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Abstract—Joint data and channel estimation for mobile com-  a time varying system and hence the CIR has to be estimated
munication receivers can be realized by employing a Viterbi with tracking algorithms. Often, the channel is rapidly time

dete_ctor along with channel estim_ators which estimate_the chan- varying and fast tracking methods should be applied for
nel impulse response. The behavior of the channel estimator has . e
channel identification.

a strong impact on the overall error rate performance of the ! o
receiver. The two most widely used channel estimation methods are:

Kalman filtering is an optimum channel estimation technique the least mean square (LMS) and the recursive least square
which can lead to significant improvement in the receiver bit (R| 5) algorithms. The performance and tracking behavior

error rate (BER) performance. However, a Kalman filter is a of the channel estimator directly affects the overall bit error
complex algorithm and is sensitive to roundoff errors. Square- y

root implementation methods are required for robustness against fate (BER) of the receiver [1]. Employing the Kalman filter
numerical errors. Real-time computation of the Kalman estima- for channel estimation gives rise to very good tracking per-
tor in a mobile communication receiver calls for parallel and formance. The BER obtained by the Kalman filter is lower
pipelined structures to take advantage of the inherent parallelism compared to other estimation methods and, in addition, the
in the algorithm. . . . ' !

In this paper different implementation methods are consid- Kalman filter can efficiently follow rapid changes of the CIR
ered for measurement update and time update equations of the in fast fading environments.

I_(alman f!lter. _The unit-Iower-_triangular-diagongl (LD) correc- The Kalman filter is computationally demanding, and this
tion algorithm is used for the time upda.te equations, and systolic |imits its use in real-time applications. The conventional
array structures are proposed for its implementation. For the Kalman filter algorithm is also very sensitive to roundoff
overall implementation of joint data and channel estimation, g . ry

parallel structures are proposed to perform both the Viterbi €rrors. In order to obtain a numerically accurate and stable
algorithm and channel estimation. Simulation results show the algorithm, square-root solutions have been proposed for imple-
numerical stability of different implementation techniques and mentation of the Kalman filter. With recent advances in very
the number of bits required in the digital computations With |46 scale integration (VLSI) technology parallel information
different estimators. . . -

o _ o processing has become more and more feasible, allowing for
m;r;idn?ﬁnrerlmgnzssgmoféltzg‘ti;%dl%%rgl}glnn;rlsﬁitﬁimig f'g)e/;'t’(‘)%c the implementation of dedicated systolic structures for square-
arrays, Viterbi detection. ' : _root Kalman _f||ter|ng. An overview of.som(_e algorithms for the

implementation of Kalman filter is given in [2].

The implementation of the Kalman filter can be divided
into two parts: implementation of the measurement update
o ) ) equations and implementation of time update equations. The

OR datab_:ransm|35|or) over Rayleigh fgxdmg ghaanﬁ‘st part is basically the same as the RLS algorithm. Jover and
I In a mobile communication system, advanced €qUiryiiai have proposed an algorithm and a parallel structure
ization technlqugs are ofter) required. MaX|mum.I|keI|hoo f the measurement update equations [3]. This algorithm
sequence detection (MLSD) is a well-known detection meth% s been adopted in [4] with some modifications for the

for data signals received over a frequency-selective mulfj- . .. : . S .
9 q y 5 plication to wireless mobile communications, and it is shown

path f_adlng _channel._MLSD can .be implemented using trt] at the VLSI structure can be drastically simplified if it is
Viterbi algorithm. Optimum detection of the transmitted data o : )
used for the realization of a RLS estimator. To implement

through channels with intersymbol interference (ISI) requir(?ﬁe time update equations of the Kalman filter, a weighted
the knowledge of the channel impulse response (CIR). If t}&-f?ram—Schmidt (WGS) orthogonalization metho,d is widel
CIR is fed to the Viterbi detector, the digital data can be y

detected in the MLSD sense. The fading channel, however,u%ed' In a study of t.arg'et—tracklng methods, Raghaala!h.[S]
proposed the application of a unit-lower-triangular-diagonal

correction (LDC) method for time update measurements of
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Fig. 1. The signal model for the baseband communication system.

The _LD_C algorithm _of [5]is adopteq here, fo_r the first time, forcOmplex Ganssn] ¥k Fading
application to mobile communication receivers, and systolic  Noise Filter P(z) Oy k) M
structures are developed and studied for VLSI implemen- ]L

(k)
tation of the LDC algorithm. Utilization of the estimators| Transmitter (X ® é‘->=
is considered in the structure of the Viterbi based receiver, L@ —~ T

implementing joint data detection and channel estimation. X
Parallel structures are proposed for the implementation of tf@“lp}\?X,Gﬂ”SSiafl Ef’*l([“r}g b o(k)
Viterbi detector in a per-survivor processing (PSP) [6]-[11 o by L

fashion that offers an improved and robust detection tech- .
. . . -Ig. 2. The fading channel model.

nique. Finally, the robustness of the receiver structure i

studied with regard to the wordlength required in a digital _ _ ) )

implementation. Studies show that the WGS orthogonalizati§)§ @PProximated as a third-order filter [1] with the transfer

method and the correction algorithm need the same nufHnction

ber of bits in implementation while the latter requires less D

computation. Plz) = T pr 05 (1)
This paper is organized as follows: Section Il is a short

overview of the mobile communication system under corit Sampling timek the CIR,h;, a complex Gaussian random

sideration and the proposed receiver algorithm for joint da¥&ctor, Is

detection and channel estimation. In Section I, we investigate .

different methods for implementation of the channel estimator. by = (hios b - oo i) (2)

Parallel structures for joint Viterbi data detection and chan

estimation are introduced in Section V. In Section V we stu

the issue of choosing the wordlength in a hardware impl

mentation of different channel estimators. Finally, concludi

remarks are given in Section VI.

