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Abstract—Joint data and channel estimation for mobile com-
munication receivers can be realized by employing a Viterbi
detector along with channel estimators which estimate the chan-
nel impulse response. The behavior of the channel estimator has
a strong impact on the overall error rate performance of the
receiver.

Kalman filtering is an optimum channel estimation technique
which can lead to significant improvement in the receiver bit
error rate (BER) performance. However, a Kalman filter is a
complex algorithm and is sensitive to roundoff errors. Square-
root implementation methods are required for robustness against
numerical errors. Real-time computation of the Kalman estima-
tor in a mobile communication receiver calls for parallel and
pipelined structures to take advantage of the inherent parallelism
in the algorithm.

In this paper different implementation methods are consid-
ered for measurement update and time update equations of the
Kalman filter. The unit-lower-triangular-diagonal (LD) correc-
tion algorithm is used for the time update equations, and systolic
array structures are proposed for its implementation. For the
overall implementation of joint data and channel estimation,
parallel structures are proposed to perform both the Viterbi
algorithm and channel estimation. Simulation results show the
numerical stability of different implementation techniques and
the number of bits required in the digital computations with
different estimators.

Index Terms—Estimation, fading channels, Kalman filtering,
maximum likelihood detection, parallel architectures, systolic
arrays, Viterbi detection.

I. INTRODUCTION

FOR data transmission over Rayleigh fading channels
in a mobile communication system, advanced equal-

ization techniques are often required. Maximum likelihood
sequence detection (MLSD) is a well-known detection method
for data signals received over a frequency-selective multi-
path fading channel. MLSD can be implemented using the
Viterbi algorithm. Optimum detection of the transmitted data
through channels with intersymbol interference (ISI) requires
the knowledge of the channel impulse response (CIR). If the
CIR is fed to the Viterbi detector, the digital data can be
detected in the MLSD sense. The fading channel, however, is

Manuscript received August 15, 1997; revised March 15, 1998. This work
was supported in part by the Information Technology Research Center of
Ontario and the Natural Sciences and Engineering Research Council of
Canada. The work of M. J. Omidi was supported in part by the Ministry
of Culture and Higher Education of Iran.

The authors are with the Department of Electrical and Computer Engineer-
ing at the University of Toronto, Toronto, Canada.

Publisher Item Identifier S 0733-8716(98)08642-9.

a time varying system and hence the CIR has to be estimated
with tracking algorithms. Often, the channel is rapidly time
varying and fast tracking methods should be applied for
channel identification.

The two most widely used channel estimation methods are:
the least mean square (LMS) and the recursive least square
(RLS) algorithms. The performance and tracking behavior
of the channel estimator directly affects the overall bit error
rate (BER) of the receiver [1]. Employing the Kalman filter
for channel estimation gives rise to very good tracking per-
formance. The BER obtained by the Kalman filter is lower
compared to other estimation methods and, in addition, the
Kalman filter can efficiently follow rapid changes of the CIR
in fast fading environments.

The Kalman filter is computationally demanding, and this
limits its use in real-time applications. The conventional
Kalman filter algorithm is also very sensitive to roundoff
errors. In order to obtain a numerically accurate and stable
algorithm, square-root solutions have been proposed for imple-
mentation of the Kalman filter. With recent advances in very
large scale integration (VLSI) technology parallel information
processing has become more and more feasible, allowing for
the implementation of dedicated systolic structures for square-
root Kalman filtering. An overview of some algorithms for the
implementation of Kalman filter is given in [2].

The implementation of the Kalman filter can be divided
into two parts: implementation of the measurement update
equations and implementation of time update equations. The
first part is basically the same as the RLS algorithm. Jover and
Kailath have proposed an algorithm and a parallel structure
for the measurement update equations [3]. This algorithm
has been adopted in [4] with some modifications for the
application to wireless mobile communications, and it is shown
that the VLSI structure can be drastically simplified if it is
used for the realization of a RLS estimator. To implement
the time update equations of the Kalman filter, a weighted
Gram–Schmidt (WGS) orthogonalization method is widely
used. In a study of target-tracking methods, Raghavanet al. [5]
proposed the application of a unit-lower-triangular-diagonal
correction (LDC) method for time update measurements of
the Kalman filter. This algorithm requires less computation
compared to the WGS orthogonalization method.

In the literature, the implementation of estimation algo-
rithms are usually considered only generally and not for a
specific application. In this paper we study the implementation
of fading channel estimators along with the Viterbi detector.
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Fig. 1. The signal model for the baseband communication system.

The LDC algorithm of [5] is adopted here, for the first time, for
application to mobile communication receivers, and systolic
structures are developed and studied for VLSI implemen-
tation of the LDC algorithm. Utilization of the estimators
is considered in the structure of the Viterbi based receiver,
implementing joint data detection and channel estimation.
Parallel structures are proposed for the implementation of the
Viterbi detector in a per-survivor processing (PSP) [6]–[11]
fashion that offers an improved and robust detection tech-
nique. Finally, the robustness of the receiver structure is
studied with regard to the wordlength required in a digital
implementation. Studies show that the WGS orthogonalization
method and the correction algorithm need the same num-
ber of bits in implementation while the latter requires less
computation.

