
VLSI ARCHITECTURE OF A WIRELESS CHANNEL ESTIMATOR USING SEQUENTIAL
MONTE CARLO METHODS

Mahdi Shabany, Hassan Shojania, Jing Zhang, Javad Omidi, P. Glenn Gulak

Electrical and Computer Engineering Department
University of Toronto

ABSTRACT

The regular and repetitive nature of the Sequential Monte
Carlo (SMC) method makes it very attractive for implemen-
tation using parallel and pipelined architectures. This paper
develops a VLSI architecture for the hardware implemen-
tation of the SMC algorithm using bootstrap filter. A flat
fading wireless channel is considered as our framework on
which the channel estimator is designed and implemented
using the SMC method. The design and verification activi-
ties at the algorithm level, architecture level, and the circuit
level are reviewed. The proposed architecture is verified
with an FPGA implementation.

1. INTRODUCTION

A state space model is used in many mobile communication
systems to analyze the dynamic behavior of the system and
to provide tools to estimate and track variations in the sys-
tem parameters. Dynamic system modeling described by
a state space model has attracted much attention from re-
searchers in different fields. In the Bayesian approach to
dynamic state estimation, one attempts to construct the pos-
terior probability density function (pdf) of the state based
on all available information, including the set of received
measurements. Since this pdf embodies all available statis-
tical information, it may be said to be the complete solution
to the estimation problem.

In the classic state space model estimation using a Kalman
filter, the posterior probability density over the parameters
to be estimated is assumed to be Gaussian. The mean and
covariance matrix are propagated using recursive update equa-
tions each time new data is received. However, the deriva-
tion of the Kalman model is based on the linearity of the
model and the Gaussianity of both the dynamic noise in the
process equation and the measurement noise in the measure-
ment equation [1]. Unfortunately, many of the state estima-
tion problems in practice are nonlinear and non-Gaussian
which limits the practical usefulness of the classical Kalman

This work was supported by Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

filter (see [2] for a survey). The Extended Kalman Filter
(EKF) method can be applied as an approximation for non-
linear systems based on the local linearization of the sys-
tem. However, the EKF always approximates the posterior
density to be a Gaussian. Therefore, if the true density is
non-Gaussian, an EKF would not be a good approach.

Due to the intrinsic limitations in the above mentioned
methods, sequential state estimation, which overcomes these
limitations, becomes central to the study of general dynam-
ical systems. Specifically, Sequential Monte Carlo (SMC)
estimation is a technique to implement a recursive Bayesian
filter by Monte Carlo simulations. The key idea is to rep-
resent the required posterior density function by a set of
random samples with associated weights and to compute
estimates based on these samples and weights. Thereby,
it provides a convenient approach for dealing with multi-
modal distributions, nonlinear dynamics, and observation
equations. In fact, SMC is a promising advanced solution
for various estimation problems.

The regular and repetitive nature of the SMC method
makes it very attractive for implementation using parallel
and pipelined VLSI architectures. The primary purpose of
this paper is to propose a VLSI architecture for the imple-
mentation of the SMC algorithm. A flat fading wireless
channel is considered and a channel estimator is designed
and implemented. Hereafter, we refer to our design as a
Sequential Monte Carlo Channel Estimator (SMCCE).

2. THE SMC FRAMEWORK

The system equation and the measurement equation are two
constituents of a dynamic system model which are shown in
(1) and (2), respectively.

h(t) = ft

[
h(t − 1 : t − m), ψ(t)

]
(1)

y(t) = gt

[
h(t), v(t)

]
(2)

where h(t : t − m) = {h(t), h(t − 1), ..., h(t − m)} is
the state sequence, ψ(t) is the process noise, y(t) is the ob-
served data, and v(t) is the measurement noise.

Table 1. The SMCCE Algorithm.

Step I. Draw estimation vectors
{
hi(t)

}N

i=1
for initial time steps

t = {1, 2, 3}.

For each time step t = {4, 5, ...}:
Step II. Pick a set of process noise samples {ψi(t)}N

i=1 (random
numbers) from a Gaussian distribution with variance Q.

