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Abstract: 
In recent years, RF receiver designers 
focused on replacing analog components 
with digital ones, trying hard towards the 
ideal Software Defined Radio (SDR) where 
all signal processing is done in software. 
Such an ideal SDR platform may form a 
flexible and reprogrammable receiver that 
can deal with many different standards, e.g., 
IS-95, GSM, UMTS, and especially the 
various military standards. A wideband 
receiver has to simultaneously deal with 
hundreds to few thousands channels, which 
lay in the same spectrum interval. One of 
the most computation intensive tasks in 
such receiver is channelization . A wideband 
channelizer   decomposes its RF input 
signal into separate outputs, each containing 
the signal of single channel. The goal of the 
presented research is to study algorithms for 
wideband channelization   then we 
compare the introduced algorithms. 
 

1. Software Defined Radio: 
The necessity for software defined radio 
(SDR) appeared from military 
applications where communication 
between several different forces (i.e., 
air-force, ground force, navy, etc.)  had 
to be facilitated while preventing 
interception by enemy forces. DARPA’s 
SPEAKeasy   and JTRS projects are 
examples for development of SDR, 
where multiple air-interfaces with 
different signal processing techniques 
were integrated into one platform. 
However, the necessity for SDR also 

exists in civil applications. Typical 
example is a cellular phone that is 
capable of operating within the different 
existing standards (UMTS, GSM, DCS-
1800, IS-95, JDC, and many more). 
 
2. subjects driving the 
channelization architecture 
 Two key subjects defining the technical 
requirements of the channelizer : 
 
2.1.Spectral Content of the 
Wideband Channel 

The frequency allocation plans supported by 
the SDR drivesThe technical requirements 
for the channelization approach chosen. At 
one extreme is cellular communications, 
where the system architecture typically 
defines a fixed carrier spacing with a 
constant RF bandwidth per carrier channel. 
For example, GSM900 defines an uplink 
band from 890 to 915 MHz and a downlink 
band from 935 to 960 MHz (see Figure 1) . 
Both of these  bands contain 124 carrier 
channels spaced 200 kHz apart. The 
channelizer supporting this type of network 
may be able to utilize  the redundancy of the 
channel structure to provide an efficient 
channelization mechanism. 
 

 
Figure 1: Uplink RF Channel Structure for 
GSM900 
 
At the other extreme, both the carrier 
frequency and RF bandwidth per carrier are 
dynamically assigned. This type of 
architecture is found in a multi-standard 
communications system such as a multi-
standard satellite Gateway . In these types of 
systems, subscribers may be assigned a 
waveform specific to a service offering, or 
may be assigned an operating mode for a 
waveform based on pre-defined 
requirements for quality of service. The 
carrier frequency, synchronization scheme, 



and analog bandwidth parameters of each 
subscriber signal will vary depending upon 
the specified operating parameters of the 
assigned waveform (see Figure 2). The 
channelizer employed in a radio supporting 
this type of architecture must be flexible 
enough to accommodate all of the 
carrier/bandwidth combinations supported 
by the network architecture, and possibly 
allow for the dynamic reallocation of 
channel resources within this architecture 
during operation 
  
 
 
 

Figure 2: Possible Frequency Plan for Wideband 
Satellite Radio Link 
 
2.2. Processor Selection for 
Channelization Processing 
In SDR architecture, processing would be 
limited to general purpose processors 
(GPPs) communicating with standards based 
protocols, such as TCP/IP or CORBA. This 
model allows for maximum reuse of 
application code across multiple platforms, 
accelerating time to market and maximizing 
the return on investment in application 
software through code reuse and 
upgradability . In general, however, this type 
of operating environment is not practical in a 
field deployable system for two primary 
reasons: 
 
∗ The power utilization and heat dissipation 
of GPPs are often prohibitive in many size, 
weight, and power limited systems. As a 
result, Digital Signal Processors (DSPs) are 
often utilized to supplement the processing 
provided by the GPP to keep the 
architecture within the specified power 
budget. 
 

