
INTRODUCTION TO
CHANNELIZATION
ALGORITHMS IN

SDR AND
COMPARE THEM

Mehdi naderi soorki : 8605224

Abstract:
In recent years, RF receiver designers
focused on replacing analog components
with digital ones, trying hard towards the
ideal Software Defined Radio (SDR) where
all signal processing is done in software.
Such an ideal SDR platform may form a
flexible and reprogrammable receiver that
can deal with many different standards, e.g.,
IS-95, GSM, UMTS, and especially the
various military standards. A wideband
receiver has to simultaneously deal with
hundreds to few thousands channels, which
lay in the same spectrum interval. One of
the most computation intensive tasks in
such receiver is channelization . A wideband
channelizer decomposes its RF input
signal into separate outputs, each containing
the signal of single channel. The goal of the
presented research is to study algorithms for
wideband channelization then we
compare the introduced algorithms.

1. Software Defined Radio:
The necessity for software defined radio
(SDR) appeared from military
applications where communication
between several different forces (i.e.,
air-force, ground force, navy, etc.) had
to be facilitated while preventing
interception by enemy forces. DARPA’s
SPEAKeasy and JTRS projects are
examples for development of SDR,
where multiple air-interfaces with
different signal processing techniques
were integrated into one platform.
However, the necessity for SDR also

exists in civil applications. Typical
example is a cellular phone that is
capable of operating within the different
existing standards (UMTS, GSM, DCS-
1800, IS-95, JDC, and many more).

2. subjects driving the
channelization architecture
 Two key subjects defining the technical
requirements of the channelizer :

2.1.Spectral Content of the
Wideband Channel

The frequency allocation plans supported by
the SDR drivesThe technical requirements
for the channelization approach chosen. At
one extreme is cellular communications,
where the system architecture typically
defines a fixed carrier spacing with a
constant RF bandwidth per carrier channel.
For example, GSM900 defines an uplink
band from 890 to 915 MHz and a downlink
band from 935 to 960 MHz (see Figure 1) .
Both of these bands contain 124 carrier
channels spaced 200 kHz apart. The
channelizer supporting this type of network
may be able to utilize the redundancy of the
channel structure to provide an efficient
channelization mechanism.

Figure 1: Uplink RF Channel Structure for
GSM900

At the other extreme, both the carrier
frequency and RF bandwidth per carrier are
dynamically assigned. This type of
architecture is found in a multi-standard
communications system such as a multi-
standard satellite Gateway . In these types of
systems, subscribers may be assigned a
waveform specific to a service offering, or
may be assigned an operating mode for a
waveform based on pre-defined
requirements for quality of service. The
carrier frequency, synchronization scheme,

and analog bandwidth parameters of each
subscriber signal will vary depending upon
the specified operating parameters of the
assigned waveform (see Figure 2). The
channelizer employed in a radio supporting
this type of architecture must be flexible
enough to accommodate all of the
carrier/bandwidth combinations supported
by the network architecture, and possibly
allow for the dynamic reallocation of
channel resources within this architecture
during operation

Figure 2: Possible Frequency Plan for Wideband
Satellite Radio Link

2.2. Processor Selection for
Channelization Processing
In SDR architecture, processing would be
limited to general purpose processors
(GPPs) communicating with standards based
protocols, such as TCP/IP or CORBA. This
model allows for maximum reuse of
application code across multiple platforms,
accelerating time to market and maximizing
the return on investment in application
software through code reuse and
upgradability . In general, however, this type
of operating environment is not practical in a
field deployable system for two primary
reasons:

∗ The power utilization and heat dissipation
of GPPs are often prohibitive in many size,
weight, and power limited systems. As a
result, Digital Signal Processors (DSPs) are
often utilized to supplement the processing
provided by the GPP to keep the
architecture within the specified power
budget.

∗ GPPs and DSPs employ a serial processing
architecture that does not provide sufficient
performance for the processing of wideband
signals .As such, the use of Field
Programmable Gate Arrays (FPGAs), which
gives near ASIC like performance in a
programmable device, is often required in
the SDR platform.

For these reasons, a heterogeneous
processing engine incorporating a
combination of FPGAs, DSPs, and GPPs is
typically required in the digital transceiver
architecture. Front-end channelization
processing in this type of platform is
typically limited to FPGAs due to
performance constraints in dealing with the
wideband input, although back-end
processing which is preformed on a per
channel basis may incorporate DSPs or
GPPs.

3. Channelization Algorithms
analysis
channelization is a process where
single, few, or all channels from a
certain frequency band are separated
for further processing. The separation of
single channel is usually done by down-
conversion followed by filtering and
optional sample-rate conversion.
The channels of interest may be of
equal or different bandwidths and may
be uniformly or non-uniformly,
continuously or non-continuously
distributed over the input frequency
band.

