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ABSTRACT

In this paper we propose a novel algorithm for PAPR 

reduction of an OFDM system, based on a companding 

scheme. In this method a compressing polynomial is 

appended to the IFFT block at the transmitter and at the 

receiver the FFT block is combined with a reverse 

expanding function where the iterative Jacobi's method is 

used for solving equations. The proposed method entails 

less complexity at the transmitter in comparison with other 

PAPR reduction algorithms. It also requires less increase in 

SNR for the same BER compared to other companding 

methods. A trade off between complexity and performance 

can set the order of compressing polynomial and the number 

of iterations for the proposed algorithm at the receiver. 

1. INTRODUCTION 

Recently, Orthogonal Frequency Division Multiplexing 

(OFDM) signaling has gained considerable interest for high 

data rate transmission applications, because of its high 

spectral efficiency and the immunity to frequency selective 

channels [1]. One major drawback of OFDM is the high 

peak-to-average power ratio (PAPR) of the output signal. 

Transmitting a signal with high PAPR requires highly linear 

power amplifiers with a large back-off to avoid adjacent 

channel interference due to nonlinear effects [2]. Also high 

values of PAPR result in low efficient usage of the ADC 

and DAC word length at the Analog Front Ends (AFE) of 

the transceiver.  With a limited number of ADC/DAC bits 

the designer has to decide about clipping the peaks, which 

has a deteriorating effect on OFDM signals, or burying the 

small variations of the signal in the quantization noise. 

Therefore, dynamic range reduction plays an important role 

for the application of OFDM signals in both power and 

band-limited communication systems. 

Many PAPR reduction techniques have been proposed 

in the literature, each with certain advantages and 

drawbacks. The simplest one is to clip the peak amplitude of 

the OFDM signal to some desired maximum level  but this 

technique will cause an unacceptable level of noise and out 

of band distortion in the OFDM signal [3][4]. 

Other methods focus on the frequency domain, by 

shaping the signal constellation. Two recently introduced 

methods are the Partial Transmit Sequence (PTS) [5] and 

Selected Mapping (SLM) [6]. A drawback of these methods 

is high computational cost at the transmitter and extra 

information sent to the receiver. Another effective method is 

companding that reduces the PAPR with low complexity at 

the cost of a loss in SNR [7] [8]. Since all the companding 

techniques are sensitive to channel noise, due to the 

nonlinear processing, more PAPR reduction could lead to 

lower performance. 

In this paper, the proposed companding method tries to 

reduce the PAPR with a polynomial-based compressing 

function in the transmitter. Also using an iterative technique 

in the receiver, the increase in SNR of the system for a 

given BER is lowered in comparison with other 

companding methods. In section 2, the signal model and the 

PAPR problem is explained. Section 3 introduces a novel 

method for companding the time domain signal. The 

simulation results and conclusion are given in section 4. 

2. OFDM SIGNAL MODEL AND PAPR PROBLEM 

Fig. 1 shows the system model considered in this paper. In 

an OFDM system, the input bit stream is mapped to a QAM 

constellation space and then the stream of weighted carriers 

X[k] is fed to the IFFT block as explained bellow. 

Assume N is the length of X[k] in the frequency 

domain. The output of the IFFT x[n] in the time domain can 

be written as: 
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The resulting time domain signal that possesses a high 

PAPR can be compressed by a compression block. In our 

proposed method, this block is appended to the IFFT block. 

The PAPR is a figure of merit that describes the 

dynamic range of the OFDM time signal. The conventional 

definition of the PAPR for the OFDM symbol in the time 

domain x[n] may be expressed as: 
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where E denotes the expectation operator. 

Fig.  1. The considered system block diagram. 

3. THE PROPOSED METHOD 

In this section a new companding method is proposed based 

on appending a compressor block to the IFFT at the 

transmitter and combining an expander with the FFT block 

in the receiver to come up with new extended blocks. At the 

transmitter the signal is compressed by a compressor block 

that scales the signal based on a nonlinear function that 

amplifies the signal average and keeps the peak constant. At 

the receiver, the signal expansion is performed through an 

iterative technique following the FFT operation. In the 

following, we will explain the new transmitter and receiver 

units respectively. 