here it is truncated to a finite length ¢f3 + 1) and h,
¥ the transpose dii;. The elementh; ; is the CIR at time
% due to an impulse applied at timle — ¢. It is shown in
nﬂ] that by considering the third-order approximation of (1)
an autoregressive (AR) representation for the CIR can be

introduced as
II. THE COMMUNICATION SYSTEM

We will consider the differentially coded quadrature phase- hy = Alhy_; + BIhg_» + CIhy_3 4+ DIw,  (3)
shift keying (DQPSK) signaling scheme for simplicity. This is . . . . . .
close ir¥ pgrgormancc)e tog the/f—shifted DQPSKpmogulation whereI is the identity matrix andw; is a zero-mean white

technique of the north American narrowband time divisioﬁomplex circularly symmetric Gaussian process with the co-

; ; ) P T
multiple access (TDMA) standard (IS-136). The baseband &€ matrix defined ab(wxw; ) = Qéu, andw; s the
onjugate transpose of;.

signal model for the communication system is shown in Fig. g itis clear from (3) that the CIR at timedepends on its three

The complex data sequenge; } with the symbol period” is . . o i .
b quene; } y P nsecutive previous values. Hence, it is possible to derive a

input to the fading channel. The fading channel includes tﬁ?ate space model for the fading channel [10], [11]. The state

shaping filter in the transmitter, such as a raised-cosine filt(g)%. such a svstem is a vector composed of three consecutive
The additive noisen(t) is a complex circularly symmetric A SY P
channel impulse responses as

[12] Gaussian process with power density,. The signal
z(t) is sampled at symbol rat&. The bandwidth of the
ideal lowpass filter (ILPF) isB. The noise sampleg(kT)
are complex uncorrelated Gaussian random variables W@ygmg (4) and (3) we can write
variance N, = 2BN/.

Xk = (hi‘vhi‘flvhi‘fQ)t' (4)

The fading channel can be modeled as a linear time varying Al BI (I DI
system. A model for a two-ray Rayleigh fading channel is Xpe1= I 0 0 |xx+ |0 |[wy (5)
shown in Fig. 2. One ray is delayed with respect to the 0O I o0 0
other one and both rays are multiplied by filtered Gaussian X1 = Fxp + Gwy, (6)

noise. Bothe:(k) andy(k) are zero-mean circularly symmetric

Gaussian complex random signals and are shaped by the faditgreF andG are3(5+1) x 3(f+1) and3(8+1) x (3+1)
filters according to the maximum Doppler frequency shift toatrices given in (5), respectivehE is called the state
produce the multiplicative coefficients. The fading filter catransition matrix andx is the process noise coupling matrix.
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Also, by defining thel x (3 + 1) vectorH; as to the symbol interval so that the ISI at the receiver is only
due to the multipath nature of the channel. Since one ray is
Hy = (ax, ap—1,a%-2, ..., a1-3,0,...,0). (7) delayed by an amount equal to one symbol interval, the total

] ) _length of the CIR is two symbol intervals, i.¢?,+ 1 = 2 if
whereq is the transmitted data sequence, we can write theare js one sample per symbol interval. Therefore, there is IS|
received signak;. (Fig. 1) as between two neighboring symbols and there are four possible

states in the trellis diagram.

The LMS algorithm, RLS algorithm, or the Kalman filter
can be used to estimate the channel impulse response. In the
following section we will consider different algorithms and
S%tructures for VLSI implementation of the channel estimator.

2 = HpXp + ng. (8)

This represents the convolution sum whHR is the input to
the fading channel with impulse responsg, andn; is the
additive white complex circularly symmetric Gaussian noi
with the covariance o (ngn}) = N, bk

Equations (6) and (8) describe a linear time varying system. [ll. I MPLEMENTING THE ESTIMATOR
The state of this system (4) is based on the impulse responsggp estimate the states of the system described by (6) and
of the channel, and an estimation method has to be employgjlthe Kalman filter and the RLS algorithm can be employed.
for channel estimation. There are different estimation methodse following are the Kalman filter and the RLS algorithm
Among them, the Kalman filter is optimum for minimizing theequations.
mean square estimation error [13]. The Kalman filter, however,The Kalman Filter Algorithm:
is a complex algorithm, and, in practice, suboptimal methods Measurement update equations:
are more advantageous due to their implementation simplicity.

To avoid the decision delay in data detection, the PSP Xt = Xp + K (2 — HpXg) )
method [6] can be employed. In this method, there is a K, = P,HI R (10)
channel estimate for every possible sequence, and to overcome T

. . . R, =H, P H; + N, 11
the problem of uncertainty in the transmitted dd, (7) b RERH A+ (11)
Pup = Pr — Ky Hi Py, (12)

a separate estimation is required for any of the possible
hypothesized;, vectors on the surviving paths. In this way,
each estimator uses its own hypothesized data vectaHfor
and, based on that, it gives an estimation of the channel K41 = Fypp (13)
impulse response. The estimated channel impulse response will T T
be used to compute the branch metrics in the trellis diagram Pry = FPy " + GQG. (14)
pf th Viterbi algorithm. The ngmber of required estimators The RLS Algorithm:

is limited to the number of survivor branches (or the number

of states) in the Viterbi algorithm trellis diagram. In PSP each Kpq1 = X + Ki(z — Hpky) (15)

Time update equations:

surviving path keeps and updates its own channel estimate. K. — P.HTR-! 16
This method eliminates the problem of decision delay, and » FR (16)
_ _ _ . R, = HyP HE + ) (7)
in order to employ the best available information for data k kR

detection the data sequence of the shortest path is used for Pt = AP — K Hy Py). (18)
channel estimation along the same path. o ]

