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Abstract—A review of two blind channel estimation algorithms 

is presented. The subspace method and the LMMSE approach is 
reviewed in this paper. We outline basic ideas behind several 
developments, the assumptions and identifiably conditions 
required by these approaches, and the algorithm characteristics. 
 

Index Terms—Blind Channel Estimation, Equalization 
 

I. INTRODUCTION 
NTERSYMBOL interference (ISI) is a limiting factor in many 
communication systems. ISI can arise from time-varying 

multi-path fading, which can be severe in, for example, a 
mobile communication system. Other channel impairments 
that contribute to ISI include symbol clock jitter, carrier phase 
jitter, etc. To achieve high-speed reliable communication, 
channel estiamtion and equalization are necessary to overcome 
the effects of ISI [1]. 
Designs of receivers that remove channel distortions require 
either the knowledge of the channel or the access to the 
“training” signals. The latter is the choice in many 
communication systems design. The transmission of training 
signals decreases communications throughput although, for 
time invariant channels, the loss is insignificant because only 
one training sequence is necessary. For time varying channels, 
however, the loss of throughput becomes a problem [2]. 
The blind channel estimation means that the channel is 
estimated without any training sequence; instead, the 
identification is achieved by using only the channel output 
with certain a priori statistical information on the input. Such 
methods can increase the transmission capability due to the 
elimination of training signals [3]. 
Earlier approaches to blind identification use the higher-order 
statistics of the output. These methods, although reliable and 
robust in some applications, require a large number of data 
samples and a large amount of computation. In fast changing 
environments, such as in cellular communications, their 
applications may be limited. The method proposed by Tong et 
al. [4] solved this problem. This method explored the 
cyclostational properties of an over-sampled communication 
signal and cause the blind channel estimation to be 
accomplished based on second-order statistics (SOS) of the 
channel output. Since the SOS of scalar system output do not 
contain enough information to identify a possibly non-

 
 

minimum phase system, and since the temporal over-sampling 
technique converts a stationary communication sequence into 
a cyclostationary process, it was, for a while, believed that 
cyclostationarity was the only reason to the success of the 
algorithm [5]. 
Classical solutions of blind identification in digital 
communication systems are based upon data sampled at the 
baud rate, although it has been known that fractionally spaced 
equalizers are more robust under timing uncertainties. Since 
communication channels are non-minimum phase generally, 
the SOS of baud-rate-sampled stationary signals is inadequate 
for channel identification. The phase information is available 
in the cyclostationary sequence [5]. 
Some of the early statistics-based methods suffer from the 
performance degradation caused by the model mismatch when 
only a limited number of observations are available. The 
desire for more data-efficient algorithm led to the 
development of a class of subspace based [6] blind 
identification algorithms. These techniques significantly 
outperform several previously statistics-based methods, 
especially for short data sequences [5]. 
Despite many good features, the performance of these 
subspace-based algorithms may be basically limited by the 
nature of the channel. For example, singularity of the channel 
matrix can cause divergence of the subspace, and result in 
failure of the subspace approaches [5]. 
By reviewing recent surveys [2], [5], the purpose of this paper 
is to review some blind channel estimation approaches. We 
provide a systematic summary of some algorithms in the area 
of blind channel estimation. Various existing algorithms are 
classified into the moment-based and the maximum likelihood 
(ML) methods. If input is assumed to be random with 
prescribed statistics, the corresponding blind channel 
estimation schemes are considered to be statistical. On the 
other hand, if the source does not have a statistical description, 
or although the source is random but the statistical properties 
of the source are not used, the corresponding estimation 
algorithms are deterministic [2]. Fig. 1 shows a map for 
different classes of algorithms. 
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Fig.1. Classification of blind channel estimator [2] 

 

II. CHANNEL ESTIMATION USING SUBSAPCE METHOD 
Many recent blind channel estimation techniques exploit 
subspace structures of observation. The key idea is that the 
channel vector is in a one-dimensional subspace of the 
observation statistics. These methods, which are often referred 
to as subspace algorithms, have the attractive property that the 
channel estimates can often be obtained in a closed form from 
optimizing a quadratic cost function. Subspace methods can 
sometimes be considered part of the moment methods [2]. 

