
Design, Implementation and Validation of a generic and reconfigurable
Protocol Stack Framework for mobile Terminals

Thorsten Schöler Christian Müller-Schloer
Siemens AG

Information and Communication Mobile,
Technology and Innovation,

Siemens ICM MP P TI10, PO Box 801707,
81617 Munich, Germany

thorsten.schoeler@siemens.com
schoeler@sra.uni-hannover.de

University of Hannover
Institute for Systems Engineering,
System and Computer Architecture

Appelstraße 4, 30167 Hannover, Germany
cms@sra.uni-hannover.de

Abstract

This paper introduces a modular and
reconfigurable software framework for protocol stacks
implemented in platform independent manner.
Simulation tools useful for software validations are
introduced and a new distributed, three-staged
procedure for validation of protocol stack software is
proposed. Assertion-based virtual prototyping (based
on non-resident assertions), utilising simulation of
hardware software co-systems as well as software
probes containing code-resident assertions are used in
the proposed validation process.

1. Introduction

The trend for ubiquitous and pervasive computing
has led to powerful mobile terminals with an
enormous complexity of their hardware as well as
their software implementations. Still more limited in
resources than their desktop counterparts, mobile
terminals give the user his well-known desktop
application experience (web browsing, e-mail, media
streaming, etc.) while being connected wirelessly.
Mobile device manufactures now face the challenge, to
support high and still growing software complexity
with short update cycles on resource constrained (e.g.
memory, battery power, etc.) mobile devices.

To deal with higher complexity, more and more
applications are based on similar core functionalities.
This accounts also for a growing part of system
software. Capturing core functionalities in modular

libraries is common knowledge and this idea will be
consequently exploited much more in future mobile
terminal platforms to tackle memory constraints.

Founding software on libraries generally speeds up
software development, yielding short software update
cycles, which in turn will introduce higher software
security demands on future mobile terminals. Whilst
security issues, raised by the introduction of third-
party applications on terminals operating in a mobile
communication network, are already tackled (see [1]
and [2]), the introduction of third-party system
software for mobile terminals still yields new security
challenges. Because protocol stack software, as an
integral part of mobile terminals’ system software,
need to get much more modular and even more
flexible to satisfy future requirements, they will be in
the focus of this paper.

This paper introduces a platform-independent
software architecture for implementing protocol stacks
for mobile terminals, which are modular and
reconfigurable. Furthermore, a validation process will
be introduced that minimises the risk of a terminal
becoming a so-called rogue terminal1.

The following sections of this paper will describe
the design and implementation of a platform-
independent, generic and flexible framework for
protocol stack composition. Furthermore, security
issues will be shown and a new way of validating
composed protocol stack software behaviour by
assertion-based virtual prototyping will be introduced.

1 Rogue terminals will interfere with network operation and thus may
be even able to interrupt a working communication network.

2. Design

The proposed protocol stack software architecture,
as seen in Figure 1, is based on the idea of composing
protocol stack software in an object-oriented manner
from a library of generic components and
implementation specific software objects [13]. Further
to being configurable at compile time, as in [5] and
[10], the proposed protocol stack software can be
configured and re-configured during runtime as in [7].

Figure 1. Overall architecture of protocol
stack framework

The actual protocol stack software, which has been
composed by the framework, is assisted by a software
library, which supplies core functionalities (threads,
timers, etc.) as well as the frameworks’ system
services for reconfiguration, monitoring, etc.

The distribution of library components, framework
and other software components according to their
abstraction level into various packages can be seen in
Figure 2.

One major component of the framework is the
central configuration manager. The configuration
manager decides, which protocol stack configuration
will be instantiated and used to fulfil the application's
communication requirements. The framework uses
XML files for storing and exchanging protocol stack
descriptions and configurations.

Applications connect to the protocol stack using a
socket style interface, similar to the interface described
in [14]. They express their communication
requirements by supplying the protocol stack
configuration manager with their Quality of Service
requirements for the requested socket connections.

