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Abstract

log components with digital ones, striving towards the ideal Software

Defined Radio (SDR) where all signal processing is done in software.
Such an ideal SDR platform may form an exceptionally flexible and re-
programmable receiver that can cope with many different standards,
e.g., IS-95, GSM, UMTS, and especially the various military standards.
A wideband receiver has to simultaneously deal with hundreds to few
thousands channels, which lay in the same spectrum interval. One of the
most computation intensive tasks in such receiver is channelization [1]. A
wideband channelizer decomposes its RF input signal into separate out-
CE-MS-2006-16 puts, each containing the signal of single channel. In the past, practical
limitations such as state-of-the-art digitizers” speed and computing ca-
pacity prevented the realization of a wideband SDR receiver. At present,
these implications can be overcome using digital front-end architectures,
comprising reconfigurable and scalable components (e.g., FPGA, FFI-
processors) allowing flexible and efficient implementation. The goal
of the presented research is to study, design, and implement a flexible
and reconfigurable wideband channelizer architecture that can be imple-
mented on state-of-the-art FPGAs. In this dissertation, we present our
work where we first choose a suitable algorithm for wideband channel-
ization. The chosen algorithm employs an analysis DFT filterbank [2]
that requires fewer hardware resources compared to other channeliza-
tion algorithms. Subsequently, we simulate this algorithm for a broad
range of practical parameters in order to determine hardware design re-
quirements and performance trade-offs. Using the parameters survey, a
test-case is devised and implemented on FPGA using our implementation
architecture. Subsequently, the implementation results are compared to
the simulation results in order to validate the parameter ranges survey.

l n recent years, RF receiver designers concentrated on replacing ana-
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tal ones, striving towards the ideal Software Defined Radio (SDR) where all signal processing

is done in software. Such an ideal SDR platform may form an exceptionally flexible and re-
programmable receiver that can cope with many different standards, e.g., IS-95, GSM, UMTS,
and especially the various military standards. A wideband receiver has to simultaneously deal
with hundreds to few thousands channels, which lay in the same spectrum interval. One of the
most computation intensive tasks in such receiver is channelization [1]. A wideband channelizer
decomposes its RF input signal into separate outputs, each containing the signal of single chan-
nel. In the past, practical limitations such as state-of-the-art digitizers’ speed and computing
capacity prevented the realization of a wideband SDR receiver. At present, these implications
can be overcome using digital front-end architectures, comprising reconfigurable and scalable
components (e.g., FPGA, FFT-processors) allowing flexible and efficient implementation. The
goal of the presented research is to study, design, and implement a flexible and reconfigurable
wideband channelizer architecture that can be implemented on state-of-the-art FPGAs. In this
dissertation, we present our work where we first choose a suitable algorithm for wideband
channelization. The chosen algorithm employs an analysis DFT filterbank [2] that requires
fewer hardware resources compared to other channelization algorithms. Subsequently, we sim-
ulate this algorithm for a broad range of practical parameters in order to determine hardware
design requirements and performance trade-offs. Using the parameters survey, a test-case is
devised and implemented on FPGA using our implementation architecture. Subsequently, the
implementation results are compared to the simulation results in order to validate the parameter
ranges survey.

In recent years, RF receiver designers concentrated on replacing analog components with digi-
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Introduction

dvances in technology in the recent decades led to a gradual migration of RF

systems from the analog to the digital domain. It gave birth to the concept of
software defined radio (SDR) - a radio platform that digitally processes RF signals on a
software-driven platform (i.e., digital signal processor, general purpose processor, etc.)
and thereby provides flexible reconfigurable transceiver architecture that may cope with
multiple standards and air-interfaces, dynamically adapting to its radio environment
[3]. However, hitherto, SDR implementations do not take full advantage of the SDR
concept due to current limited performance of software-driven platforms. In order to
alleviate this problem some computationally intensive tasks are performed on a digitally
reconfigurable platform, such as FPGAs. Late progress in reconfigurable technology
makes SDR implementations closer than ever to reach the full potential of the SDR
concept.

1.1 Background & Scope

SDR has a broad range of applications, both in civil and in military environments. This
study, however, is focused on military electronic warfare (EW) applications such as
electronic intelligence (ELINT), signal intelligence (SIGINT), and especially communi-
cations intelligence (COMINT) equipment. Many wireless (and wired) communication
methods are based on frequency division multiplexing (FDM) encoding. In this method
all communication channels of certain application are spread in a frequency band, which
is allocated for this purpose by the local communication authority. The channels are
allocated in equally, non-overlapping frequency spaces. In oder to intercept and process
such communication, the RF signal has to be channelized first.

Channelization (in this context) is the process of separating a mixture of communi-
cation channels into distinct signals, each of single channel. Figure 1.1 illustrates the
functionality of a 4-channels channelizer. It has a single input that contains 4 commu-
nication channels in one signal, and it has 4 distinct outputs, each providing a single
channel filtered from the rest and down-converted to baseband frequency (DC), ready
for further processing.

In COMINT applications, a channelization of wide frequency band needs to be per-
formed in real-time for the aim of signal interception. Channelization, however, may
also be useful in civil environment (e.g., cellular base-stations and satellite communica-
tion). The scope of this work is a study, design, and implementation of digital front-end
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Figure 1.1: 4-channels channelizer

for SDR receiver, containing a wideband! channelizer.

1.2 Related Work

In this section we present a brief account of several works on related channelization
algorithms, which are suitable for digital front-end channelizer. Most of this related
work is further explained in details in Chapter 3.

In the past two decades, several digital channelization algorithms were introduced.
Some of them, such as the per-channel approach [4], emerged from existing analog
methods already in use. This algorithm employs a stack of single-channel channelizers,
where each one is a digital realization of the traditional manner for realizing analog-
based single-channel channelizer. However, rapid improvements in silicon density and
software-driven platforms enabled efficient and economical implementation of digitally-
based channelization algorithms. Such algorithm is the hierarchical multistage method
(HMM), in which the input signal is consequently channelized to two channels in a
binary-tree form [5]. Another is the frequency domain filtering (FDF) channelization,
which performs, as its name suggests, filtering of the required channels in the frequency
domain, after the input signal is passed in FFT [6]. An improvement of the HMM is
the pipelined frequency transform (PFT) channelization algorithm that takes advantage
of sample-rate differences among distinct stages in the binary-tree [7]. Another two
closely related algorithms are the polyphase FFT filterbank channelizer [2] and the
weight overlap-add (WOLA) [8]. These are based on enhancement of the per-channel
approach, which employs sample-rate conversion properties.

1.3 Research Question & Goals

Various studies of the channelization algorithms mentioned in the former section exist
and several refinements and application-specific approaches were published (e.g, [9-
11]). However, these publications usually have a narrow scope and are meant for

IThe term wide-band means ”of relatively big spectrum interval”. This term, however, depends upon
application and is current-technology related. In order to be more specific we state here that we aim
towards channelizers of few hundreds to few thousands of channels.
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a particular field or specific implementation (e.g., a base-station for certain cellular
communication standard), where normally channelization of only few tens to couple
of hundreds channels is required. There are, however, applications where various
configurations of channelization may be necessary. A few hundreds to few thousands
of channels could be required with various ranges of channel parameters. This work,
therefore, will be concentrated in answering the following question:

How to design a generic, scalable, and reconfigurable digital front-end architecture
for software defined radio wideband channelizer, which should form the basis of
a next-generation SDR platform?

In order to answer this question we form the following goals:

1.4

Choose digital algorithm which is most appropriate for wideband channelization
in a reconfigurable environment.

Determine the relationships and trade-offs between the various channelizer para-
meters.

Establish implementation architecture for the chosen algorithm.

Demonstrate architecture feasibility on currently-available FPGAs for applicable
parameters.

Methodology

This section describes the methodology chosen with the purpose of answering the
research question and achieving the goals presented in Section 1.3. This work comprises
the following three phases:

1.

1.5

Examination of channelization algorithms: in this phase background literature
study is conveyed, and several prominent channelization algorithms are studied.
This phase is concluded with a comparison between the surveyed algorithms, by
which one is chosen for further investigation.

. Parameter ranges survey: in this phase the chosen channelization algorithm is

studied in further details and modeled in software in order to indicate its scalability
and reconfigurability, and with the aim of identifying critical items.

Test-case implementation in this phase a probable test-case is worked out based on
the parameter ranges survey, and critical items are implemented so as to validate
conclusions.

Thesis Overview

The reminder of this paper is structured as follows:



CHAPTER 1. INTRODUCTION

Chapter 2 introduces the SDR concept as a background for this work, highlighting
advantages and drawbacks of this concept.

Chapter 3 describes three channelization algorithms, namely the per-channel al-
gorithm, the pipelined frequency transform, and the polyphase FFT filterbank
algorithm. Thereafter, it presents a HW- cost and qualitative comparison. Based
on this comparison, the polyphase FFT filterbank algorithm is chosen for further
investigation.

