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ABSTRACT 
Spectrum sensing has been identified as a key enabling 
functionality to ensure that cognitive radios would not interfere 
with primary users, by reliably detecting primary user signals. 
Recent research studied spectrum sensing using energy detection 
and network cooperation via modeling and simulations. However, 
there is a lack of experimental study that shows the feasibility and 
practical performance limits of this approach under real noise and 
interference sources in wireless channels. In this work, we 
implemented energy detector on a wireless testbed and measured 
the required sensing time needed to achieve the desired 
probability of detection and false alarm for modulated and 
sinewave-pilot signals in low SNR regime. We measured the 
minimum detectable signal levels set by the receiver noise 
uncertainties. Our experimental study also measured the sensing 
improvements achieved via network cooperation, identified the 
robust threshold rule for hard decision combining and quantified 
the effects of spatial separation between radios in indoor 
environments. 

1. INTRODUCTION 
Recently, Cognitive Radios (CRs) have been proposed as a 
possible solution to improve spectrum utilization via opportunistic 
spectrum sharing. Cognitive radios are considered lower priority 
or secondary users of spectrum allocated to a primary user. Their 
fundamental requirement is to avoid interference to potential 
primary users in their vicinity. Spectrum sensing has been 
identified as a key enabling functionality to ensure that cognitive 
radios would not interfere with primary users, by reliably 
detecting primary user signals. In addition, reliable sensing 
creates spectrum opportunities for capacity increase of cognitive 
networks. 

The first application of spectrum sensing is studied under IEEE 
802.22 standard group [1] in order to enable secondary use of 
UHF spectrum for a fixed wireless access. In addition, there is a 
number of indoor applications where spectrum sensing would 
increase spectrum efficiency and utilization. For example, it could 
improve co-existence of WLANs (802.11) [2], or create new 
spectrum opportunities for sensor and ad-hoc networks [3]. 
Regardless of application, sensing requirements are based on 
primary user modulation type, power, frequency and temporal 
parameters. For example, the actual primary signal used for 
sensing could be the regular data transmission signal. 

Alternatively, it could be a special permission or denial signal to 
use the spectrum, in the form of a pilot or a beacon. 

Spectrum sensing is often considered as a detection problem, 
which has been extensively researched since early days of radar 
[4]. However, the key challenge of spectrum sensing is the 
detection of weak signals in noise with a very small probability of 
miss detection, which requires better understanding of very low 
SNR regimes [5]. In addition, spectrum sensing is a cross-layer 
design problem in the context of communication networks. 
Cognitive radio sensing performance can be improved by 
enhancing radio RF front-end sensitivity, exploiting digital signal 
processing gain, and using network cooperation where users share 
their spectrum sensing measurements [6]. 

Our goal is to provide a comprehensive study, supported with 
experimental data, that addresses the following issues in spectrum 
sensing based on energy detection:  

-Required sensing time needed to achieve the desired 
probability of detection and false alarm.  

-Limitations of the energy detector performance due to 
presence of noise uncertainty and background interference.  

-Performance improvements offered by network cooperation. 
How does the performance scale with the number of radios? What 
is the robust threshold rule? What is the effect of spatial 
separation between cooperating radios? 

The paper is organized as follows: Section 2 reviews the energy 
detector model, derives its performance and addresses the 
limitations. In section 3, we provide the experimental data that 
verifies theoretical results and characterizes energy detector 
performance in noise. In section 4, we discuss the cooperation 
gains in fading channels. Section 5 presents the experimental data 
for cooperation. Summary of the work and conclusions are 
presented in Section 6. 

2. ENERGY DETECTION 
CHARACTERIZATION 

2.1 Model 
We consider the detection of a weak deterministic signal in 
additive noise. The signal power is confined inside a priori 
known bandwidth B around central frequency fc (Figure 1). We 
assume that activity outside of this band is unknown. Two 



deterministic types of signal are considered: sinewave tone (pilot) 
and modulated signal with unknown data. 

An optimal detector based on matched filter is not an option since 
it would require the knowledge of the data for coherent 
processing. Instead a suboptimal energy detector is adopted, 
which can be applied to any signal type. Conventional energy 
detector consists of a low pass filter to reject out of band noise 
and adjacent signals, Nyquist sampling A/D converter, square-law 
device and integrator (Figure 2.a).  