This paper is organized as follows: Section II is a short
overview of the mobile communication system under con-
sideration and the proposed receiver algorithm for joint data
detection and channel estimation. In Section III, we investigate
different methods for implementation of the channel estimator.
Parallel structures for joint Viterbi data detection and channel
estimation are introduced in Section IV. In Section V we study
the issue of choosing the wordlength in a hardware imple-
mentation of different channel estimators. Finally, concluding
remarks are given in Section VI.

II. THE COMMUNICATION SYSTEM

We will consider the differentially coded quadrature phase-
shift keying (DQPSK) signaling scheme for simplicity. This is
close in performance to the -shifted DQPSK modulation
technique of the north American narrowband time division
multiple access (TDMA) standard (IS-136). The baseband
signal model for the communication system is shown in Fig. 1.
The complex data sequence with the symbol period is
input to the fading channel. The fading channel includes the
shaping filter in the transmitter, such as a raised-cosine filter.
The additive noise is a complex circularly symmetric
[12] Gaussian process with power density . The signal

is sampled at symbol rate . The bandwidth of the
ideal lowpass filter (ILPF) is . The noise samples
are complex uncorrelated Gaussian random variables with
variance .

The fading channel can be modeled as a linear time varying
system. A model for a two-ray Rayleigh fading channel is
shown in Fig. 2. One ray is delayed with respect to the
other one and both rays are multiplied by filtered Gaussian
noise. Both and are zero-mean circularly symmetric
Gaussian complex random signals and are shaped by the fading
filters according to the maximum Doppler frequency shift to
produce the multiplicative coefficients. The fading filter can

Fig. 2. The fading channel model.

be approximated as a third-order filter [1] with the transfer
function

(1)

At sampling time the CIR, , a complex Gaussian random
vector, is

(2)

where it is truncated to a finite length of and
is the transpose of . The element is the CIR at time

due to an impulse applied at time . It is shown in
[1] that by considering the third-order approximation of (1)
an autoregressive (AR) representation for the CIR can be
introduced as

(3)

where is the identity matrix and is a zero-mean white
complex circularly symmetric Gaussian process with the co-
variance matrix defined as , and is the
conjugate transpose of .

It is clear from (3) that the CIR at timedepends on its three
consecutive previous values. Hence, it is possible to derive a
state space model for the fading channel [10], [11]. The state
of such a system is a vector composed of three consecutive
channel impulse responses as

(4)

Using (4) and (3) we can write

(5)

(6)

where and are and
matrices given in (5), respectively. is called the state
transition matrix and is the process noise coupling matrix.
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Also, by defining the vector as

(7)

where is the transmitted data sequence, we can write the
received signal (Fig. 1) as

(8)

This represents the convolution sum when is the input to
the fading channel with impulse response, and is the
additive white complex circularly symmetric Gaussian noise
with the covariance of .

Equations (6) and (8) describe a linear time varying system.
The state of this system (4) is based on the impulse response
of the channel, and an estimation method has to be employed
for channel estimation. There are different estimation methods.
Among them, the Kalman filter is optimum for minimizing the
mean square estimation error [13]. The Kalman filter, however,
is a complex algorithm, and, in practice, suboptimal methods
are more advantageous due to their implementation simplicity.

To avoid the decision delay in data detection, the PSP
method [6] can be employed. In this method, there is a
channel estimate for every possible sequence, and to overcome
the problem of uncertainty in the transmitted data (7)
a separate estimation is required for any of the possible
hypothesized vectors on the surviving paths. In this way,
each estimator uses its own hypothesized data vector for
and, based on that, it gives an estimation of the channel
impulse response. The estimated channel impulse response will
be used to compute the branch metrics in the trellis diagram
of the Viterbi algorithm. The number of required estimators
is limited to the number of survivor branches (or the number
of states) in the Viterbi algorithm trellis diagram. In PSP each
surviving path keeps and updates its own channel estimate.
This method eliminates the problem of decision delay, and
in order to employ the best available information for data
detection the data sequence of the shortest path is used for
channel estimation along the same path.

The Simulated System:To study the various implemen-
tation alternatives, a data communication system based on
the IS-136 standard is considered. The modulation is QPSK
with four possible symbols and a symbol rate of
25 ksymbol s. As in the IS-136 standard, the differentially
encoded data sequence is arranged into 162 symbol frames.
The first 14 symbols of each frame is a training preamble
sequence to help the adaptation of the channel estimator. For
the shaping filter at the transmitter, we implement a finite
impulse response (FIR) filter which approximates a raised
cosine frequency response with an excess bandwidth of 25
(slightly different from the 35% selected in IS-136 as in [15]).