4. Channelization Algorithms
This section presents 3 channelization
algorithms:
4.1 The per-channel Approach
A straightforward implementation, which
is also the traditional implementation of
Wide band channelizer, is to simply use
a single-channel channelizer for each
channel of interest, and connect them all

to the input frequency band signal .
Figure 3 illustrates such algorithm.

Figure 3: Per-channel channelizer

This approach provides a great deal of
flexibility in the choice of channels to be
separated . Each single-channel
channelizer can be individually designed
for BW and frequency choice.
Furthermore, the separated channels
are not constrained to be of the same
bandwidth or to be uniformly distributed
over the frequency input band .
However, once such channelizer is
designed, it is very rigid for alteration.
Adapting this channelizer algorithm to
different air-interface might require
replacement of some or all single-
channel channelizers. When a change
has to be done only in part of the input
frequency band, only the corresponding
single-channel channelizers have to be
altered or replaced. Another weakness
of this algorithm is that for wideband
receivers, where many channels are to
be separated, silicon costs and power
consumption are extremely higher than
in other, more advanced wideband
channelization techniques introduced in
the following sections .

4.2 Pipelined Frequency
Transform
The Pipelined Frequency Transform
(PFT) algorithm is based on a binary
tree of DDCs and SRCs (see Figure 4)
where units of DDC followed by SRC
are used for dividing their input band
into two half-bands with half sampling

rate. This algorithm creates a binary tree
that splits the input frequency in two
half-bands and then splits each
half-band again into two half sub-bands
and so on, until the last tree level
produces the required separated
channels. . This algorithm for itself has
no advantage over the algorithm
presented in the previous
section and is actually much more
expensive in terms of silicon use, since
apart of a

Figure 4: DDC-SRC tree

single-channel channelizer for each
channel of interest (as in the perchannel
algorithm) in the last stage of the tree,
many more are needed in the other
stages. Nevertheless, each single-
channel channelizer complexity can be
reduced dramatically, taking advantage
of half band filters symmetry and
restricting the output sample rate to be
quarter of input sample rate in each
single node in the tree. Observing that
the components in each stage perform
in half of the sampling rate of its former
stage components, a considerable
optimization can be performed. The
actual amount of operations-per-time
performed in each level of the tree is
equal while distributed over twice
components than in its former tree level.
Instead of using two components for
each component in the former tree level
at half sampling rate, one component
that performs in the same sampling rate
can be used in combination with inter
leaver , which distributes the samples
accordingly. This is done using complex
(IQ) DDC and DUC as illustrated in

Figure 5 (The DDCs and DUCs that are
not in the 1st level are of a special
interleaved version). The channels
however are output serially, and
therefore some extra processing is
required for distributing them in distinct
outputs.

Figure 5: DDC-SRC tree

The PFT algorithm seems to be much
more economical in terms of silicon use
and power consumption when compared
to per-channel channelizers algorithm.
Especially when many channels are to
be separated from the frequency input
band . However, it demonstrates less
flexibility, as the separated channels
must be of equal bandwidth and
uniformly distributed. The Tunable PFT
algorithm is an adaptation of the PFT
that alleviates this inflexibility by
introducing interleavers that provide
intermediate outputs from the PFT
stages that may be used for fine tuning
channelization . This improvement,
however, leads to increasing HW costs
and is not applicable for wideband
channelizers.

4.3 Polyphase FFT
This channelization algorithm is an
improvement of FFT channelization
using a polyphase filterbank in
combination with FFT, taking advantage
of the equivalence theorem and noble
identities while posing acceptable
restriction over the sampling rate.

Figure 6: Modifications to the kth single
channel channelizer

We consider the kth single (complex)
channelizer from the per-channel
channelizer in Figure 3 (see Figure 6(a))
and apply series of modifications to it .
The expression of the LPF output in
Figure 7(a) is a multiplication of the input
samples x[n] with the complex
heterodyne and a convolution with the
filter coeffcients h(n), and
is given in Equation 4.3.1.

(4.3.1)
Swapping between the complex
multiplier and the prototype LPF alters
the LPF to a BPF in accordance with the
equivalency theorem (see Figure 6(b)).
The corresponding modification to
Equation 4.3.1 is shown in Equation
4.3.2.

 (4.3.2)
Observing that only everyMth result of
the complex multiplier in Figure 6 (b) is
kept after of the SRC, we interchange
these two elements while adapting the
phase of the complex multiplier (multiply
with M) as shown in Figure 6(c).
Constraining the center frequency for

the kth channel to be an integer multiple
of the output sample rate so that

 results in aliasing to baseband,
since the complex multiplier term
becomes . Consequently,
the complex multiplier becomes
superfluous and can be removed, as
shown in Figure 6(d).