Without loss of generality, we can consider a complex baseband 
equivalent of the energy detector. The detection is the test of the 
following two hypotheses:  

H0: Y [n] = W[n]                            signal absent 
H1: Y [n] = X[n] +W[n]                signal present 
n = 1,…, N; where N is observation interval                 (1) 

The noise is assumed to be additive, white and Gaussian (AWGN) 
with zero mean and variance σw

2. In the absence of coherent 
detection, the signal samples can also be modeled as Gaussian 
random process with variance σx

2. Note that over-sampling would 
correlate noise samples and, in principle, the model could be 
always reduced to (1). 

A decision statistic for energy detector is: 
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Note that for a given signal bandwidth B, a pre-filter matched to 
the bandwidth of the signal needs to be applied. This 
implementation is quite inflexible, particularly in the case of 
narrowband signals and sinewaves. An alternative approach could 
be devised by using a periodogram to estimate the spectrum via 
squared magnitude of the FFT, as depicted in Figure 2.b). This 

architecture also provides the flexibility to process wider 
bandwidths and sense multiple signals simultaneously. As a 
consequence, an arbitrary bandwidth of the modulated signal 
could be processed by selecting corresponding frequency bins in 
the periodogram.  

In this architecture, we have two degrees of freedom to improve 
the signal detection. The frequency resolution of the FFT 
increases with the number of points K (equivalent to changing the 
analog pre-filter), which effectively increases the sensing time. In 
addition, increasing the number of averages N also improves the 
estimate of the signal energy. In practice, it is common to choose 
a fixed FFT size to meet the desired resolution with a moderate 
complexity and low latency. Then, the number of spectral 
averages becomes the parameter used to meet the detector 
performance goal. We consider this approach in our experiments. 

2.2 Performance 
It is well known that under the common detection performance 
criteria (most notably, the Neyman-Pearson criteria) likelihood 
ratio yields the optimal hypothesis testing solution and 
performance is measured by a resulting pair of detection and false 
alarm probabilities (Pd, Pfa). Each pair is associated with the 
particular threshold γ that tests the decision statistic: 

 T > γ         decide signal present                         
 T < γ         decide signal absent 

When the signal is absent, the decision statistic has a central chi-
square distribution with N degrees of freedom. When the signal is 
present, the decision statistic has a non-central chi-square 
distribution with the same number of degrees of freedom. Since 
we are interested in the low SNR regime, the number of required 
samples is large. If N >250 we can use the central limit theorem to 
approximate the test statistic as Gaussian.  

T~ Normal(Nσw
2 , 2Nσw
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Then Pd and Pfa can be evaluated as:  
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Note that for the constant false alarm probability (CFAR), the 
threshold γ can be set even without the knowledge of the signal 
power. Then, for the fixed number of samples N, Pd can be 
evaluated by substituting the threshold in (3). Each threshold 
corresponds to a pair (Pfa, Pd), representing the receiver operating 
curve (ROC). 

If the number of samples used in sensing is not limited, an energy 
detector can meet any desired Pd and Pfa simultaneously. The 
minimum number of samples is a function of the signal to noise 
ratio SNR= σx

2/ σw
2:  
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           (4) 

In the low SNR << 1 regime, number of samples required for the 
detection, that meets specified Pd and Pfa, scales as O(1/SNR2). 
This inverse quadratic scaling is significantly inferior to the 
optimum matched filter detector whose sensing time scales as 

 
   Figure 1. Spectrum Picture 
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Figure 2. a) Implementation with analog pre-filter and square-law 
device  b) implementation using periodogram: FFT magnitude 
squared and averaging  



O(1/SNR) [5]. The exception is the sinewave case, where the 
optimum matched filter is the FFT with length equal to the 
multiple of sinewave period. If the FFT length is not matched, 
then spectral leakage occurs. Therefore, the implementation in 
Figure 2.b) is partially coherent for sinewave sensing, and it is 
expected that its sensing time scales better than O(1/SNR2). 