∗ GPPs and DSPs employ a serial processing 
architecture that does not provide sufficient 
performance for the processing of wideband 
signals .As such, the use of Field 
Programmable Gate Arrays (FPGAs), which 
gives near ASIC like performance in a 
programmable device, is often required in 
the SDR platform. 
 
For these reasons, a heterogeneous 
processing engine incorporating a 
combination of FPGAs, DSPs, and GPPs is 
typically required in the digital transceiver 
architecture. Front-end channelization 
processing in this type of platform is 
typically limited to FPGAs due to 
performance constraints in dealing with the 
wideband input, although back-end 
processing which is preformed on a per 
channel basis may incorporate DSPs or 
GPPs. 
 
 
3. Channelization Algorithms 
analysis 
channelization is a process where 
single, few, or all channels from a 
certain frequency band are separated 
for further processing. The separation of 
single channel is usually done by down-
conversion followed by filtering and 
optional sample-rate conversion. 
The channels of interest may be of 
equal or different bandwidths and may 
be uniformly or non-uniformly, 
continuously or non-continuously 
distributed over the input frequency 
band.  
 
4. Channelization Algorithms 
This section presents 3 channelization 
algorithms: 
4.1 The per-channel Approach 
A straightforward implementation, which 
is also the traditional implementation of 
Wide band channelizer, is to simply use 
a single-channel channelizer for each 
channel of interest, and connect them all 



to the input frequency band signal . 
Figure 3 illustrates such algorithm. 

 
Figure 3: Per-channel channelizer 
 
 
This approach provides a great deal of 
flexibility in the choice of channels to be 
separated  . Each single-channel 
channelizer can be individually designed 
for BW and frequency choice. 
Furthermore, the separated channels 
are not constrained to be of the same 
bandwidth or to be uniformly distributed 
over the frequency input band  . 
However, once such channelizer is 
designed, it is very rigid for alteration. 
Adapting this channelizer algorithm to 
different air-interface might require 
replacement of some or all single-
channel channelizers. When a change 
has to be done only in part of the input 
frequency band, only the corresponding 
single-channel channelizers have to be 
altered or replaced. Another weakness 
of this algorithm is that for wideband 
receivers, where many channels are to 
be separated, silicon costs and power 
consumption are extremely higher than 
in other, more advanced wideband 
channelization techniques introduced in 
the following sections  . 
 
4.2  Pipelined Frequency 
Transform 
The Pipelined Frequency Transform 
(PFT) algorithm  is based on a binary 
tree of DDCs and SRCs (see Figure 4) 
where units of DDC followed by SRC 
are used for dividing their input band 
into two half-bands with half sampling 

rate. This algorithm creates a binary tree 
that splits the input frequency in two 
half-bands and then splits each 
half-band again into two half sub-bands 
and so on, until the last tree level 
produces the required separated 
channels. . This algorithm for itself has 
no advantage over the algorithm 
presented in the previous 
section and is actually much more 
expensive in terms of silicon use, since 
apart of a 

 
Figure 4: DDC-SRC tree 
 
single-channel channelizer for each 
channel of interest (as in the perchannel 
algorithm) in the last stage of the tree, 
many more are needed in the other 
stages. Nevertheless, each single-
channel channelizer complexity can be 
reduced dramatically, taking advantage 
of half band filters symmetry and 
restricting the output sample rate to be 
quarter of input sample rate in each 
single node in the tree. Observing that 
the components in each stage perform 
in half of the sampling rate of its former 
stage components, a considerable 
optimization can be performed. The 
actual amount of operations-per-time 
performed in each level of the tree is 
equal while distributed over twice 
components than in its former tree level. 
Instead of using two components for 
each component in the former tree level 
at half sampling rate, one component 
that performs in the same sampling rate 
can be used in combination with inter 
leaver , which distributes the samples 
accordingly. This is done using complex 
(IQ) DDC and DUC as illustrated in 



Figure 5 (The DDCs and DUCs that are 
not in the 1st level are of a special 
interleaved version). The channels 
however are output serially, and 
therefore some extra processing is 
required for distributing them in distinct 
outputs. 
 

