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Abstract. Channel estimation is an essential part of many detection techniques proposed for data transmission
over fading channels. For the frequency selective Rayleigh fading channel an autoregressive moving average repre-
sentation is proposed based on the fading model parameters. The parameters of this representation are determined
based on the fading channel characteristics, making it possible to employ the Kalman filter as the best estimator
for the channel impulse response. For IS-136 formatted data transmission the Kalman filter is employed with the
Viterbi algorithm in a Per-Survivor Processing (PSP) fashion and the ove rall bit error rate performance is shown
to be superior to that of detection techniques using the RLS and LMS estimators. To allow more than one channel
estimation per symbol interval, Per-Branch Processing (PBP) method is introduced as a general case of PSP and
its effect on performance is evaluated. The sensitivity of performance to parameters such as fading model order
and vehicle speed is also studied.
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1. Introduction

Various kinds of Maximum Likelihood Sequence Estimation (MLSE) techniques are intro-
duced in the literature to combat the degradation of error performance due to the severe ISI
in fast fading channels. MLSE is usually implemented using the Viterbi algorithm. Generally
all adaptive versions of MLSE receivers require some information about the fading channel
such as estimates of the Channel Impulse Response (CIR) [1–4]. The quality of the channel
estimation method has a strong impact on the overall Bit Error Rate (BER) performance of
the receiver. Particularly in fast fading conditions, only the more advanced channel estimators
can provide reasonable receiver performances.

An inherent difficulty associated with applying the estimation methods is that the unknown
transmitted data is required for the estimator adaptation. In the “decision directed mode” the
actual transmitted data, which is not available at the receiver a priori, is replaced by an estimate
of the data stream. However, there is usually a decoding delay, namely a “decision delay”
inherent in the Viterbi Algorithm, that causes poor tracking performance of conventional
adaptive MLSE receivers on time varying channels. Moreover, channel estimation errors can
lead to error propagation in these methods.

Per-survivor processing (PSP) is a sequence detection technique [3] in which the CIR is
estimated along the surviving paths associated with each state of the trellis. Each surviving
path maintains its own estimate of the channel based on the hypothesized transmitted data
sequence. This method eliminates the decision delay and reduces the effects of error propa-
gation, by embedding the data-aided estimation of the channel parameters into the structure
of the Viterbi algorithm. However, PSP cannot be used with some estimation techniques if
there are more than one channel estimation per symbol interval due to data dependency in the
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implemented structure. In this paper we introduce the per-branch processing (PBP) method as
a general case of PSP, which has the advantages of PSP and allows more than one estimation
per symbol interval.

The performance of the receiver strongly depends on how well the estimator can track
the rapid changes of the CIR in the fast fading conditions. Channel estimation is usually
performed via LMS or RLS algorithms. However, the Kalman filter is the optimum estimation
method that minimizes the estimation mean square error [5]. The Kalman filter is composed
of two parts:the measurement update equationsand the time update equations. The RLS
algorithm is basically the same as the measurement update equations of the Kalman filter
[6]. The state transition matrix used in the time update equations of the Kalman filter is not
required in the RLS algorithm; and to implement the Kalman filter for achieving a better BER
performance, some extra information about the state space model of the fading channel is
required.

The application of the Kalman filter to the channel estimation of Rayleigh fading channels
has been addressed by some authors [1, 7]; however, in these applications a relation between
the parameters of the actual fading channel model and the state space model is not established.
In this paper we propose a new method for obtaining an Autoregressive (AR) representation
for the impulse response of the fading channel based on the fading model parameters. It
will be shown that the state space model parameters can be easily obtained at the receiver
by estimating the maximum Doppler frequency shift or equivalently finding the AR spectral
estimation of CIR. This enables us to use the optimal Kalman filter consisting of both time
and measurement updates for channel estimation, while in other approaches using RLS (also
sometimes referred to as the Kalman algorithm) only measurement updates are posible at the
estimator. In this method, the fading coefficients are obtained through an IIR filter. It is shown
that the complexity of the Kalman filter depends on the order of the IIR filter and the trade-offs
between the complexity and performance are studied. Although a two-ray fading channel is
considered here, the complexity of this method and hence the complexity of the Kalman filter
will not be affected by increasing the number of rays.

This paper is organized as follows: In Section 2, following a short overview of the mobile
communication system under consideration, we present a model for the channel and derive
the AR representation for the CIR. In Section 3, after introducing the estimation algorithms,
we describe the proposed joint data and channel estimation method. After presenting the
simulation results in Section 4, we conclude in Section 5.