2.1. Communication model

Protocol stack implementation theory describes two
basic process models for implementation of protocol
stack entities (e.g. layers) and their communication
[11].

In the thread-per-layer approach, each layer is
implemented by a separate thread or process. To

� � �

����� ��� � 	
 � �
 � �

��� � 	
 � �
 � �

� � � �
 � � � �
 � � ��� � 	
 � �
 � �

� � � � � �

� � � � � � 	 � � � � � � � �
 � � � �
 � � � �
 	

� !�� "

� � # � $ �% ��� # � $ � ��&�� # � $ �

" � '

� � � � () � �
 � � � * � � � � (

+ , � "

-. � � � � % * � � / %
 () �

+ , � "

0 1 � , � 2 3 � � 4 1 5 3 � 6 ,

6 7 6

� � � �
 � � � �
 � � -.� � � � �

� � � � � � 	 � � � �8()� �
 � �
 � �

9

9 9

:�;8<�= > ? @

Figure 2. Abstraction levels of software architecture

communicate between layers, messages have to be
passed between different threads or even processes.
Communication between protocol stack entities will
afford a time-consuming context switch between the
communicating threads and thus, will slow down the
message passing process.

On the contrary, the thread-per-message model
treats each layer as a more or less static piece of
software. A dedicated thread is used to process each
message passed between protocol stack layers. For the
execution of protocol stack layer actions, a dedicated
pair of function calls (methods) is used. One method is
responsible for handling messages, which move
upwards (from networking hardware to application) in
the protocol stack and another method handles
messages going down in the protocol stack.

The proposed protocol stack framework uses the
thread-per-message model for passing information up
and down the stack. The message-passing model can
be seen in Figure 3.

� � ����� � ���
	���������

� � ��� � ��	���������

� ��� � � � � ����� ����

� ����������� � � �����������

� ������ � ������� � ���� � ��

� ��� � � � � �!��� �����	����
�

"�# $&%�'�(#�) *�+ + , -
.0/

"�#�$&%�'�(#�) *�+ + , -
12/

+ *�%�"�, -
34/

5 *�6 7�*�% " 8!9�(*�:�"�+ , -
;2/

(<�%�, -
=2/

Figure 3. Thread per message model used in
protocol stack communication

In step one, an application sends a message via the
socket to the protocol stack. The socket requests a new
send thread from the thread pool in step two. The
thread is started in step three and subsequently works
down its way through the protocol stack layer entities
in steps four and five.

2.2. Protocol stack configuration

As mentioned before, the configuration manager is
a central component of the protocol stack framework.
It is responsible for instantiating protocol stacks from
given abstract protocol stack configuration
descriptions (stored in a database or files, locally or in
the network).

Protocol stack configuration descriptions (protocol
stack graphs) are stored in the framework in XML
files. The configuration manager contains a parser to

generate protocol graphs from abstract protocol stack
descriptions used inside the framework.

A protocol graph is basically a map of a protocol
stack instance, contained in each protocol stack
thread, which tells the thread where to go next to
process its data according to the protocol stack
specification. It determines, where (in which stack
component or layer) a particular message being
processed up and down the stack by the thread, needs
to be dealt with next.

In case of a necessary or requested protocol stack
reconfiguration, the execution of threads will be
stopped by the framework’s thread pool. Subsequently,
the framework’s configuration manager replaces
protocol stack entities, which need to be replaced, and
protocol stack graphs will be updated accordingly,
reflecting the new protocol stack configuration.
Finally, the execution of protocol stack threads will be
resumed.

Because protocol stack layers are more or less static
pieces of software, little state information will be
stored inside the protocol stack entities (i.e. data used
for dynamic protocol stack optimisation during run-
time). To enable smooth updates of those less-static
entities, a mechanism must be found to store entity
state information in a way, that future
implementations are able to utilise such information
for a smooth transition.