A. Problem Formulation 
Let xn , denote the symbol emitted by the digital source at time 
nT, (T is the symbol duration). The base-band signal at 
receiver is given [3] by: 
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Where w(t) is a band-limited complex stationary process, 
assumed to be independent from the emitted symbols, and h(t) 
is the overall response of the transmission filter, receiver filter, 
channel response, and modulation/demodulation. 
Taking into account that the channel has finite support, the 
complex envelope of the signal received on the ith sensor after 
sampling is: 
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response )(iH  characterizing the ith channel: 
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Stacking N successive samples of the received signal 
sequence, we obtain: 

Ti
Nn

i
n

i
n

i
n

T
MNnnnn

i
M

i

i
M

i

i
M

i

i
N

Ti
Nn

i
n

i
n

i
n

i
nn

i
N

i
n

wwwW

MNDimxxxX
MNNDim

hh

hh
hh

H

yyyY

WXHY

],...,,[

1)(:.;],...,,[
)(:.

00

000
00

],...,,[

)(
1

)(
1

)()(
11

)()(
0

)()(
0

)()(
0

)(

)(
1

)(
1

)()(

)()()(

+−−

+−−−

+−−

=

×+=

+×
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

=

+=

LLL

MOOOOOM

KL

KKK

 

Hence, the set of measurements depending on the same set of 
input symbols is given by: 
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This linear system has dimension of LN×(M+N) [6]. 

B. Subspace-based Identification 
A blind identification procedure consists in estimating the 
L(M+1)×1 vector H of channel coefficients: 

TTLT HHH ],...,[ )1()0( −=             (6) 
From (5), we can see that: 

nnNn WXHY +=                (7) 
So, the identification is based on the LN×LN autocorrelation 
matrix of the measurement vector: 
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Since the additive noise is assumed independent of the emitted 
sequence, the autocorrelation matrix is expressed: 

ww
H
NxxNyy RHRHR +=             (9) 

The source covariance matrix Rxx has dimension 
(N+M)×(N+M), and is assumed to be full rank but otherwise 
unknown. The noise covariance matrix Rww is of size LN×LN. 
To ease the derivations, the noise is assumed to be white [6]. 

C. Subspace Decomposition 

Let 110 −≥≥≥ LNλλλ L  denote the eigenvalues of Ryy. 
Since Rxx is full rank, the signal part of autocorrelation matrix 

H
NxxN HRH  has rank M+N, since IRww

2σ= , hence: 

1,,

1,,0
2

2

−+==

−+=>

LNNMifor

NMifor

i

i

L

L

σλ

σλ
     (10) 

Denote the unit norm eigen-vectors related with the 
eigenvalues 10 ,..., −+NMλλ  by 10 ,..., −+NMSS  and those 

corresponding to 1,..., −+ LNNM λλ  by 10 ,..., −−− NMLNGG  
The autocorrelation matrix is thus also expressed as: 
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The columns of matrix S span the signal subspace (dimension 
M+N), while the columns of G span its orthogonal 
complement, the noise subspace. Also, the signal subspace is 
the spanned by the columns of the filtering matrix HN. By 
orthogonality between the noise and the signal subspace, the 
columns of HN are orthogonal to any vector in the noise 
subspace. Hence, we have: 

NMLNiHG N
H
i −−<≤= 00        (12) 

Under some conditions detailed in the theorem below, the 
noise subspace (matrix G) uniquely determines the channel 
coefficients up to a multiplicative constant. 
Theorem 1: assume that N≥M and matrix HN-1 is full rank. Let 

'
NH  be a new nonzero matrix with same dimension as HN. 

The range of new matrix is included in the range of HN iff the 
corresponding H and H’ are proportional. Hence, both of 
matrices share the same column space iff they are 
proportional. 
We show in the next section how by using this theorem the 
channel coefficients can be estimated even in the cases where 
Rd is full rank and unknown [6]. 