Chapter 4 discusses in further details the architecture of the polyphase FFT filter-
bank channelizer, focusing on the IQ-demodulator and the filterbank.

Chapter 5 presents parameter ranges survey of the IQ-demodulator and the filter-
bank modules, while introducing graphs that provide insight to design trade-offs
of these two modules.

Chapter 6 introduces our implementation architecture for the filterbank and
presents the results obtained from its implementation. This is done in order
to validate the results obtained in the parameter ranges survey.

Chapter 7 presents the conclusions of this dissertation, its main contributions, and
recommendations for possible future continuation work.



Software Defined Radio

he necessity for software defined radio (SDR) emerged from military applications

where communication between several different forces (i.e., air-force, ground force,
navy, etc.) had to be facilitated while preventing interception by enemy forces. DARPA’s
SPEAKeasy [12] and JTRS [13] projects are examples for development of SDR, where
multiple air-interfaces with different signal processing techniques were integrated into
one platform. However, the necessity for SDR also exists in civil applications. Typical
example is a cellular phone that is capable of operating within the different existing
standards (UMTS, GSM, DCS-1800, IS-95, JDC, and many more).

2.1 The SDR Concept

Figure 2.1 illustrates the structure of a typical superheterodyne radio receiver. In such
receiver, the signal passes through many analog components (e.g., amplifiers, filters,
and mixers) that have non-ideal performance and are subject to influence such as tem-
perature differences and humidity. Therefore, the signal accumulates many distortions
along its processing path.

LPF Gle

- —> AVP _>'\'/T|.| —>
Digital
Signal
~90° DAC Processin
EERl I EER P 0 — | g
I\ I\ vco —— /N
ADC
Lo
LHPF —> AMP —>,\,/Tu -

v

€—— RFstage —>» <€ |Fstage > € BB stage

Figure 2.1: Typical superheterodyne radio receiver

An ideal SDR receiver should be capable of receiving (and transmitting) ultra-wide
bandwidth of RF signals (hundreds of Mhz to few GHz), interpreting many given air-
interface radio standard using software. In order to do so, the ADC should be “shifted”
as close as possible to the receiver’s antenna as illustrated in Figure 2.2. Compared to
the traditional superheterodyne receiver in Figure 2.1, the ideal SDR receiver contains
minimal quantity of analog components. Earlier conversion of the RF signal to digital
not only allows more flexibility in signal processing but also provides higher signal
tidelity as analogue components do not perform ideally and might significantly alter
their behavior due to external influence (i.e., temperature, humidity, etc.). Other ad-



6 CHAPTER 2. SOFTWARE DEFINED RADIO

vantages of digital components are small footprint, low power consumption, and fast
development (time to market).

Digital
BPF ADC Signal
f\_ —> LNA —>4\,/1u =—> Processing

€—— RFstage ——> <€— BBstage —>

Figure 2.2: Ideal SDR receiver

However, some key issues still prevent a realization of an ideal SDR receiver. An-
tenna that ideally receives and transmits wide band of frequency is not realizable with
currently-available technology. Suppose the antenna problem is overcome, another
problem stems from the ADC bottleneck [14]. State of the art ADCs reach about 3
Giga-samples per second (GSPS), and also this with a relatively low 8-bit resolution
(e.g., National Semiconductor’s ADC08D1500). According to the Nyquist-Shannon
sampling theorem, a periodic signal should be sampled in rate, which is at least twice
its frequency in order to be able to reconstruct it. A 2 GSPS ADC could therefore sam-
ple periodic signals up to 1 GHz of frequency. Other fundamental limitations of ADC
due to its non-ideal nature are low resolution (quantization error), non-linear behavior,
deviation from accurate sample timing intervals (jitter error) and noise, which limit its
performance [4]. The third inherent problem in the ideal SDR results from the limit
of nowadays computation power. Assuming that a perfect ADC exists, the amount of
digital information (samples) to be processed by the digital signal processing unit(s)
surpasses the computation capacity of presently available computing platforms and
might require Giga-FLOPS performance [15].

Digital
ADC igi Signal
‘ BPF BPF Digital g
f\. —> | NA —0?—» f\. —> AMP —>,\,/I-u =—> rontEnd —> Processing

LO

€—— RFstage —> €—— |Fstage BB stage ————>

Figure 2.3: Feasible SDR receiver

The limitations discussed above lead to the conclusion that a compromise should be
devised in order to facilitate the implementation of SDR receiver. Figure 2.3 depicts
possible architecture for a feasible SDR receiver. Limiting the bandwidth (BW) of the
receiver makes it possible to devise a suitable antenna and to alleviate ADC sampling
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rate limitation and computation load. Therefore, IF stage is introduced in order to deal
with ADC bandwidth limitations. Furthermore, a digital front-end stage is appended
in front of the digital signal-processing platform can take over computationally inten-
sive tasks from the software-driven platform. These tasks may include sample rate
conversion, channelization, filtering, and other tasks derived from the receiver’s target
application. The digital front-end is likely to be implemented in firmware (FPGAs) and
tlexible ASIC digitizers, which provide a trade-off between performance and flexibility.

Channelization can be realized in the digital front-end. However, itis notindependent
of the analog front-end. The properties of components in the analog front-end (e.g., ADC
and LNA) should be taken into account when designing the digital front-end. Also,
further processing in the digital processing platform should be taken into consideration.
Some properties of the digital front-end can be imposed trough requirements from the
digital processing platform, such as channels spacing, sample rate conversion, etc.

2.2 Conclusion

In this chapter we introduced the SDR concept. We presented the ideal SDR receiver
and showed its advantages above typical radio receivers, which are implementation
flexibility and reconfigurability, improved accuracy, better robustness towards exter-
nal environment influence, small footprint, low power consumption, and fast time-to-
market. Subsequently, we explained the reasons for ideal SDR receiver unattainability.
Consequently, we introduced a feasible SDR receiver with analog and digital front-
ends, where the digital front-end takes over computationally intensive tasks that are too
demanding for the software-driven platform. Wideband channelization is such task,
whereas studying, designing, and implementing it in a digital front-end for SDR is the
focus of this work.
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Channelization Algorithms
Study

hannelization is a process where single, few, or all channels from a certain fre-
quency band are separated for further processing. The separation of single channel
is usually done by down-conversion followed by filtering and optional sample-rate con-
version. Figure 3.1 illustrates a digital front-end containing a single-channel DDC based
on IQ Demodulation [16], followed by a sample-rate converter (also called decimator).

Digital Front-End

|
B H
| e ——
= i ; AW 1 ¢ : Digital
Analog AD : Signal
Front-End ’I\,A'u _"_:' cos 2t ! : Processing
H H
|
1
1

D ke e e e e e = = =

Figure 3.1: Single channel digital front-end channelizer

The channels of interest may be of equal or different bandwidths and may be uni-
formly or non-uniformly, continuously or non-continuously distributed over the input
frequency band. In military applications of our interest, many channels from the in-
put frequency band have to be separated - usually all available channels. It is also
mostly common in such applications that the channels of interest are uniformly and
continuously distributed over the input frequency band.

In the reminder of this chapter we introduce relevant SDR channelization algorithms.
Thereafter, we compare the introduced algorithm in order to choose the one most
relevant for the requirements of this project. Afterwards, conclude this chapter with an
explained choice of algorithm.

3.1 Channelization Algorithms

This section presents 3 channelization algorithms. Namely, The per-channel approach,
The pipelined frequency transform, and the polyphase FFT algorithms.

9
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3.1.1 The per-channel Approach

A straightforward implementation, which is also the traditional implementation of
wideband channelizer, is to simply use a single-channel channelizer for each channel
of interest, and connect them all to the input frequency band signal [9]. Figure 3.2
illustrates such algorithm.

Digital Front-End

Ch 1
DDC SRC H
H H Digital
i |ch2 DDC SRC _i Signal
P o b ¢ = Processing
: . n.l :
Analog ADC -
Front-End > I\,A'u ': H
: . H
.
.
Ch K
DDC SRC
M

..............................................

Figure 3.2: Per-channel channelizer

This approach provides a great deal of flexibility in the choice of channels to be
separated. Each single-channel channelizer can be individually designed for BW and
frequency choice. Furthermore, the separated channels are not constrained to be of
the same bandwidth or to be uniformly distributed over the frequency input band.
However, once such channelizer is designed, it is very rigid for alteration. Adapting
this channelizer algorithm to different air-interface might require replacement of some
or all single-channel channelizers. When a change has to be done only in part of the
input frequency band, only the corresponding single-channel channelizers have to be
altered or replaced. Another weakness of this algorithm is that for wideband receivers,
where many channels are to be separated, silicon costs and power consumption are
extremely higher than in other, more advanced wideband channelization techniques
introduced in the following sections [10,17,18] .