3. Implementation alternatives

A major requirement imposed onto the protocol
stack framework, is to include legacy protocol stack
software (implemented in a native programming
language, such as C/C++). To accomplish that, a
message-passing interface, based on the Java native
interface (JNI), is integrated into the framework, to
enable integration of native protocol stack software
implementations (see also Figure 1).

It is envisaged to connect the protocol stack
software to the OS networking system by a packet
capture device (such as WinPCap [12]) to enable real-
life applications to be built upon the protocol stack
framework to communicate with remote network
nodes.

Furthermore, it is to combine this proposed
architecture with concepts and implementations from
[3], which is in contrast to this proposal, based on a
thread-per-layer-model. The thread-per-layer-model,
in contrast to the used thread-per-message-model, has
performance advantages in protocol stack
configurations, where many transitions between Java

and native implementations layer instances have to be
crossed. As seen in Figure 4, the JNI has to be crossed
four times in the proposed framework implementation
for a protocol stack configuration consisting of two
layers implemented in C/C++ and one layer
implemented in Java.

Figure 4: Thread per message model (JNI)

If upper and lower termination of the protocol stack
has to be implemented in Java, the situation for the
thread-per-process model is as seen in Figure 5.

The JNI boundary has to be crossed only twice to
pass a message through the same protocol stack
configuration compared to Figure 4. This means a
speed-up of factor two, when the JNI boundary
implementation in both architectures is estimated as
equally complex.

The combination of those two architectures will
help to minimise JNI boundary crossings by using the
optimal thread model for a given configuration and
will yield a sophisticated framework for the
implementation of many protocol stacks.

Figure 5: Layer per message model (JNI)

4. System security

According to [8] there are many ways of improving
systems software security. Described concepts range
from piracy prevention based on establishing server
connections or using license files. Furthermore,
hardware based privacy protection with checksums or
cryptographic methods, watermarking and
fingerprinting of documents or software and even
security concepts proposed by the Trusted Computing
Group (TCG formerly known as TCPA2) are used in
contemporary software systems.

The proposed security concept follows the
mentioned guards and assertion checking approaches
in software implementations (discussed later as
assertion-based virtual prototype and software probes
in Section Assertion based virtual prototype) and
introduces system validation by simulation as new
system security measure.

Using the virtual prototype and system simulation
approach, those probes may reside in productive
protocol stack software (resident probes) or they may
only be used in the virtual prototype and be removed
in the real mobile terminal productive software (non-
resident probes). Non-resident probes will avoid the
drawback of using assertions: Slow down of software
execution.

The actual protocol stack validation process, based
on system simulation and software probes containing
assertions, is described in the following subsection.

2 Trusted Computing Platform Alliance

4.1. Protocol stack software validation

A three-staged process for protocol stack software
validation as seen in Figure 6 is proposed: Network-
based off-line validation, On-line validation and
Runtime validation (both terminal based).

Off-line validation uses extensive system
simulation for validation of the collaboration of the
mobile terminal hardware and the installable protocol
stack software.

For that, a virtual prototype of the mobile terminal
is designed (see System simulation section). It
contains modules of application processing hardware
(i.e. ARM processor model), specific terminal
MODEM hardware (i.e. base band and RF processing,
DSPs, etc.) and other assisting modules, which will be
simulated using functional and timing accurate system
simulation. The terminal system simulation is
connected to interfacing simulation modules, which
simulate communication network and terminal user
behaviour, stimulated by test vectors modelled after
real-life behaviour.

Due to computing resource constraints and security
issues, terminal-based on-line validation cannot fall
back on extensive simulations and is limited to
simpler checks. The terminal validates the to-be-
installed protocol stack configuration according to pre-
defined rules and tries to identify suspicious software
configurations. These rules may contain plausibility
checks, syntactic and semantic software configuration
checks.

