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1. Introduction 
While considerable work has gone into developing and demonstrating the feasibility of 
cognitive radio, the vast majority of this work has focused on demonstrating the gains a 
single link can achieve when adapting to an interference environment. While the results 
from this work are important, the underlying assumptions are not a realistic because the 
modeling of the environment and the operational scenarios fail to consider the existence 
of a major source of interference – other cognitive radios. 
 
Unlike traditional interferers, cognitive radios adapt their operation in response to their 
perceived interference environment. When numerous cognitive radios are collocated, this 
interference environment may be constantly changing as the cognitive radios adapt to the 
other cognitive radios adaptations. Because of this recursive process, serious concerns are 
introduced:  

• Under what conditions will the recursions settle down to a steady state? 
• What is that steady-state? 
• Will the resources be hoarded by a single radio/link or will they be equitably 

shared among the radios? 
• Will the cognitive radios actually make use of available spectrum without 

impinging on other radios’ spectrum rights? 
• How much bandwidth will be consumed with signaling overhead and how much 

bandwidth will actually be used for data transfer? 
 
Game theory, a collection of mathematical models and techniques for the analysis of 
interactive decision processes, is particularly well suited for answering these questions. In 
prior work we developed a set of game theoretic tools for analyzing the interactive 
adaptations of numerous cognitive radio algorithms and a currently applying this work to 
the design of physical layer cognitive radio algorithms.  
 
This paper describes the analytical insights we have gained in cognitive radio physical 
layer algorithms, highlighting techniques for identifying steady states, determining the 
kinds of adaptations that are assured of convergence, and establishing stability when 
imperfect information is present. Based on techniques described in this discussion, the 
paper then describes our ongoing work applying our insights to algorithm design for 
cognitive radios. 
 
2. Cognitive radio and game theory 
This section provides a brief review of cognitive radio, game theory and the application 
of game theory to cognitive radio. 
 



 
2.1 Cognitive radio 
Cognitive radios are adaptive radios that are aware of their capabilities, aware of their 
environment, aware of their intended use, and able to learn from experience new 
waveforms, new models, and new operational scenarios. Numerous regulatory bodies 
such as the FCC [1] and ITU [2] have expressed interest in cognitive radios software 
radios as a way to create additional usable spectrum by allowing radios to dynamically 
respond to unused spectrum. 
 
Since being introduced by Mitola [3], the operation of cognitive radios has been 
frequently envisioned by the cognition cognition cycle shown in Figure 1. The cognition 
cycle is a state machine that resides in the cognitive radio and defines how the radio 
learns about and reacts to its operating environment.  
 
In the cognition cycle, a radio receives information about its operating environment 
(Outside world) through direct observation or through signaling. This information is 
then evaluated (Orient) to determine its importance. Based on this valuation, the radio 
determines its alternatives (Plan) and chooses an alternative (Decide) in a way that 
presumably would improve the valuation. Assuming a waveform change was deemed 
necessary, the radio then implements the alternative (Act) by adjusting its resources and 
performing the appropriate signaling. These changes are then reflected in the interference 
profile presented by the cognitive radio in the Outside world. Throughout the process, 
the radio is using these observations and decisions to improve the operation of the radio 
(Learn), perhaps by creating new modeling states, generating new alternatives, or 
creating new valuations. 

 
Figure 1 Cognition Cycle [3] 

 
2.2 Game theory 
Game theory is a set of mathematical tools used to model and analyze interactive decision 
processes. The fundamental component of game theory is the notion of a game. When 
expressed in normal form, a game, { }, , iG N A u= , has the following three primary 
components. 

1. A finite set of players (decision makers) typically denoted  N = {1,2,…,n}. 
2. An action space, A, formed from the Cartesian product of each player’s action set, 

1 2 nA A A A= × × ×L . 



3. A set of utility functions, { } { }1 2, , ,i nu u u u= K , that quantify the players’ preferences 
over the game’s possible outcomes. Outcomes are determined by the particular 
action chosen by player i, ai, and the particular actions chosen by all of the other 
players in the game, a-i. 