 
Figure 5: DDC-SRC tree 
 
 
The PFT algorithm seems to be much 
more economical in terms of silicon use 
and power consumption when compared 
to per-channel channelizers algorithm. 
Especially when many channels are to 
be separated from the frequency input 
band . However, it demonstrates less 
flexibility, as the separated channels 
must be of equal bandwidth and 
uniformly distributed. The Tunable PFT 
algorithm is an adaptation of the PFT 
that alleviates this inflexibility by 
introducing interleavers that provide 
intermediate outputs from the PFT 
stages that may be used for fine tuning 
channelization . This improvement, 
however, leads to increasing HW costs 
and is not applicable for wideband 
channelizers. 
 
4.3 Polyphase FFT 
This channelization algorithm is an 
improvement of FFT channelization 
using a polyphase filterbank in 
combination with FFT, taking advantage 
of the equivalence theorem and noble 
identities   while posing acceptable 
restriction over the sampling rate. 
 

 
 
 
Figure 6: Modifications to the kth single 
channel channelizer 
 
We consider the kth single (complex) 
channelizer from the per-channel 
channelizer in Figure 3 (see Figure 6(a)) 
and apply series of modifications to it . 
The expression of the LPF output in 
Figure 7(a) is a multiplication of the input 
samples x[n] with the complex 
heterodyne and a convolution with the 
filter coeffcients  h(n), and 
is given in Equation 4.3.1. 

(4.3.1) 
Swapping between the complex 
multiplier and the prototype LPF alters 
the LPF to a BPF in accordance with the 
equivalency theorem  (see Figure 6(b)). 
The corresponding modification to 
Equation 4.3.1 is shown in Equation 
4.3.2. 

 

           (4.3.2) 
Observing that only everyMth result of 
the complex multiplier in Figure 6 (b) is 
kept after of the SRC, we interchange 
these two elements while adapting the 
phase of the complex multiplier (multiply 
with M) as shown in Figure 6(c). 
Constraining the center frequency for 



the kth channel to be an integer multiple 
of the output sample rate so that 

  results in aliasing to baseband, 
since the complex multiplier term 
becomes . Consequently, 
the complex multiplier becomes 
superfluous and can be removed, as 
shown in Figure 6(d). 
 

 
 
 
Figure7: l branches in the filterbank 
decomposition of the kth single channelizer 
 
Noting that as before, every Mth output 
of the BPF in Figure 6(d) is not used due 
to the SRC, it would be sensible to 
”shift” the SRC to the left of the BPF. In 
order to do so, we have to invoke the 
noble identity . For this purpose we first 
have to decompose the BPF in the kth 
single channelizer into a filterbank of l 
(=M) sub-filters. The filterbank 
decomposition is described in Equation 
4.3.3. 
 

 
                                                    (4.3.3) 
The resulted l sub-filters in the filter bank 
are composed of delay element, sub-
filter, and (time invariant) scaling 
multiplier (see Figure7). Moving the 
SRC through the scaling 
multipliers  and the l sub-filters we 
invoke the noble identity. The resulted 
filterbank is depicted in Figure 8. The 
corresponding output function is shown 
in Equation 4.3.4. 

   
                                                      (4.3.4) 

 
Figure8: Applying the noble identity in the kth 
filterbank 
 
 
where  y(r)(nM) is the nMth sample from 
the rth sub-filter. 
The delay elements, the SRCs and the 
sub-filters are similar for all the k 
filterbanks and therefore only one 
should be physically implemented. 
Observing in Equation 4.3.4 that the 
multipliers and adders  practically 
function as M-points DFT, they can be 
replaced with FFT for reducing 
complexity. The final result illustrated in 
Figure 9 (note that the delay elements 
are replaced by a chain of one unit delay 
elements) is known as the polyphase 
FFT (PFFT) filterbank channelizer 
algorithm.In comparison with the per-
channel channelization algorithm 
formerly introduced,the PFFT algorithm 
is much more rigid to changes, and is 
subject to restrictions imposed 
over the sampling rate, the number of 
channels to be extracted, and the 
number of taps in the prototype filter. 
however, it seems to show extremely 
lower silicon costs. 