2. Transmission System and The Channel Model

2.1. THE SIGNAL MODEL

To study a digital communication system over a frequency-selective Rayleigh fading channel
we adopt the north American narrowband TDMA standard (IS-136), where theπ/4-shifted
differentially coded Quadrature Phase-Shift Keying (DQPSK) modulation technique is used.
For simplicity we will consider the DQPSK signaling scheme instead, which should not lead to
significant differences in performance. The complex baseband signal model for the communi-
cation system is shown in Figure 1. The complex data sequence{ai} with the symbol periodT
is input to the fading channel. Digital data signals are packed into TDMA blocks starting with
a preamble training sequence. The training sequence helps the receiver to extract the necessary
information about the channel. The data symbols are shaped in a raised-cosine shaping filter
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Figure 1. The signal model for the baseband communication system.

with impulse responsef (t) before transmission. The equivalent low-pass time-variant impulse
response of the frequency-selective Rayleigh fading channel,c(t, u), represents the channel
response at timet due to an impulse applied at timet − u. The impulse responsec(t, u) is
usually modeled as a wide-sense stationary uncorrelated scattering process. The additive noise
η(t) is a circularly symmetric [8] complex Gaussian process with power spectral densityN .
The bandwidth of the signalz(t) is W and it is sampled at Nyquist rate(Ts = 1/2W). The
noise samplesη(kTs) are complex uncorrelated Gaussian random variables with variance
N0 = 2WN . In our treatment the channel impulse response (CIR) includes the impulse
response of the cascade of the shaping filter,f (t), and the fading channel,c(t, u).

The receiver samples the incoming signal at the rate 1/Ts at the output of the low pass
filter whereT = nsTs , andns is the number of samples per symbol interval. By defining the
information sequence at sampling times as

bk =
 ak/ns

k

ns
= integer

0 otherwise
(1)

the sampled signal,zk, can be written as

zk =
β∑
i=0

bk−ihk,i + nk , (2)

wherehk,i, the CIR at timek due to an impulse that was applied at timek − i, describes both
f (t) andc(t, u) blocks of Figure 1 in the discrete time domain. In practical situations it is
possible to truncate the CIR to a finite length and we assume its total length to be(β+1). The
additive white Gaussian noise,nk, representsη(kTs).

2.2. THE CHANNEL MODEL

Propagation in urban areas is mainly by way of scattering from the surfaces of the buildings
and this makes a mobile communication channel a time varying multipath medium. In this
multipath situation energy arrives via several paths simultaneously, and various incoming
radiowaves arrive from different directions with different time delays. The impulse response of
such a channel includes several pulses from different paths with different delays. Associated
with each path is a time varying propagation delay and an attenuation factor. Here we will
consider the simple case of a two-ray fading channel. The baseband impulse response at time
t caused by an impulse applied at timeu can be written as

c(t, t − u) = α0(u)δ(t − u)+ α1(u)δ(t − u− τ) , (3)

whereα0 andα1 are circularly symmetric Gaussian complex random coefficients. Figure 2
shows a model for this channel.
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Figure 2. The fading channel model.

Simulation of the fading spectrum appropriate to mobile radio is obtained by choosing
an appropriate characteristic for the two fading filters in Figure 2 and properly shaping the
spectrum of the Gaussian noise processes. It is important to notice that although the spectrum
of the Gaussian processes is affected by filtering, the probability density function is not, so
the process at the output of the fading filter remains Gaussian. Theoretical spectral density of
the complex envelope of the received signal is represented [9, 10] as

S(f ) =


ε2

2πfd

[
1−

(
f

fd

)2
]−1/2

|f | ≤ fd

0 elsewhere

(4)

whereε is the rms value of the signal envelope andfd is the maximum Doppler shift cor-
responding to the vehicle speed. As shown in Figure 2, complex Gaussian noise process is
passed through a fading filter to create the multiplicative fading signal. The spectral density of
the received signal envelope is determined by the transfer function of the fading filter,P(ω).
To simulate the spectral density of (4), one must chooseP(ω) proportional to the square root
of S(f ). It is too difficult to design a filter whose output spectrum truly follows this shape, so
an approximation has to be sought.

A fading filter with the impulse responsep(k) can be designed so that its output spectral
density is an approximation to the square root ofS(f ). The problem of designing a low order
fading filter for shaping the spectral density of a white noise signal to be used as the complex
envelope of the received signal in simulators is addressed in [11] and [12]. The proposed
frequency response is a low pass characteristic with 0 dB gain at lower band, 6 dB peak
at fp = fd/rf , and –60 dB per decade slope after this frequency as shown in Figure 3.
The rf ratio can be chosen so that the fading filter transfer function curve is a close fit to
the theoretical curve. By placing the peak point of|H(f )|2 on theS(f ) curve we obtain
rf = 1.03. Implementation of this filter can be easily achieved by a third order fading filter.
The transfer function of this filter in thez domain can be written as