The Simulated Systemo study the various implemen- 1he measurement updated estimaig; is the linear least-
tation alternatives, a data communication system based ¥jares estimate of; given observations zo, z, . .., 21},
the 1S-136 standard is considered. The modulation is QP§RUXx-+1 IS the time updated estimatexf given observations
with four possible symbolg=1=;) and a symbol rate of {zo,zl,...,z{c}. The corresponding error covariance matrices
25 ksymbofs. As in the 1S-136 standard, the di1’“ferentia|l;f:"c these estimations are
encoded data sequence is arranged into 162 symbol frames. o . o T
The first 14 symbols of each frame is a training preamble Pri = E[(X’“ = Rugr) (X = R } (19)
sequence to help the adaptation of the channel estimator. For P, = E[(xk — %) (% — ,A(k)T} (20)
the shaping filter at the transmitter, we implement a finite
impulse response (FIR) filter which approximates a raisgd the RLS algorithm) is called the forgetting factor.
cosine frequency response with an excess bandwidth %f 25 The Kalman filter consists of two partsteasurement update
(slightly different from the 35% selected in IS-136 as in [15])equations and time update equationsAs shown in [16], the

In order to keep the simulation simple we consider a two ra1.S algorithm is essentially identical to the measurement
fading channel model as described in Fig. 2, where one ray haglate equations of the Kalman filter. The Kalman filter can
a fixed delay equal to one symbol period. The multiplicativiee used for channel estimation when saariori information
coefficients ofag and oy are produced at the output of twoabout the channel is available at the receiver (i.e. ftlemnd G
fading filters, where the inputs are two independent zero me@atrices). The RLS algorithm, which is a suboptimal method,
complex Gaussian process with equal variances. The lengthidogs not require thia priori information and its computational
the discrete impulse response of the shaping filter is set eqouainplexity is less compared to the Kalman filter.
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The main reason for the differences between theory andThere are also other factorization methods employed for
practice of implementing these algorithms can be found increasing the numerical stability, such as triangularization
the error analysis of the respective numerical methods. At t(@R decomposition) and WGS orthonormalization used for
same precision, mathematically equivalent implementatiofectoring matrices as products of triangular and orthonormal
can have different numerical stabilities, and some methodsroftrices. The block matrix factorization of a matrix expression
implementation are more robust against roundoff errors. In tleea general approach that uses two different factorizations to
Kalman filter and the RLS algorithm the estimation dependspresent the two sides of an equation such as
on the correct computation of the error covariance matrix. In .
an ill-conditioned problem the solution will not be equal to the CCT = AAT +BBT=[A B]+ [AT} (21)
covariance matrix of the actual estimation uncertainty. There B
are some factors contributing to th!s problem including Iarg]eThe alternative Cholesky facta? and [A B] can be related
ranges of the actual values of matrix parameters, large mattglx orthogonal transformation [20]
dimensions and growing number of arithmetic operations,y 9 '
and poor machine precision. These factors are causes for
concern and as a solution to combating with these problerfs, Implementation Algorithms for Measurement
factorization methods and square-root filtering are widekfPdate Equations
employed in implementation [3], [4], [17]-[19]. To compute the measurement update equations of the

Kalman filter for real numbers, a square-root method is
o proposed in [3] by Jover and Kailath. Although this algorithm
A. Square-Root Filtering is not complete for implementing the Kalman filter, in the

Studies show that some implementations are more robimtowing we will extend it to complex numbers and then
against roundoff errors and ill-conditioned problems. The swe will add some procedures for computing the time update
called square-root filter implementations have generally betgguations.
error propagation bounds than the conventional Kalman filter The measurement update equation for the covariance matrix
equations [20]. In the square-root forms of the Kalman filteran be written from (12) and (14) as
matrices are factorized, and triangular square-roots are prop-
agated in the recursive algorithm, to preserve the symmetry Py = Pi — PiH R, 'H Py (22)

of the covariance (information) matrices in the presence of . | . lorithm is based K ith
roundoff errors. Our implementation algorithm is based on working wit

There are different factorization methods within whic nit lower triangular, diagonal, unit upper triangular (LDU)

different techniques are used for changing the dependé@ficrizations ofP: and Py and, sinceP,;, and Py, are

HY H _ T
variable of the recursive estimation algorithm to factors ¢fermitian symmetric,U = L. It can be shown that by
the covariance matrix. A Cholesky factor of a Symmetrighogsmgasunable orthogonal transformation ma#rjxwhere

nonnegative definite matri™ is a matrix C such that = I, we can have

CCT = M. Cholesky decomposition algorithms solve 0r NY2 gL pl/? Y2 0
that is either upper triangular or lower triangular. The modified l ¢ ’“1/5 = Lomi2 p1/2 (23)
Cholesky decomposition algorithms solve for a diagonal factor Py Py Hj Ry, Pk|k

?an c(: Osrnttr}ersz\ clr? V\;Erattg/?ngfIatggjt{ierorjnLqusithnwr?eurfr and this can be immediately verified by squaring both sides of

. . 2 .

D, and Dy are diagonal factors with nonnegative diagondfP3)- Generally, computing the triangular faCBtl/k requires
elements. taking arithmetic square roots, which are computationally more

The square-root methods propagate ke or U—D factors expensive than multlpllcgtlon or division. This can be avoided
of the covariance matrix rather than the covariance matr&y using LDU factorizations
The propagation of square-root matrices implicitly preserves
the Hermitian symmetry and nonnegative definiteness of the
computed covariance matrix. The condition numkeP) = yging (24) in (23) and dropping all time-index subscripts
[eigenvalue, . (P)/eigenvalue,;, (P)] of the covariance ma- yields
trix P can be written as:(P) = x(LDL?) = x(BB') =
[<(B)]?, whereB = LD*/2. Therefore, the condition number iy gHL,11n. o 1%/2 1 ollrR o1%Y?
of B used in the square-root method is much smaller than t){g L } [ 0 D} e = {K L } [0 D } (25)
condition number of th& and this leads to improved numer- v v
ical robustness of the algorithm. Moreover, in the square-robherefore, to compute the measurement update equation for
method the dynamic range of the numbers entering intike covariance matrix we start with the left-hand side of (25)
computations will be reduced. Loosely speaking, we camnd, by applying an orthogonal transformation, the left side of
say that the computations which involve numbers rangir{@5) can be converted to tHeD form on the right side. This
betweer2—" to 2+" will be reduced to ranges betwe2n/? s possible by application of the fast givens transformation, as
to 2tN/2. All of these will directly affect the accuracy of we have modified from [3]. We can express (25) in terms of
computer computations. the components of the matrices, as shown below, where the