In order to keep the simulation simple we consider a two ray
fading channel model as described in Fig. 2, where one ray has
a fixed delay equal to one symbol period. The multiplicative
coefficients of and are produced at the output of two
fading filters, where the inputs are two independent zero mean
complex Gaussian process with equal variances. The length of
the discrete impulse response of the shaping filter is set equal

to the symbol interval so that the ISI at the receiver is only
due to the multipath nature of the channel. Since one ray is
delayed by an amount equal to one symbol interval, the total
length of the CIR is two symbol intervals, i.e., if
there is one sample per symbol interval. Therefore, there is ISI
between two neighboring symbols and there are four possible
states in the trellis diagram.

The LMS algorithm, RLS algorithm, or the Kalman filter
can be used to estimate the channel impulse response. In the
following section we will consider different algorithms and
structures for VLSI implementation of the channel estimator.

III. I MPLEMENTING THE ESTIMATOR

To estimate the states of the system described by (6) and
(8) the Kalman filter and the RLS algorithm can be employed.
The following are the Kalman filter and the RLS algorithm
equations.

The Kalman Filter Algorithm:
Measurement update equations:

(9)

(10)

(11)

(12)

Time update equations:

(13)

(14)

The RLS Algorithm:

(15)

(16)

(17)

(18)

The measurement updated estimate is the linear least-
squares estimate of given observations ,
and is the time updated estimate of given observations

. The corresponding error covariance matrices
of these estimations are

(19)

(20)

In the RLS algorithm is called the forgetting factor.
The Kalman filter consists of two parts:measurement update

equations, and time update equations. As shown in [16], the
RLS algorithm is essentially identical to the measurement
update equations of the Kalman filter. The Kalman filter can
be used for channel estimation when somea priori information
about the channel is available at the receiver (i.e., theand
matrices). The RLS algorithm, which is a suboptimal method,
does not require thisa priori information and its computational
complexity is less compared to the Kalman filter.



OMIDI et al.: JOINT CHANNEL ESTIMATION AND DATA DETECTION OVER FADING CHANNELS 1619

The main reason for the differences between theory and
practice of implementing these algorithms can be found in
the error analysis of the respective numerical methods. At the
same precision, mathematically equivalent implementations
can have different numerical stabilities, and some methods of
implementation are more robust against roundoff errors. In the
Kalman filter and the RLS algorithm the estimation depends
on the correct computation of the error covariance matrix. In
an ill-conditioned problem the solution will not be equal to the
covariance matrix of the actual estimation uncertainty. There
are some factors contributing to this problem including large
ranges of the actual values of matrix parameters, large matrix
dimensions and growing number of arithmetic operations,
and poor machine precision. These factors are causes for
concern and as a solution to combating with these problems,
factorization methods and square-root filtering are widely
employed in implementation [3], [4], [17]–[19].

A. Square-Root Filtering

Studies show that some implementations are more robust
against roundoff errors and ill-conditioned problems. The so-
called square-root filter implementations have generally better
error propagation bounds than the conventional Kalman filter
equations [20]. In the square-root forms of the Kalman filter
matrices are factorized, and triangular square-roots are prop-
agated in the recursive algorithm, to preserve the symmetry
of the covariance (information) matrices in the presence of
roundoff errors.

There are different factorization methods within which
different techniques are used for changing the dependent
variable of the recursive estimation algorithm to factors of
the covariance matrix. A Cholesky factor of a symmetric
nonnegative definite matrix is a matrix such that

. Cholesky decomposition algorithms solve for
that is either upper triangular or lower triangular. The modified
Cholesky decomposition algorithms solve for a diagonal factor
and either a lower triangular factor or an upper triangular
factor such that , where

and are diagonal factors with nonnegative diagonal
elements.

The square-root methods propagate the– or – factors
of the covariance matrix rather than the covariance matrix.
The propagation of square-root matrices implicitly preserves
the Hermitian symmetry and nonnegative definiteness of the
computed covariance matrix. The condition number

of the covariance ma-
trix can be written as

, where . Therefore, the condition number
of used in the square-root method is much smaller than the
condition number of the and this leads to improved numer-
ical robustness of the algorithm. Moreover, in the square-root
method the dynamic range of the numbers entering into
computations will be reduced. Loosely speaking, we can
say that the computations which involve numbers ranging
between to will be reduced to ranges between
to . All of these will directly affect the accuracy of
computer computations.

There are also other factorization methods employed for
increasing the numerical stability, such as triangularization
(QR decomposition) and WGS orthonormalization used for
factoring matrices as products of triangular and orthonormal
matrices. The block matrix factorization of a matrix expression
is a general approach that uses two different factorizations to
represent the two sides of an equation such as

(21)

The alternative Cholesky factor and can be related
by orthogonal transformation [20].