P(z) = D

1−Az−1− Bz−2− Cz−3
, (5)

where the filter coefficients depend onfd . If white Gaussian noise is applied to the input of the
fading filter, the output envelope will have a Rayleigh distribution. To design this filter based
on the constraints given in Figure 3, and to obtain the filter coefficients (A,B,C, andD), it is
enough to estimate the maximum Doppler frequency shiftfd = V/ϑ , whereV is the vehicle
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Figure 3. (a) Theoretical spectral density of the complex envelope of the received signal. (b) Fading filter
frequency response,|H(f )|. (c) |H(f )|2. (fp = fd/1.03).

speed andϑ is the wavelength. The computer program of Appendix A can be used to calculate
the fading filter coefficients given the maximum Doppler frequencyfd . In the following we
will show that we can write an AR representation for the CIR based on the parameters of the
fading filter. This will in turn help us to define the state space model parameters of the fading
channel.

2.3. THE AR MODEL FOR THECIR

Here we will derive an AR representation for the CIR based on the above fading channel
model. In this context, the CIR is the impulse response of a system including bothf (t) and
c(t, u) (Figure 1). The response of the fading channel at discrete timek to an impulse applied
at timej can be expressed as

c(k, k − j) = α0(j)δ(k − j)+ α1(j)δ(k − j − τ). (6)

For the cascade of the shaping filter,f (k), and the fading channel,c(k, k − j), it can be
verified that the response toδ(k − j), or hk,k−j is expressed as

hk,k−j = α0(k)f (k − j)+ α1(k − τ)f (k − j − τ) (7)

and if we definei = k − j , (7) becomes

hk,i = α0(k)f (i)+ α1(k − τ)f (i − τ) . (8)

On the other hand, from Figure 2 we can see thatα0(k) andα1(k−τ) are outputs of the fading
filter and can be written as

α0(k) = x(k) ∗ p(k) (9)

and

α1(k − τ) = y(k − τ) ∗ p(k) , (10)

wherep(k) is the impulse response of the fading filter. Hence (8) becomes

hk,i = [x(k) ∗ p(k)]f (i)+ [y(k − τ) ∗ p(k)]f (i − τ) (11)

or

hk,i = [f (i)x(k)+ f (i − τ)y(k − τ)] ∗ p(k) (12)
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Figure 4. Illustration of the channel impulse response as the output of the fading filter.

and if we define

wk,i = f (i)x(k)+ f (i − τ)y(k − τ) (13)

then

hk,i = wk,i ∗ p(k). (14)

Equation (14) suggests that the impulse response of the combination of shaping filter, and the
fading channel, can be obtained at the output of the fading filter, if the input is the Gaussian
noise processwk,i, as shown in Figure 4. Here we have considered a two ray model; however,
this result can be generalized to any number of rays. In a multi-ray condition CIR can be
obtained as the output of the fading filter where the input is a sum of weighted Gaussian noise
components, similar to the situation of Figure 4.

The CIR,hk,i, is a wide-sense stationary Gaussian random signal and has an AR represen-
tation ([5] ch. 2). Using (14) and given the transfer function of the fading filterP(z) as in (5),
one can obtain the AR representation of the channel impulse response as

hk,i = Ahk−1,i + Bhk−2,i + Chk−3,i +Dwk,i . (15)

This shows that the AR representation of the CIR directly depends on the fading filter char-
acteristics. Also, assuming the third order fading filter of Figure 3, to have the fading filter
coefficients one only requires to know the maximum Doppler frequency shift,fd . This means
if the receiver estimatesfd on a regular basis, like at the beginning of each data frame, it will
have the AR representation of the CIR. In the following we will show that this AR model can
be used to define the state space model of the fading channel.

In this model it is assumed that all rays experience the same fading spectrum. In reality, the
shortest delay ray has the (long-term average) spectrum of (4), because the fading is typically
due to a number of scatterers located close to and around the vehicle. However, the delayed
rays are typically due to a large and distant scatterer (e.g., a large building, a cliff face, etc.)
and are characterized by a much narrower spectrum. Nevertheless, in practical situationsfd
is usually a small fraction of the symbol rate and the assumption that all rays have the same
fading spectrum will not result in much loss. This assumption allows for the factorization
shown in (11) and (12), leading to the AR representation of (15). An alternative approach to
obtain the AR model of (15) for the CIR, is to employ one of the spectral estimation methods
of ([13] ch. 6) to find the AR model parameters.