After the protocol stack software configuration has
been validated and no suspicious configurations have
been identified, all necessary software modules will be
downloaded. The terminal now validates the actual
protocol stack software modules according to its
validation rules. Subsequently, supposed that all
checks passed without validation violations, the
downloaded protocol stack software will be executed
on the terminal.

During execution, the mobile terminal is able to
supervise protocol stack behaviour with code-resident
assertions and checkpoints. Such assertions may check
for valid content of communication messages as well
as for compliance to certain threshold conditions. This
is called run-time validation.

Following this brief overview of the proposed
validation scheme, used validation technologies will
be described in the following sections.

4.2. System simulation

Nowadays, many computer-aided tools assist the
design and implementation of complex hardware
software co-systems. A modern way of prototyping
system behaviour is by using a virtual prototype. A
virtual prototype shows the same functional behaviour
and timing as a real hardware-prototype, but is
completely simulated by a simulation tool. A virtual
prototype contains, besides the simulation of the target
system, a simulation of the system's environment.

A simulation tool, which allows functional and
timing-accurate system simulation, is ClearSim MD.
ClearSim MD is a system simulator, developed at the

Figure 6. Three stages of validation

Institute System Engineering, System and Computer
Architecture at University of Hannover. It is able to
integrate system simulations from multiple domains
[6] and on various abstraction levels into a combined
simulation model. Heterogeneous systems would be
modelled in their suitable domain specific languages,
such as UML, SDL, C/C++, Modellica and EFSM
(Extended Finite State Machines). Maximum
flexibility is reached by using UPSI (Unified Portable
Simulation Interface), which enables easy integration
of other system simulation tools.

Current developments in ClearSim MD extend the
timing-accurate simulation model with the ability to
insert assertions into the model. Assertions can be
used to supervise and control simulation state and
thus, help in validating system behaviour.

4.3. Assertion based virtual prototype

A virtual prototype, as introduced before, will be
enriched with assertions (specifying parameter ranges,
timing behaviour, etc.) in order to obtain an abstract
system model, a so-called AViP (Assertion-based
Virtual Prototype). Inside the AViP system model, the
actual protocol stack software, which is later
downloaded to the terminal, is executed. By executing
the assertion-enriched system simulation, more
information about the functional and timing behaviour
of the complete hardware-software-co-system,
especially the to-be-validated protocol stack software,
can be gained by exploiting assertion data. This
information will be used to get a detailed picture of the
system's behaviour [9] and detect non-valid or rogue
terminal behaviour.

Assertions can be differentiated into simulation-
only (non-resident) assertions, which are utilised for
validation only in the system simulation stage and are
not present in actual productive software, and so
called code-resident assertions, which remain in
productive software. Code-resident assertions can be
used to gain run-time diagnostic information during
software run-time for validating protocol stack
software behaviour. This is used in the so-called
software probes.

Those small program units will be integrated in the
protocol stack software by the framework. The to-be-
installed protocol stack software cannot avoid probe
insertion, because the terminal resident and tamper-
proofed protocol stack framework triggers it. Software
probes will secure the correctness of software
execution in a distributed but networked manner by
supervising for example communication messages

content and check for compliance to certain threshold
values, such as messages sizes, repetition timings, etc.

For that, they will be inserted at distinct places in
the modular protocol stack software, for example
between each protocol stack layer at module
boundaries or interfaces. An inserted software probe
for example, could be used to validate the actual
content of layer-to-layer communication messages. It
may check for correctness of message length and / or
check message header or footer for protocol
specification accordance.

The software probes are modules designed against
the same data communication interface as the protocol
stack modules (e.g. layers or library modules). They
implement the method pair upProcess() for messages
going up the protocol stack and downProcess() for
message going down in the protocol stack. This
enables the framework to include them virtually
unrestricted at any place in a particular protocol stack,
which needs to be validated during run-time.

5. Conclusion

A software framework for dynamic composition of
protocol stack software has been introduced. The trust
in to-be-installed protocol stack software can be
increased by validation of such software using system
simulation and by inserting software probes
containing assertions into the protocol stack software.
A system simulator with the ability to exploit various
kinds of assertions has been described and a particular
validation process has been depicted.