P, =LDL" and P, =L,D,L’. (24)
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Fig. 3. The data structure for the inputs and outputs of the Jover—Kailath algorithm [3].

size of L and D is considered to be x n

It is shown in [3] and [4] that, by using the parameters in
the left hand side of (28), we can choose

1 o p2 ][N, 0 0 07Y? 2
0 1 0 ollo D, o 0 dg1 = dp1 + |p2| " dp2 (29)
dp1d
0 L271 1 0 0 0 _D.Q 0 © dqQ — P; p2 (30)
: : : : : : : : ql
0 Ln1 Lnp 1 0 0 0 D, to obtain the proper orthogonal transformation. The »
1 0 0 0 transformation is found to rotate the vecforp;] to lie along
K 1 0 0 the vector [1 0], keeping the equality of weighted norms [3].
_ | K2 La2i 1 0 It is also necessary to apply this transformation to other pairs
: : : : of the first and third columns and find the new transforms of
o _° ' these vectors. By applying the transformation to an arbitrary
Ko Lni L 1 vector [p; po] to lie along[q; 72], we obtain
R 0 0 0 1Y? 1/ 12
/) _ _ do1 0 _ _.lda 0
0 D O 0 (D1 pQ][S d } O12=[01 QQ]{S d }
.10 0 Do 0 (26) P2 q2
. . . (31)
oo : R where
0O O 0 D,
) ) ) ] . G2 = —p2p1 + P2 (32)
The goal is to obtain a lower triangular and a diagonal matrix oy
on the right hand side of (26) by applying an orthogonal @1 =p1+ <P2d—1>Q2- (33)
q

transformation© and setting thep; components to zero.

We can perform this by considering a series of orthogon&he complex conjugate gf; is denoted byps.
transformations as The algorithm to implement the above triangularization is

to consider the first and the other columns of the matrix in the
right side of (26) one-by-one and apply &l ; transforms to
obtain a lower triangular and a diagonal matrix. The algorithm
presented in Appendix A is based on the above method to
only four elements changed ¢, 1), (1,5+1), (+1,1),and compute the measurement update equations of the Kalman
(4+1,7+1) positions. Therefore, th®, ; transformation only fijlter.
affects the first and;j + 1)th columns of the right hand side The covariance update algorithm that we explained in this
matrices in (26). If we just consider these two columns the pajgction computes (22) or equivalently (12)—(14), however, we
[1 p;] will be on top andd,,; can be found so that the vectomeed to compute (11) to update the state estimates as well.
[1 p;] will be transformed to1 0] in order to triangularize |t can be shown [3] that with an appropriate arrangement for
the matrix. the input data structure, the covariance update algorithm can
If we only consider the top pair of the two columns, foiiso be used for updating the state estimates. Fig. 3 shows
instance[l p»] for first and third columns, with a properthe arrangement for the inputs and outputs of the algorithm
L, and the algorithm yields the update, as in Fig. 3. A parallel
architecture is proposed in [3] to implement this algorithm
[1 pz] andd,; andd,. have to be found based on the appliewill be useful for implementing both the measurement update
orthogonal transformation. equations of the Kalman filter and the RLS algorithm.

O=0;,0;,_1--0120;1 (27)

where the matriX®, ; is a(n+1)x (n+1) identity matrix with

0
dpo

0

1/2 .
[

orthogonal transformation matrix we will have given in Appendix A. The components of the state estimate
1/2
d
o el | e
for real numbers. This architecture, however, can also be

vector are fed to the algorithm along with the components of
where d,,; and dp, are the components in (26) that affectised for complex numbers, with some modifications [4]. This
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Note that the matrixk' is not used in the equations ofDg, after dropping all time index subscripts, (35) becomes
the RLS algorithm [i.e., (17)—(20)]. It is also possible to S
assume that the matrik is equal to the identity matrix for P=LDL? = [FL, G] [Dp 0 } |:LP];: } (36)
the RLS algorithm. In this case, from (4)—(6) we can deduce 0 Dy G
that the CIR of the system at time + 1 is only obtained
from the CIR of the system at timk. This means that we the measurement update procedure Endnd D have to be
are not considering the AR representation of (3) for RL omputed.
and hence the state vector of the system, as defined in (4)WGS orthogonalization [20] can be employed here. It is an

only conS|sts_ of th_e CIR at the present tirhg. This W'”_ algorithm for finding a set ofv mutually orthogonal vectors
reduce the dimensionality of the state vector and covaria € by, bs,... b, that are a linear combination of a set of

matrices in the RLS algorithm by a factor of three, which is thﬁ linearly independent vectos, , a, as, . .. , a,,. For a given
order of the AR representation in this case, compared to theyiv A the Gram—Schmidt a’lgo’rith;”n defines a unit upper
Kalman filter. Obviously, a smaller matrix size produces Ie?ﬁangula; matrixU such that

complexity and more robustness against roundoff errors. In [4]

a variety of parallel and pipelined structures are proposed foA = BU, or

L, andD, in the right side of the equation are known from

the realization of the RLS algorithm. A=[a, a, as - a,]|=BU 37)
: . ' . 1w wz - win
C. Implementation Algorithms for Time Update Equations 0 1 uss - u
The Jover—Kailath algorithm can be used to implement thgy — by by by -+ by,] 0 0 1 e ug,
measurement update equations of the Kalman filter. Since C o
the RLS algorithm is basically the same as the measurement 0 0 0 1
update equations of the Kalman filter this method could also be 38)