Figure7: l branches in the filterbank
decomposition of the kth single channelizer

Noting that as before, every Mth output
of the BPF in Figure 6(d) is not used due
to the SRC, it would be sensible to
”shift” the SRC to the left of the BPF. In
order to do so, we have to invoke the
noble identity . For this purpose we first
have to decompose the BPF in the kth
single channelizer into a filterbank of l
(=M) sub-filters. The filterbank
decomposition is described in Equation
4.3.3.

 (4.3.3)
The resulted l sub-filters in the filter bank
are composed of delay element, sub-
filter, and (time invariant) scaling
multiplier (see Figure7). Moving the
SRC through the scaling
multipliers and the l sub-filters we
invoke the noble identity. The resulted
filterbank is depicted in Figure 8. The
corresponding output function is shown
in Equation 4.3.4.

 (4.3.4)

Figure8: Applying the noble identity in the kth
filterbank

where y(r)(nM) is the nMth sample from
the rth sub-filter.
The delay elements, the SRCs and the
sub-filters are similar for all the k
filterbanks and therefore only one
should be physically implemented.
Observing in Equation 4.3.4 that the
multipliers and adders practically
function as M-points DFT, they can be
replaced with FFT for reducing
complexity. The final result illustrated in
Figure 9 (note that the delay elements
are replaced by a chain of one unit delay
elements) is known as the polyphase
FFT (PFFT) filterbank channelizer
algorithm.In comparison with the per-
channel channelization algorithm
formerly introduced,the PFFT algorithm
is much more rigid to changes, and is
subject to restrictions imposed
over the sampling rate, the number of
channels to be extracted, and the
number of taps in the prototype filter.
however, it seems to show extremely
lower silicon costs.

Figure 9: Polyphase FFT channelizer

Measured in terms of number of
arithmetic operations per number of
separated channels (computational
complexity) , it seems that the PFFT
outperforms the perchannel algorithm
when separating more than 3 channels.

5. Algorithms Comparison
 In this section, we present HW-
complexity (cost) comparison and a
qualitative comparison of introduced
channelization algorithms.

5.1 Hardware Complexity
Comparison
The following HW complexity
comparison is based on data from ,
which is put herein plots. The first
comparison is for LUT utilization. The
right plot in Figure 10 show us that the
per-channel algorithm (stacked) utilizes
far more LUTs than the PFT (binary)
and PFFT algorithms and that its
tendency is much steeper. The left plot
in Figure 10 gives us a clearer
comparison between the other two
algorithms. We can see that for all given
number of channels PFT more than
twice LUT resources than the PFFT
algorithm does. The second comparison
is of memory bits utilization. The right
plot in Figure 11 shows us that the per-
channel algorithm employs much more
memory resources than
the PFT and PFFT algorithms for all
number of channels. However,
comparing the PFT and PFFT

algorithms (left plot in Figure 11) we can
see that the PFFT algorithm is superior
only when channelizing more than 300
channels. Another important property
is that the PFT curve’s inclination is
much steeper than the PFT curve.

Figure 10: Comparison of LUT utilization

Figure 11: Comparison of memory bits
employment

5.2 Qualitative Comparison
The parameters ranges for comparison
are wide. Limitation to practical
parameters may alleviate this difficulty .
Most of newly proposed channelization
techniques in literature are compared to
the traditional per channel channelizer.
The comparisons here are divided to
three groups: Computational complexity,
size (”silicon costs”), and group delay
and flexibility.
5.2.1 Computational complexity
A common comparison parameter is
computational complexity, which is
usually derived from simulations and
software implementations. Such a
comparison projects on silicon costs but
usually do not take into account memory
requirements and control complexity.
Previous works show that when 3 or
more channels are to be channelized,
the PFFT algorithm outperforms the per-

channel algorithm. also show that an
improvement in the filters of the per-
channel algorithm raises this limit to lay
between 4 and 20 channels for some
scenarios.
5.2.2 Silicon cost
Comparison that is based on actual
implementation in FPGA gives a good
idea about the HW complexity of the
different algorithms. A drawback of such
comparison is that it is not platform
independent. Different FPGAs contain
some dedicated multipliers and built-in
memory blocks. Each configuration of
distinct algorithm may have trade-offs
in FPGA resources that is difficult to
measure and compare. Such is the
comparison is made between the PFT,
PFFT, and per-channel algorithm
implementations presented in
Subsection 4.1. Based on this
comparison, it seems that in terms of
memory use, the PFT memory
requirement is growing rapidly with the
number of channels to be separated.
The conclusion drawn in previous works
is that up to 256 channels, the HW
complexity of PFT and PFFT is
comparable and that above 256
channels PFFT outperforms the PFT.
5.2.3 Group delay
Generally, group delay is not a major
consideration in the choice of
channelization algorithm. It is usually of
concern when designing receivers that
deal with analysis of short radar pulses.
one work shows that the group delays
of PFT and PFFT algorithms in different
configurations are quite similar.
Normally, PFFT group delay is better
than in PFT algorithm, but more rigid
implementation of the PFT (giving up
intermediate outputs) may reach a
comparable or better group delay than in
the PFFT algorithm. Comparing the
PFFT and per-channel algorithm, it
seems that the later has a small,
advantage due to the FFT stage in the
PFFT algorithm.