B. Implementation Algorithms for Measurement
Update Equations

To compute the measurement update equations of the
Kalman filter for real numbers, a square-root method is
proposed in [3] by Jover and Kailath. Although this algorithm
is not complete for implementing the Kalman filter, in the
following we will extend it to complex numbers and then
we will add some procedures for computing the time update
equations.

The measurement update equation for the covariance matrix
can be written from (12) and (14) as

(22)

Our implementation algorithm is based on working with
unit lower triangular, diagonal, unit upper triangular (LDU)
factorizations of and and, since and are
Hermitian symmetric, . It can be shown that by
choosing a suitable orthogonal transformation matrix, where

, we can have

(23)

and this can be immediately verified by squaring both sides of
(23). Generally, computing the triangular factor requires
taking arithmetic square roots, which are computationally more
expensive than multiplication or division. This can be avoided
by using factorizations

and (24)

Using (24) in (23) and dropping all time-index subscripts
yields

(25)

Therefore, to compute the measurement update equation for
the covariance matrix we start with the left-hand side of (25)
and, by applying an orthogonal transformation, the left side of
(25) can be converted to the form on the right side. This
is possible by application of the fast givens transformation, as
we have modified from [3]. We can express (25) in terms of
the components of the matrices, as shown below, where the
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Fig. 3. The data structure for the inputs and outputs of the Jover–Kailath algorithm [3].

size of and is considered to be

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(26)

The goal is to obtain a lower triangular and a diagonal matrix
on the right hand side of (26) by applying an orthogonal
transformation and setting the components to zero.
We can perform this by considering a series of orthogonal
transformations as

(27)

where the matrix is a identity matrix with
only four elements changed on , and

positions. Therefore, the transformation only
affects the first and th columns of the right hand side
matrices in (26). If we just consider these two columns the pair

will be on top and can be found so that the vector
will be transformed to in order to triangularize

the matrix.
If we only consider the top pair of the two columns, for

instance for first and third columns, with a proper
orthogonal transformation matrix we will have

(28)

where and are the components in (26) that affect
and and have to be found based on the applied

orthogonal transformation.

It is shown in [3] and [4] that, by using the parameters in
the left hand side of (28), we can choose

(29)

(30)

to obtain the proper orthogonal transformation. The
transformation is found to rotate the vector to lie along
the vector [1 0], keeping the equality of weighted norms [3].
It is also necessary to apply this transformation to other pairs
of the first and third columns and find the new transforms of
these vectors. By applying the transformation to an arbitrary
vector to lie along , we obtain

(31)
where

(32)

(33)

The complex conjugate of is denoted by .
The algorithm to implement the above triangularization is

to consider the first and the other columns of the matrix in the
right side of (26) one-by-one and apply all transforms to
obtain a lower triangular and a diagonal matrix. The algorithm
presented in Appendix A is based on the above method to
compute the measurement update equations of the Kalman
filter.

The covariance update algorithm that we explained in this
section computes (22) or equivalently (12)–(14), however, we
need to compute (11) to update the state estimates as well.
It can be shown [3] that with an appropriate arrangement for
the input data structure, the covariance update algorithm can
also be used for updating the state estimates. Fig. 3 shows
the arrangement for the inputs and outputs of the algorithm
given in Appendix A. The components of the state estimate
vector are fed to the algorithm along with the components of

, and the algorithm yields the update, as in Fig. 3. A parallel
architecture is proposed in [3] to implement this algorithm
for real numbers. This architecture, however, can also be
used for complex numbers, with some modifications [4]. This
will be useful for implementing both the measurement update
equations of the Kalman filter and the RLS algorithm.
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Note that the matrix is not used in the equations of
the RLS algorithm [i.e., (17)–(20)]. It is also possible to
assume that the matrix is equal to the identity matrix for
the RLS algorithm. In this case, from (4)–(6) we can deduce
that the CIR of the system at time is only obtained
from the CIR of the system at time. This means that we
are not considering the AR representation of (3) for RLS
and hence the state vector of the system, as defined in (4),
only consists of the CIR at the present time. This will
reduce the dimensionality of the state vector and covariance
matrices in the RLS algorithm by a factor of three, which is the
order of the AR representation in this case, compared to the
Kalman filter. Obviously, a smaller matrix size produces less
complexity and more robustness against roundoff errors. In [4]
a variety of parallel and pipelined structures are proposed for
the realization of the RLS algorithm.

C. Implementation Algorithms for Time Update Equations

The Jover–Kailath algorithm can be used to implement the
measurement update equations of the Kalman filter. Since
the RLS algorithm is basically the same as the measurement
update equations of the Kalman filter this method could also be
used for implementing the RLS algorithm. For implementation
of the Kalman filter, however, we need to calculate (15)
and (16) and another algorithm is required to perform this
part. Since in the Jover–Kailath algorithm, instead of ,
its factors and are computed as in (24), we need to
employ an algorithm that uses these factors. The propagation
of factors implicitly preserves symmetry and nonnegative
definiteness of the computed covariance matrix. In the follow-
ing we will present and compare three different methods for
implementing the time update equations.