used for implementing the RLS algorithm. For implementation

of the Kalman filter, however, we need to calculate (15) The Gram-Schmidt orthogonalization is called weighted if
and (16) and another algorithm is required to perform thifie vectorsh; are orthogonal with respect to the weights
part. Since in the Jover—Kailath algorithm, inSteadl:bI|k, W, Wa, W3, . . ., Wy The vectorsx and y are said to be

its factorsL;,, and D, are computed as in (24), we need tthogonal with respect to the weights if
employ an algorithm that uses these factors. The propagation

of LD factors implicitly preserves symmetry and nonnegative - R, _
definiteness of the computed covariance matrix. In the follow- Z Xjwiyi =X Dyy =0 (39)
ing we will present and compare three different methods for =t
implementing the time update equations. where
1) Direct Computation of the Covariance MatriOne sim-
ple approach to carry out the computation in (16) is the direct D, = diag; <;<,{wi}. (40)

computation of
Hence the weighted norms of the mutually orthogonal vectors

Py = FL,D,LF" + GQG™ (34) by by, bs,...,b, appear as the diagonal elements of the

. L . . diagonal matrix
When the noise process is time invaria®QG” needs 9

to be computed only once and (34) requires four matrix D =B”’D,B. (41)
multiplications and one addition. Then, since we need to

propagate thdLD factors of P, it can be factorized in  To apply the WGS method let

the LDL? form using the factorization algorithms of [22].

The direct method is not very robust against roundoff errors, A= {LEET} (42)
and we will use it for comparison to show the advantages of G

using square-root techniques in the implementation of time D. — [Dp 0 } 43)
update equations. The following methods are based on the ¢ 0 D,

direct computation ofLD factors for the covariance matrix
and result in better numerical stability.

2) The WGS Orthogonalization Algorithmin this method Piy1 = ATD,A. (44)
the covariance update equation implementation is based on a
block matrix factorization. Equation (16) can be rewritten iThe Gram—Schmidt algorithm will produce a unit upper tri-

then, from (36), we have

the following matrix form: angular matrixU (37) and a diagonal matrid (41) such
that
2
Py = [FPY? GQY/2 [ |k } 35
k+1 [ k|k Q ] QT/QGT ( ) Pk+1 — ATDwA (45)
T
Again, if we use theLDU factorization for the covariance = (BU)" D.(BU) (46)

matrix as in (24) and indicate the diagonal matrix@fwith =uU'B"D,BU (47)
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and from (41) initialization stage, and these factors will be used repeatedly
- - during each filter iteration.
P41 =U'DU =LDL". (48)  The performance of the above three methods are compared

Therefore, the inputs of the WGS algorithm are the information Section V. The direct method is not a square-root method

on the right side of (36) in the form oA and D, and the and is very sensitive to numerical errors. The performance

X . . ) of the WGS and LDC algorithms are very close in terms of
output of the algorithm is the lower triangular mattix’ = L . ) . )
. . numerical accuracy, while the LDC algorithm requires fewer
and the diagonal matri.

Before applying the above method, a matrix muItiplicatioﬁompmatlons' In the next section we will introduce a systolic

is required to computEL,, [see (36)]. Also, for computing the structure for the implementation of the LDC algorithm.
temporal update of state estimations in (15), f&. vector

obtained at the qutput of the measurement updgt(_e pr.ocedB(eA Systolic VLSI Structure for the LDC Algorithm
must be premultiplied byF. Both of these multiplications

can be carried out together by appending the vegigy to To employ the Kalman filter as a channel estimator in a

the matrix L and multiplying the combination b¥. If the mobile communication receiver, it is important to carry out

multiplication is carried out using array processors, in this wag!l ©f the required computations in real time. The Kalman
the same structure can perform both of these multiplicatioffStimator is computationally intensive and, to speed up the
without any change in the hardware. estimation process, parallel VLSI structures have to be sought

3) The LDC Algorithm: In the WGS algorithm, as we canfor implementation. It is also imperative to utilize the inherent
see from (16) and (35) the computation GIQG” will be parallelism of the proposed algorithm to be mapped on the

repeated in every iteration. When the process noise is tifg@ra/lel VLSI structure. ,
invariant and the matrig is not changing over time, there is_ ' "€ LDC algorithm is more appropriate than other methods

no need to recompute this term in every iteration. This iddg Implementation of the time update measurement equations
leads to the introduction of a less complex algorithm. of the Kalman channel estimator. The fading channel model,

The LDC algorithm is used in linear algebra [21], [22 nd hence the process noise, can be reasonably assumed to

to update theLD factorization of matrixA to the LD P€ time invgriant in a short period of time (e.g.', one frqme
factorization ofA + vv”, whereA is symmetric and positive interval). This allows us to employ the LDC algorithm, which

definite, andv is an arbitrary vector with appropriate sizefesults in a considerable saving in computations compared to

When the process noise covariance is time invariant, tff€ WGS method. _ . _
algorithm can be used to implement the time update equationd® Systolic VLSI structure is proposed in Fig. 4 for im-
of the Kalman filter and it is shown [5] to have substantidl€émentation of the LDC algorithm. This structure is used

computational saving when compared to the WGS algorithfr implementing (51) and is based on thitup function of
To implement this method let Appendix B. Two types of processors are employed and the

function of each is described in the figure. The size of the
= T state vector is assumed to be= 6 in this example and the
P = Z il Ly . (49)  size of thel, matrix is 6 x 6. The LD factors get updated in
=t place and there is no need to transfer these values during the
The covariance prediction in (16) can be written using Ehe computation. The inputs to this structure are different columns
and D factors of P and GQG' as of the matrixFL in the form of thev vectors scaled by the
n v elements ofD. The functionldltup is calledn times for each
_ . . AT T 1T column of FL, and this can be carried out by applyingnput
Pip = D di(FL)(FL)" + ; dai il 0) vectors to the systolic structure. Once the computation in one
row is finished, the next column dfL can be applied as
The LDC algorithm can be employed to compute IWBL”  the new input vector. This allows for pipelining and results
factorization of the sum in higher processor utilization and, hence, higher speed. If the
quiLqiL?]; T (51) computation in each row takes one time step, for the time

