ARM

Architecture and
Instruction Set

ARM Microprocessor Core :

e ARM is a family of RISC e The ARM Core as part

architectures, which

of a system-on-chip

share the same design

000 principles and a
o000 common instruction set
0000 ARM e
Ingo Sander | ® ® ® e ARM does not Core | | Units
. S o0 manufacture the CPU
ingo@imit.kth.se . . .
o itself, but licenses it to . =
other manufacturers to
integrate them into their
own system ASIC
[X X] [X X]
0000 0000
[X XX [X XX
. a2 a2
ARM Microprocessor Core : ARM assembly language :

e The ARM core is widely used in mobile phones, handheld

organizers, and many other portable consumer devices

e Depending on the application ARM processors are available with

e.g.

o Different Cache Sizes
o Different Bus Widths
e Varying Clock Speeds

e Different Versions use different architectures, e.g.

e ARM 7: von Neumann
e ARM 9: Harvard

e The assembly programs are not affected by the underlying

architecture

August 31, 2004

2B1447 Embedded Systems

one)

e One instruction per line
e Labels provide names for addresses (usually in first column)
e Instructions often start in later columns.

e Columns run to end of line

The assembly language reflects the instruction set (almost one to

August 31, 2004

Instructions

e Example:
MOV rl, #100000
Loop SUB rl, rl, #1 ; a wait loop
BGE Loop
Cont I \
£ == T
Label \

Comment

2B1447 Embedded Systems 4

°
i Example i
. (X J . [X J
Von Neumann Architecture : Von Neumann Architecture :
e Consists of CPU and one single memory e Start Address: 0x100
e Memory holds instructions and data e Fetch Instruction
Addressbus Slaress
Register 1 2 Register 1 2
Register 2 ‘ -% Register 2 ‘ -%
Register 3 Databus % Register 3 Databus %
ﬁ = IR LDR R1, =0x400 =
Read/Write 8§jgg 3 g Read/Write 8§jgg 3 s
- _— : - —s :
Simple CPU Single Memory Simple CPU Single Memory
esss esss
Example secs Example secs
[X J

Von Neumann Architecture . Von Neumann Architecture :

e Execute Instruction e Increment Program Counter
e Fetch Instruction

AR GRS 0x104
Register 1 2 ‘ Register 1 2 ‘
: Register 2

Register 2

Register 3

Register 3 Databus

Instructions
Instructions

IR LDR R1, =0x400 ﬁ IR LDR R2, =0x404
W 0xd00: 2 . Status Register .
PC 0x100 Read/Write 0x404: 3 g PC 0x104 Read/Write 0x404: 3 g
— | 0x408: *? — | 0x408: *?
[a] R] R
Simple CPU Single Memory Simple CPU Single Memory
August 31, 2004 2B1447 Embedded Systems 7 August 31, 2004 2B1447 Embedded Systems 8

0x408: ?

eoe
Example sees Example sess
. [X] . [X]
Von Neumann Architecture : Von Neumann Architecture :
» Execute Instruction e Increment Program Counter
e Fetch Instruction
Register1 2 ‘Agg(lﬁazbus 2] Register1 2 ‘OXJ'OS]
Register2 3 -% Register2 3 -%
Register 3 Databus % Register 3 Databus %
[IR LDR R2, =0xad4 ﬁ = IR_ ADD R3, R2, R1 =
30 [eo] pob . ra il e]
Read/Write | 0x404: 3 < Read/Write | 0x404: 3 ©
————| ox4o08: e ———| ox4o08: e
[ALU] M [ALU] I
Simple CPU Single Memory Simple CPU Single Memory
eoes eoes
Example secs Example secs
. [X J . [X]
Von Neumann Architecture : Von Neumann Architecture :
e Execute Instruction e Increment Program Counter
e Fetch Instruction
Addressbus Sldress
Register 1 2 2 Register 1 2 2
Register 2 3 ‘ 3 Register2 3 ‘ 2
Register 3 Databus % Register3 5 %

IR ADDR3, R2, R1 ﬁ = IR STR R3, =0x408 =
Read/Write | 0x404: 3 g Read/Write | 0x404: 3 g
_— ————| ox408: 2