2.3 Limitations 
Unfortunately, an increased sensing time is not the only 
disadvantage of the energy detector. More importantly, there is a 
minimum SNR below which signal cannot be detected, and when 
the formula (4) no longer holds. This minimum SNR level is 
referred to SNRwall [7]. In order to understand when the detection 
becomes impossible we need to revisit our signal model. There, 
we have made two very strong assumptions (that are typically 
made in communications system analysis). First, we assumed that 
noise is white, additive and Gaussian, with zero mean and known 
variance. However, noise is an aggregation of various sources 
including not only thermal noise at the receiver and underlined 
circuits, but also interference due to nearby unintended emissions, 
weak signals from transmitters very far away, etc. Second, we 
assumed that noise variance is precisely known to the receiver, so 
that the threshold can be set accordingly. However, this is 
practically impossible as noise could vary over time due to 
temperature change, ambient interference, filtering, etc. Even if 
the receiver estimates it, there is a resulting estimation error due 
to limited amount of time. Therefore, our model needs to 
incorporate the measure of noise variance uncertainty.  

How does the noise uncertainty affect detection of signals in low 
SNR? Essentially, setting the threshold too high based on the 
wrong noise variance, would never allow the signal to be 
detected. If there is a x dB noise uncertainty, then the detection is 
impossible below SNRwall=10log10[10(x/10)-1]dB [7]. For example, 
if there is a 0.5 dB uncertainty in the noise variance, then signal in 
-21dB SNR cannot be detected using energy detector.  

3. ENERGY DETECTOR EXPERIMENTAL 
RESULTS 

The goal of our experimental study was to evaluate and verify the 
theoretical results on the performance and limitations of the 
energy detector. In particular, we measured the achievable 
probabilities of detection as a function of sensing time, and the 
existence and position of the SNRwall. The need for experiments is 
stressed by the inability to realistically model all noise source 
encountered in the receiver and interference environment. In 
addition, a comprehensive evaluation of Pd and Pfa requires 
extensive Monte Carlo simulations. Therefore, the 
implementation on a real-time testbed allows us to perform a large 
set of experiments for various signal levels and receiver settings. 
We also provide an example of hardware implementation with 
report on computational complexity, area, and speed. To the best 
of our knowledge, this is the first energy detector study that 
incorporates hardware realization and real-time experiments.  

3.1 Testbed Description 
The testbed used in the experiments [8] is built around the 

Berkeley Emulation Engine 2 (BEE2), a generic multi-purpose 
FPGA based, emulation platform for computationally intensive 
applications. The BEE2 consists of 5 Vertex-IIPro70 FPGAs, 1 
for control and 4 for user applications. Control FPGA runs Linux 
and a full IP protocol stack convenient for connection with 
laptops and other network devices. Linux OS has been enhanced 
to allow access to hardware registers and memory on the user 
FPGA for real-time data access and control. We used BWRC-
developed automation tool to map our signal processing 
algorithms design in Xilinx System Generator library to FPGA 
configurations.  

BEE2 can connect up to 18 front-end boards via 10 Gbit/s full 
duplex Infiniband interfaces. By using optical transceivers 
compatible with Infiniband connectors, optical cable can connect 
front-end boards at distances up to 1/3 of a mile away from BEE2 
in order to perform different scenario experiments and implement 
network cooperation. In addition, the optical link provides good 
analog signal isolation on the front-end side from the digital noise 
sources created by BEE2. 

The radio front-end system operates in 2.4 GHz ISM band over 85 
MHz of bandwidth with programmable center frequency and 
several gain control stages. Antennas used in the experiments are 
single monopole rubberduck with 0 dBi omnidirectional pattern at 
2.4 GHz. The analog/baseband board contains a 14-bit 128 MHz 
D/A converters, 12-bit 64 MHz A/D converters, and 32 MHz 
wide baseband filters. On board Virtex-IIPro20 is used to 
implement radio control functions and provide optical transceiver 
interface to BEE2 for sample processing.  

For the transmitter, we used Agilent EE4438C ESG vector signal 
generator. It is calibrated to output absolute signal levels for 
arbitrary signals and modulation types. The transmitter was 
interfaced to BEE2 via 100 Base-T Ethernet so that signal 
parameters can be changed during the runtime of the experiments. 
The test setup is presented in Figure 3. 