3.1. Appending a compressor to the IFFT block

The applied method at the transmitter is based on using a 

special family of compressing polynomials. It will be shown 

that this operation will effectively reduce the PAPR, and the 

order of the polynomial function can be chosen according to 

a performance-complexity trade off. 

The compression is performed on a normalized signal 

using a nonlinear polynomial function at the transmitter, 

which reduces the PAPR by increasing the average signal 

energy while keeping the peak constant. In order to employ 

the iterative algorithm successfully at the receiver, the 

function must be selected carefully. Based on the required 

characteristics for the curve, there are some restrictions in 

choosing the coefficients of the polynomial. These 

requirements are as follows: 

1. In order to have a one-to-one mapping applied to 

the signal, the function must be invertible in the range 

of [-1,1]. This allows for the inverse operation in the 

above range at the receiver. Obviously, it has to be an 

increasing function and its extreme points (where the 

sign of derivative changes) must be out of this range. 

2. The function must be odd; therefore the terms with 

even degrees should take zero coefficients. 

3. The function must take its minimum value at the 

point (-1,-1) and its maximum value at the point (1,1) 

in the mentioned range and pass through the origin. 

4. For the best efficiency in PAPR reduction, it is 

necessary to have the steepest possible slope at the 

origin and the lowest slope (ideally zero) at the extreme 

points. It is shown in Fig. 2 that higher order 

polynomials results in sharper slopes at point (0,0). 

5. Based on simulation results, the existence of a 

turning point (where the concavity changes) within the 

range of the function is an important limiting factor. 

Presence of a turning point increases the required SNR 

for a given BER performance. Therefore, the function 

within the range of [-1,1] must not have any turning 

point except for the origin. 

The above requirements can be satisfied by any polynomial 

function with an odd order. Let’s define:   

f(x) = apx
p + ap-2x

p-2 + … + a5x
5 + a3x

3 + a1x (3)

where p is an odd number. Coefficients for polynomials of 

order 3, 5 and 7, are obtained as follows. 

p = 3 : a3 = -1/2, a1 = 3/2 

p = 5 : a5 = 3/8, a3 = -5/4, a1 = 15/8 
(4)

p = 7 : a7 = -5/16, a5 = 21/16, a3 = -35/16, a1 = 35/16 

These functions are depicted in Fig. 2. One should note 

that for polynomials of higher orders the coefficients cannot 

be directly obtained in the same manner, due to the lack of 

known parameters compared to the unknown ones. 

Fig. 2. Calculated polynomials of order 3, 5, 7. 

To append the polynomial-based compressor to the 

IFFT, x[n] should be computed as a real and imaginary part. 

So:
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After applying the pth order compressing function on 

Re{x[n]} and Im{x[n]}, the results can be shown 

respectively as: 
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where y[n] represents the compressed signal. Fig. 3 shows 

the constellation shape of the original and the compressed 

signal. 

Fig. 3. The signal constellation for (a) the original signal and (b) 

its compressed version in the frequency domain.  

The following subsection, introduces an iterative 

method for the combined Expansion/FFT blocks at the 

receiver over a noiseless channel and then the effect of 

AWGN channel on the signal will be studied. 

3.2. Expansion via an iterative algorithm

The expander block, has to invert what has been applied to 

the signal at the transmitter. The problem is to find the data 

sequence X[k] with length N in the frequency domain using 

the compressed time signal y[n] with the same length. As 

explained before, the appended block at the transmitter 

relates y[n] to X[k] using a set of nonlinear equations, 

through which the unknown values can be computed. There 

are N known values of Re{y[n]} and Im{y[n]} and N

unknown values of Re{X[k]} and Im{X[k]} with 

n = 0,…, N-1 and k = 0,…, N-1.

To solve the set of N equations, an iterative method is 

proposed to obtain the X values. The Jacobi Method is 

employed here for this purpose [9]. 

In Jacobi's method, initial values for X[k] are needed for 

the first iteration. Referring to Fig. 3, it can be seen 

heuristically, that the constellation shape of the compressed 

signal has a good resemblance to that of the original signal. 

So in the first place use of the FFT block, can yield a good 

approximation of the original signal in the frequency 

domain. Thus the FFT of y[n] can provide proper initial 

values for the iterative algorithm.  

