In the name of God

Cognitive ultra wide band Radio

Soodeh Amiri

Supervised by: Dr. M. Omidi
27 July 2009
OUTLINE:

- INTRODUCTION
- UWB PROBLEMS
- CR in UWB
- STRUCTURE OF COGNITIVE UWB SYSTEM
- Differences between CR and UWB
- Spectrum sharing in Cognitive UWB Radio
- Spectrum sensing in Cognitive UWB Radio
- Conclusion
- References
INTRODUCTION

- **Large bandwidth**
 High data rate communications, multiple access communications, Ground and wall penetration and geolocation.

- **Carrierless signal**
 Hardware simplicity and small low cost hardware.

- **Ultra short pulse width**
 Multipath components of UWB signals can be resolved directly.
INTRODUCTION

The bandwidth of UWB system is generally over 20% of center frequency or more than 500MHz.
• In terms of bandwidth
 ❖ Ultra wide band BW >> wideband BW >> Narrowband BW
Differences between CR and UWB

- A CR utilizes only unused spectrum segments or spectrum holes at a given time and location, whereas the UWB signal spectrum may overlap with the PU signal spectrum.

- The UWB technology is aimed at short-range communications due to transmission power constraints, but the CR may use higher transmit power levels and therefore may be deployed in longer-range communications.
UWB PROBLEMS:

• Because UWB occupying very wide spectrum, and effect from/to other existing systems within the same band.
• Even UWB system transmits under limited power level, it could cause interference to other systems.
CR in UWB

• cognitive radio can sense the spectrum, to check whether it is being used by licensed services, Cognitive UWB radio can change the radio parameters in order to be able to exploit the unused part of the spectrum.
cognitive UWB system divides the whole band into several sub-bands and selects the ones with good channel condition for its transmission.
STRUCTURE OF COGNITIVE UWB SYSTEM:

Channel coder → UWB modulation (ppm) → Preamble insertion → RF transmitter

Input data

Channel Decoder → UWB Demodulation (ppm) → Synchronization → RF receiver

Output data

Cognitive pulse generator

Pmc generator

Mask information

Spectrum sensing
Spectrum sharing in Cognitive UWB Radio

Equal users

Primary-secondary users

Coexistence network

Coperation network
Spectrum sensing schemes

- **Energy detection**
 When the receiver cannot gather sufficient information about Pus.

- **Feature detection**
 It is computationally complex and requires significantly long observation times.

- **Matched filter detection**
 When the information of the primary user signal is known to the CR user, the optimal detector is the matched filter detection.
From what has been discussed, we may draw the conclusion that the matched filter detection is the optimal spectrum sensing scheme in the UWB-CR. Because the priori knowledge of the primary user signals in the UWB-CR system is known to the CR user.
• Because of shadowing and fading, it is possible that some devices do not receive a primary user’s signal. In order to avoid the hidden PU problem, the spectrum sensing must be distributed among devices.
Conlusion:

• Decrease interference
• capacity of the UWB system can be improved
• Flexibility
REFERENCES

Thank you for your attention