2.4. THE STATE SPACE MODEL

To derive the state space model for the fading channel consider the(β + 1) dimensional
complex Gaussian random vector at sampling timek

hk = (hk,0, hk,1, . . . , hk,β)t , (16)
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Figure 5. Linear time varying model of signal transmission over a Rayleigh fading channel.

where (.)t denotes matrix transposition. Using (15) we obtain

hk = AIhk−1+ BIhk−2+ CIhk−3+DIwk , (17)

whereI is a(β + 1) × (β + 1) unit matrix. The vectorwk is a(β + 1) × 1 zero mean white
Gaussian process with the covariance matrix defined asE{wkwTl } =Qδkl . According to (17),
hk only depends on its three past values; and if we define the states of the state-space model
as a vector composed of 3 consecutive impulse responses

xk = (hk,hk−1,hk−2)
t (18)

then using (17) and (18) we can write

xk+1 =
 AI BI CI

I 0 0
0 I 0

xk +
 DI0

0

wk (19)

or

xk+1 = Fxk +Gwk (20)

whereF andG are 3(β + 1) × 3(β + 1) and 3(β + 1) × (β + 1) matrices respectively.F is
called the state transition matrix andG is the process noise coupling matrix.

The 3(β + 1)× 1 vectorH k can be defined as

H k = (bk, bk−1, bk−2, . . . , bk−β,0, . . . , 0) , (21)

where 2× (β + 1) zeros are inserted afterbk−β . The received signal can be expressed by

zk = H kxk + nk . (22)

Equations (20) and (22) describe the linear time varying system of Figure 5 wherexk is the
state vector of this system,H k is called the measurement matrix and the received signalzk
can be assumed to be a noisy measurement of the states of the system.

As mentioned before, the covariance matrix of the Gaussian noise processwk,i is
E{wkwTl } =Qδkl , where (.)T denotes Hermitain transpose, and the matrixQ can be obtained
using (13). The element on theith row and thej th column ofQ is

qij = E{wk,iwk,j } (23)

or

qij = E{[f (i)x(k)+ f (i − τ)y(k − τ)] × [f (j)x(k)+ f (j − τ)y(k − τ)]}.
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Thex(k) andy(k) signals are white processes with variancesσ 2
x andσ 2

y , thereforeqij is
zero fori 6= j and for the diagonal elements ofQ we obtain

qii = σ 2
wk,i
= f 2(i)σ 2

x + f 2(i − τ)σ 2
y . (24)

Having defined the parameters of the state space model, we are ready to employ an esti-
mation method for estimating the states of the system or the impulse response of the channel.

2.5. PARAM ETER ESTIMATION USING THE RECEIVED SIGNAL

In practice, for some channel estimation algorithms, it is necessary to extract the required
channel state space model parameters from the received signal. The parameters of the fading
filter in (5) are used to generateF andG and an estimation of these parameters is required
at the receiver. Also the matrixQ and the noise varianceN0 need to be calculated for the
implementation of the Kalman filter.

To obtainF andG, we need to find the AR model parameters of (15). The estimated state
vector at the receiver,̂xk, consists of the estimates of CIR taps,ĥk,i, (see (16), (18)). The
processĥk,i is characterized by the AR model of (15). There are several spectral estimation
methods ([13] ch. 6) that can be employed to find these AR model parameters. The AR spectral
estimation provides the parameters ofF andG and the variance of the AR model noise. As
mentioned earlier, assuming the filter characteristics of Figure 3, estimating the AR parameters
for the CIR is equivalent to finding the maximum Doppler frequency shift. Hereafter, we refer
to this AR spectral estimation as the estimation of maximum Doppler frequency shift.

To obtainQ we notice that it is a diagonal matrix as defined in (24). The diagonal elements
are the variance of the AR model noise,σ 2

wk,i
, and can be obtained in the process of spectral

estimation techniques of [13]. The additive noise varianceN0 can be estimated based on a
comparison of the detected sequence and the received signal.

In the next section after introducing the Kalman filter and the RLS algorithm we will
consider their implementation in a MLSE-VA receiver.

3. Joint Data and Channel Estimation

3.1. THE KALMAN FILTER

The Kalman filter is an optimal linear minimum variance estimator. It can provide real-time
estimates of the states of a system from noisy measurements. The Equations (20) and (22)
describe a linear system and form a Kalman filtering problem. The algorithm given in Table 1
is well known for the Kalman Filter [5]. The estimate ofxk is x̂k andP k is the error covariance
matrix of state estimates.

The Kalman filter is a recursive algorithm composed of two parts:Measurement Update
EquationsandTime Update Equations. Using the measurement update equations, the Kalman
filter estimates the next state vector of the linear system or the CIR based on a noisy mea-
surement which is the input signal at the receiver. Then, using the time update equations, the
Kalman filter updates its estimate of the next state vector according to its knowledge of the
linear system parameters such asF andG.
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Table 1. The Kalman filter and RLS algorithms.