D. Subspace-Based Parameter Estimation Scheme 

In practice, sample estimates iĜ , of the noise eigenvectors 
are available and (12) is solved in the least squares sense and 
leads to minimize the following quadratic form: 

∑
−−−

=

=
1

0

2ˆ)(
NMLN

i
Ni HGHq            (13) 

As you can see, q(H) depend on vector H rather than on the 
filtering matrix HN. This is conveniently done by application 
of following Lemma, which requires the following notations. 
Notations: Let V(0),…,V(L-1) be L arbitrary N×1 vectors and let 
V be the LN×1 vector defined as V=[V(0)T,…,V(L-1)T]T. Denote  
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By using Lemma, (13) can be written as follows: 
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Where iĝ  is the L(M+1)×(M+N) filtering matrix associated 

with the vector iĜ , defined according to (14). 
By theorem 1, if true autocorrelation matrix was available, the 
true channel coefficients are the unique (up to a scalar factor) 
vector H such that q(H)=0. In contrast, when only an estimate 
of the autocorrelation matrix is available, the quadratic form 
has not exactly rank L(M+1). Hence, estimation of H can be 
obtained by minimizing q(H) subject to a properly chosen 
constraint avoiding the trivial solution H=0. Different 
constraints on H provide different solutions. We have 
classically considered minimization subject to linear and 
quadratic constraints: 
• Quadratic constraint: Minimize q(H) subject to |H|=1. 

The solution is the unit-norm eigenvector related to the 
smallest eigenvalue of matrix Q. 

• Linear constraint: Minimize q(H) subject to cHH =1. 
Where c is a L(M+1)×1 vector. The solution is 
proportional to Q-1C . 

The first choice is more natural but involves the computation 
of an additional eigenvector. The second solution depends on 
the choice of an arbitrary constraint vector c. The 
computational cost of the second solution is lower since it 
amounts to solving a linear system rather than extracting an 
eigenvector [6]. 

E. Signal Subspace 
It is shown before that minimizing a constrained quadratic 
form involving the noise eigenvectors give the channel 
coefficients. This quadratic form is equivalently rewritten in 
terms of the signal eigenvectors as: 
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Where iŝ  denotes the filtering matrix of size L(M+1)×(N+M) 

associated to eigenvector iŜ . The minimization of (13) under 
the constraint |H|=1 is thus equivalent to the maximization of 

HQHHq H ~)(~ =  under the same constraint. This 
maximization is easily implemented by looking for the 

maximum eigenvalue of Q~ . 
Under the unit norm constraint, both the noise and signal 
subspace give identical solutions. However, computing the 
coefficients of the quadratic form involves LN-N-M terms in 
the former case and M+N in the latter [6]. 

F. Deterministic Subspace Approach 
Subspace method based on the property that the channel is in a 
unique direction. It may not be robust against modeling errors, 
especially when the channel matrix is close to being singular. 
The second disadvantage is that they are often more 
computationally expensive [2]. 
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Deterministic subspace methods do not use a priori statistical 
information. A more useful property of deterministic subspace 
methods is the finite sample convergence property. Without 
presence of noise, the estimator produces the exact channel 
using only a finite number of samples if the identifiability 
condition is satisfied. Therefore, these methods are most 
effective at high SNR and for small data sample applications. 
On one hand, deterministic methods can be applied to a much 
wider range of source signals; on the other hand, not using the 
source statistics affects its asymptotic performance [2]. 

III. LMMSE CHANNEL ESTIMATION 
LMMSE is widely used in the OFDM channel estimation 
since it is optimum in minimizing the MSE of the channel 
estimates in the presence of AWGN. LMMSE uses additional 
information like the SNR. LMMSE is a smoother/ interpolator 
/extrapolator, and hence is very attractive for the channel 
estimation of OFDM based systems with pilot sub-carriers. 
However, the computational complexity of LMMSE is very 
high due to extra information incorporated in the estimation 
technique [8]. 