1) Direct Computation of the Covariance Matrix:One sim-
ple approach to carry out the computation in (16) is the direct
computation of

(34)

When the noise process is time invariant needs
to be computed only once and (34) requires four matrix
multiplications and one addition. Then, since we need to
propagate the factors of it can be factorized in
the form using the factorization algorithms of [22].
The direct method is not very robust against roundoff errors,
and we will use it for comparison to show the advantages of
using square-root techniques in the implementation of time
update equations. The following methods are based on the
direct computation of factors for the covariance matrix
and result in better numerical stability.

2) The WGS Orthogonalization Algorithm:In this method
the covariance update equation implementation is based on a
block matrix factorization. Equation (16) can be rewritten in
the following matrix form:

(35)

Again, if we use the factorization for the covariance
matrix as in (24) and indicate the diagonal matrix ofwith

, after dropping all time index subscripts, (35) becomes

(36)

and in the right side of the equation are known from
the measurement update procedure andand have to be
computed.

WGS orthogonalization [20] can be employed here. It is an
algorithm for finding a set of mutually orthogonal vectors

that are a linear combination of a set of
linearly independent vectors . For a given

matrix the Gram–Schmidt algorithm defines a unit upper
triangular matrix such that

or

(37)

...
...

...
...

(38)

The Gram–Schmidt orthogonalization is called weighted if
the vectors are orthogonal with respect to the weights

. The vectors and are said to be
orthogonal with respect to the weights if

(39)

where

(40)

Hence the weighted norms of the mutually orthogonal vectors
appear as the diagonal elements of the

diagonal matrix

(41)

To apply the WGS method let

(42)

(43)

then, from (36), we have

(44)

The Gram–Schmidt algorithm will produce a unit upper tri-
angular matrix (37) and a diagonal matrix (41) such
that

(45)

(46)

(47)
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and from (41)

(48)

Therefore, the inputs of the WGS algorithm are the information
on the right side of (36) in the form of and , and the
output of the algorithm is the lower triangular matrix
and the diagonal matrix .

Before applying the above method, a matrix multiplication
is required to compute [see (36)]. Also, for computing the
temporal update of state estimations in (15), the vector
obtained at the output of the measurement update procedure
must be premultiplied by . Both of these multiplications
can be carried out together by appending the vector to
the matrix and multiplying the combination by . If the
multiplication is carried out using array processors, in this way,
the same structure can perform both of these multiplications,
without any change in the hardware.

3) The LDC Algorithm: In the WGS algorithm, as we can
see from (16) and (35) the computation of will be
repeated in every iteration. When the process noise is time
invariant and the matrix is not changing over time, there is
no need to recompute this term in every iteration. This idea
leads to the introduction of a less complex algorithm.

The LDC algorithm is used in linear algebra [21], [22]
to update the factorization of matrix to the
factorization of , where is symmetric and positive
definite, and is an arbitrary vector with appropriate size.
When the process noise covariance is time invariant, this
algorithm can be used to implement the time update equations
of the Kalman filter and it is shown [5] to have substantial
computational saving when compared to the WGS algorithm.
To implement this method let

(49)

The covariance prediction in (16) can be written using the
and factors of and as

(50)

The LDC algorithm can be employed to compute the
factorization of the sum

(51)

In (50) the LDC algorithm can be applied times, and each
time, one of the components of the first sum is considered to
be the vector. The result will be a factorization
for .

The complete algorithm to implement the LDC method
is given in Appendix B. This algorithm requires

multiply–add operations, while the WGS method
requires operations. Thus, the
LDC algorithm requires less computation compared to the
WGS method since the process noise is time invariant and
the term needs to be factorized only once during the

initialization stage, and these factors will be used repeatedly
during each filter iteration.

The performance of the above three methods are compared
in Section V. The direct method is not a square-root method
and is very sensitive to numerical errors. The performance
of the WGS and LDC algorithms are very close in terms of
numerical accuracy, while the LDC algorithm requires fewer
computations. In the next section we will introduce a systolic
structure for the implementation of the LDC algorithm.

D. A Systolic VLSI Structure for the LDC Algorithm

To employ the Kalman filter as a channel estimator in a
mobile communication receiver, it is important to carry out
all of the required computations in real time. The Kalman
estimator is computationally intensive and, to speed up the
estimation process, parallel VLSI structures have to be sought
for implementation. It is also imperative to utilize the inherent
parallelism of the proposed algorithm to be mapped on the
parallel VLSI structure.

The LDC algorithm is more appropriate than other methods
for implementation of the time update measurement equations
of the Kalman channel estimator. The fading channel model,
and hence the process noise, can be reasonably assumed to
be time invariant in a short period of time (e.g., one frame
interval). This allows us to employ the LDC algorithm, which
results in a considerable saving in computations compared to
the WGS method.