The Kalman filter algorithm l The RLS algorithm

Minimizes the estimation mean square error: Minimizes the cost function:

E{(x − x̂)T (x − x̂)} ξ(i) =
i∑

k=1

λi−k |zk −H k x̂k |2

Measurement update equations:

x̂k|k = x̂k +Kk(zk −H k x̂k) x̂k+1 = x̂k +Kk(zk −H k x̂k)

Kk = P kHT
k
R−1
k

Kk = P kHT
k
R−1
k

Rk = H kP kH
T
k
+N0 Rk = H kP kH

T
k
+ λ

P k|k = P k −KkH kP k P k+1 = λ−1(P k −KkH kP k)

Time update equations:

x̂k+1 = Fx̂k|k
P k+1 = FP k|kFT +GQGT

3.2. THE RLS ALGORITHM (KALMAN ALGORITHM)

The RLS algorithm [14] is a least squares method to minimize the cost function with expo-
nential weighting as given in Table 1. The parameterλ is a forgetting factor and from (22) we
can see thatzk−H kx̂k is the noise component at the receiver according to the estimates of the
channel impulse response. Using this cost function the estimator tries to estimatex̂k so that
H kx̂k is as close as possible to the received signal plus noise.

By comparing the Kalman filter and the RLS algorithm, we observe that the RLS algorithm
is basically the same as the measurement update equations of the Kalman filter. The RLS
estimator uses the information of the received signal to update its state estimates and the
estimation is performed in one stage similar to the measurement update equations of the
Kalman filter. The Kalman filter performs some extra computations using the time update
equations. The Kalman filter uses its knowledge about the linear system, obtained from the
matrixesF andG, and updates the estimated values once more. Hence, when we do not have
enough information about the channel system (i.e. matricesF, G andQ, andN0), the RLS
algorithm is a good choice and when the channel parameters are known we can implement the
Kalman filter which is the optimal estimator. To obtain the matricesF andG the receiver has
to estimate the maximum Doppler frequency shift, and calculate the fading filter parameters
of (5) based on this estimation. Since the changes in the vehicle speed are not very fast, the
estimation offd can be made off-line and once for every block or every few blocks of data.

3.3. DATA SEQUENCEESTIMATION WITH PBPAND PSP

MLSE is usually implemented via the Viterbi algorithm and in the case of an unknown chan-
nel, an estimate of the CIR is required at the receiver. Both of the above estimation methods
require the vectorH k, which is defined in (21) and depends on the transmitted data sequence.
However, the transmitted data is not available at the receiver. This problem is sometimes
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called “state estimation with model uncertainty”, where the channel estimator has to estimate
the states of the linear system of Figure 5 and the vectorH k, is unknown.

A solution to this problem is proposed in [3] to implement the channel estimation in the
Viterbi algorithm in a Per-Survivor Processing (PSP) fashion. In this paper we are introducing
the Per-Branch Processing (PBP) method as a generalized form for PSP. The PBP method can
be used when there are more than one channel estimation per symbol interval. Here, we will
discuss the general method of per-branch processing for more than one channel estimation per
symbol and we will show that in the special case of one sample per symbol it can be reduced
to the PSP method.

Consider the application of the Viterbi algorithm for detecting a transmitted data sequence
over a Rayleigh fading channel. The received signal samples,zk, are used to compute the
branch metrics for all of the branches in the trellis diagram. The Euclidean distance is a
suitable branch metric when noise is Gaussian with constant variance

BM = |zk −H kx̂k|2 (25)

and when the noise variance is not constant the log-likelihood branch metrics are used

BM = |(zk −H kx̂k)|2
σ 2
k

+ log(σ 2
k ) , (26)

whereσ 2
k is the time varying noise variance and can be obtained as a by-product of the Kalman

filter (Rk) used for channel estimation. To overcome the problem of uncertainty inH k, on
each branch of the trellis a hypothesized data vector,H k, will be chosen according to the state
transition corresponding to that branch. Then a separate estimator is required for any of the
hypothesizedH k vectors on each branch. The computational procedure of the PBP method
for three samples per symbol interval is shown in Figure 6. The computation is on a branch
between statesSi andSj . There are three received samples (Z) and three hypothesized data
vetors (H) on this branch. After receiving the first received signal sample, a Branch Metric
Generator (BMG) unit obtains a measure of the likelihood of the hypothesized data vector,
given the received sample, as in (25) or (26). At the same time an Estimator unit updates the
channel estimates based on the received signal and the hypothesizedH. The new estimates will
be passed to an accumulative BMG and another estimator to be processed with the second
received sample and hypothesizedH. After processing all three samples in three stages, as
shown in the figure, the branch metric is ready and the procedure of Add-Compare-Select can
be started at nodeSj to find the survivor branch. Similar to the regular Viterbi algorithm the
information of the survivor path to each node has to be stored. Moreover, the estimated CIR on
the survivor path will be used as the initial value for the estimators on the outgoing branches
from that node. Since the same routine has to be performed on all of the branches of the trellis
diagram it is called PBP.