 
Figure 9: Polyphase FFT channelizer 
 
Measured in terms of number of 
arithmetic operations per number of 
separated channels (computational 
complexity)  , it seems that the PFFT 
outperforms the perchannel algorithm 
when separating more than 3 channels. 
 
5. Algorithms Comparison 
 In this section, we present HW-
complexity (cost) comparison and a 
qualitative comparison of introduced 
channelization algorithms. 
 
5.1 Hardware Complexity 
Comparison 
The following HW complexity 
comparison is based on data from  , 
which is put herein plots. The first 
comparison is for LUT   utilization. The 
right plot in Figure 10  show us that the 
per-channel algorithm (stacked) utilizes 
far more LUTs than the PFT (binary) 
and PFFT algorithms and that its 
tendency is much steeper. The left plot 
in Figure 10 gives us a clearer 
comparison between the other two 
algorithms. We can see that for all given 
number of channels PFT more than 
twice LUT resources than the PFFT 
algorithm does. The second comparison 
is of memory bits utilization. The right 
plot in Figure 11 shows us that the per-
channel algorithm employs much more 
memory resources than 
the PFT and PFFT algorithms for all 
number of channels. However, 
comparing the PFT and PFFT 

algorithms (left plot in Figure 11) we can 
see that the PFFT algorithm is superior 
only when channelizing more than 300 
channels. Another important property 
is that the PFT curve’s inclination is 
much steeper than the PFT curve. 

 
Figure 10: Comparison of LUT utilization 

 
Figure 11: Comparison of memory bits 
employment 
 
 
 
5.2 Qualitative Comparison 
The parameters   ranges for comparison 
are wide. Limitation to practical 
parameters may alleviate this difficulty  . 
Most of newly proposed   channelization 
techniques in literature are compared to 
the traditional per channel  channelizer. 
The comparisons here are divided to 
three groups: Computational complexity, 
size (”silicon costs”), and group delay 
and flexibility. 
5.2.1 Computational complexity 
A common comparison parameter is 
computational complexity, which is 
usually derived from simulations and 
software implementations. Such a 
comparison projects on silicon costs but 
usually do not take into account memory 
requirements and control complexity. 
Previous works  show that when 3 or 
more channels are to be channelized, 
the PFFT algorithm outperforms the per-



channel algorithm. also show that an 
improvement in the filters of the per-
channel algorithm raises this limit to lay 
between 4 and 20 channels for some 
scenarios. 
5.2.2 Silicon cost 
Comparison that is based on actual 
implementation in FPGA gives a good 
idea about the HW complexity of the 
different algorithms. A drawback of such 
comparison is that it is not platform 
independent. Different FPGAs contain 
some dedicated multipliers and built-in 
memory blocks. Each configuration of 
distinct algorithm may have trade-offs 
in FPGA resources that is difficult to 
measure and compare. Such is the 
comparison is made between the PFT, 
PFFT, and per-channel algorithm 
implementations presented in 
Subsection 4.1. Based on this 
comparison, it seems that in terms of 
memory use, the PFT memory 
requirement is growing rapidly with the 
number of channels to be separated. 
The conclusion drawn in previous works  
is that up to 256 channels, the HW 
complexity of PFT and PFFT is 
comparable and that above 256 
channels PFFT outperforms the PFT. 
5.2.3 Group delay 
Generally, group delay is not a major 
consideration in the choice of 
channelization algorithm. It is usually of 
concern when designing receivers that 
deal with analysis of short radar pulses. 
one work  shows that the group delays 
of PFT and PFFT algorithms in different 
configurations are quite similar. 
Normally, PFFT group delay is better 
than in PFT algorithm, but more rigid 
implementation of the PFT (giving up 
intermediate outputs) may reach a 
comparable or better group delay than in 
the PFFT algorithm. Comparing the 
PFFT and per-channel algorithm, it 
seems that the later has a small, 
advantage due to the FFT stage in the 
PFFT algorithm.  
 