[au] 5 [ALU] I

Simple CPU

August 31, 2004

Single Memory

2B1447 Embedded Systems

11

Simple CPU Single Memory

August 31, 2004 2B1447 Embedded Systems

12

[X X J
Example HE HE
. (X J . (X J
Von Neumann Architecture : The von Neumann architecture| :
e Increment Program Counter e Memory holds data, instructions.
e Fetch Instruction e Central processing unit (CPU) fetches
Addressbus [T instructions from memory.
egister 2 . = Q f s .
rease) | | me—]y| 0xi00 LOR K1, “0xa00 E » Separate CPU and memory distinguishes
Register3 5 Databus | 0x108: ADDRS,R2,R1 | 2 programmable computer.
0x10C: STR R3, =0x408 g .
[IR_ STR R3, 0408 : e CPU registers help out: program counter
0x400: 2 o (PC), instruction register (IR), general-
Read/Wwrite | 0x404: 3 s :
B —E | onaos: 5 o purpose registers, etc.
Simple CPU Single Memory
esss : esee
sece Comparison sese
. (X J (X J
Harvard Architecture : von Neumann and Harvard :
e Consists of CPU and two single memories e Harvard allows two simultaneous memory
e In the original Harvard, one memory holds fetches.
instructions and the other data , .
N e Harvard can't use self-modifying code
Rt 1 mmm—)p | 0000 LDR o o | S8 e Most DSPs use Harvard architecture for
9 atabus 1 | 0x108: ADDR3,R2,R1 | S © streaming data:
Register 3 H 0x10C: STR R3, =0x408 2=))
e greater memory bandwidth
Addressbus 2 [_ e more predictable bandwidth
— oot 5 o e Additional hardware, since two address and
Y R R G S = data busses are needed

Simple CPU

August 31, 2004 2B1447 Embedded Systems

15

August 31, 2004 2B1447 Embedded Systems 16

Programming Model: 3
Registers available in User Mode |

e The ARM processor has 17 p p=
active registers in user mode 1 o
e 16 data registers (r0-r15) r2 ri0
o 1 processor status registers r3 ril
e The registers r13-r15 have a 4 r2
special task rz
e rl3is the stack pointer (sp) :7

e rl4 is the link register (Ir)

Generic Program Status Register | @

31 Flags 7 Control o

NEGANE

Negative Overflow Interrupt Thumb State

Zero Carry Fast Interrupt

e The cpsr (Current Program Status Register)
is used to monitor and control internal
operations

e rl5 is the program counter (pc) -)
not available
in user mode!
[X X J [X X J
0000 0000
[X XX [X X
. a2t 3
Addresses and Endianness . Data Movement .

The ARM uses 32-bit addresses
A Word is 32 bits (4 bytes) long
An Address refers to a byte (not a word)

The ARM processor can be configured to use a little-endian or
big-endian memory system

e Little-endian: lowest-order byte resides in the low-order bits of a
word

e Big-endian: lower-order byte resides in highest bits of the word

bit 31 bito bit31 bit 0
‘byteB‘byteZ‘bytel‘byteO‘ ‘byteo‘byte 1‘byte2‘byte3‘

little-endian big-endian

August 31, 2004 2B1447 Embedded Systems 19

e The ARM has a Load-Store architecture

e Data operands must be loaded into registers
before they can be processed by an ALU

e Data is moved between registers by means
of Move instructions
MOV rl, r2 ; rl = r2
MOV r3, #1 ; r3 =1
e Data is moved between memories by Load
and Store Instructions

August 31, 2004 2B1447 Embedded Systems 20

Single i i
. (X J (X J
Register-Memory Transfers : Example for Load :
e Data operands must be loaded into registers before Before:
they can be processed by an ALU r0 = 0x00000000
e The Load and Store instructions can be combined rl = 0x00070000
with different addressing modes mem32 [0x00070000] = 0x00000005
e The basic Load instruction is LDR (load word into
register), but there are variations that work on byte LDR r0, [r1]
(LDRB), halfword (LDRH) and signed bytes
(LDRSB) After:
e The basic Store instruction is STR (save word from r0 = 0x00000005
a register), variations are STRB och STRH rl = 0x00070000
1 . :::o 1 . :::o
Useful addressing modes: secs Useful addressing modes: sece
. . (X J (X J
Preindexing : Preindexing with Writeback :

Before:

r0 = 0x00000000
rl = 0x00007000
mem32 [0x00007000]
mem32 [0x00007004]

0x00001000
0x00002000

Preindexing: LDR r0, [rl, #4]

After:
r0 = 0x00002000
rl = 0x00007000

August 31, 2004 2B1447 Embedded Systems 23

Before:

r0 = 0x00000000
rl = 0x00007000
mem32 [0x00007000]
mem32 [0x00007004]

0x00001000
0x00002000

Preindexing with Writeback: LDR r0, [rl, #4]!

After:
r0O = 0x00002000
rl = 0x00007004

August 31, 2004 2B1447 Embedded Systems 24

[X X] [X X]
Useful addressing modes: seis Multiple sece
. . (X J . (X J
Postindexing : Register-Memory Transfers :
Before: e Load-store multiple instructions are used to transfer
ii i gxggggsggg multiple registers between memory and processor in
mem32 [0x00007000] = 0x00001000 a Slngle Instructl_on)
mem32 [0x00007004] = 0x00002000 * LDM (Load Multiple Registers)
e STM (Save Multiple Registers)
Postindexing: LDR r0, [rl], #4 e There are four addressing modes: IA (increment
after), IB (increment before), DA (decrement after),
After: DB (decrement before)
r0 = 0x00001000 e Be careful, which addressing mode you select,
rl = 0x00007004 otherwise you may produce self-modifying code!
[X X] [X X]
0000 0000
Example 43 433
. . d . o0
Load Store Multiple Instructions | ¢ Stack Operations :