6. Acknowledgements

This work has been performed in the framework of
the IST project IST-2001-34091 SCOUT, which is
partly funded by the European Union. The authors
would like to acknowledge the contributions of their
colleagues from Siemens AG, France Télécom - R&D,
Centre Suisse d'Electronique et de Microtechnique
S.A., King's College London, Motorola SA, Panasonic
European Laboratories GmbH, Regulierungsbehörde
für Telekommunikation und Post, Telefonica
Investigacion Y Desarrollo S.A.Unipersonal, Toshiba
Research Europe Ltd., TTI Norte S.L., University of
Bristol, University of Southampton, University of
Portsmouth, Siemens ICN S.p.A, 3G.com
Technologies Ltd, Motorola Ltd, DoCoMo
Communications Laboratories Europe GmbH [4].

7. References

[1] 3rd generation partnership project (3GPP): Mobile
execution environment (MExE), Service description.
Technical report stage 1, release 4, TS 22.057
V4.0.0. October 2000.

[2] 3rd generation partnership project (3GPP): Mobile
execution environment (MExE), Functional
description. Technical report stage 2, release 4, TS
23.057 V4.1.0. March 2001.

[3] Farnham T., Schöler, T.: Flexible protocol stack
framework: Design, validation and performance.
Proceedings of 2003 Software Defined Radio
Technical Conference and Product Exposition. SDR
Forum. November 2003.

[4] Georganopoulos, N., Farnham, T., Schöler, T.,
Burgess, R., Warr, P., Golubicic, Z., and Sessler J.:
Terminal-centric view of software reconfigurable
system architecture and enabling components and
technologies. IEEE communications magazine,
2003.

[5] Hutchinson, N. C. and Peterson, L. L.: The X-Kernel:
An architecture for implementing network protocols.
IEEE transactions on software engineering.
17(1):64-76. 1991

[6] Krisp, H., Bruns, J., Eilers, S., and Müller-Schloer, C.:
Multi-domain simulation for the incremental design of
heterogeneous systems. ESM 2001 conference
proceedings. pp. 318-323. June 2001.

[7] Moessner K, Vahid S, Tafazolli R.: Terminal
reconfiguration: The OPtIMA Framework. Second
International Conference on 3G Mobile

Communication Technologies, IEE-3G2001, pp.
241-246, London, United Kingdom, 26-28 March
2001.

[8] Naumovic, G. and Memon, N.: Preventing piracy,
reverse engineering, and tampering. IEEE computer
magazine. Volume 36, Issue 7. pp. 64-71. July 2003.

[9] Oodes, T. and Müller-Schloer, C.: UML-basierter
Systementwurf sicherheitskritischer, heterogener
Systeme. Proceedings of Simulationstechnik 16.
Symposium. pp. 365-370. Rostock. September 2002.

[10] O’Malley, S. and Peterson, L.: A dynamic network
architecture. ACM Transactions on Computer
Systems, Vol. 10, No. 2, May 1992, pp. 110-143.

[11] Peterson, L. L., Davie, B. S., Bavier, A.C.: X-Kernel
Tutorial.
http://www.cs.arizona.edu/classes/cs525/tutorial/tutori
al.html. January 1996

[12] Risso, F. and Degioanni, L.: An architecture for high
performance network analysis. Proceedings of the 6th
IEEE symposium on computer and communications
(ISCC 2001). pp. 686-693, Hammamet, Tunisia. July
2001.

[13] Siebert, M. and Walke, B.: Design of generic and
adaptive protocol software (DGAPS). Proceedings of
the Third Generation Wireless and Beyond
(3Gwireless '01). San Francisco, US. June 2001.

[14] Stevens, W. R.: Programmieren von UNIX-
Netzwerken, Netzwerk-APIs: Sockets und XTI.
Hanser. Second edition. 1998.