 

5.2.4 Flexibility 
As this study is aimed toward the 
mapping of selected algorithm on 
reconfigurable digitizers, analysis of two 
flexibility aspects in the different 
algorithms is essential. The 
following discussion offers analysis of 
initial design flexibility and 
reconfigurability. 
5.2.5 Initial design  
In this aspect, the per-channel approach 
is clearly the winner. All the separated 
channels are independent, may have 
different bandwidths and may be 
non-uniformly  and non-continually 
distributed over the input frequency 
band. The PFT and PFFT algorithms 
suffer from similar limitations. Namely, 
producing channels with equal 
bandwidth that are uniformly and 
continually distributed over the input 
frequency band. The PFT suffers from 
another restriction however. The number 
of the separated channels has to be an 
integer power of 2. The PFFT in 
principle is more flexible in the choice for 
number of channels to be separated. 
Nevertheless, the most economical 
implementations of FFT have integer 
power of 2 bins, and that may also 
 impose restriction on the 
implementation of PFFT filterbank. An 
advantage of the PFT over the PFFT is 
its possibility to produce intermediate 
outputs of channels with half of the 
resolution and twice the bandwidth of 
the channels in the next level of the PFT 
tree. The PFFT has a constraint on the 
number of taps in the prototype filter, 
which must be 
an integer multiply of the number of 
channels. 
5.2.6 Reconfiguration  
This is a key concern in the evaluation 
of the different channelization 
algorithms   . Addition or removal of 
single or few channels is very easy to 
implement on the per-channel algorithm, 
while in most cases, for the PFT and the 
PFFT algorithms it means a complete 



reconfiguration of the whole 
implementation (especially when 
a change in an integer power of 2 
number of channels is required). 
Adaptation of the filtering performance 
(channels separation quality) requires 
modification to the number of taps and 
the weight for each tap in the filter. In 
the PFFT algorithm the filtering is 
implemented in a logically separated 
block, and therefore its adaptation 
need not have consequences for the 
rest of the algorithm implementation. In 
the PFT and the per-channel algorithms, 
however, the filters are distributed within 
different logical blocks, so that 
adaptation in their performance may 
have consequences to the rest of the 
implementation. Table 1 summarizes the 
qualitative comparison between the 
different channelization algorithms. 
Careful examination of the different 
comparison shows that the per-channel 
approach wins in many aspects. 
Conversely, its implementation for high 
number of channelsis infeasible, and 
that makes the PFFT algorithm the most 
suitable for SDR wideband channelizer . 
Nevertheless, the differences 
between the PFFT and FFT 
implementations for medium number of 
channels (few tens to few hundreds) is 
not well documented, and investigation 
in this direction might be subject for 
further research. 
 

 
 
Table 1: Qualitative Comparison 

 

6. Conclusion 
we introduced three different 
channelization algorithms. Namely, the 
per-channel, the PFT, and the PFFT 
algorithms, explaining in details . 
Consequently, we presented HW 
comparison between these algorithms 
for LUT and memory resources 
utilization. Based on this comparison, 
the PFFT algorithm appears to be 
superiorly cost efficient when 
channelizing few hundreds or more 
communication channels. Afterwards, 
we presented a qualitative comparison 
between these three algorithms that 
comprises also group delay, initial 
design flexibility, and reconfigurability. 
Based on the performed comparisons, 
we came to the conclusion that despite 
the fact that the per-channel algorithm 
has better score in many comparison 
aspects, its implementation is critically 
HW  inefficient and is infeasible for high 
number of channels, even on todays 
largest available FPGAs.  
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