3.2 Energy Detection Implementation 
The energy detector is implemented using 1024 point FFT with a 
fully parallel pipelined architecture for the fastest speed. Due to 
A/D sampling at 64 MHz, this implementation has 62.5 kHz FFT 
bin resolution. Each block of FFT outputs is averaged using an 
accumulator with programmable number of averages. The result 
of the computation is stored in the memory block RAM. The 

 
 
 
 
 
 
 
 
 
Figure 3. Testbed: Signal generator, Radio board, BEE2 and optical cable 



software running on the BEE2 control FPGA sets all sensing 
parameters and then loads the processed data from the block 
RAMs. The design runs at 100 MHz speed, while the signal 
samples from the radio are fed at 64MHz. Thus, there is an 
insignificant latency in the signal processing. For example, 
executing 1000 experiments with 3200 spectral averages (51.2 
ms) of 1024 FFT takes less than 60 seconds. Hardware estimate of 
this design is: 15,416 FPGA logic slices, 140 18x18 multipliers, 
and 106 block RAMs.  

3.3 Experimental Setup 
To measure the performance under AWGN we connect signal 
generator to the RF board antenna input via SMA cable. The radio 
is put inside the RF shield, thus the only noise sources come from 
the radio circuitry. Prior to all experiments, we calibrated the 
noise level of the radio receiver, and the measured level is -103 
dBm in a 62.5 kHz FFT bin. In order to accommodate a wide 
dynamic range signal and keep A/D resolution high, we set the 
total receiver gain to medium level of 50dB.  

We tested two types of signals: sinewave carrier at 2.493GHz, 

and 4 MHz wide QPSK signal centered at the same carrier. For 
sinewave carrier we swept signal levels from -110 dBm to -128 
dBm, which is equivalent to -7 to -25 dB of the receiver SNR. For 
4 MHz QPSK signal, we tested levels from -98 dBm to -110 dBm, 
which is equivalent to -13 to -25 dB of the receiver SNR. In order 
to accurately estimate the Pd and Pfa we repeated each detection 
measurement 1000 times. For each signal level, we collected two 
sets of energy detector outputs: one in the presence, and the other 
in the absence of the signal generator output signal. From “no 
input signal” data, we estimated the detection threshold to meet 
the specified probability of false alarm. Then, we applied the 
threshold to the data where signal was present and computed the 
probability of detection.  

3.4 Results 
First, we measure how the probability of detection scales as the 
sensing time increases. For all measurements, we set the 
probability of false alarm to 5%. Figure 4.a) shows the achievable 
probabilities of detection for sinewave carrier when number of 
averages increases from 200 (3.2 ms) to 52,000 (0.83 s). If we set 
the Pd to a reasonable limit of 0.8 then within 200 ms energy 
detector can detect up to -122 dBm. Figure 4.b) shows the 
performance of the detector for the QPSK signal. Since the energy 
of the QPSK signal is spread over a wider bandwidth, it becomes 
harder to detect weak signals in additive noise. The target Pd=0.8 
can be achieved for signals greater than -104 dBm within 170 ms.  

Figure 4 also shows that when the signal becomes too weak, 
increasing the number of averages does not improve the detection. 
This result is expected and is explained by the SNRwall existence. 
In Figure 5, we plot the required sensing time vs. input signal 
levels in order to meet Pd and Pfa requirements simultaneously. 
We set the Pfa=0.05 and Pd=0.6. In the case of sinewave sensing 
we observe the scaling law N~1/SNR1.5.This is expected since our 
implementation has a partial coherent processing gain for 
sinewave detection.  However, beyond -124 dBm signal level the 
slope becomes increasingly steep. Signals below -128 dBm 
cannot be detected, resulting in the SNRwall=-25dB. In the case of 
QPSK detection, we observe a non-coherent detection scaling law 
of N~1/SNR2 consistent with the theoretical prediction. The limit 
in QPSK detection happens at -110dBm (SNRwall=-25dBm). From 
the theoretical analysis, we know that SNRwall=-25dB corresponds 
to less than 0.5 dB of noise uncertainty. 

4. COOPERATIVE SENSING 
Up to this point we have considered spectrum sensing performed 
by a single radio in AWGN-like channels. In fading channels, 
however, single radio sensing requirements are set by the worst 
case channel conditions introduced by multipath, shadowing and 
local interference. These conditions could easily result in SNR 
regimes below the SNRwall, where the detection will not be 
possible. However, due to variability of signal strength at various 
locations, this worst case condition could be avoided if multiple 
radios share their individual sensing measurements via network 
cooperation [9],[10],[11].  

 
a) Sinewave sensing 

 
b) QPSK sensing 

  Figure 4.  Probability of detection vs. sensing time for Pfa=5% 



4.1 Cooperation Gains 
Under independent fading conditions, which is often assumed for 
multipath if radios are more than λ/2 apart, cooperation can be 
studied as a diversity gain in multiple antenna channels. Due to a 
small overhead in the protocol, we consider a hard decision 
combining, where each radio sends its local decision to a 
centralized location (0 signal is absent, 1 signal is present), and 
the decisions is made via OR operation. It has been shown [9] that 
if n radios combine independent measurements, then probability 
of detection of the system QD monotonically increases as QD=1-
(1-Pd)n. In addition, the probability of false alarm for the system 
QF also monotonically increases as QF=1-(1- Pfa)n.  