=1

update of the covariance matrign — 1 time steps will be
required.
In (50) the LDC algorithm can be appliedtimes, and each It is also possible to map the above algorithm to a smaller
time, one of the components of the first sum is considered namber of processors. Mapping can be performed along differ-
be thesvv? vector. The result will be ZDL” factorization ent directions, as shown in Fig. 5. By using different mapping
for Pr41. vectors we obtain structures with different performance and
The complete algorithm to implement the LDC methodapabilities. The function of the processing units and the
is given in Appendix B. This algorithm require9(6n® + details of communication between units is not shown in the
16n% — 2n) multiply—add operations, while the WGS methodigure. Links only represent the direction of data transfer
requires O(10.7n3 + 11.8n? — 2.5n) operations. Thus, the between processors. Table | summarizes and compares the
LDC algorithm requires less computation compared to tHeatures for different mapped structures whers the size of
WGS method since the process noise is time invariant atige state vector. It is possible to employ the mapping aléng
the termGQG? needs to be factorized only once during the a pipeline mode, but the other mappings cannot be pipelined.
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Fig. 4. A systolic VLSI structure for implementation of the LDC algorithm.
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Fig. 5. Mapping the systolic structure of the correction algorithm to a smaller number of processors.

(d)

There are two kinds of processors used in each structubetween any two applications of the algorithm, will reduce to
If we assume that the maximum time required for the corfi-. In this case processor utilization will be 801t can be
putations in each processor 7§ then the total latency for shown that the structure of Fig. 5(d) can also be pipelined.
one application of the correction algorithm will Gé7. This There are eleven processors used here and a throughput of
should be obvious from the data dependency in the twd{ is attainable in this case. The other two mappings use six
dimensional structure of Fig. 5(a). By using the structure giocessors and cannot be pipelined, resulting in a latency and
Fig. 5(a) in pipeline mode, the throughput, or the time intervéthroughput of117".
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TABLE |
CoMPARISON BETWEEN DIFFERENT MAPPINGS OF THESYSTOLIC STRUCTURE (n = SIZE OF THE STATE VECTOR
Two dimensional | Mapping Mapping Mapping
array along d; | along ds | along ds
Number of Processors n(n+1)/2 n n 2n—1
Pipelineable Yes No No Yes
Latency (2n—-1)T Cn—0T | 2n-1T | 2n-1)T
Throughput T 2n-1DT | 2n-1T | (n—1T
Processor Utilization 1.0 ﬁl'_% tL 4%‘%
* ]
H L D %
L by ——{ 1, L — R
— D D D \Tv From the node
A A ) f—— D, 2 buffers where the
Xk > g » survivor branch
E > gk\k | > ’,‘\A . emerges
Ik
Jover-Kailath LD Correction From the bt
Measurement Update Time Update _ survivor branch |k
Hk] -
—» BM; »
> BMG — | 70 ACS units
- :
. :Hkm
\_L BM, Node Processor
BMG UL
_>

Fig. 6. The required PSP computation for one node (state) of the trellis diagram. First, the branch metrics are generated and the survivor path is found
then the estimator will receive the survivor path information to estimate the channel.

V. STRUCTURES FORVITERBI leading to the considered node. Each branch has its own
DETECTION AND CHANNEL ESTIMATION hypothesized data sequent¥ corresponding to the state

In the Viterbi equalization of a mobile fading channel ransition on that branch. The node processor unit receives all

channel estimator has to be used in combination With,tlg e branch metrics and determines the survivor path using the

dd—compare—select (ACS) operations. After the survivor path

Viterbi detector. The impulse response of the channel hasiaéoknown, the appropriate values fif;, L. D, and; have

be estimated by the estimation algorithm, and this impul§e . .
response is used to generate the branch metrics in the Vit qgibe sent to the est!mator to update the channel gstlmates.
. - ; ¢ r H;., the hypothesized data sequence of the survivor path
algorithm. In the PSP equalization method there is one channg to be chosen, and fdr, D, and %, the output of the
estimation associated with each state of the Viterbi trellis. Al - o estimator on the node from which the survivor path
of the channel estimations associated with different Stat?é'originating has to be considered.
depend on the ref:eivgd signal and the hypothesized d?t"The per-branch processing (PBP) method of [23] is a
sequence in the Viterbi algorithm and can be performed §uneralized form for PSP and can be used when there is more
parallel. than one sample and more than one estimation per symbol
Fig. 6 shows how to employ the algorithms introducegterval. In PBP there is one channel estimation on each
in Section Ill to estimate the CIR and calculate the brangtanch of the Viterbi trellis to generate the branch metrics. In
metrics for one node of the trellis using the PSP method parallel implementation, several estimators can be employed
The estimator consists of the Jover—Kailath and LDC ae generate the branch metrics. The number of estimators
gorithms. The inputs and outputs are shown based on #eguired is equal to the number of states in PSP and equal
parameters introduced in the above algorithms. There is aethe number of branches in PBP. In this section we propose
branch metric generator (BMG) for each of the branches parallel structures for implementation of PSP and PBP.
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In a parallel structure for the Viterbi algorithm, different
estimators must communicate with the Viterbi processing units
so that independent computations can be handled in parallel
and also pipelined, if possible. To obtain a systolic structure
for the Viterbi algorithm we realize that it can be formulated
as a form of matrix multiplication. If the node value tat %
is shown byI'l*] and the branch metric from nodeo nodej
is b;;, then to obtain the node valuestat k + 1 the Viterbi
algorithm computes

'y I'y I's F4][k+ll

b1 b2 --- biag
=My Ty Tz T4™s | 1 0 1| (52)

Fig. 7. The trellis diagram for the Viterbi algorithm.
by b - by

The operation« is not an ordinary multiplication and the

. . an agreement on the shortest path up to a certain point which
elements of the left side vector can be written as g P P P

depends on the depth of the algorithm and SNR. This part
F£k+l1 _ (F[1k1 + blj) ® (1“[2"‘1 + b2j) @@ (FELM + b4j). of the path information can be written into the survivor path
memory, and it determines the detected sequence.