A systolic VLSI structure is proposed in Fig. 4 for im-
plementation of the LDC algorithm. This structure is used
for implementing (51) and is based on theldltup function of
Appendix B. Two types of processors are employed and the
function of each is described in the figure. The size of the
state vector is assumed to be in this example and the
size of the matrix is 6 6. The factors get updated in
place and there is no need to transfer these values during the
computation. The inputs to this structure are different columns
of the matrix in the form of the vectors scaled by the
elements of . The functionldltup is called times for each
column of , and this can be carried out by applyinginput
vectors to the systolic structure. Once the computation in one
row is finished, the next column of can be applied as
the new input vector. This allows for pipelining and results
in higher processor utilization and, hence, higher speed. If the
computation in each row takes one time step, for the time
update of the covariance matrix, time steps will be
required.

It is also possible to map the above algorithm to a smaller
number of processors. Mapping can be performed along differ-
ent directions, as shown in Fig. 5. By using different mapping
vectors we obtain structures with different performance and
capabilities. The function of the processing units and the
details of communication between units is not shown in the
figure. Links only represent the direction of data transfer
between processors. Table I summarizes and compares the
features for different mapped structures whenis the size of
the state vector. It is possible to employ the mapping along
in a pipeline mode, but the other mappings cannot be pipelined.
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Fig. 4. A systolic VLSI structure for implementation of the LDC algorithm.

Fig. 5. Mapping the systolic structure of the correction algorithm to a smaller number of processors.

There are two kinds of processors used in each structure.
If we assume that the maximum time required for the com-
putations in each processor is then the total latency for
one application of the correction algorithm will be . This
should be obvious from the data dependency in the two-
dimensional structure of Fig. 5(a). By using the structure of
Fig. 5(a) in pipeline mode, the throughput, or the time interval

between any two applications of the algorithm, will reduce to
. In this case processor utilization will be 100. It can be

shown that the structure of Fig. 5(d) can also be pipelined.
There are eleven processors used here and a throughput of

is attainable in this case. The other two mappings use six
processors and cannot be pipelined, resulting in a latency and
throughput of .
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TABLE I
COMPARISON BETWEEN DIFFERENT MAPPINGS OF THESYSTOLIC STRUCTURE (n = SIZE OF THE STATE VECTOR.

Fig. 6. The required PSP computation for one node (state) of the trellis diagram. First, the branch metrics are generated and the survivor path is found,
then the estimator will receive the survivor path information to estimate the channel.

IV. STRUCTURES FORVITERBI

DETECTION AND CHANNEL ESTIMATION

In the Viterbi equalization of a mobile fading channel, a
channel estimator has to be used in combination with the
Viterbi detector. The impulse response of the channel has to
be estimated by the estimation algorithm, and this impulse
response is used to generate the branch metrics in the Viterbi
algorithm. In the PSP equalization method there is one channel
estimation associated with each state of the Viterbi trellis. All
of the channel estimations associated with different states,
depend on the received signal and the hypothesized data
sequence in the Viterbi algorithm and can be performed in
parallel.

Fig. 6 shows how to employ the algorithms introduced
in Section III to estimate the CIR and calculate the branch
metrics for one node of the trellis using the PSP method.
The estimator consists of the Jover–Kailath and LDC al-
gorithms. The inputs and outputs are shown based on the
parameters introduced in the above algorithms. There is one
branch metric generator (BMG) for each of the branches

leading to the considered node. Each branch has its own
hypothesized data sequence corresponding to the state
transition on that branch. The node processor unit receives all
the branch metrics and determines the survivor path using the
add–compare–select (ACS) operations. After the survivor path
is known, the appropriate values for , and have
to be sent to the estimator to update the channel estimates.
For , the hypothesized data sequence of the survivor path
has to be chosen, and for , and the output of the
channel estimator on the node from which the survivor path
is originating has to be considered.

The per-branch processing (PBP) method of [23] is a
generalized form for PSP and can be used when there is more
than one sample and more than one estimation per symbol
interval. In PBP there is one channel estimation on each
branch of the Viterbi trellis to generate the branch metrics. In
a parallel implementation, several estimators can be employed
to generate the branch metrics. The number of estimators
required is equal to the number of states in PSP and equal
to the number of branches in PBP. In this section we propose
parallel structures for implementation of PSP and PBP.
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In a parallel structure for the Viterbi algorithm, different
estimators must communicate with the Viterbi processing units
so that independent computations can be handled in parallel
and also pipelined, if possible. To obtain a systolic structure
for the Viterbi algorithm we realize that it can be formulated
as a form of matrix multiplication. If the node value at
is shown by and the branch metric from nodeto node
is , then to obtain the node values at the Viterbi
algorithm computes

...
...