However, fading could be caused by shadowing that exhibits high 
correlation if two radios are blocked by the same obstacle. 
Commonly, a shadowing correlation is described by the 
coefficient ρ and modeled as an exponential function of distance: 
ρ=e-ad. Measurements of the shadowing in indoor environments 

[12] show that the correlation coefficient is independent of 
wavelength over a frequency octave, but it is dependent on the 
topography. It was estimated [12] that 90% correlation distance is 
typically 1m, 50 % is around 2m, and slowly decays to 30% over 
8m. Therefore, in the limited area, increasing the number of 
radios introduces the correlation, which in effect limits the 
cooperation gain [9], [11]. In our experimental study, we 
investigate how the cooperation gain scales with the number of 
radios and their spatial separation in typical indoor environments. 

4.2 Threshold Rules 
Recall the single radio analysis where we identified the SNRwall 
due to noise uncertainty and its impact on the detection threshold. 
Now, in the cooperation case, radios could use two different types 
of threshold rules in the local decision process: 1) a 
predetermined (fixed) threshold set by the centralized processor 
or 2) an independently estimated threshold based on the local 
noise and interference measurements. In the case of stationary 
environments with all radios being identical, these two rules 
would result in the same system performance. However, due to 
the presence of ambient interference caused by primary or 
cognitive radios in the vicinity, and local noise, temperature, and 
circuit variability, each radio sees different aggregate noise and 
interference. This observation suggests that a fixed threshold 
might be suboptimal, and that in practical situations the estimated 
threshold would provide robustness and better gains. Through 
experiments, we analyze benefits of noise and interference 
estimation, and the gap between the two threshold rules.  

5. EXPERIMENTAL RESULTS FOR 
COOPERATION 

5.1 Experimental Setup 
The experiments were conducted inside the Berkeley Wireless 
Research Center. The floor plan of the center is shown in Figure 
6. The figure also shows 54 locations on a 2m by 2m grid, that 
covers a cubicle area, library and conference room, where all 
wireless measurements were taken. In all experiments, the 

 
a) Sinewave sensing 

 
b) QPSK sensing 

Figure 5. Required sensing time vs. signal input level for fixed Pd 
and Pfa  

 
        Figure 6. BWRC floor plan with transmitter and receiver locations 



transmitter was located inside the lab. Therefore, the signal path 
between the transmitter and all receiver positions included 
propagation through either concrete or wooden walls, supporting 
beams, medium and large size metal cabinets, and general office 
furniture. The area covers a balanced variation of obstacles which 
are typical for indoor non-line-of-sight environments. 

Due to operation in the unlicensed ISM band, outside interference 
had to be considered. All 802.11 b/g, Bluetooth, and ZigBee 
equipment was shut down during the experimentation, in order to 
minimize potential interference. For the sinewave, the signal 
generator transmitted a -40 dBm signal at 2.485GHz. For the 4 
MHz wide QPSK signal, the signal generator transmitted a -30 
dBm signal in 2.483GHz – 2.487GHz band, centered at 
2.485GHz. The bandwidth ratio of QPSK signal to sinewave is 
approximately 10*1og10(4 MHz/62.5kHz)=18 dB, thus a 10 dB 
difference in transmit power favors the sinewave case in terms of 
the receiver SNR. It was expected that sinewave performance 
would be more affected by multipath, thus 8 dB power gain was 

added. 

For each sensing location, data was collected for three different 
transmitter configurations: idle spectrum i.e. no signal, sinewave 
signal and QPSK signal. The idle spectrum was sensed in order to 
be able to compare two different threshold rules described in the 
previous sections. For each location and data type, spectrum was 
sensed 200 consecutive times using 3200 averages (51.2 ms) in 
the periodogram.  