3.1.2 Pipelined Frequency Transform

The Pipelined Frequency Transform (PFT) algorithm [7] is based on a binary tree of
DDCs and SRCs (Figure 3.3) where units of DDC followed by SRC are used for dividing
their input band into two half-bands with half sampling rate. This algorithm creates
a binary tree that splits the input frequency in two half-bands and then splits each
half-band again into two half sub-bands and so on, until the last tree level produces the
required separated channels. The resulting structure is also called HMM (Hierarchical
Multistage Method) [19] or QMF tree [20].

This algorithm for itself has no advantage over the algorithm presented in the previous
section and is actually much more expensive in terms of silicon use, since apart of a
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Figure 3.3: DDC-SRC tree

single-channel channelizer for each channel of interest (as in the per-channel algorithm)
in the last stage of the tree, many more are needed in the other stages. Nevertheless, each
single-channel channelizer complexity can be reduced dramatically, taking advantage
of half band filters symmetry and restricting the output sample rate to be quarter of
input sample rate in each single node in the tree.

Observing that the components in each stage perform in half of the sampling rate
of its former stage components, a considerable optimization can be performed. The
actual amount of operations-per-time performed in each level of the tree is equal while
distributed over twice components than in its former tree level. Instead of using two
components for each component in the former tree level at half sampling rate, one
component that performs in the same sampling rate can be used in combination with
interleaver, which distributes the samples accordingly. This is done using complex (IQ)
DDC and DUC as illustrated in Figure 3.4 (The DDCs and DUCs that are not in the 1st
level are of a special interleaved version). The channels however are output serially, and
therefore some extra processing is required for distributing them in distinct outputs.

fs
|

2fs

2fs

2fs

—r> DpC —> N — —T > boc Interleaver bbe Interleaver
o] e of Lemo. e :
| L —
> puc —> > puc g oUe
E Cas Lo —

Figure 3.4: DDC-SRC tree

The PFT algorithm seems to be much more economical in terms of silicon use and
power consumption when compared to per-channel channelizers algorithm. Especially
when many channels are to be separated from the frequency input band [7]. However,
it demonstrates less flexibility, as the separated channels must be of equal bandwidth
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and uniformly distributed. The Tunable PFT algorithm is an adaptation of the PFT
that alleviates this inflexibility by introducing interleavers that provide intermediate
outputs from the PFT stages that may be used for fine tuning channelization [21]. This
improvement, however, leads to increasing HW costs and is not applicable for wideband
channelizers.

3.1.3 Polyphase FFT

This channelization algorithm is an improvement of FFT channelization using a
polyphase filterbank in combination with FFT, taking advantage of the equivalence
theorem and noble identities [22] while posing acceptable restriction over the sampling
rate.

exp(-j 8kn) exp(-j 8k n)

H(2) M:1 He(Z e 1°%) M:1
xin] e ) Tsre YK(OM) x[n] - . ,Lyk(n) sme | Yk[nM]
>—n A—— 1 —
() (b)

exp(-j M 6 n) _
H(ze ® H(ze ™ ma
x[n] BPF SRC lyk[nM] x[n] _ BPF SRC ‘yk[nM]
— > ] ®— N\ >

(© (d)

Figure 3.5: Modifications to the Kkth single channel channelizer

We consider the k! single (complex) channelizer from the per-channel channelizer
in Figure 3.2 (shown in Figure 3.5(a)) and apply series of modifications to it [2]. The
expression of the LPF output in Figure 3.5(a) is a multiplication of the input samples
x[n] with the complex heterodyne and a convolution with the filter coefficients h (1), and
is given in Equation 3.1.

[x(r)e™7%"] « h(n)

N-1
x(n — r)e 1% p(r) (3.1)

yx(n)

r=

Swapping between the complex multiplier and the prototype LPF alters the LPF to a
BPF in accordance with the equivalency theorem [23] (Figure 3.5(b)). The corresponding
modification to Equation 3.1 is shown in Equation 3.2.

N-1

y(n) = Z x(n — r)e_jek(”—r)h(r)

r=1
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N-1
x(n — r)e” O n(r)el O

r=
= 7MY x(n — r)h(r)elO (3.2)

r=

Observing that only every M™ result of the complex multiplier in Figure 3.5(b) is kept
after of the SRC, we interchange these two elements while adapting the phase of the
complex multiplier (multiply with M) as shown in Figure 3.5(c). Constraining the center
frequency for the k! channel to be an integer multiple of the output sample rate so that
Ok = %‘ results in aliasing to baseband, since the complex multiplier term becomes
e/ =1 + 0j. Consequently, the complex multiplier becomes superfluous and can be
removed, as shown in Figure 3.5(d).

M:
x[n] = vidnm]
—> zz —> H,@" ¢ —_—

Figure 3.6: [ branches in the filterbank decomposition of the k' single channelizer

Noting that as before, every Mt output of the BPF in Figure 3.5(d) is not used due to
the SRC, it would be sensible to “shift” the SRC to the left of the BPF. In order to do so,
we have to invoke the noble identity [22]. For this purpose we first have to decompose
the BPF in the k" single channelizer into a filterbank of / (=M) sub-filters. The filterbank
decomposition is described in Equation 3.3.

M-1
H(Ze 1605 = Y 77" Hy(Z)e 3D (3.3)
r=0

The resulted I sub-filters in the filter bank are composed of delay element, sub-filter,
and (time invariant) scaling multiplier (Figure 3.6). Moving the SRC through the scaling
multipliers and the / sub-filters we invoke the noble identity. The resulted filterbank is
depicted in Figure 3.7. The corresponding output function is shown in Equation 3.4.

M-1

r=0
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M:1
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Figure 3.7: Applying the noble identity in the kth filterbank

where ¥ (nM) is the nM™ sample from the " sub-filter.
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Figure 3.8: Discarding M-1 filterbanks

The delay elements, the SRCs and the sub-filters are similar for all the k filterbanks
and therefore only one should be physically implemented as illustrated in Figure 3.8.
Observing in Equation 3.4 that the multipliers and adders (Dashed-line rectangle in
Figure 3.8) practically function as M-points DFT, they can be replaced with FFT for
reducing complexity. The final result illustrated in Figure 3.9 (note that the delay
elements are replaced by a chain of one unit delay elements) is known as the polyphase
FFT (PFFT) filterbank channelizer algorithm.

In comparison with the per-channel channelization algorithm formerly introduced,
the PFFT algorithm is much more rigid to changes, and is subject to restrictions imposed
over the sampling rate, the number of channels to be extracted, and the number of
taps in the prototype filter. however, it seems to show extremely lower silicon costs.
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Figure 3.9: Polyphase FFT channelizer

Measured in terms of number of arithmetic operations per number of separated channels
(computational complexity) [9, 24, 25], it seems that the PFFT outperforms the per-
channel algorithm when separating more than 3 channels.

3.2 Algorithms Comparison

In the previous section, several channelization algorithm for wideband channelizer
were introduced. In this section, we present HW-complexity (cost) comparison and a
qualitative comparison of these channelization algorithms with the aim to chose the one
most suitable for Eonic’s target applications.

3.2.1 Hardware Complexity Comparison

The following HW complexity comparison is based on data from [17], which is put here
in plots. The first comparison is for LUT (Xilinx FPGAs basic block) utilization. The
right plot in Figure 3.10 show us that the per-channel algorithm (stacked) utilizes far
more LUTs than the PFT (binary) and PFFT algorithms and that its tendency is much
steeper. The left plot in Figure 3.10 gives us a clearer comparison between the other two
algorithms. We can see that for all given number of channels PFT more than twice LUT
resources than the PFFT algorithm does.

The second comparison is of memory bits utilization. The right plot in Figure 3.11
shows us that the per-channel algorithm employs much more memory resources than
the PFT and PFFT algorithms for all number of channels. However, comparing the PFT
and PFFT algorithms (left plot in Figure 3.11) we can see that the PFFT algorithm is
superior only when channelizing more than 300 channels. Another important property
is that the PFT curve’s inclination is much steeper than the PFT curve.
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Figure 3.10: Comparison of LUT utilization
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Figure 3.11: Comparison of memory bits employment

3.2.2 Qualitative Comparison

Comparison of different algorithms is not simple. The parameters ranges for comparison
are wide. Limitation to practical parameters may alleviate this difficulty. Most of newly
proposed channelization techniques in literature are compared to the traditional per-
channel channelizer. The comparisons here are divided to three groups: Computational
complexity, size (”silicon costs”), and group delay and flexibility.