... (52)

The operation is not an ordinary multiplication and the
elements of the left side vector can be written as

(53)

The operator is conventional addition and the operation
denotes taking minimum. Hence, (53) becomes

(54)

Therefore, it is possible to consider the systolic architectures
for the vector-matrix multiplications proposed in the literature
to implement the Viterbi algorithm. The following structures
are based on two different systolic designs proposed for
matrix-vector multiplication in [24].

The parallel structure of Fig. 8 is proposed for the joint
implementation of the estimator and the Viterbi algorithm.
This structure is performingparallel state-computationssince
the computations for all of the states are performed in parallel
by considering the incoming branches sequentially. There is
one channel estimation on every branch of the trellis and
hence the equalization is performed in a PBP fashion. The
buffer on top contains four sets of data for different trellis
nodes. is the estimated state, and are covariance
factors, is the node value in the Viterbi algorithm, and
contains the path information (survivor sequence) obtained in
the Viterbi algorithm. All of the data sets are propagated to
the four estimators sequentially. Each estimator also receives
the hypothesized transmitted data related to the branches
that end in the same node, and the received signal. In
four subsequent pipeline stages the channel estimates and
the branch metrics are computed. Each estimator computes
the values related to the incoming branches to one node.
The output of the BMG is passed to the ACS unit. The
ACS unit adds the original node value and the computed
branch metric, and selects the smallest obtained value. This
determines the survivor path at the end of four pipeline stages.
The information of each surviving path, including the states of
the channel estimator are passed to the top buffer to be used
at the next symbol interval. The new values will be written
into memory after all of the states are updated and all of
the computations for the current symbol interval are finished.
After processing a number of received symbols there will be

Fig. 7. The trellis diagram for the Viterbi algorithm.

an agreement on the shortest path up to a certain point which
depends on the depth of the algorithm and SNR. This part
of the path information can be written into the survivor path
memory, and it determines the detected sequence.

In the PSP method the number of channel estimations is
reduced to the number of states and, in the above example
(Fig. 7), only four estimations are required in each symbol
interval. In this case, for all of the incoming branches to a
node, first the survivor branch will be determined and then only
the channel estimation associated with the survivor branch
will be carried out. The parallel structure of Fig. 8 can be
modified for the implementation of PSP. In any of the four
parallel branches, the estimator has to be moved after the BMG
and ACS units. First, the ACS unit determines the survivor
branch and then the estimator computes the CIR based on the
information corresponding to that branch.

Fig. 9 is another approach to the above problem. It is also
derived from one of the systolic designs for matrix-vector
multiplication in [24]. This structure is performingsequen-
tial state-computationssince the computations for all of the
states are performed sequentially by considering the incoming
branches in parallel. The computations associated with all
incoming branches to a node will be done simultaneously
in four different estimators. After all four branch metrics are
added to the corresponding node values, the compare–select
operations will be performed in a tree structure to find the
minimum value. The updated states and covariance factors
corresponding to the survivor branch will be directed to the
buffer on top. Since, in this structure, the updated states and
new values for the nodes are computed in a sequential way,
they need to be buffered until all of the new state values
are computed and old values can be overwritten by the new
values. This might be done by doubling the size of the top
buffer. When different states agree on a common ancestral
path, the information related to that path can be dumped into
the survivor path memory.

The sequential state-computation structure can be simplified
significantly for the PSP method. As described before, for
PSP there is only one channel estimation for the survivor
path and, hence, the estimator has to be moved after the
add–compare–select operations. In the structure of Fig. 9, four
estimators will be removed and one estimator will be used after
the final compare–select unit. The channel estimator usually
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Fig. 8. A parallel architecture for joint data detection and channel estimation (parallel state-computation structure).

Fig. 9. A parallel architecture for joint data detection and channel estimation (sequential state-computation structure).

requires a considerable amount of computation power and
area in a VLSI design. Therefore, reducing the number of
estimators to only one is an effective step in the simplification
of the VLSI structure. If the structure of the channel estimator
is pipelineable, it will speed up the necessary computations
for all the states.

V. HARDWARE IMPLEMENTATION OF THE ESTIMATOR

The estimation algorithms of Section III have to be realized
with digital hardware, where state values and coefficients are
stored in registers with a finite number of bits. An important
issue in the implementation of a filtering algorithm is to
consider the problems that arise in dealing with floating-point
computation and finite wordlength. The time consumed on the
computations and the area used in the VLSI implementation
of an algorithm are proportional to the wordlength used in
the computations for addition and proportional to its square
for multiplication. Therefore, it is always important to use as

few a number of bits in the wordlength of the computations
as possible.

Some estimation algorithms, like the Kalman filter, are
more sensitive to roundoff errors and require a larger number
of bits per computation word compared to other estimators.
The finite-wordlength effects on the design of the Kalman
filter have been addressed somewhat in the literature [25],
[26], however, in these analysis the estimation accuracy has
been the main concern of the authors. Here, we study the
performance of the estimator in a Rayleigh-fading-channel-
based communication system and, specifically, in the context
of a Viterbi-based receiver. Hence, we will have to note the
overall effect of roundoff noise and estimation accuracy on the
BER performance in this receiver.