Step III. Calculate estimation vector, Ĥ =
{
ĥi(t)

}N

i=1
, using:

ĥi(t) = −Ahi(t − 1) − Bhi(t − 2) − Chi(t − 3) + Dψi(t).

Step IV. Calculate the vector of estimated received signal:

Y =
{
yi(t)

}N

i=1
as yi(t) = d(t).ĥi(t).

Step V∗. Calculate posteriori distribution of the estimation

vector using: pi(t) = e
−1
2R

(yrcv(t)−yi(t))2 .

Step VI. Calculate the importance weight vector
{
ωi

t

}N

i=1
using:

ωi
t = � Npj(t)

∑N
i=1 pi(t)

�.

Step VII. Update the state estimation vector Ĥ:

The importance weights vector,
{
ωi

t

}N

i=1
, is used to fil-

ter/resample the elements of Ĥ to construct the updated vector
H =

{
hi(t)

}N

i=1
.

Step VIII. The final value h(t) is calculated by (6).

End for

* R is the variance of the measurement noise.

In the SMC framework, the posterior density function is
approximated by a set of random samples with associated
weights [2]. With reference to the state space equations in
(1) and (2), the posterior pdf of interest is p

[
h(t)|y(t : 1)

]

which is used to estimate h(t). Let
{
hi(t : 0), ωi

t

}
denote

a set of random samples and their associated importance
weights drawn with respect to this posterior pdf. Therefore,
the discrete weighted approximation of p(h(t)|y(t : 1)) is:

p
[
h(t)|y(t : 1)

]
=

N∑

i=1

ωi
tδ

[
h(t : 0) − hi(t : 0)

]
(3)

The challenge is how we can draw proper samples from
the posterior pdf and determine their associated weights.
The bootstrap filter is proposed in [3] as a simple method
for online estimation in a state space model. It is shown that

if
{
hi(t − 1 : 0), ωi

t−1

}N

i=1
is the sample-weight set fol-

lowing the posterior distribution p
[
h(t − 1)|y(t − 1 : 1)

]

and N is large enough, then using the updating procedure
the sample-importance weight vector

{
hi(t : 0), ωi

t

}
would

follow the posterior pdf p
[
h(t)|y(t : 1)

]
. The procedure at

time t is as follows:

1. Draw ĥi(t) from the state equation ft

[
h(t)|hi(t− 1 :

t − m)
]
, i = 1, ..., N .

2. Weight each draw by ωi
t ∝ gt

[
y(t)|ĥi(t)

]
.

3. Resample from
{
ĥi(t)

}N

i=1
with probability propor-

tional to ωi
t to produce a random sample

{
hi(t)

}N

i=1
.

The purpose of resampling is to reduce the variance of
samples which increases over time.

3. SYSTEM MODEL AND ALGORITHM ANALYSIS

In wireless communication systems, the transmitted signal
is corrupted by the fading characteristic of the channel along
with the received additive noise. To correctly recover the
information in the transmitted signal by observing the re-
ceived signal, it is important to know the Channel Impulse
Response (CIR) which is known by channel estimation.

The fading channel can be modeled as a linear time-
varying system. In fact, the fading characteristic of the
channel can be modeled by a Gaussian noise process, namely
the process noise ψ(t) with a known variance of Q, fed
into a typical low-pass filter such as a third-order Butter-
worth filter. Therefore, the frequency response and the im-
pulse response of the channel can be described by an auto-
regressive moving-average (ARMA) model as:

h(t) = −Ah(t−1)−Bh(t−2)−Ch(t−3)+Dψ(t) (4)

where the coefficients A,B,C, and D are determined based
on the maximum Doppler frequency shift in the system along
with the sampling frequency of the channel. Their values
based on the assumption of the maximum fading rate of
fdT = 0.05 are −2.8174, +2.6593, −0.8398 and +0.002,
respectively. Using this channel, the received signal, y(t),
can be expressed as:

y(t) = d(t) ∗ h(t) + v(t) (5)

Note that equations (4) and (5) consist of the state space
model in our system corresponding to the general model
of (1) and (2), respectively. Assuming a known transmit-
ted signal, such as a pilot signal, channel estimation is per-
formed based on the observed signal y(t). Using the updat-
ing procedure steps described in section 2, Table. 1 shows
the computation flow of this algorithm.

