems 28

Stack Operations

The ARM architecture uses load-store multiple instructions to
pop and push data from and to the stack
Here you have to decide, if the stack is ascending (A) or
descending (D) and you use a full (F) or empty (E) stack.

Full Stack: Stack Pointer points at last used address
Empty Stack: Stack Pointer points at first empty address

STMFA sp!, {r5,r7} pushes registers r5 and r7 on an
ascending stack and points after the instruction on the memory
location where r7 is stored!
STMFA sp!, {r5,r7} is equivalent to STMIB r13, {r5,r7}

August 31, 2004 2B1447 Embedded Systems 29

Loading Constants

There are two pseudo-instructions to load
constants

LDR r1, =0x7000 ; loads r1 with constant 0x7000
ADR r2, label ; loads r2 with address for label

August 31, 2004 2B1447 Embedded Systems 30

Data Processing Instructions

Data processing instructions manipulate data
within registers (Move, Arithmetic, Logical,
Comparison, Multiply)
If the S suffix is used the CPSR flags N, Z, C,
V are updated

ADD r1, r2, r3 does not update CPSR
ADDS r1, r2, r3 updates the CPSR

August 31, 2004 2B1447 Embedded Systems 31

Data Processing Instructions
and CPSR

MOVS r1, #1

⇒ NZCV = 0000

MOVS r2, #-1

⇒ NZCV = 1000

ADD r3, r2, r1

⇒ NZCV = 1000

ADDS r3, r2, r1

⇒ NZCV = 0110

August 31, 2004 2B1447 Embedded Systems 32

Data Processing Instructions

Move: MOV, MVN
Arithmetic: ADD, ADC, SUB, SBC, RSB,
RSC
Logical: AND, ORR, EOR, BIC
Comparison: CMP, CMN, TST, TEQ
Multiply: MUL, MLA, SMLAL, SMULL,
UMULL, SMLAL, UMLAL

August 31, 2004 2B1447 Embedded Systems 33

Formats for data processing
instructions

Basic format
SUB r3, r2, r1 ; r3 = r2 – r1

Immediate Operand
SUB r3, r2, #3 ; r3 = r2 - 3

Preprocessing (Barrel-Shifter)
SUB r3, r2, r1, LSL #1 ; r3 = r2 – (r1 * 2)

August 31, 2004 2B1447 Embedded Systems 34

The Barrel Shifter

The barrel shifter allows an
initial shift operation before it
enters the ALU
Shift Operations: LSL,
LSR, ASR, ROR, RRX

Example:
MOV r3, r4, LSL #3
;r3 = 8 * r4

Barrel
Shifter

Arithmetic
Logic
Unit

Rn Rm

Rd

Result N

August 31, 2004 2B1447 Embedded Systems 35

Branch Instructions

The branch instruction is used to change the flow of
execution (if-then-else, for-loop, while-loop)
Branch Instructions: B, BL, BX, BLX
Branches are often used with conditions (EQ, NE,
CS, CC, MI, PL, VS, HI, LS, GE, LT,
GT, LE)

BEQ label ; Branch to label, if Z = 1

The address label is stored in the instruction as a
PC-relative offset and must be within 32MB of the
branch instruction

August 31, 2004 2B1447 Embedded Systems 36

Subroutines

The BL (Branch and Link) instruction can be
used for subroutines, since it writes the
returnaddress to the link register

BL subroutine

...

subroutine

... ; code for subroutine

MOV pc, lr ; return by moving lr to pc

August 31, 2004 2B1447 Embedded Systems 37

Conditional Execution

Not only branch instructions can be used with
conditions
ADDEQ r4, r5, r6 is only executed if Z = 1

Conditional Execution helps to design shorter
programs that do not use so much memory

August 31, 2004 2B1447 Embedded Systems 38

Summary

ARM is a family of microprocessor cores
Load/store architecture
Most instructions are RISCy, operate in
single cycle

Some multi-register operations take longer

All instructions can be executed conditionally