Computational complexity

A common comparison parameter is computational complexity, which is usually de-
rived from simulations and software implementations. Such a comparison projects on
silicon costs but usually do not take into account memory requirements and control
complexity. Previous works of [6,24,26] show that when 3 or more channels are to
be channelized, the PFFT algorithm outperforms the per-channel algorithm. The work
of [26] shows that an improvement in the filters of the per-channel algorithm raises this
limit to lay between 4 and 20 channels for some scenarios.
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Silicon cost

Comparison that is based on actual implementation in FPGA gives a good idea about
the HW complexity of the different algorithms. A drawback of such comparison is that
itisnot platform independent. Different FPGAs contain some dedicated multipliers and
built-in memory blocks. Each configuration of distinct algorithm may have trade-offs
in FPGA resources that is difficult to measure and compare. Such is the comparison is
made between the PFT, PFFT, and per-channel algorithm implementations presented
in Subsection 3.2.1. Based on this comparison, it seems that in terms of memory use,
the PFT memory requirement is growing rapidly with the number of channels to be
separated. The conclusion drawn in [17] is that up to 256 channels, the HW complexity
of PFT and PFFT is comparable and that above 256 channels PFFT outperforms the PFT.

Group delay

Generally, group delay is not a major consideration in the choice of channelization
algorithm. It is usually of concern when designing ELINT receivers that deal with
analysis of short radar pulses. The work of [25] shows that the group delays of PFT and
PFFT algorithms in different configurations are quite similar. Normally, PFFT group
delay is better than in PFT algorithm, but more rigid implementation of the PFT (giving
up intermediate outputs) may reach a comparable or better group delay than in the
PFFT algorithm. Comparing the PFFT and per-channel algorithm, it seems that the later
has a small, advantage due to the FFT stage in the PFFT algorithm. This advantage
order, however, is insignificant for the target implementations aimed to in this study.

Flexibility

As this study is aimed toward the mapping of selected algorithm on reconfigurable
digitizers, analysis of two flexibility aspects in the different algorithms is essential. The
following discussion offers analysis of initial design flexibility and reconfigurability.

Initial design In this aspect, the per-channel approach is clearly the winner. All
the separated channels are independent, may have different bandwidths and may be
non-uniformly and non-continually distributed over the input frequency band. The
PFT and PFFT algorithms suffer from similar limitations. Namely, producing channels
with equal bandwidth that are uniformly and continually distributed over the input
frequency band. The PFT suffers from another restriction however. The number of
the separated channels has to be an integer power of 2. The PFFT in principle is more
flexible in the choice for number of channels to be separated. Nevertheless, the most
economical implementations of FFT have integer power of 2 bins, and that may also
impose restriction on the implementation of PFFT filterbank. An advantage of the PFT
over the PFFT is its possibility to produce intermediate outputs of channels with half of
the resolution and twice the bandwidth of the channels in the next level of the PFT tree.
The PFFT has a constraint on the number of taps in the prototype filter, which must be
an integer multiply of the number of channels.
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Reconfiguration This is a key concern in the evaluation of the different channelization
algorithms. Addition or removal of single or few channels is very easy to implement
on the per-channel algorithm, while in most cases, for the PFT and the PFFT algorithms
it means a complete reconfiguration of the whole implementation (especially when
a change in an integer power of 2 number of channels is required). Adaptation of
the filtering performance (channels separation quality) requires modification to the
number of taps and the weight for each tap in the filter. In the PFFT algorithm the
filtering is implemented in a logically separated block, and therefore its adaptation
need not have consequences for the rest of the algorithm implementation. In the PFT
and the per-channel algorithms, however, the filters are distributed within different
logical blocks, so that adaptation in their performance may have consequences to the
rest of the implementation.

Table 1 summarizes the qualitative comparison between the different channelization
algorithms. Careful examination of the different comparison aspects with respect to the
focus of this study (presented in the 1st chapter) shows that the per-channel approach
wins in many aspects. Conversely, its implementation for high number of channels
is infeasible, and that makes the PFFT algorithm the most suitable for SDR wideband
channelizer front-end implementation of our interest. Nevertheless, the differences
between the PFFT and FFT implementations for medium number of channels (few tens
to few hundreds) is not well documented, and investigation in this direction might be
subject for further research.

Aspect Algorithm
Per-Channel PFT PFFT
Computational Complexity for Poor Good Excellent
high number of channels
Silicon Cost Efficiency up to 3-20 | up to 128-256 | 8-16 channels
channels channels and above
Group Delay Good Good Good
Independent Yes No No
channels
Initial Design Number of Selectable 2INT Preferably
channels 2INT
Flexibility Intermediate No Yes No
outputs
Addition / Excellent Poor Poor
s removal of
Flexibility for channels
Reconfiguration Filtering Poor Poor Good
independence

Table 3.1: Qualitative Comparison
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3.3 Conclusion

In this chapter we introduced three different channelization algorithms. Namely, the
per-channel, the PFT, and the PFFT algorithms, explaining in details . Consequently, we
presented HW comparison between these algorithms for LUT and memory resources
utilization. Based on this comparison, the PFFT algorithm appears to be superiorly cost
efficient when channelizing few hundreds or more communication channels.

Afterwards, we presented a qualitative comparison between these three algorithms
that comprises also group delay, initial design flexibility, and reconfigurability. Based
on the performed comparisons, we came to the conclusion that despite the fact that the
per-channel algorithm has better score in many comparison aspects, its implementation
is critically HW inefficient and is infeasible for high number of channels, even on todays
largest available FPGAs. Therefore, we chose the PFFT algorithm, which is highly
cost efficient and has the best computational for high number of channels, for our
implementation of the front-end wideband channelizer.
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Channelizer Architecture

he polyphase FFT channelization algorithm was chosen for our study and was

explained in details in Chapter 3. In this chapter we present the implementation
architecture of this algorithm. We first introduce decomposition to modules of the
channelizer architecture. Thereafter, we explain in details some of these modules,
focusing on implementation choices.

4.1 Modules Decomposition

The architecture of the digital front-end channelizer comprises the digital signal process-
ing done from the ADC output to the moment where each channel is available as separate
output for further processing by software. The ADC output is in real digital signal for-
mat, in contrast to complex format, also known as IQ (In-phase Quadrature) signal,
which provides easier signal processing. Therefore, preprocessing of the ADC output
is necessary in order to convert its real output into a complex signal. This is done in the
IQ-demodulator unit, which is placed between the ADC and the filterbank module.

The following components in the channelizer architecture are the filterbank module
and the FFT processor, as described in the former report. An optional post-processing
unit may be appended to the FFT processor’s output. The necessity of this module
depends on implementation choices that are described in Section 4.5. The separate
channels outputs are then available for further digital signal processing. The layout of
the channelizer architecture is depicted in Figure 4.1.

—
—
Q real - -
ADC —— Filterbank —> M-points post-
Demodulator
—a— imag | . FFT o proc
. . .
—_—

Figure 4.1: Channelizer architecture

In the following subsections, each of the architecture modules is described, focusing
on implementation issues.

21
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4.2 1Q Demodulator

The task of the IQ demodulator is to convert real signal to complex one. There are,
however, different possible implementation algorithms. These are described in the
following subsections.

4.2.1 Conventional IQ demodulator

The conventional IQ demodulator is implemented by down-conversion of the input
signal, which is done by multiplication of the signal with sine and cosine components in
two different I and Q paths. Subsequently, a low-pass filter is applied on each path. The
signal can afterward be decimated by a convenient rate, as long as the Nyquist criterion
is kept. This processing sequence is depicted in Figure 4.2(a).

2:1

LPF SRC HBF SRC
—_— —_ B -
o \/ no \
I-signal
real signal cos(21 n fol 1. real signal »
from ADC e NCo — fomADpc| 1. 0,-1, 0, 1, .. —>" ¢ 'Qsignal
ST nfy/ fy) —> 01,010, — |
Q-signal 21
LPF SRC HBF SRC
—_— - — —
n v mn v
(a) Conventional (b) Wideband

Figure 4.2: IQ-demodulators

4.2.2 Wideband IQ Demodulator

The conventional IQ demodulator architecture is general in its nature and is usually
applied when a single channel is demodulated. In the case of wideband IQ demodu-
lation, a better implementation is possible. Since in a wideband channelizer the whole
input spectrum from the ADC has to be IQ-demodulated, the sample rate for the down-
conversion is quarter of the IF signal sampling rate f; as produced in the ADC. In this
case, the numerically controlled oscillator (NCO) can be replaced with a subsequent
multiplication of the I-path samples by +1, 0, -1, 0, and of the Q-path samples by 0, -1, 0,
+1[27]. The low-pass filter (LPF) is consequently strictly half-band low-pass filter (HBF),
and since the output spectrum is half of the input spectrum, the optimal decimation rate
in the sample rate converter (SRC) is 2:1. Since the input to the filterbank module has to
be between DC and half of the current Nyquist sampling rate, The complex signal has
to be up-converted back by a quarter of the current (decimated) sampling rate using a
complex digital up-converter (DUC) that includes 4 unit multipliers (selective comple-
menters), adder, and subtracter. The structure of wideband IQ demodulator is brought
in Figure 4.2(b).