5.2 Measurement Results 
First, we analyze the cooperation gain as function of the number 
of cooperating radios. Figures 7 a) and b) show the system ROCs 
for sinewave and wideband QPSK signals, respectively. For a 
given probability of false alarm for the cooperating system QF, an 
estimated threshold was computed for each location based on the 
idle spectrum data. Then, these thresholds were used to compute 
the probability of detection for each location. By applying the OR 
function to decisions of n radios and averaging across all possible 
combination of n radios among 54 locations, we obtain QD.  

For the sinewave signal, the single radio sensing is limited by 
multipath fading, thus significant improvement is achieved even 
with 2 cooperative radios. Given 10% probability of false alarm, 
an 18% improvement is observed through cooperation of two 
radios, then 9% for three, and it saturates to 4% and 3% for four 
and five cooperating radios, respectively. Overall, going from 1 to 
5 cooperative radios detection improves from 63% to 97%. Note 
that if radios would experience the independent multipaths then 
the cooperation would result in QD=1-(1-0.63)5=99%. In the case 
of wideband QPSK signal, the probability of detection is even 
better, though the average SNR is 8dB lower. With 5 cooperative 
radios, QD for QPSK reaches 99%. This improvement in the 
QPSK sensing is due to frequency diversity gain, which makes 
the wideband signal less sensitive to deep fades. 

Next, we compare experimental results for two different threshold 
rules applied to the same set of measurement data. For the fixed 
threshold rule, the same threshold is applied for all possible 
combinations of cooperating radios. As expected, Figure 8 shows 

a) Sinewave sensing 

b) QPSK sensing 
Figure 7.  Cooperative gains vs. number of cooperative radios 

 
            Figure 8. Cooperative gains vs. threshold rule 



that the performance of the fixed threshold rule is significantly 
lower than that of the estimated threshold rule. Even for the 
single radio sensing under variable noise and interference, it is 
essential to apply the location and time relevant threshold 
obtained via estimation. The cooperation gains are still present, 
but are significantly reduced by suboptimal threshold rule. The 
gap between the two rules varies form 15% to 25%. Thus, even a 
moderate QD=90 % and QF=10% can never be met using the 
fixed threshold. The implications of this result imply that robust 
sensing must involve frequent receiver noise calibration and 
accurate interference estimation. In turn, this might require 
additional sensing time. 

Lastly, we analyze the effect of spatial correlation on the 
probability of detection for two cooperating radios. Figure 9 
presents experimental results for sinewave and 4 MHz QPSK 
signals for separation distances from 2 m to 8 m. Measurements 
show that the probability of detection monotonically increases as 
the separation between two cooperating radios increases. The 
improvement of up to 7% in QD is obtained once the cooperation 
distances extend to 8 m. This result can be explained by 
measurements in [12] showing that correlation coefficient of 
50% for distances of 2 m is still high to provide independency 
needed for cooperation gain. In [9], simulation study has shown 
that cooperation gain increases QD by 2-3% as the correlation 
coefficient drops from 50% to 10%. Our measurements confirm 
that it is beneficial to increase the radio separation so that 
correlation coefficient is less than 10%, which for this particular 
environment happens at 8 m distances.  

6. CONCLUSIONS 
In this paper we investigated the feasibility and performance of 
the energy detector for the spectrum sensing of narrowband 
pilots and wideband primary user signals. Our study includes a 
theoretical background and experimental results for two 
applications: 1) single radio sensing performed on the physical 
layer and 2) cooperative sensing performed by a network of 
cognitive radios in an indoor environment. We derived and 
measured the required sensing time, achievable probability of 
detections and false alarm, and minimum detectable signal levels 
in AWGN and fading channels. Experiments are performed in 
the 2.4 GHz ISM band using a radio testbed whose front-end and 
baseband circuitry exhibit true noise, gain and filtering variability. 
In AWGN-like channels, it was found that the presence of radio 
uncertainties sets practical limits on minimum detectable signal 
levels which cannot be further improved by signal processing.  

In fading channels, single radio sensing is limited by the worst 
case channel conditions introduced by multipath and shadowing. 
We deployed multiple radios in a typical office indoor 
environment and measured sensing improvements achieved via 
cooperation. Our cooperation study also identified the robust 
threshold rule for hard decision combining. In addition, we 
quantified the effects of spatial separation between cooperating 
radios in the typical indoor environments. 
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