5.2.4 Flexibility
As this study is aimed toward the
mapping of selected algorithm on
reconfigurable digitizers, analysis of two
flexibility aspects in the different
algorithms is essential. The
following discussion offers analysis of
initial design flexibility and
reconfigurability.
5.2.5 Initial design
In this aspect, the per-channel approach
is clearly the winner. All the separated
channels are independent, may have
different bandwidths and may be
non-uniformly and non-continually
distributed over the input frequency
band. The PFT and PFFT algorithms
suffer from similar limitations. Namely,
producing channels with equal
bandwidth that are uniformly and
continually distributed over the input
frequency band. The PFT suffers from
another restriction however. The number
of the separated channels has to be an
integer power of 2. The PFFT in
principle is more flexible in the choice for
number of channels to be separated.
Nevertheless, the most economical
implementations of FFT have integer
power of 2 bins, and that may also
 impose restriction on the
implementation of PFFT filterbank. An
advantage of the PFT over the PFFT is
its possibility to produce intermediate
outputs of channels with half of the
resolution and twice the bandwidth of
the channels in the next level of the PFT
tree. The PFFT has a constraint on the
number of taps in the prototype filter,
which must be
an integer multiply of the number of
channels.
5.2.6 Reconfiguration
This is a key concern in the evaluation
of the different channelization
algorithms . Addition or removal of
single or few channels is very easy to
implement on the per-channel algorithm,
while in most cases, for the PFT and the
PFFT algorithms it means a complete

reconfiguration of the whole
implementation (especially when
a change in an integer power of 2
number of channels is required).
Adaptation of the filtering performance
(channels separation quality) requires
modification to the number of taps and
the weight for each tap in the filter. In
the PFFT algorithm the filtering is
implemented in a logically separated
block, and therefore its adaptation
need not have consequences for the
rest of the algorithm implementation. In
the PFT and the per-channel algorithms,
however, the filters are distributed within
different logical blocks, so that
adaptation in their performance may
have consequences to the rest of the
implementation. Table 1 summarizes the
qualitative comparison between the
different channelization algorithms.
Careful examination of the different
comparison shows that the per-channel
approach wins in many aspects.
Conversely, its implementation for high
number of channelsis infeasible, and
that makes the PFFT algorithm the most
suitable for SDR wideband channelizer .
Nevertheless, the differences
between the PFFT and FFT
implementations for medium number of
channels (few tens to few hundreds) is
not well documented, and investigation
in this direction might be subject for
further research.

Table 1: Qualitative Comparison

6. Conclusion
we introduced three different
channelization algorithms. Namely, the
per-channel, the PFT, and the PFFT
algorithms, explaining in details .
Consequently, we presented HW
comparison between these algorithms
for LUT and memory resources
utilization. Based on this comparison,
the PFFT algorithm appears to be
superiorly cost efficient when
channelizing few hundreds or more
communication channels. Afterwards,
we presented a qualitative comparison
between these three algorithms that
comprises also group delay, initial
design flexibility, and reconfigurability.
Based on the performed comparisons,
we came to the conclusion that despite
the fact that the per-channel algorithm
has better score in many comparison
aspects, its implementation is critically
HW inefficient and is infeasible for high
number of channels, even on todays
largest available FPGAs.

7. REFERENCES
[1] '' CHANNELIZATION TECHNIQUES
FOR SOFTWARE DEFINED RADIO'', Lee
Pucker (Spectrum Signal Processing Inc.,
Burnaby, B.C, Canada;

[2] "FLEXIBLE ARCHITECTURES FOR
WIDEBAND SDR CHANNELISATION
",John Lillington (RF Engines, Newport, Isle

of Wight, UK; john.lillington@rfel.com)
Steve Matthews (RF Engines, Newport, Isle

of Wight, UK; steve.matthews@rfel.com)

[3] " EFFICIENT WIDEBAND DIGITAL
FRONT-END TRANSCEIVERS FOR
SOFTWARE RADIO SYSTEMS
", Approved by: Professor Gordon L.
St¨uber, Adviser Professor Mark A.
Clements Professor Ye (Geofferey) Li
Professor H. Venkateswaran College of
Computing Professor John R. Barry Date
Approved: April 6, 2004

[4] "Scalable & Reconfigurable Software
Defined Radio Digital Front-End Architecture
FOR Wideband Channelizer
",Gil Savir

[5] "pipelined frequency tansformer (PFT)"

[6] ''the ventrix rang polyphase DFT cores ''