Meanwhile, the final value of the channel estimation for
time t is calculated as the weighted average of N estimated
samples as:

h(t) =
∑N

i=1 ωi
th

i(t)
∑N

i=1 ωi
t

(6)

Note that
∑N

i=1 ωi
t ≤ N . Therefore, to have exactly N

samples we simply repeat the last element.

A, B, C, D

)(ˆ thi

)(td

)(tyi

)(tyrcv

)(tyi)(tpi)(tpi

)(tpi

)(thi)(th

Titeration

N+S1
N+S2 N+S3+Svar

)(),3(),2(tthth iii

)1(thi i

t

exp table

Fig. 1. Architecture I.

4. ARCHITECTURE EXPLORATION

We consider two architectures proposed in this paper. We
first address Architecture I in order to appreciate the prin-
cipal concepts in the architecture realization as well as se-
quential dependencies intrinsic to the algorithm. Then Ar-
chitecture II is described which is designed to solve the
weaknesses of the architecture I yielding a more efficient
realization.

4.1. Architecture I:

As shown in Fig. 1, Architecture I consists of three cas-
caded pipeline sections. Each pipeline section consists of
internal pipeline stages. The proposed architecture performs
the SMCCE algorithm proposed in Fig. 1 as follows. In
the pipeline section one, using the previous estimated H

tables, the estimated CIR,
{
ĥi(t)

}N

i=1
, at time t is calcu-

lated (step III). Then the estimated samples,
{
yi(t)

}N

i=1
,

are determined (step IV) and their corresponding a poste-
rior distribution, pi(t)s is calculated (step V). Finally, their
summation is determined. In the second pipeline section,

the importance weights,
{
ωi

t

}N

i=1
, are calculated (step VI).

Eventually, the third pipeline section updates the state esti-
mation vector (step VII) and then calculates the final value
for CIR, h(t), (step VIII). Note that to calculate pi(t) we
need to implement the exponential function. However, we
use a lookup table in order to reduce the complexity of the
design while considering the performance and precision.

In fact, the relationship between pipeline sections 2 and
3 is “producer-consumer”. Thus, we can use a lookup table
to pass the weights between sections 2 and 3 (i.e., start 3
only after 2 is finished). The overall processing time for an
iteration period, i.e. the time required to generate the final
estimated h(t), is

Titeration = (N +S1 +N +S2 +N +S3 +Svar)∗Tp (7)

where N is the sample space (i.e. 500 in our example),

S1, S2, S3 are the time latency in terms of number of clock
cycles for three consecutive pipeline sections, respectively,
Tp is the clock period, and Svar is the variable processing
time of pipeline section 3. To understand why Svar should
be taken into account, let’s consider an extreme case where
all ωi

t are zero except the last one, (i.e. ωN
t �= 0). In this sit-

uation it takes N−1+S3 clock cycles to start processing the
last sample. Since ωN

t = N , the N th item will be repeated
N times. Therefore, it takes N extra cycles to write these
samples into the memory block. This worst case scenario
yields:

Svar ≤ N ⇒ max{Titeration} = 4N +S1 +S2 +S3 (8)

According to Fig. 1, this architecture is simple to imple-
ment. The problem is that the calculation time for pipeline
section 3 is variable. Moreover, this architecture does not
make the best possible use of intrinsic parallelism (i.e. due
to the usage of a lookup table between pipeline sections
2 and 3, the start of the calculation in pipeline section 3
has been delayed until all entries of the table are available).
Conceptually, referring to Fig. 1, the minimum required
time steps to do the whole calculation to determine h(t) is
Titeration ≥ N + S1 + N + S2 + S3

1. Therefore, another
architecture can be proposed to eliminate the extra terms to
save time and eventually lead to a faster system.