In the PSP method the number of channel estimations is
reduced to the number of states and, in the above example
(Fig. 7), only four estimations are required in each symbol
interval. In this case, for all of the incoming branches to a

1“5,’““1 = Ming<j<4 (PEM + bij)- (54) node, first the survivor branch will be determined and then only
the channel estimation associated with the survivor branch
Therefore, it is possible to consider the systolic architecturesll be carried out. The parallel structure of Fig. 8 can be
for the vector-matrix multiplications proposed in the literaturenodified for the implementation of PSP. In any of the four
to implement the Viterbi algorithm. The following structuregarallel branches, the estimator has to be moved after the BMG
are based on two different systolic designs proposed fand ACS units. First, the ACS unit determines the survivor
matrix-vector multiplication in [24]. branch and then the estimator computes the CIR based on the

The parallel structure of Fig. 8 is proposed for the joinhformation corresponding to that branch.
implementation of the estimator and the Viterbi algorithm. Fig. 9 is another approach to the above problem. It is also
This structure is performingarallel state-computationsince derived from one of the systolic designs for matrix-vector
the computations for all of the states are performed in paraltaultiplication in [24]. This structure is performingequen-
by considering the incoming branches sequentially. Theretial state-computationsince the computations for all of the
one channel estimation on every branch of the trellis amsthtes are performed sequentially by considering the incoming
hence the equalization is performed in a PBP fashion. Theanches in parallel. The computations associated with all
buffer on top contains four sets of data for different trellincoming branches to a node will be done simultaneously
nodes. X is the estimated statel, and DD are covariance in four different estimators. After all four branch metrics are
factors,I' is the node value in the Viterbi algorithm, adél added to the corresponding node values, the compare—select
contains the path information (survivor sequence) obtainedaperations will be performed in a tree structure to find the
the Viterbi algorithm. All of the data sets are propagated wminimum value. The updated states and covariance factors
the four estimators sequentially. Each estimator also receivesresponding to the survivor branch will be directed to the
the hypothesized transmitted dath related to the branchesbuffer on top. Since, in this structure, the updated states and
that end in the same node, and the received sigpalln new values for the nodes are computed in a sequential way,
four subsequent pipeline stages the channel estimates #re need to be buffered until all of the new state values
the branch metrics are computed. Each estimator compusées computed and old values can be overwritten by the new
the values related to the incoming branches to one node@lues. This might be done by doubling the size of the top
The output of the BMG is passed to the ACS unit. Thbuffer. When different states agree on a common ancestral
ACS unit adds the original node value and the computgqth, the information related to that path can be dumped into
branch metric, and selects the smallest obtained value. Tthie survivor path memory.
determines the survivor path at the end of four pipeline stagesThe sequential state-computation structure can be simplified
The information of each surviving path, including the states sfgnificantly for the PSP method. As described before, for
the channel estimator are passed to the top buffer to be ugSP there is only one channel estimation for the survivor
at the next symbol interval. The new values will be writtepath and, hence, the estimator has to be moved after the
into memory after all of the states are updated and all afld—compare—select operations. In the structure of Fig. 9, four
the computations for the current symbol interval are finishedstimators will be removed and one estimator will be used after
After processing a number of received symbols there will e final compare—select unit. The channel estimator usually

The + operator is conventional addition and the operation
denotes taking minimum. Hence, (53) becomes
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Fig. 8. A parallel architecture for joint data detection and channel estimation (parallel state-computation structure).
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Fig. 9. A parallel architecture for joint data detection and channel estimation (sequential state-computation structure).

requires a considerable amount of computation power afelv a humber of bits in the wordlength of the computations
area in a VLSI design. Therefore, reducing the number aé possible.
estimators to only one is an effective step in the simplification Some estimation algorithms, like the Kalman filter, are
of the VLSI structure. If the structure of the channel estimatanore sensitive to roundoff errors and require a larger number
is pipelineable, it will speed up the necessary computatioos bits per computation word compared to other estimators.
for all the states. The finite-wordlength effects on the design of the Kalman
filter have been addressed somewhat in the literature [25],
[26], however, in these analysis the estimation accuracy has
V. HARDWARE IMPLEMENTATION OF THE ESTIMATOR been the main concern of the authors. Here, we study the

The estimation algorithms of Section Ill have to be realize@erformance of the estimator in a Rayleigh-fading-channel-
with digital hardware, where state values and coefficients étased communication system and, specifically, in the context
stored in registers with a finite number of bits. An importarfif @ Viterbi-based receiver. Hence, we will have to note the
issue in the implementation of a filtering algorithm is t@verall effect of roundoff noise and estimation accuracy on the
consider the problems that arise in dealing with floating-poiBER performance in this receiver.
computation and finite wordlength. The time consumed on theln an adaptive MLSD receiver the CIR is estimated along
computations and the area used in the VLSI implementatitie surviving paths associated with each state of the trellis.
of an algorithm are proportional to the wordlength used ihhe quality of the channel estimation method has a strong
the computations for addition and proportional to its squamapact on the overall BER performance of the receiver.
for multiplication. Therefore, it is always important to use aPRarticularly, in fast fading conditions, only more advanced
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Fig. 10. The effects of changing the wordlength on estimation methogiy. 11. The effects of changing the wordlength on estimation methods
(Ep/No = 15 dB). Kalman 1 represents the WGS method, Kalman 2 igF;, /N, = 15 dB). See Fig. 10 for details.

for the correction method, and Kalman 3 is the direct method. PSP method

is employed for detection.

function [Xk,Lp,Dp,Sigm] = MU(Zk,Hk,Xk,L,D,No,size)

. . N=size+1; Beta(1)=0;
and more accurate channel estimators can provide reasonable

. . - Delta(N)=No;
receiver performances. The estimator precision depends on beHikeL
the employed algorithm, the wordlength, and roundoff noise | .