In an adaptive MLSD receiver the CIR is estimated along
the surviving paths associated with each state of the trellis.
The quality of the channel estimation method has a strong
impact on the overall BER performance of the receiver.
Particularly, in fast fading conditions, only more advanced
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Fig. 10. The effects of changing the wordlength on estimation methods
(Eb=No = 15 dB). Kalman 1 represents the WGS method, Kalman 2 is
for the correction method, and Kalman 3 is the direct method. PSP method
is employed for detection.

and more accurate channel estimators can provide reasonable
receiver performances. The estimator precision depends on
the employed algorithm, the wordlength, and roundoff noise
which is inevitable in the hardware implementation. We will
consider both the estimation accuracy and BER performance
by studying the simulation results.

In Fig. 10 the expectation of the mean square error (MSE)
in estimation of the impulse response of a Rayleigh fad-
ing channel is plotted versus the mantissa wordlength in
the floating point operations. The simulated system is as
described in Section II (i.e., two-ray channel with the third-
order AR model). Three different implementation methods of
Section III-C for the Kalman estimator are considered, along
with the RLS and LMS algorithms, when is 15 dB (
is energy per-transmitted-bit). For the measurement update of
the Kalman filter, and also for the RLS estimator, the square-
root method of Section III-B has been used. The step size in
LMS and the forgetting factor in RLS are chosen to yield
the best MSE. The initial values for the states are chosen
randomly, also for and we choose the identity matrix
as the initial value. As is clear from Fig. 10, with the Kalman
filter the minimum achievable MSE is much lower than that of
LMS and RLS algorithms. However, a larger number of bits
is required for the Kalman filter. Direct implementation of the
Kalman filter requires at least 26 bits per mantissa, while two
other methods require 22 bits. The minimum number of bits
per mantissa required for channel estimation with the RLS and
LMS algorithms are 12 and 8, respectively.

The effect of reducing the number of bits on the overall
BER performance is shown in Fig. 11. Joint data detection
and channel estimation is performed using the PSP method.
Using the Kalman channel estimator leads to a very good BER
performance. The BER performance of the Kalman filter is
about 10 dB better compared to the RLS and LMS estimators,
while it requires a longer wordlength. The required mantissa
length, obtained from Fig. 11, is less than what we would
expect by observing the MSE of the estimator. Also, we can
see that using the WGS method or the LDC algorithm for
the time update equations of the Kalman filter result in the

Fig. 11. The effects of changing the wordlength on estimation methods
(Eb=No = 15 dB). See Fig. 10 for details.

Fig. 12. The Jover–Kailath algorithm for the measurement update equations.

same BER performance, while the latter is cheaper and has
less computation involved. Both of these methods are much
more efficient compared to the direct method, which uses a
nonsquare-root algorithm for the time update equations.
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Fig. 13. The LDC algorithm for the time update equations.

VI. CONCLUSION

We have studied the implementation of the Kalman filter
for channel estimation in a mobile communication receiver.
It was shown that by using a proper model for the fading
channel, the Kalman filter can be applied for the estimation
of CIR, and the matrices required for the computation of the
Kalman estimator can be obtained from the channel model.
Implementation of the Kalman filter was considered in two
stages for measurement update and time update equations and
for each stage implementation algorithms were considered.
VLSI implementation of the time update equations is more
challenging and the LDC algorithm was adopted for this
purpose.

A systolic VLSI structure was proposed for the imple-
mentation of the LDC algorithm and the performance of
different mappings of this structure were compared. For the
simultaneous implementation of the Viterbi algorithm and the
channel estimator, parallel structures were proposed to utilize
the inherent parallelism present in the receiving algorithm.

The accuracy and stability of the hardware implementation
was studied by simulations with a different number of bits
in the digital wordlength. By comparing the performance
of different estimators we conclude that the Kalman filter
can improve the BER performance of the receiver by 10
dB compared to other estimators at the expense of a longer
wordlength in digital implementation.

APPENDIX A

The square-root algorithm in Fig. 12, described with MAT-
LAB, is for the measurement update equations based on
the method of [3]. This recursive algorithm is described in
Section III-A, and the inputs and outputs are defined in Fig. 3.
The parametersize is equal to .

APPENDIX B

The MATLAB algorithm in Fig. 13 is for the temporal
update using the LDC algorithm. This algorithm consists of
two functions. The main function receives the matrix
product , and the factors of as

and . Then the correction algorithm will be
applied times, as in (50), by calling theldltup function.
This function updates the Cholesky factorization ofto the
Cholesky factorization of , i.e., If then

new new new . It is assumed that is
symmetric and positive definite. The details of this algorithm
are given in [21].
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