4.2. Architecture II:

In Architecture II, the design makes use of a pipelined elas-
tic buffer, eliminating N extra cycles. This means that once
the pipeline section 3 has enough information, it can start
to work. Using this idea , there is a “time saving” intercon-
nection between two last pipeline sections. Moreover, this
approach leads to a “memory saving” architecture as well,
because there is no need to save ωi

t anymore.

1S1 + S2 + S3 is the number of clock cycles related to time latency
that is inevitable, 2N is the time required to calculate all pi(t) (pipeline
section one) and all ωi

t (pipeline section three).

A, B, C, D

)(ˆ thi

)(td

)(tyi)(tyi)(tpi

)(tpi

)(thi)(th

N+S1
N+S2+S3

)(),3(),2(tthth iii

)1(thi i

t
)(tp

i

)(ty
rcv

Titeration

exp table

Fig. 2. Architecture II.

Secondly, to improve the performance, Svar should be
dropped because if the entries are written in the memory
one by one then the calculation time for pipeline section
3 would be variable as pointed by (8). This variable time
would force us to account for the worst case delay (accord-
ing to (8)) limiting potential maximum throughput. Instead,
we propose a coded architecture to improve the data struc-

ture of
{
hi(t)

}N

i=1
such that for multiple entries with the

same value of hi(t), only one write to the memory is re-
quired. To do so, one bit, called the pointer bit, is inserted at
the beginning of each record of hi(t). When the pointer bit
is “1”, that record is considered as a new record and will be
used, otherwise the record will be ignored and the last valid
record will be used instead. With respect to the worst case
example mentioned in Architecture I, when ωi

t = 0 for all i
except i = N , nothing is written into the memory until the
last record is read. Therefore, the last record corresponding
to i = N is written into the first row of the memory. Thus,
one write is required and Svar = 0.

To make this coded architecture work, in pipeline sec-
tion one, after each read from H tables, using the “write
after read” capability of the dual port memories, the pointer

bits of all entries of
{
hi(t − 3)

}N

i=1
table are set to zero so

they are ready to be overwritten in the next time step. Since
architecture II is the cascade of two pipeline sections, the
overall iteration period is Titeration = (2N + S1 + S2 +
S3) ∗ Tp.

This architecture is simple and has a fixed calculation
time. Further improvements can be made by employing
multiple parallel pipelines to increase system throughput.
Note this would introduce its own complexities; e.g. the

need to break
{
hi(t)

}N

i=1
tables into multiple tables (each

processed by one of the parallel pipelines). This is because
Block RAMs (BRAM) in typical FPGAs are dual ported
and they don’t allow more than two concurrent accesses.
Here, without loss of generality, we consider a single pipeline
stream.

CP1/2/3 enable signal

Calculation
Pipeline
Section 1

(CP1)

Calculation
Pipeline
Section 3

(CP3)

Calculation
Pipeline
Section 2

(CP2)

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Yrcv [9:0] [15:0]

Base_weight
[9:0]

Base_weight
valid

h(t) [9:0]

A/B/C/D [9:0]
d(t) [7:0]

[9:0]

exp table

]0:10) [(thi

Y FIFO

)(t)1(ˆ thi

)2(ˆ thi

)3(ˆ thi

]0:9[

]0:9[

]0:9[

p

Fig. 3. Physical block diagram of the system.

5. ARCHITECTURE SPECIFICATION

The implementation of the SMCCE consists of two major
parts, i.e. the Calculation Core and the CPU Bus Inter-
face as shown in Fig. 3. The Calculation Core is further
divided into the calculation pipelines (CP1, CP2, CP3), Ta-
ble Server (TS), Global Control logic (GC), and instantiated
block memory, which are shown in Fig. 3. The CPU Inter-
face provides an interface between the On-Chip Peripheral
Bus (OPB-Bus) and internal accessible registers and mem-
ories. In Fig. 3, the Random Number Generator (RNG)
generates random numbers with Gaussian distribution, and
the table server coordinates all table accesses. Fig. 3 also
shows the word length of selected variables in the design.
These values are selected to minimize the memory require-
ments while maintaining the good performance.