L . . . . . fori= N-1:-1:1,
which is inevitable in the hardware implementation. We will Delta(i=Deltalie 1) +b(il<b(i=Dii:
consider both the estimation accuracy and BER performance elta(i)=Delta(i+1)+b(i) ()" D();
by studying the simulation results. Beta(i+1)=b(i)"~(D(i)/Delta(i));

In Fig. 10 the expectation of the mean square error (MSE) Dp(i)=Delta(i+1)+(D(i)/Delta(i));
in estimation of the impulse response of a Rayleigh fad- a(i)=Beta(i+1);

ing channel is plotted versus the mantissa wordlength in end

the floating point operations. The simulated system is as % adding one element to the vector [b],
described in Section Il (i.e., two-ray channel with the third-  bn=[Hk*Xk-Zk, b];

order AR model). Three different implementation methods of for i=1:N-1;

Section 1lI-C for the Kalman estimator are considered, along Lin{i,1)=Xk(i);
with the RLS and LMS algorithms, whel, /N, is 15 dB (&, Lout(i,1)=0;

is energy per-transmitted-bit). For the measurement update of for j=1:N-1;

the Kalman filter, and also for the RLS estimator, the square- Lin(i,j+1)=L(

i);
root method of Section IlI-B has been used. The step size in Lout(i,j+1)=0;

LMS and the forgetting factor in RLS are chosen to yield

the best MSE. The initial values for the states are chosen igit(i,i+1)=1;
randomly, also forl. and D we choose the identity matrix end
as the initial value. As is clear from Fig. 10, with the Kalman (/. ..\ |
filter the minimum achievable MSE is much lower than that of for j=(;-N-1-i
LMS and RLS algorithms. However, a larger number of bits L | i DeLin(istict)-ba(ie1)+afiei):
is required for the Kalman filter. Direct implementation of the 9“,('+J",+_)‘ 'n('+,“+ ) n(J_+, )Aa(1+|),
Kalman filter requires at least 26 bits per mantissa, while two a(j+i)=a(j+i)+Beta(j+1)-Lout(i+, j+1);
other methods require 22 bits. The minimum number of bits end
per mantissa required for channel estimation with the RLS and end
LMS algorithms are 12 and 8, respectively. fori=1:N-1,
The effect of reducing the number of bits on the overall Xk(i)=Lout(i,1);
BER performance is shown in Fig. 11. Joint data detection for j=1:N-1,
and channel estimation is performed using the PSP method. Lp(i.j)=Lout(i,j+1);
Using the Kalman channel estimator leads to a very good BER end

performance. The BER performance of the Kalman filter is end

about 10 dB better compared to the RLS and LMS eStimatoﬁg. 12. The Jover—Kailath algorithm for the measurement update equations.
while it requires a longer wordlength. The required mantissa

length, obtained from Fig. 11, is less than what we woulgame BER performance, while the latter is cheaper and has
expect by observing the MSE of the estimator. Also, we ca@ss computation involved. Both of these methods are much
see that using the WGS method or the LDC algorithm fanore efficient compared to the direct method, which uses a
the time update equations of the Kalman filter result in thgonsquare-root algorithm for the time update equations.



function [L,D]=Correction(FL,Dp,GQGL,GQGD)
%GQGL and GQGD are the initial L-D factors of GQGt

L=GQGL; D=GQGD;

n=size(L,1);
fori=1:n,
v=FL(1:n,i);

s=sqrt(Dp{i.i);
[nL,nD]=IdItup(L,D,s*v});
L=nL; D=nD;

end

function [newL,newD]=Idltup(L,D,v)
n=size(L,1);
newl=L; newD=D;
oldt=1;
for j=1:n,
p=v(j);
t=oldt+p”2/D(j,j);
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APPENDIX A

The square-root algorithm in Fig. 12, described with MAT-
LAB, is for the measurement update equations based on
the method of [3]. This recursive algorithm is described in
Section lll-A, and the inputs and outputs are defined in Fig. 3.
The parametesizeis equal to3(3 + 1).

APPENDIX B

The MATLAB algorithm in Fig. 13 is for the temporal
update using the LDC algorithm. This algorithm consists of
two functions. The main function receives thex n matrix
product L = FL,, Dp, and theLD factors of GQG? as
GQGL and GQGD. Then the correction algorithm will be
applied n times, as in (50), by calling th&ltup function.
This function updates the Cholesky factorizationAto the
Cholesky factorization ofi+v v/, i.e., If A = LxDx L' then
A+ vxv = newL x newD x newL’. It is assumed thatl is
symmetric and positive definite. The details of this algorithm

newD(j,j)=D(j,j)*t/olat;
beta=p/(D(j.j)*1); are
if (j<n),
v(j+1:n)=v{j+1:n)-p<L(j+1:n,j);
newl(j+1:n,j)=L(j+1:n,j)+beta*v(j+1:n);
end;
oldt=t;
end;

(1]

(2]

(3]
Fig. 13. The LDC algorithm for the time update equations.
[4]
VI. CONCLUSION

We have studied the implementation of the Kalman filtert>]
for channel estimation in a mobile communication receiver.
It was shown that by using a proper model for the fadind6l
channel, the Kalman filter can be applied for the estimation
of CIR, and the matrices required for the computation of thg7]
Kalman estimator can be obtained from the channel model.
Implementation of the Kalman filter was considered in twog)

given in [21].
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