Another possible improvement is due to the unique HBF filter taps, where, except
of the middle tap that equals 0.5, each 2nd tap equals zero [8] as shown in Figure
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4.3(a). This allows us to invoke the noble identity and ”shift” the 2:1 SRC through the
HBF in the I and the Q paths and also through the unit multipliers. This results in a
complex half-band filter (CHBF) where the real coefficients are the HBF’s odd taps and
the imaginary coefficients are the HBF’s even taps. Examining an impulse response of
example CHBF (Figure 4.3(b)) we can see that one path is all zero coefficients, except of
the HBF’s center tap, which has the value 0.5 that can be implemented as wired shift.

(a) HBF (b) CHBF

Figure 4.3: HBF/CHBF Impulse and frequency response

4.2.3 Hilbert Transformed IQ Demodulator

In principle, the frequency down-conversion before the HBF filters is necessary in order
to shift the positive frequency spectrum to the filter’s pass band region (and the negative
spectrum to the stop-band region), and the complex DUC is needed to move the filtered
signal back into within DC and half the sampling rate. Applying Hilbert transform on
the HBF results in a special half-band filter that passes the positive frequency spectrum
and attenuates the negative one, having exactly the same characteristics of the HBF [28]
as shown in Figure 4.4(a).

Using the Hilbert transformed HBF we can (and should) remove the unit multipliers
and the complex DUC. As result, The Hilbert transformed IQ-demodulator architecture
is simpler, while producing the same results as the standard wideband IQ demodulator
(see Figure 4.5(a). Since this filter also has in every 2nd tap zero weight (except of the
middle tap), the noble identity can be applied here as well, as described in Subsection
4.2.2. The resulted Hilbert transformed HBF impulse response plot is given in Figure
4.4(b) and its architecture is depicted in Figure 4.5(b).

4.2.4 Chosen Implementation Algorithm

As conclusion, The Hilbert transformed IQ-demodulator algorithm is our choice for
implementation, since it achieves the same results as the conventional IQ demodulator
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(a) Before applying the noble identity (b) After applying the noble identity

Figure 4.4: Hilbert transformed HBF Impulse and frequency response
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Figure 4.5: Hilbert transformed IQ demodulators

and the wideband IQ demodulator, while requiring less HW resources for its imple-
mentation.

4.3 Filterbank

Decomposing the prototype filter to filterbank is a firm procedure with no much design
choices to be done (see Section 3.1.3). The design of the prototype filter itself, however,
has more liberty. The following subsection describes some design choices in the process
of constructing a prototype filter.

4.3.1 Equiripple Prototype Filter

Designing the prototype filter is done using Matlab™ with the signal processing tool-
box. The chosen filter design method is the iterative Parks-McClellan algorithm, which
produces optimal FIR filter by minimization of the maximal error between the desired
and the resulted frequency response [29]. The resulted filter is called equiripple since it
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has equal ripples in the pass and in the stop bands. Figure 4.6(a) depicts an equiripple
filter frequency response.

4.3.2 1/f Ripple Prototype Filter

If the first m — 1 derivatives of an impulse response function S(f) are continuous and
the m'™ derivative of S( f) has one or more finite amplitude discontinuities, then the
stopband ripple decays as }% per octave [23,30]. The stopband ripple decay rate in

equiripple filter is # = 1. That implies discontinuity in the zero'" derivative i.e., S(f)
itself. An enhancement of the Parks-McClellan algorithm, suggested by [23], removes
the discontinuity from S(f) and results in 1/f stopband ripple decay rate per octave,
while causing a negligible consequences for the filter performance. This improves the
prototype filter design in two senses. It reduces spectral aliasing between adjacent
channels and it is more resistant to performance degradation due to quantization of the
filter coefficients. Figure 4.6 presents a comparison of equiripple and 1/f ripple designs
and the truncation result on each of the designs.

0 i
Lol

o1 o 01 02 03 04 05 05 04 03 0z o1 o 01
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 12 Frequency (nomalized) s12]

(a) Equiripple (b) 1/f ripple

Figure 4.6: Equiripple vs. 1/f ripple prototype filters

The stop-band of the prototype filter becomes narrower as the number of channels
N, becomes greater, the influence the of 1/f ripple decay also becomes better. Figure 4.7
illustrates four filter-response plots of various prototype filters with different number of
channels. Therefore, and due to the improvements of 1/f ripple filter above equiripple,
the former is our choice for design method of the prototype filter.

44 FFT

This channelizer’s module has a customary FFT functionality. FFT implementation is a
wide field for itself. Since this module is to be implemented using Eonic’s PowerFFT™
processor [31], this module is left out of the focus for this study.
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(b) 64 chhannels

0 01
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(c) 256 chhannels (d) 1024 chhannels

Figure 4.7: 1/f ripple prototype filters

4.5 Post-Processing

When a WOLA (weight, overlap add) [8] implementation of the filterbank is applied,
phase correction of the output signals is needed. This survey, however, is focused on
the critically sampled polyphase filterbank, where phase correction is not necessary.
Therefore, it is left out of the focus of this study:.

4.6 Conclusion

In this chapter we presented and explained the decomposition of the polyphase FFT
channelizer algorithm into IQ-demodulator, filterbank, FFT, and post-processing mod-
ules. We gave a explanation about three different implementation algorithms of
the IQ-demodulator, namely, conventional, wideband, and Hilbert transformed 1Q-
demodulators. We concluded that the Hilbert transformed IQ-demodulator algorithm
is best choice for implementation since it provides the same results as the other two
algorithms while requiring less HW resources.

Afterwards, we introduced two filter design techniques for the prototype filter, from
which the filterbank is derived, i.e., the Parks-McClellan equiripple filter design and the
Parks-McClellan 1/f ripple design. Comparing these two techniques we decided that
the second one is most advantageous for the implementation of the filterbank. Since the
FFT is to be implemented using Eonic’s PowerFFT™ processor, the modules chosen for
the parameter ranges survey (in Chapter 5) are the IQ-demodulator and the filterbank.



Parameter Ranges Survey

In the previous chapter, The implementation architecture of the polyphase FFT chan-
nelizer was introduced. In order to explore various design spaces and trade-offs in
this architecture, a Matlab™ model of the digital front-end was constructed. In this
chapter, we present a parameter ranges survey of the channelizer. However, in order to
convey an effective study, focus has to be maintained onto practical parameter ranges.
Therefore we first explain the choices of parameters and ranges to be explored. After-
ward, we bring some important results of this survey, and we end with conclusions
based on the attained results.

5.1 Simulation setup

The most intensive computation tasks in the front-end are done by the IQ-demodulator’s
filter, by the filterbank and by the FFT. Since the FFT is to be implemented using Eonic’s
PowerFFT™ processor, this parameter ranges study is focused on the design choices of
these two special filters.

5.1.1 IQ demodulator Filter Design Parameters

The independent input parameters for low-pass FIR filter design using the Parks-
McClellan algorithm are: stop-band attenuation (rsg), pass-band ripple (rpg) ,stop-band
width (wsg), and pass-band width (wpg). The word-length used for the taps coefficients
also has influence on filter design and may restrict its stop-band attenuation.

One restriction on the input parameters occurs when the filter is designed to be
strictly half-band filter. In this case the stop-band and pass-band widths are always
equal: wsp = wpp, so we only have to control one these two parameters. In this model
we quantify wpp in percents, where 100% means exactly half of the filter’s input band,
which lies between DC and f;/4.

Another restriction is possible due to the unique HBF taps. This behavior, where each
second tap is zeroed, is achieved only when the filter is designed to have equal passband
deviation 6pg and stopband deviation 6sp [23].

6 = Opp = Osp (6.1

Traditionally, the deviation parameters are described as ripple in dB units. The stop-
band ripple is defined as the difference between the nominal passband gain Gpg and

27
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the maximal stopband deviation in dB (Equation 5.2), whereas the passband ripple is
defined as the difference between the maximal and the minimal deviations from the
passband gain in dB (Equation 5.3) [32].

rsg = 20log,,(Gpp) —201og (6sp) (5.2)
20 loglo (GpB + (SpB) - 20 log (GpB — 5pB) (5.3)

’pPB

Applying Equation 5.1 and Gsg = 1 (since the HBF has unit gain) on Equations 5.2
and 5.3 results in Equations 5.4 and 5.5 respectively.

rsg = 20log,, (1) —201og(6) (5.4)
20log,, (1 +0) —20log (1 - 0) (5.5)

pB

Isolating 6 from Equation 5.4 yields:
5= —10(3%)

which, when applied to Equation 5.5, results in the relation represented by Equation 5.6.
10(38) 41
rpB = 20 logw [0—+ (56)

Figure 5.1 depicts the relation of Equation (5.6) for some practical values of rsg. We
can observe that even for low values of the stop-band attenuation the pass-band ripple
is below 0.02 dB. This value is appropriate for many comm applications [23] and is,
by far, suitable for a speech receiver that may utilize overall pass-band ripple of up
to 3dB [33], and which is the application of interest for this study. Therefore, we may
restrict the study of the IQ-demodulator filter design to its stop-band attenuation and to
its pass-band width without being bothered by the implication on the passband ripple
in the case of the IQ demodulator filter.