6. DESIGN CHARACTERISTICS

Verification of the calculation core was done through a set of
testbenches written in Verilog while the complete core was
verified with IBM’s OPB Bus Functional Model Toolkit.
Xilinx Virtex-II Multimedia Board with XC2V2000 FF896

50 100 150 200 250 300

−6

−4

−2

0

2

4

6

8

10

12

14

St
at

e
es

tim
at

e

Time

True value
SMC result (SNR = 10dB)
SMC result (SNR = 3dB)

Fig. 4. The channel estimation results for SNR = 3dB and
10dB.

FPGA was our implementation platform. Since enough on-
chip Block RAM was available, external memory was not
used. The whole embedded system occupies around 21 per-
cent of XC2V2000 including the soft processor (2264 out of
10752 available slices where each slice includes two Look-
Up Tables (LUT)). Out of the available 56 blocks of 18
KBits BRAMs, 7 were used by the SMCCE core to hold dif-
ferent tables and the rest were available for the MicroBlaze
system software. A MicroBlaze soft-processor was used in
the final system verification to stream data into and out of
the SMCCE core as fast as possible.

Using Architecture II, each iteration takes 2N + S1 +
S2 + S3 = 2N + Spipeline−overhead cycles. The total over-
head is 39 cycles so each iteration takes 1039 cycles for
N = 500. Since the calculation core is running at 135
MHz (5 times OPB bus clock of 27 MHz), ideally a through-
put of 129.93 K iterations/second can be reached. Software
overhead shouldn’t prevent us from reaching this rate as the
input/output FIFO mechanism and interrupt-based notifica-
tion to the CPU should minimize the overhead. Higher es-
timation rates (for other applications) can be enabled with a
custom hardware solution.

7. SIMULATION RESULTS

To verify the performance of our design, the channel model
introduced in section 3 was employed to examine the esti-
mation results. The linear Gaussian environment was con-
sidered to simplify the proof of concept. A random process
noise with variance Q = 15 was chosen to model the chan-
nel characteristics. The objective is to estimate a series of
consecutive samples in time. The first 300 samples are as in
Fig. 4 where the true value as well as the estimated results
for SNR 3dB and 10dB are shown. Using the weighted aver-
age based on (6), the statistical comparison of the estimated
channel states with the true values is shown in Fig. 5a. To
further elucidate the estimation accuracy, the posterior den-
sities used for estimation in each time instant are shown in
Fig. 5b for the first 100 samples. It is worth noting the close

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

Tr
ue

 st
ate

weighted average
(a)

−20
−10

0
10

20

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

Sample space
 (b)

Time

Po
ste

rio
r d

en
sit

y

Fig. 5. The weighted average results and the final posterior
distributions.

5 10 15 20 25
10

−3

10
−2

10
−1

SNR

M
SE

Fig. 6. Mean Square Error for various SNR values.

correspondence between these posteriors and the results in
Fig. 4. The Mean Square Error (MSE) of the implemented
architecture for various SNR values is also shown in Fig. 6.

8. CONCLUSIONS

In this paper, a VLSI architecture for the implementation of
the SMC algorithm using a Bayesian bootstrap filter frame-
work was proposed. A flat fading wireless channel was con-
sidered as our framework and a channel estimator was de-
signed and implemented based on the SMC method to track
the CIR. The paper covers the design and verification activ-
ities from the algorithm evaluation through the FPGA im-
plementation. An important step forward would be finding
efficient architectures for a more general case.

9. REFERENCES

[1] Y. C. Ho and R. C. K. Lee, “A Bayesian approach to
problems in stochastic estimation and control,” IEEE
Trans. Automat. Contr., vol. AC-9, pp. 333–339, 1964.

[2] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Se-
quential Monte Carlo Methods in Practice, Springer-
Verlag, New York, 2001.

[3] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel ap-
proach to non-linear and non-Gaussian Bayesian state
estimation,” Proc. Inst. Elect. Eng., vol. 140, pp. 107–
113, 1993.