 
In the game, players are assumed to act in their own self-interest, that is to say, each 
player chooses its actions in such a way that increases the number returned from its utility 
function. Typically normal form games are analyzed to identify steady-states known as 
Nash equilibria. A particular action tuple, a* in A, is said to be a Nash equilibrium if no 
player can improve its payoff, ui(a*), by unilaterally changing its action.  
 
Another typical game model is the repeated game model. A repeated game is sequence of 
stages where each stage is the same normal form game. A repeated game is fully 
characterized by a stage game, a player function that defines which players are allowed to 
adapt play in that stage, and a set of decision rules that describe the rules that each player 
follows to upate its decisions when it is that player’s turn to play. 
 
For repeated games, it makes sense to discuss concepts such as convergence and stability. 
Given a repeated game where ak represents the action tuple played in stage k, a sequence 
{ }ka in action space A, nxmA∈  is said to converge if there is an action tuple a* such that 

for every 0ε > , there is an integer K such that k K≥  implies *,ka a ε< . Similarly, a* 

is said to be Lyapunov stable if for every 0ε >  there is a 0δ > such that for all k≥0, 
0 * *, ,ka a a aδ ε< ⇒ < . Showing that a fixed point is Lyapunov stable is normally 

accomplished by finding a Lyapunov function for the region around the fixed point. 
 
Identifying the conditions under which sequences in a repeated game converge or are 
stable often require the introduction of special game models. Two such models are given 
Section 3. 
 
2.3 Applying game theory to cognitive radio 
Examining again the cognition cycle shown in Figure 1, it is readily seen how the 
interactions of a network of cognitive (or adaptive) radios maps into a game. 
 
Each node in the network that implements the decision step (making it a decision maker) 
of the cognition cycle is a player in the game. The various alternatives available to a node 
forms the node’s action set, and the action space is formed from the Cartesian product of 
the radios’ alternatives. A cognitive radio’s observation and orientation steps combine to 
form a player’s utility function. Loosely, the observation step provides the player with the 
arguments to evaluate the utility function, and the orientation step determines the 
valuation of the utility function.  
 
Note that we have ignored the learning step of the cognition cycle. This is not an 
oversight nor indicative of a limitation of game theory. Rather, it is a limitation of the 
normal form game model. While the repeated game with a normal form stage game is 



appropriate for any adaptive radio algorithm or for any cognitive radio adaptations that 
do not require learning, it is not appropriate for analyzing algorithms that learn. In this 
case, more advanced game models that incorporate learning processes, such as Bayesian 
games should be used. It should also be noted that game theory is not well suited to 
games where actions and objectives are not well defined as may be the case when 
cognitive radios learn over time. 
 
There are five questions that game theory should answer when analyzing an adaptive 
algorithm: 

1. Does the algorithm have a steady state? 
2. What are those steady states?  
3. Is the steady state(s) desirable? 
4. What restrictions need to be placed on the decision update algorithm to ensure 

convergence? 
5. Is the steady state(s) stable? 

 
While questions 1-3 can be addressed through traditional game theory techniques, 
questions 4 and 5 require additional information that can be provided through the 
introduction of certain game models. Previously [4], we have argued that determining if a 
steady-state is desirable is best determined by showing the the steady-state maximizes 
some global network objective function.  
 
3. Relevant Game Models 
This section reviews two valuable game models: the supermodular game model and the 
potential game model and examines how each of these game models address questions 
1,2, 4, and 5 considered in Section 2. For all models, it is preferable address the third 
question by substituting the predicted network steady state(s) into a network objective 
function. 
 
3.1 Potential game model 
A potential game is a special normal form game where there is a function, :V A→ , 
such that when a unilateral deviation occurs, the change in V, V∆ , is reflected in the 
change in value seen by the unilaterally deviating player, iu∆ . If for all unilateral 
deviations, iV u∆ = ∆ the game is called an exact potential game; likewise if 

( ) ( )sgn sgn iV u∆ = ∆  the game is an ordinal potential game. 
 