Before: LDMDB r3!, {r0-r2}
r0 = 0x00000005
rl 0x00000006 After (2):

0x00000007
0x00007000

r2
r3

r0O = 0x00000005
rl = 0x00000006

STMIA r3!, {r0-r2} r2 = 0x00000007
MOV r0, #1 r3 = 0x00007000
MOV rl,#2
MOV r2, #3 e Such pairs of Load-Store
Multiple Instructions can be
After (1): P .
used to temporarily store
mem32 [0x00007000] = 0x00000005 registers on the memory.
mem32 [0x00007004] = 0x00000006
mem32 [0x00007008] = 0x00000007

r3 = 0x0000700C

August 31, 2004 2B1447 Embedded Systems 27

e The ARM architecture uses load-store multiple instructions to
pop and push data from and to the stack
e Here you have to decide, if the stack is ascending (A) or
descending (D) and you use a full (F) or empty (E) stack.
Full Stack: Stack Pointer points at last used address
Empty Stack: Stack Pointer points at first empty address
e STMFA sp!, {r5,r7} pushesregisters r5and r7 on an
ascending stack and points after the instruction on the memory
location where r7 is stored!
e STMFA sp!, {r5,r7} isequivalentto STMIB r13, {r5,r7}

August 31, 2004 2B1447 Embedded Systems 28

Loading Constants :

e There are two pseudo-instructions to load

constants

LDR r1, =0x7000 ; loads r1 with constant 0x7000

ADR r2, label

August 31, 2004

: loads r2 with address for label

2B1447 Embedded Systems 29

Data Processing Instructions | ¢

e Data processing instructions manipulate data
within registers (Move, Arithmetic, Logical,
Comparison, Multiply)

e If the S suffix is used the CPSR flags N, Z, C,
V are updated
e ADD r1, r2, r3 does not update CPSR
e ADDS rl, r2, r3 updates the CPSR

August 31, 2004 2B1447 Embedded Systems 30

Data Processing Instructions | ss::

and CPSR

MOVS rl, #1

= NZCV = 0000
MOVS r2, #-1

= NzCV = 1000
ADD r3, r2, rl
= NZCV = 1000
ADDS r3, r2, ril
= NZCV = 0110

August 31, 2004

2B1447 Embedded Systems 31

Data Processing Instructions |:

e Move: MOV, MVN

e Arithmetic: ADD, ADC, SUB, SBC, RSB,
RSC

e Logical: AND, ORR, EOR, BIC
e Comparison: CMP, CMN, TST, TEQ

e Multiply: MUL, MLA, SMLAL, SMULL,
UMULL, SMLAL, UMLAL

August 31, 2004 2B1447 Embedded Systems 32

Formats for data processing | i

Instructions : The Barrel Shifter :
e Basic format e The barrel shifter allows an RN Rm
SUB r3, r2, rl ; r3 = r2 - rl initial shift operation before it |
e Immediate Operand enters the ALU ot
irer
SUB r3, r2, #3 ; r3 =12 - 3 e Shift Operations: LSL,
e Preprocessing (Barrel-Shifter) LSR, ASR, ROR, RRX Resulth
SUB r3, r2, rl, LSL #1 ; r3 = r2 - (rl * 2) ° Example' Arithmetic
) Logic
e MOV r3, r4, LSL #3 Unit
;r3 = 8 * r4 |
Rd
HE HE
H-4) -4
Branch Instructions : Subroutines :

e The branch instruction is used to change the flow of
execution (if-then-else, for-loop, while-loop)

e Branch Instructions: B, BL, BX, BLX

e Branches are often used with conditions (EQ, NE,
¢s, cC, MI, PL, VS, HI, LS, GE, LT,
GT, LE)
e BEQ label ;Branchtolabel,ifz = 1

e The address 1label is stored in the instruction as a

PC-relative offset and must be within 32MB of the
branch instruction

August 31, 2004 2B1447 Embedded Systems 35

e The BL (Branch and Link) instruction can be
used for subroutines, since it writes the
returnaddress to the link register

BL subroutine
subroutine

; code for subroutine

MOV pc, 1lr ; return by moving lr to pc

August 31, 2004 2B1447 Embedded Systems 36

Conditional Execution

e Not only branch instructions can be used with
conditions
ADDEQ r4, r5, réisonlyexecutedifz = 1

e Conditional Execution helps to design shorter
programs that do not use so much memory

August 31, 2004 2B1447 Embedded Systems 37

Summary

e ARM is a family of microprocessor cores
e Load/store architecture

e Most instructions are RISCy, operate in
single cycle
Some multi-register operations take longer
e All instructions can be executed conditionally

August 31, 2004 2B1447 Embedded Systems 38