As result of this discussion we set the controlled parameters in the simulation model
of the IQ-demodulator’s filter to be the passband width wpg, the passband ripple rpg,
and the stopband attenuation rsg.

5.1.2 Prototype Filter Design Parameters

The Input parameters for the Parks-McClellan algorithm when designing low-pass
filter are the (normalized) frequency at the end of the passband fpp, the (normalized)
frequency at the beginning of the stopband fsg, the passband ripple rpg, and the stopband
attenuation rsg. Minimal Values for rpp and rsp are dictated by a corresponding standard.
For example, one of the relevant targets for this study is defined by ETSI (European
Telecommunications Standards Institute) 300 086 standard [33], which deals with speech
FM receivers specifications for 25 kHz channel spacing. In this case, the maximal value
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Figure 5.1: rpp as function of rsg in HBF

for rpp is defined to be 3 dB and the minimal value for rgp is defined to be 70 dB. These
values, however, are defined for the whole receiver and therefore provide only upper
and lower bounds for the corresponding filter design parameters.

Channel
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Figure 5.2: Prototype filter design parameters choice for 2 and 4 channels

The values for fpp and fsp depend on the number of channels N, and the occupied
bandwidth percentage of one channel in the channel spacing (Bo.). Occupied band
width is the portion of a channel that contains 99% of the average power of the signal.



30 CHAPTER 5. PARAMETER RANGES SURVEY

Figure 5.2 illustrates this dependency for 2 (upper part) and 4 (lower part) channels'.
The Cut Frequency (f,:) marks the middle of the transition band where it holds:

1
feut = I\TX (5.7)

Thelength of the transition band By, is twice the unoccupied bandwidth of one channel
so it holds:
2(1 - Bocc)

B;. =
tr N/\'

(5.8)

Since fpp = fout — %Btr and fsgp = four + %Btr, applying Equations 5.7 and 5.8 results in:

B
feB = fcut—g
_ 1 _1-Bu
- NX NX
Boce
= 59
- 59
B
fSB = ﬁ:ut"‘%
_ 1 1-B
- NX NX
2_Bocc
= — 5.10
- (510

The target applications of interest for this study has occupied bandwidth percentage
of Boee = 0.64 [33,34]. This parameter, however, is set for overall system performance.
Therefore, and since military applications often require stringent parameters, B is set
to 0.80, in accordance with available military system specifications. Consequently, we
conclude that the independent parameters for the prototype filter design simulation
are the passband ripple rpp, stopband ripple rsp, the stopband attenuation rsg, and the
number of channels N, .

Figure 5.3 depicts two example plots, which demonstrate that the number of necessary
taps is a linear function of the number of channels when rpg and rsp have fixed values.
This implies that the number of taps per channel is constant. Therefore, it is easier
to measure HW complexity of the prototype filter in taps per channel Nigs/N). 1t is
important to mention that due to the symmetric nature of the designed prototype filter
taps, the number of filter coefficients to be computed is half of the actual necessary filter
taps.

!Note that one channel is halved between the lowest and highest frequencies. This special position
might limit the possibility to channelize it. However, since the HBF of the IQ-demodulator cannot be ideal,
this channel is not part of the usable output channels anyway.
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Figure 5.3: Number of channels vs. taps

5.2 Simulation Results

In this section we present important parameters behavior as simulated in Matlab. Since
the design space is infinitely large, the actual ranges considered in the simulation are
constrained to slightly below and above practical ranges. This is done from two reasons.
First, in order to provide better insight of the system behavior, and second, in order to
provide outlook for future implementations when technology enables it.

5.2.1 IQ Demodulator Filter Design Simulation Results

The parameters tested in this part of the simulation are described in Subsection 5.1.1.
We bring first simulation with floating point coefficients and afterwards the influence
of taps coefficients quantization on the performance of the IQ-demodulator filter.

5.2.1.1 Floating-point coefficients

Figure 5.4 depicts the number of necessary taps Nius as function of the stopband atten-
uation rgp for different values of passband width wpg. It is clear from this chart that
this function is linear. That implies that the necessary number of taps grows linearly
alongside the stopband attenuation. This chart can be used when estimating the cost
for improving the stopband attenuation for existing IQ demodulator filter design.

Rearranging the data and plotting it as the number of necessary taps N as function
of the passband width wpp for different values of stopband attenuation yields the plot
in Figure 5.5. This plot becomes useful when designing for restricted HW resources. It
is easy then to explore the trade-off between passband width (the percentage of useful
channels from the total output channels) and between the stopband attenuation for
certain number of taps (along horizontal lines). Alternatively, the trade-off between the
number of necessary taps and between the different stopband attenuation values for
different passband width values can be explored along the horizontal lines.
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Figure 5.5: Passband width vs. number of taps

5.2.1.2 Fixed-point coefficients

The results of the floating-point simulation are theoretical since the word-length of the
taps coefficients is not taken into consideration. In the following discussion we bring
simulation results of a model with quantized (fixed-point) taps coefficients.

Figure 5.6 contains 3 plots of the minimal coefficient word-length as function of
stop-band attenuation for various passband width values. Figure 5.6(a) illustrates the
word-length necessary in order to achieve near floating-point attenuation performance.
Figures 5.6(b) and 5.6(c) demonstrate the word-length necessary in order to achieve
attenuation that is worse in 5dB and 10dB (respectively) than in the ideal case. In
average, quantizing the coefficients word-length in 3-bits will cost 5B in attenuation
performance, while quantization of 4-bits will cost about 104B in the IQ-demodulator’s
filter attenuation.
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Figure 5.6: Quantization limits

The plots in Figure 5.6 are useful for the choices of word-length dependent HW such
as ADC (resolution) and FPGA (bus-width) for the implementation of the channelizer’s
digital front-end.

5.2.2 Prototype Filter Design Simulation Results

The parameters tested in this part of the simulation are described in Subsection 5.1.2.
We first bring results of simulation with floating point coefficients. Subsequently we
present the influence of taps quantization on the performance of the prototype filter.

5.2.2.1 Floating-point coefficients

Figure 5.7 depicts the number of necessary taps per channel Ny;s/N, as function of
stopband attenuation for various passband ripple values. The staircase-like plots are
result of rounding up the necessary number of taps to the closest multiplication of the
number of channels. However, when testing for non-rounded values, it appears that
this function is linear. That implies that design for better attenuation trades-off constant
Niaps/Ny per dB. The behavior of this trade-off is shown in Figure 5.8, which depicts
the average number of Nys/N, necessary for each 10 dB attenuation improvement as
function of passband ripple. This plot displays exponential increase in the necessary
taps per channel for each 10 dB attenuation improvement as the passband ripple values
approach zero.

The plots in Figures 5.7 and 5.8 are useful for approximation of HW complexity and
trade-offs when choosing the rsp and rpg parameters for the implementation of the
channelizer filterbank.

5.2.2.2 Fixed-point coefficients

The results in the former subsection does not take into account the influence of quan-
tization due to limited word-size used for the taps coefficients. Each plot in Figure
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5.9 depicts the minimal necessary coefficients word-length as function of N, for dif-
ferent stopband attenuation values. Figures 5.9(a) and 5.9(b) depict the minimal nec-
essary bits in order to achieve stopband attenuation which is 10 dB respectively 20
dB worse than in the ideal (floating-point coefficients) case. It is remarkable that
when N, grows, the number of necessary bits slightly decreases. This phenomenon
is due to the 1/f ripple design as explained in Section 4.3.2. These two figures are
brought as example. The same behavior, however, is observed for different combina-
tions of rpp values (0.14B, 0.5dB, 1.0dB, 1.5dB, 3.0dB) with various attenuation resolutions
(+1dB, +5dB, +10dB, +20dB).

Inspection of the simulation results shows that the influence of passband ripple on the
necessary coefficients word-length is negligible. Figure 5.10 contains 5 plots of minimal
necessary coefficients word-length vs. stopband attenuation performance with +54B
resolution?. Each plot depicts different passband ripple value. Visual comparison of the
different plots exhibits similarity among them. Indeed, the standard deviation between
the word-length values with same parameters (N, rsg) corresponding to different values
of rpp shows value not greater than 0.55 (except of one outlier at 0.71). The standard

Zstopband attenuation resolution of x dB means up to x dB worse than ideal (floating-point coefficients)
stopband attenuation
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Figure 5.9: Quantization limit for 3dB passband ripple

deviation average is 0.287, which means that the difference in passband ripple has an
average influence on the coefficients word-length that is, in average, less than 0.29 bit.
Therefore we conclude that the passband ripple influence on the minimal necessary
coefficients word-length is minor.
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Further examination of the prototype filter design simulation results shows that the
trade-off between the minimal coefficients word-length and between the stopband at-

tenuation is linear and independent of N, and rpp.