A. System Description 
We assume that the use of a cyclic prefix (CP) both preserves 
the orthogonality of the tones and eliminates ISI between 
consecutive OFDM symbols. Further, the channel is assumed 
to be slowly fading, so it is considered to be constant during 
one OFDM symbol. The number of tones in the system is N. 
Under these assumptions we can describe the system as a set 
of parallel Gaussian channels, with correlated attenuations. 
The attenuations on each tone are given by hk. 
In matrix notation we describe the OFDM system as 

wXhy +=                   (17) 
Where y is the received vector, X is a diagonal matrix 
containing the transmitted signaling points, h is a channel 
attenuation vector, and w is a vector of IID complex zero-
mean Gaussian noise. LMMSE of the variable h is given [9] 
by: 

yRRh yyyh
1ˆ −=                  (18) 

Where Ryh is the cross-correlation between variables y and h. 
The LMMSE estimate of the channel given the received data 
and the transmitted symbols, is [10]: 
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Where LSĥ , is the Least-Square (LS) estimate of h and Rhh is 
the channel autocorrelation matrix. Without loss of generality, 
we assume that the variance of the channel attenuation is 
normalized to unity. 
The LMMSE estimator (19) is very complex since a matrix 
inversion is needed every time the data in changes. We reduce 
the complexity by averaging over the transmitted data. We 
replace the term (XXH)-1 in with its expectation E{(XXH)-1}. 
Simulations indicate that the performance degradation is 

negligible [10]. Assuming the same signal constellation on all 
tones and equal probability on all constellation points, we 
have E{(XXH)-1}=E{|1/xk|2}I. Defining the average SNR as 
E{|xk|2}/σ2 , we obtain the simplified estimator: 
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Where β is a constant depending on the signal constellation. 
Because X is no longer a factor in the matrix calculation, the 
matrix inversion does not need to be calculated with data 
changing. Furthermore, if channel autocorrelation and SNR 
are known the channel estimated matrix needs to be calculated 
only once. Under these conditions the estimation requires N 
multiplications per tone. To further reduce the complexity, we 
proceed with the low-rank approximations below [10]. 

B. Optimal Low-Rank Approximations 
Optimal rank reduction is achieved by using the singular value 
decomposition (SVD). The SVD of the channel 
autocorrelation matrix is: 

H
hh UUR Λ=                  (21) 

Where U is a unitary matrix containing the singular vectors 
and Λ is a diagonal matrix containing the singular values 

Nλλ ≥≥L1  on its diagonal [10]. 
Since the delay spread in OFDM is usually much less than the 
symbol duration to remove ISI, the channel frequency 
response at different frequencies are highly correlated. So, a 
few singular values have value significantly larger than zero 
[11]. It is shown [10] that the optimal rank-p estimator with p 
largest singular values is:  

LS
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Where pΔ is a diagonal matrix with entries: 
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The dimension of the space (p) of time and band-limited 
signals is needed in the low-rank estimator. It is shown that 
this dimension is about 2BT+1, where B is the bandwidth and 
T is the time interval of the signal. Accordingly, the 
magnitude of the singular values should become small after 
about L+1 values, where L is the length of the CP (2B=1/Ts, 
T=LTs and 2BT+1=L+1) [10]. 
The low-rank estimator can be interpreted as first projecting 
the LS estimates onto a subspace and then performing the 
estimation. If the subspace has a small dimension and can 
describe the channel well, the complexity of the estimator will 
be low while showing a good performance. A block diagram 
of the rank-p estimator in (22) is shown in Fig.2. 
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Fig.2 block diagram of the rank-p estimator [10] 

IV. CONCLUSION 
Channel estimation is a standard linear system identification 
problem with the training sequence as the pilot input signal. In 
many applications, the pilot signals may not be easy to use or 
they may present an extra problem, for example requiring 
more bandwidth in communication systems. Blind channel 
estimation and equalization eliminates the need for a pilot 
signal and simplifies the requirements for channel estimation 
and equalization. In particular, recent developments in blind 
estimation research have led to a class of rapidly converging 
and data efficient algorithms that can effectively estimate the 
channel with a small number of data points. In this paper, we 
reviewed some of the basic approaches in blind estimation. 
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