The procedures required to perform the PBP algorithm are summarized in Figure 7(a). The
boxes represent the channel estimation on each branch and the bold lines represent the channel
estimates on the survivor paths that are passed to the outgoing branches. The PBP algorithm
can be performed in four steps as shown in Figure 7(a). First the channel estimations have to
be performed and then the branch metrics can be computed. After finding the survivor path
only the estimates along this path will be retained and passed to the next stage as the initial
values.

In this way, the estimators on each branch use their own hypothesized data vector for
H k and based on that, they update the estimates of the CIR. Here, on each branch instead
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Figure 6. Data flow for the computations required on each branch of the trellis in PBP.

Figure 7. The PBP and PSP algorithms.

of a delayed data sequence, a hypothesized data vector corresponding to the state transition
on that branch is used. This guarantees that we are using the data sequence of the shortest
path for the channel estimation along the same path, which is obviously the best available
information at the receiver. This method also eliminates the problem of decision delay, since
the detected data associated with each survivor path is used for channel estimation on the same
path immediately.

In the simple case of one sample per symbol interval, Figure 6 reduces to Figure 8(a) in
which only one estimator and one BMG unit are used. In this case it is possible to reduce the
complexity and avoid unnecessary estimations. The channel estimations on all of the branches
can be postponed and first the branch metrics are computed and the Add-Compare-Select
procedures are performed to find the survivor branch to each node. Then only the estimators on
the surviving paths will be used to update the channel estimates for the next symbol interval.
In this case only the estimators on the survivor paths are used and this is equivalent to having
one estimator for each state in the trellis instead of each branch, as in Figure 8(b). This method
is called PSP, where the number of estimations is reduced to the number of surviving paths
and can be considered as a special case of PBP.

Figure 7(b) shows the procedures required to perform the PSP algorithm. Estimators are
moved to the nodes from branches and hence a smaller number of estimators is required. By
comparing the four steps that are required for PSP to that of PBP, we can realize that channel
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Figure 8. (a) Data flow for PBP with one sample per symbol interval, which can be reduced to PSP. (b) Data flow
for PSP equivalent to (a).

estimation is postponed to the third step and is restricted to the surviving paths. It should be
noted that in the previous case (Figure 6) with more than one sample per symbol, because of
the data dependency it was not possible to postpone the channel estimations until the branch
metrics are ready and the survivor path is known. By studying the data dependency on this
diagram we can realize that only the last estimation could be deferred in this case.

On fast fading channels, the error floor in the BER curve can be appreciably lowered if
more than one sample of the received signal is processed at the receiver [15, 16]. In a fast
fading channel one sample per symbol interval is no longer a sufficient statistic for the decision
process. Therefore, the number of samples per symbol can be increased to attain the sufficient
statistics and to allow for more channel estimations per symbol interval; which results in a
better tracking performance and a more accurate channel estimation at the receiver. However,
more samples per symbol interval demand more signal processing and faster hardware for
implementation. With the advent of the VLSI technology the implementation of high speed
and parallel signal processing algorithms has become more feasible and the implementation of
complex estimation and detection techniques such as the Kalman based PBP will be affordable
with reasonable cost.

Any channel estimation algorithm, can be utilized in the above joint channel estimation and
data detection methods. The difference in the results will be due to the tracking performance
and precision of the estimators. By using the channel model of Section 2, it is possible to
employ the Kalman estimator which is the optimal estimation method and, as is shown in the
next section, its performance is superior to that of other estimators.

As mentioned before, by approximating the spectral density of the complex envelope of
the received signal and considering a lower order fading filter as in (5), we can find an AR
representation for the channel impulse response, and obtain the matricesF andG as described
in (19) and (20). The time update equations of the Kalman filter, which provides the basic
advantage of this estimator over the RLS algorithm, can be implemented using these matrices.
The matricesF andG form the knowledge of the receiver about the fading channel and their
components are determined by the parameters of the IIR fading filter of (5).

It should be noted that the proposed receiver scheme can be used for a multi-ray channel
as long as we assume the same length for the channel impulse response. Although we have
assumed a two ray fading channel in our simulations, the structure of the receiver and its
complexity will not change if there is a larger number of rays in the channel. The only
difference will be in the computation of the covariance matrix elements of (24), and other
parameters will be unaffected.
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Figure 9. Block diagram of the simulation system.

In the next section, we present the simulation results where the effect of using the Kalman
filter on lowering the bit error rate is studied.