We start with computing Ar[n,k] and Ai[n,k] by using 

equation 6. Let's define: 
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Next, we compute ],[ˆ knX  as follows:  
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We can observe from equation 10 that for any value of 

k, there will be N results for ]},[ˆRe{ knX  and ]},[ˆIm{ knX .

From the results obtained through simulations it is deduced 

that the average of the calculated values is the best 

candidate to be used as X[k] for the next iteration. 

Generally, for a noiseless channel, after a few iterations 

the results will converge to the desired values. However, in 

the presence of noise, for low SNR conditions, the values of 

(1/N) Ar[n,k] and (1/N) Ai[n,k] obtained through the 

algorithm, lie outside of the range [-1,1]. As explained 

before, our polynomials have their extreme points at the 

beginning and end of this range. Moreover, polynomials 

used in this algorithm have a high derivative out of the 

mentioned range. In this case, the obtained values beyond 

the [-1,1] range will be exposed to the high derivative part 

of the function, and during the following iterations, will 

move further from the values of the original signal. 

Consequently, the values of Re{X[k]} and Im{X[k]} will 

drastically diverge. As a result the signal points will be 

spread in the constellation map, approximately, in the form 

of circular shape with an enormous radius. 

In order to prevent the algorithm from diverging in the 

presence of channel noise, one can replace the out-of-range 

values of the (1/N) Ar[n,k] and (1/N) Ai[n,k] with the 

values of the extreme points related to the sign of computed 

terms. It can prevent values from moving out of the range 

and make the system converge. Another suggestion for 

avoiding divergence is to use a linear function such as a 

ramp with unit slope outside of the [-1,1] range. The 

simulation results show that this ramp is a good choice for 

any SNR value to avoid divergence. However, using the 

unit ramp function in a noisy condition will result in more 

iterations before convergence in comparison with the 

noiseless situation. 

4. SIMULATION RESULTS AND CONCLUSION 

Reduction of PAPR in an OFDM system using a 

companding method is obtained at the cost of increase in 

SNR for a given BER. In order to analyze the relationship 

between BER performance and PAPR reduction of the 

applied algorithm, randomly generated data modulated by 

16-QAM and 64-subcarriers is used. 

(a)                                           (b) 
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Fig. 4. The CCDF of PAPR for original and compressed signals. 

Fig. 5. Effect of iteration on improving performance. 

Fig. 4 shows the results for a number of 105 random 

OFDM symbols where the original signal and different 

companding methods are considered. The Complementary 

Cumulative Distribution Function (CCDF) of PAPR for 

original signals, -law compressed signals with  = 255 and 

compressed signals with polynomials of different orders are 

shown. As it is observed, the algorithm reduces the PAPR 

of the signal effectively compared to the original signal. For 

the 3rd, 5th, 7th order polynomials, and for CCDF = 10-4,

the PAPR is reduced 2.1, 3.3 and 4 dB respectively. 

Therefore, with higher order polynomials, more PAPR 

reduction can be achieved. 

The advantage of using more iterations on system 

performance is illustrated in Fig. 5 where the 5th order 

polynomial is employed. It can be seen that for low SNR 

values, i.e. less than 10dB, there is no difference between 

different curves, hence, FFT with no iteration can be used. 

Also, the negligible difference between 6th and 20th 

iteration curves is noticeable. It is obvious that after a 

certain number of iterations, the performance cannot be 

improved further.  

Fig. 6 shows the effect of polynomials with different 

orders used, where the number of iterations at the receiver is 

the minimum required for the best performance. Curves in 

this figure are obtained by 3rd, 5th and 7th order 

polynomials through 3, 7 and 9 iterations respectively. 

Fig. 6. Effect of polynomial order on system performance. 

Although -law reduces the PAPR more than our 

proposed algorithm, Fig. 6 states that its required SNR is 

much higher for the same BER. 

As a result of the simulations, increasing the polynomial 

order reduces the PAPR while lowering the BER 

performance, and running more iterations at the receiver 

improves BER performance in exchange for more 

computation. In designating an OFDM system the 

polynomial order and the effective number of iterations can 

be selected based on the above results.  
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