Inspection of all slope values

for all combinations of rpp = 0.1,0.5,1.0,3.0 with stopband attenuation resolutions
+1dB, +5dB, +10dB, +20dB shows values between 1.67 and 1.83 with average of 1.73.
The meaning of it is that the average trade-off is 1.73 bits per 10dB attenuation or 5.78

dB per bit.
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5.3 Conclusion

In this chapter we presented a parameter ranges survey for the IQ-demodulator and
for the filterbank. We first presented the simulation setup, giving a comprehensive
explanation of parameters dependency for the IQ-demodulator and for the filterbank
modules. Subsequently, we gave the simulation results for both full floating-point
precision and fixed-point implications.

The parameter ranges survey gave us some important results necessary for under-
standing the behavior and design trade-offs of the IQ-demodulator and the filterbank.
The attained plots provide a tool for the choice of HW resources and for the process of
requirements elicitation.



Validation

In Chapter 5, a parameter ranges survey was presented for the IQ-demodulator and
the filterbank modules. In this chapter, we first present the filterbank implementation.
Since the IQ-demodulator is a common used module, we choose to concentrate on HW
implementation of the filterbank. Afterwards, we present the results obtained by the
implementation.

6.1 Filterbank Implementation

The filterbank implementation is done using VHDL, where all parameters are declared
generic and are concentrated in one parameters package. This, in order to provide
design that can be scaled-up (or down) and easily reconfigured for various different
target implementations.

6.1.1 Test-Case

Although the implementation is of generic nature, we use in some places in this study a
specific test-case parameters, which are yielded from one of the target implementations
desired by Eonic. This is done in order to enlighten some practical consequences to
a choice of realistic parameters. For this test-case the following parameters are cho-
sen: Number of channels, passband ripple, stopband attenuation, occupied bandwidth
percentage, taps per channel, and word-length.

Passband ripple, stopband attenuation, and occupied bandwidth percentage are de-
vised from communication standards such as [33], and are 704B, 3dB, and 0.64 (respec-
tively). However, these are overall system requirements. Therefore, and since military
applications often require stringent parameters, these are tighten to 904B, 1dB, and 0.80
(respectively) in accordance with available military system specifications. The rest of
the choices are explained in the following paragraphs.

Number of channels: The number of channels is chosen to be 1k (1024). This is the
highest number of channels that single PowerFFT processor can handle in its maximal
frequency performance. In principle even more channels can be channelized in real
time, while performing appropriate modification to the input of the FFT processor.

Taps per channel: In order to choose this parameter we can use the plot in Figure 5.8.
Since the desired passband ripple is 1dB, using this plot we can see that about 1.56

37
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Taps/Channel per 10dB are necessary. Given that our desired stopband attenuation is
90dB we need [9 x 1.56] = [14.04] = 15 taps per channel.

Wordlength: In order to decide the minimal word-length for the test-case we can use
the plots in Figure 5.10. Since the passband ripple is 1dB, the sub-plot in Figure 5.10(c)
shows us that the maximal required word-length is 13-bit. However, since 16-bit is a
much more common word-length, we choose 16-bit for this test-case.

‘ Parameter H Value ‘
Number of channels 1024 ch
Stopband ripple 1dB
Passband attenuation 90 dB
Occupied bandwidth percentage || 0.80
Taps per channel 15 taps/ch
Word-length 16 bit

Table 6.1: Test-case parameters

Table 6.1 summarizes the parameters chosen for the test-case.

6.1.2 Filterbank Implementation Approach

Nowadays industry trend is to provide FPGAs with built-in units such as memory
blocks and fitted multipliers. Built in blocks typically perform faster than functional
units designed using LEs while requiring less space and less power consumption’.
Therefore we employ memory blocks and built-in multipliers in this implementation.
Nevertheless, the implementation is made highly modular so as to facilitate implemen-
tation on different FPGA brands. For this purpose, the interface of a built-in unit entity
may be left unaltered, while necessitating modification of the product-specific VHDL
code only. The tap-coefficients are generated using a Matlab™ script that accepts as
input the required channelizer parameters (i.e., number of channels, channels spacing,
word-length, stopband attenuation, and passband ripple) and outputs the appropriate
scaled coefficient files in format that is compatible with the VHDL compiler.

6.1.3 Filterbank Architecture

A naive implementation of the filterbank would be to consider each sub-filter as an
independent filter where each tap is implemented as a register and multiplier, and all
the multiplier outputs are summed in a multi-operand adder. This approach, however,
will require thousands to couple of ten-thousands of multipliers. Trying to solve this by
using multiply accumulate units will still require a couple of thousands of multipliers
and will perform too slow.

In fact, implementation of the test-case, for example, using only LEs will even not fit on the largest
available FPGA.
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The approach chosen for implementing the filterbank addresses the problems in the
two former described implementations. In this approach we do notregard each sub-filter
as an independent filter. Considering that in an M channels filterbank, each sub-filter
operates in Al/[ of the input sample-rate, we take advantage of this property and share
the multipliers and the multi-operand adder of one sub-filter among all the sub-filters
in the filterbank.
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Figure 6.1: Filterbank implementation architecture for 4 channels with 5 taps per channel

Figure 6.1 depicts the architecture chosen for the filterbank implementation. The
tilterbank in this figure has 4 channels with 5 taps per channel. The registers of the taps
are implemented in a dual port memory blocks, where each memory block contains
single tap-register from each sub-filter. Each logical row of memory cells, therefore,
comprises the tap-registers of a single sub-filter. This way, we avoid using huge and
slow multiplexers for selecting the correct corresponding tap-register in each clock cycle.
The counter controls the address for the memory inputs and output, choosing in each
clock cycle the consecutive sub-filter to perform. Each memory output, except of the
leftmost memory block, is connected to the next memory block. Each memory output
is also connected to one multiplier input. The second multiplier input (broken lines) is
fed by its corresponding tap-coefficient from the coefficients lookup table. The lookup
table can also be implemented as a ROM block. The correct lookup table entry is chosen
by the channel-counter. Each tap-multiplier output feeds the multi-operand adder,
which sums them up. The adder’s output is also the data output of the filterbank, which
provides all channels outputs in serial form. The channel-counter signal is also output to
provide indication for the current sample-data on the data output. The multipliers and
the multi-operand adder are pipelined. Four and five stages, respectively, are necessary
for the test-case example. The channel-number output is therefore accordingly delayed
(the delay elements are omitted from Figure 6.1). Only a single path, say the I-path,
is depicted in Figure 6.1. The Q-path is similarly implemented where both paths are
sharing the same counter and lookup table.
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The design architecture depicted in Figure 6.1 provides a cost effective implementation
of the filterbank, while keeping speed performance high. The test-case example can be
implemented using a total of only 30 16-bit multipliers (for the I and Q paths both) and
two 15-operand adders. This configuration is not only feasible in terms of HW cost, but
also performs within the speed requirements, as shown in Section 6.2.

6.2 Results

In this section we present the results obtained from the filterbank implementation.
First, we describe the functional verification setup. Subsequently, we show some results
specific to the test-case parameters, as appear in Table 6.1. We conclude presenting a
table of HW-cost and speed performance results for various applicable parameters of
the filterbank.

6.2.1 Functional Verification

The functionality of the design was tested in two steps. In the first step, VHDL simula-
tion tool was used. Various input vectors were generated using Matlab. The inputs were
of normally distributed random samples and of sine samples, both scaled to full dynamic
range. afterwards, the VHDL simulation outputs were compared to the expected output
from the same Matlab model used for the parameter ranges survey. These tests resulted
in identical output vectors achieved for several simulation of various parameters.

FPGA
ROM
DUT
Test vector - Samples in Samples out| 4
FILTERBANK
: —1) Clock :
° | °
address @ | address ]—D

| | |

COUNTER ! |

r Clock | | |
N T |

Figure 6.2: HW testbench configuration
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In the second step, a HW testbench was produced for the target FPGA Altera Stratix
EP1S25F1020C7, which has 25,660 LEs, 1,944,576 built-in memory block bits, and 40 9-bit
built-in multipliers. The HW testbench configurationisillustrated in Figure 6.2. The test-
vectors are loaded to the ROM, using Altera’s In-System Memory Content Editor - a tool
that can access built-in memory blocks trough the FPGA’s JTAG connectors and retrieve
or edit their contents. The test-vectors are processed by the filterbank implemented
on the FPGA, which passes its outputs to a RAM. The RAM contents are then read
into a file that is compared to the expected results generated by the Matlab model of
the filterbank. During the functional verification filterbanks with diverse parameters
(including the test-bench parameters from Table 6.1) were tested and yielded a perfect
match to the output files generated by the fixed-point Matlab model of the filterbank
with identical parameters.