4. Simulation Results

In the computer simulations, the modulation scheme employed is differentially coherent
QPSK, with a symbol rate of 25 ksymbol/s, which is a little higher than 24.3 ksymbol/s in the
IS-136 standard. A detailed block diagram of the simulated system is shown in Figure 9. As
in the IS-136 standard, the differentially encoded data sequence is arranged into 162 symbol
frames. The first 14 symbols of each frame is a training preamble sequence to help the adap-
tation of the channel estimator. For the shaping filterf (t) at the transmitter, we implement
an FIR filter which approximates a raised cosine frequency response. The fading channel is
simulated as a symbol-spaced two-path model with time varying complex coefficients. The
two fading paths are independent with equal strength, and are implemented as shown in the
model of Figure 2. The receiver takes 3 samples per symbol interval and the complex samples
are processed by the digital processor to detect the transmitted data. Differential encoding and
differential detection enables the receiver to avoid errors due to phase ambiguity.

There is no intersymbol interference for the transmitted symbols at the transmitter1 and the
ISI at the receiver is due to the multipath nature of the channel. The total length of the channel
impulse response is 2 symbol intervals and there are four possible states in the trellis diagram
of the Viterbi algorithm at the receiver. For each state in the trellis there are four possible
transitions to the four states in the next stage.

Figure 10 shows the simulation results for a vehicle speed of 100 km/h. The BER perfor-
mance of different estimators are compared here at different values ofEb/N0, whereEb is the
average bit energy. In each simulation different channel estimators are used to estimate the
channel impulse response on every received sample. From the results, it can be observed that
the performance of the RLS algorithm is superior to that of LMS algorithm by about 3 dB at a
BER= 10−3. This is due to the faster tracking behavior of the RLS algorithm in the fast fading

1 The discrete impulse response of the shaping filter has a finite length, equal to the symbol interval and hence
does not produce ISI; the samples for the given roll off factor of 25% were obtained using the SPWTM software
package.
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Figure 10. Simulation results with different estimation methods.

conditions. Choosing the Kalman estimator provides 7 dB improvement in performance over
the LMS algorithm at the same BER, and it shows the superiority of this estimation method
over the LMS and RLS algorithms.

The last curve is for the case of data detection over a known channel. In this case we have
assumed that the exact channel impulse response is always known to the receiver and there is
no need to estimate it. Of course this situation is not possible in a practical implementation,
and this can be viewed as an error-free estimation method giving a lower BER bound for
comparison. The performance of the Kalman filter is about 2 dB poorer than the best possible
results obtained with a known channel at a BER= 10−3.

When the channel impulse responsed does not change very rapidly, the channel estimation
can be performed at a lower rate. This leads to less computation at the receiver. Figure 11
compares the results for the Kalman estimator for the situation of one channel estimation
every symbol interval using the PSP method and the situation of three channel estimations per
symbol interval using PBP. As we can see there is a difference of about 2 dB at a BER= 10−4

between the two methods, which in some cases, might be tolerated to reduce the complexity
of the receiver.

As mentioned before, to employ the Kalman filter estimator the receiver computes the
matricesF andG based on its assumption about the maximum Doppler frequency shift. In
Figure 12 we can observe the effect of error in the estimation of the maximum Doppler
frequency shift. The curve labeled 100S-100E is for the normal case where the actual speed
of the vehicle is 100 km/h and it is correctly assumed as 100 km/h in the receiver. The curves
150S-100E and 50S-100E show the situation where the actual speed is 150 and 50 km/h,
respectively, but in both cases the speed is assumed to be 100 km/h at the receiver. And finally
for the 50S-50E curve the receiver assumes the correct speed for a vehicle with the speed of
50 km/h.

In Figure 12 the dashed lines show the situation when the estimate of the vehicle speed
is in error by 50 km/h and in both cases the performance is about 2 to 4 dB poorer than
the case where we assume the correct speed for the vehicle. It can be easily observed that
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Figure 11. The result of changing the estimation rate for the Kalman estimator.

Figure 12. The effect of error in estimation of Doppler frequency shift, using the Kalman Filter.

we can always attain better results than what we are expecting by overestimating the speed.
By accepting a reasonable margin in BER performance, one may assign a limited number of
speeds and switch from one preselected speed threshold to another when the vehicle speed
changes.

To reduce the complexity of the receiver we may consider a lower order fading filter at
the receiver. In this case the dimensions of the matrixF will decrease and it mitigates the
computational burden of time update equations of the Kalman filter. Figure 13 shows the
results for this case, where the channel is simulated with a third order fading filter as before,
and the receiving filter is assumed to have a lower order. In Figure 13 the results for the case of
second order and first order fading filters are compared to that of a third order filter. The second
order filter has been designed to have 6 dB overshoot at the maximum doppler frequency shift.
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Figure 13. The effect of considering lower order fading filters at the receiver.

Figure 14. The effects of changingλ in the RLS algorithm on the overall BER performance.

In this case the parameterC in (5) will be eliminated and this results in smaller dimensions
for the matrices and vectors in the receiving algorithm.

For the first order filter, it was realized that the performance of the receiver is very sensitive
to the choice of cut-off frequency. By keeping the cut off frequency close to that of the second
order filter attempts were made to find the optimum cut off frequency that leads to the best
BER performance. It was observed that without a proper cut off frequency for the first order
fading filter the time update equations of the Kalman filter seem to have negligible effect and
we obtain a BER performance very close to the case of using the RLS algorithm, where the
time update equations are absent.

In the RLS algorithm the overall BER performance depends on the chosen value for the
forgetting factor,λ. Figure 14 shows the BER curves for different values ofλ. It can be seen
that for smallEb/N0, larger values ofλ yield better results, while for highEb/N0 values,λ
should be smaller.
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The RLS algorithm minimizes its cost function over an interval which is determined byλ.
The above consequence means that in poorEb/N0 conditions the estimator should consider a
larger interval to minimize the cost function, while for highEb/N0 values minimization over
smaller intervals yields better performance.

It was observed that the results with the RLS algorithm for the case of one estimation
per symbol are very close to what is given in [2] fork = 1, and it is possible to improve
the performance by applying the Kalman filter. From the above results, the superiority of
the Kalman filter is clearly evident. The Kalman filter shows the best tracking performance
for rapidly changing time-variant channels, followed by the RLS algorithm as the next best
choice as a good estimator with fast tracking. However, in spite of their superior tracking
performance, the Kalman filter and the RLS algorithm have two disadvantages. One is the
sensitivity of these recursive algorithms to round-off noise. This may cause numerical in-
stabilities such that the algorithm may diverge due to round-off noise if the word-length is
not long enough in the DSP implementation. The second problem is the complexity of these
algorithms that originates from the iterative processing of the matrix operations. Square root
filtering, implemented in the form of VLSI systolic architectures can be used to combat the
problem of numerical instability and complexity of the Kalman filter and the RLS algorithm
[17–19].

5. Conclusions

In this paper we derived an AR representation for the CIR in the frequency selective Rayleigh
fading channel. A relation is established between the fading channel model and its state space
model parameters, which allows the implementation of the Kalman filter as the optimum chan-
nel estimation technique. It is shown that the required information to implement the Kalman
filter can be obtained by AR spectral estimation of the estimated CIR. PBP was introduced as
a generalization for PSP to be used for more than one channel estimation per symbol interval.
The differences between PBP and PSP were pointed out.

The BER results with the Kalman estimator were shown to be superior to that of other
estimation methods. It was important to have a correct estimate of the vehicle speed. By
considering the effects of error in speed estimation, we concluded that it is always better to
overestimate the vehicle speed. Lower order fading filters were used to simplify the receiver
structure, however, the first order filter was realized to be very sensitive to the choice of cut
off frequency.

In the RLS algorithm choosing a proper value for the forgetting factor,λ, was considered.
For low signal-to-noise ratios it was better to choose values close to one forλ, and for high
signal-to-noise ratios the value ofλ should be kept small.

Appendix

The following Matlab program is used to design the fading filter and generate the coefficients
of (5). The filter is a cascade of a second order filter with 9 dB peak atWmax and a first order
filter with –3 dB gain at this frequency. The result will be a third order filter with 6 dB peak at
Wmax. The inputs of the program are thespeedof the vehicle in m/sec, sampling frequency
in Hz, and the radio propagation frequencyfp in Hz.

function[A,B,C,D] = fadefilt(speed, Samp_freq,fp)
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fm = v/(3e8/fp); % Maximum Doppler Frequency
rf = 1.03;
Wmax= 2 ∗ pi ∗ (fm/rf );
Q = 2.7823834; %Q is chosen to yield a 9 dB peak
Wo = Wmax/(sqrt(1− 1/(2 ∗Qˆ2)));
% Poles of the second order ins domain
s1= Wo/(2 ∗Q)+Wo ∗ (sqrt(1− 1/(4 ∗Qˆ2))) ∗ 1i;
s2= Wo/(2 ∗Q)+Wo ∗ (sqrt(1− 1/(4 ∗Qˆ2))) ∗ 1i;

% Second order filter coefficients
A2= 2 ∗ exp(−real(s1)/Samp_freq) ∗ cos(abs(imag(s1)Samp_freq));
B2= −exp(−real(s1)/Samp_freq)ˆ2;
D2= 1−A2− B2;

% First order filter coefficients
A1= exp(−Wmax/Samp_freq);
D1= 1−A1;

% Third order filter coefficients
A = A2+A1;
B = B2−A2 ∗ A1;
C = −B2 ∗ A1;
D = −D1∗D2;
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