6.2.2 Test-Case Results

Implementation of the test-case on Stratix EP1540F1508C5 requires 11,100 LEs, 737,280
memory bits, and 60 built-in 9-bit multipliers. That is 27% , 22%, and 54% (respectively)
of this FPGA resources. As a result, plenty of resources is left for implementing more
modules on the same FPGA (e.g., IQ-demodulator). This implementation achieves
maximal clock frequency of 220.41 MHz. Consequently, The maximal channel spacing
that can be handled using this filterbank implementation is of 107.6 KHz. Therefore,
100 KHz, 50 KHz, 25 KHz, and 12.5 KHz, which are common values for practical targets
of interest and fit to this configuration.

Since the implementation is of generic nature, specific results are not obtainable as they
depend on the chosen implementation parameters such as word-length. Therefore, we
bring here specific results for the test-case alone. This is done by comparison of the test-
case results which are for fixed-point word-length, which are compared to ideal results
generated with the Matlab model of the filterbank using full floating-point precision
(ANSI/IEEE Std 754-1985 double-precision).

Figure 6.3 contains example of the measures signal to noise ratio (SNR) per channel,
where the average is 85.45 dB, and no channel has a lower SNR than 83 dB. Equation 6.1
gives the theoretically ideal SNR (1 > 5) in decibels due to quantization noise [35], where
n is the word-length representation in bits. According to this equation the theoretically
ideal inherited SNR for 16-bit word-length is 98.1dB compared to the measured results,
this implementation achieves dynamic range of 13.9-bit on average and 13.49-bit in the
worst case.

SNR = n20log(2) + %zo log(1.5) (6.1)

6.2.3 General Results

In the former section we presented and explained specific results of the test-case imple-
mentation. In this section we present HW-cost and performance results obtained for
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several applicable parameter choices. The results are summarized in Table 6.2.

Observing this table, we can see that various implementation schemes are feasible us-
ing the architecture introduced in the previous chapter, while achieving channelization
of up to 4096 channels with a performance of 214.64 (complex) mega-sample per second
(entry 8 in the table). Entries 3 and 6 illustrate the results for the test-case, implemented
on two different FPGAs, where entry 6 achieves a performance of 308.07 mega-samples
per second.

6.2.4 Conclusion

In the first section of this chapter we introduced test-case parameters for the realization
of a practical filterbank. Afterward, we established approach by which the filterbank
implementation architecture is designed. Subsequently, we presented our implemen-
tation architecture where multipliers are shared “tap-wise” instead of “subfilter-wise”.
Thereafter, we gave a detailed explanation of the architecture we chose for implementing
the channelizer filterbank.

In the second section of this chapter we introduced the results of the HW implemen-
tation. We first presented the HW setup used for a functional verification. Afterwards,
we presented specific results of a test-case implementation scheme, providing HW-
cost, speed performance, and SNR results, yielding the dynamic range of the filterbank
output signals. Thereafter, we presented HW-cost and speed performance results for
various applicable parameter configurations. Thereby, we proved that our implementa-
tion architecture for the filterbank is efficient and feasible on currently-available FPGAs,
and that it is consistent with the parameter ranges survey results.
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Conclusions &
Recommendations

In this dissertation we explained the software defined radio concept (Chapter 2), and
we introduced and compared three channelization algorithms, namely the per-channel
algorithm, the pipelined frequency transform algorithm, and the polyphase fast-Fourier
transform channelization algorithm, choosing the later for further investigation (Chap-
ter 3). Consequently, we explained in details the PFFT architecture, focusing on the
IQ-demodulator and the filterbank (Chapter 4). Afterward, we presented parameter
ranges survey of these two modules, introducing graphs that provide insight to design
trade-offs of these two modules(Chapter 5). Following, we presented our implementa-
tion architecture for the filterbank and the implementation results (Chapter 6). Thereby,
we proved that our implementation architecture for the filterbank is efficient and feasible
on currently-available FPGAs.

The reminder of this chapter is structured as follows. Section 7.1 presents the con-
clusions from all previous chapters and in Section 7.3 we bring recommendations for
further related investigation.

7.1 Conclusions
These are the conclusions attained in the preceding chapters.

e In Chapter 2 we introduced the SDR concept. We presented the ideal SDR receiver
and showed its advantages above typical radio receivers, which are implementa-
tion flexibility and reconfigurability, improved accuracy, better robustness towards
external environment influence, small footprint, low power consumption, and fast
time-to-market. Subsequently, we explained the reasons for ideal SDR receiver
unattainability. Consequently, we introduced a feasible SDR receiver with analog
and digital front-ends, where the digital front-end takes over computationally in-
tensive tasks that are too demanding for the software-driven platform. Wideband
channelization is such task, whereas studying, designing, and implementing it in
a digital front-end for SDR is the focus of this work.

e In Chapter 3 we introduced three different channelization algorithms. Namely,
the per-channel, the PFT, and the PFFT algorithms, explaining in details . Con-
sequently, we presented HW comparison between these algorithms for LUT and
memory resources utilization. Based on this comparison, the PFFT algorithm
appears to be superiorly cost efficient when channelizing few hundreds or more
communication channels.
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Afterwards, we presented a qualitative comparison between these three algo-
rithms that comprises also group delay, initial design flexibility, and reconfig-
urability. Based on the performed comparisons, we came to the conclusion that
despite the fact that the per-channel algorithm has better score in many compar-
ison aspects, its implementation is critically HW inefficient and is infeasible for
high number of channels, even on todays largest available FPGAs. Therefore, we
chose the PFFT algorithm, which is highly cost efficient and has the best com-
putational for high number of channels, for our implementation of the front-end
wideband channelizer.

In Chapter 4 we presented and explained the decomposition of the polyphase FFT
channelizer algorithm into IQ-demodulator, filterbank, FFT, and post-processing
modules. We gave a explanation about three different implementation algorithms
of the IQ-demodulator, namely, conventional, wideband, and Hilbert transformed
IQ-demodulators. We concluded that the Hilbert transformed IQ-demodulator
algorithm is best choice for implementation since it provides the same results as
the other two algorithms while requiring less HW resources.

Afterwards, we introduced two filter design techniques for the prototype filter,
from which the filterbank is derived, i.e., the Parks-McClellan equiripple filter de-
sign and the Parks-McClellan 1/f ripple design. Comparing these two techniques
we decided that the second one is most advantageous for the implementation
of the filterbank. Since the FFT is to be implemented using Eonic’s PowerFFT™
processor, the modules chosen for the parameter ranges survey (in Chapter 5) are
the IQ-demodulator and the filterbank.

In Chapter 5 we presented a parameter ranges survey for the [Q-demodulator and
for the filterbank. We first presented the simulation setup, giving a comprehen-
sive explanation of parameters dependency for the IQ-demodulator and for the
filterbank modules. Subsequently, we gave the simulation results for both full
floating-point precision and fixed-point implications.

The parameter ranges survey gave us some important results necessary for
understanding the behavior and design trade-offs of the IQ-demodulator and the
filterbank. The attained plots provide a tool for the choice of HW resources and
for the process of requirements elicitation.

In Chapter 6 we we introduced test-case parameters for the realization of a practical
filterbank. Afterward, we established approach by which the filterbank implemen-
tation architecture is designed. Subsequently, we presented our implementation
architecture where multipliers are shared “tap-wise” instead of “subfilter-wise”.
Thereafter, we gave a detailed explanation of the architecture we chose for imple-
menting the channelizer filterbank.
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In the second section of this chapter we introduced the results of the HW im-
plementation. We first presented the HW setup used for a functional verification.
Afterwards, we presented specific results of a test-case implementation scheme,
providing HW-cost, speed performance, and SNR results, yielding the dynamic
range of the filterbank output signals. Thereafter, we presented HW-cost and speed
performance results for various applicable parameter configurations. Thereby, we
proved that our implementation architecture for the filterbank is efficient and fea-
sible on currently-available FPGAs, and that it is consistent with the parameter
ranges survey results.

7.2 Main Contributions
In this section, highlights of the main contributions of our work are presented:

e We have shown that the polyphase FFT channelization algorithm is the most
appropriate for digital front-end SDR wideband channelizer.

e We have established the different relationships and trade-offs between the various
channelizer parameters.

e We have devised implementation architecture for the polyphase FFT algorithm.

e We have demonstrated that the implementation architecture for applicable para-
meters is feasible on state-of-the-art FPGAs.

7.3 Recommendations

In this section we provide few recommendations for possible directions in future related
research.

e Oversampled version of the polyphase FFT algorithm (WOLA) could be studied
in detail following the same framework of this study.

e The implementation architecture devised in this study could be tested on different
FPGA brands and compared with the results obtained in our work.

e A complete channelizer front-end implementation based on this study could be
examined in detail.

e Dynamic reconfigurable architectures and implementation, based on this study
could be inspected.
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