Model Identification: A game can be shown to be an exact potential game if the action 
space is compact and the utility functions satisfy (1). 
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Other than applying the definition, there is no well-defined condition for verifying that a 
game is an ordinal potential game. However, [5] shows that if a sequence of ordinal 
(monotonic) transformations of the utility functions result in an exact potential game, 
then the original game is an ordinal potential game.  
 



In addition to the potential game models discussed here, a large number of potential game 
models exist with differing relations between iu∆ and V∆ and differing identification 
techniques [5]. discusses these game models in great depth. 
 
Steady-state Existence: Potential games with a compact action space always have at least 
one steady-state [6].  
 
NE Identification: All maximizers of V  are NE [6]. Note this need not be all of the NE in 
the game, but the only stable NE in the game are maximizers of V.  
 
Convergence: Potential games have the finite improvement path (FIP) property, so when 
nodes act in a selfish manner play converges to a NE. 
 
Stability: For repeated games where the decision rules result in nonincreasing utility for 
the deviating players, the potential function is a Lyapunov function [5].  
 
3.2 Supermodular game model 
A game is termed supermodular if the action space forms a lattice and the utility 
functions are supermodular. A partially ordered set, X, is termed a lattice if for all 

, ,a b X a b X∈ ∧ ∈  and a b X∨ ∈ where { }sup ,a b a b∨ =  and { }inf ,a b a b∧ = . A 
function :f X → where X is a lattice, is termed supermodular if for all ,a b X∈ , 
( ) ( ) ( ) ( )f a f b f a b f a b+ ≤ ∧ + ∨ . 

 
Model Identification: While the definition may seem complicated, a game can be 
identified as a supermodular game if all players’ utility functions satisfy the relationship 
given in (2) and the action space is compact.  
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NE Existence: By Topkis’s fixed point theorem [7], all supermodular games have at least 
one NE. 
 
NE Identification: By [7], all NE for a game form a lattice. While this does not 
particularly aid in the process of initially identifying NE, from every pair of identified 
NE, e.g., a* and b*, additional NE can be found by evaluating * *a b∧ and * *a b∨ . 
 
Convergence: By [8], supermodular games have weak FIP, i.e., from any initial action 
vector, there exists a sequence of selfish adaptations that lead to a NE. Specifically for 
supermodular games, when the decision rules for all players are best responses, play will 
converge to a NE [8]. Further, if the radios make a limited number of errors or if the 
radios are instead playing a best response to a weighted average of observations from the 
recent past, play will converge [8][9]. These same convergence results also hold for 
potential games as FIP implies weak FIP. 
 



Stability: Supermodular games are a subset of generalized best response potential games 
[10]. For generalized best response potential games with a finite action space and 
continuous utility functions the following is a Lyapunov function. Define σ(a) as the set 
of action tuples for which a is the best response for some player, or more formally, 
( ) ( ){ }ˆ' : 'a a A a B aσ = ∈ ∈ . Then ( ) ( ) ( )
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the game [10]. Note that identifying the maximizers of this V also identifies the stable 
steady states for the game. 
 
4. Sample Applications 
The following present a number of simple examples of physical layer algorithms that can 
be shown to be a potential game or a supermodular game and thus can be assured of a 
steady-state, convergence to that steady-state, and stability. 
 
4.1 Frequency Selection Adaptive Interference Avoidance  
Consider an ad-hoc network of cognitive radio links operating in master-slave fashion. 
Each link, j, is implementing a waveform with bandwidth B and center frequency fj. The 
master node on each link j directs the link to adjust fj so that the interference that link j is 
minimized. To simplify this example, we’ll assume all links are transmitting at a fixed 
power level and there is symmetric path loss between links.  
 
A single iteration of this game can be expressed as a normal form game as follows The 
player set is the set of links, N. Each player’s action set is the set of frequencies, F, 
available to that link. A utility function for any player, j, is given by 
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Thus this network is assured of having a steady-state which can be identified by solving 
for the maximizers of V(a), is assured of converging assuming each link acts in its own 
interests and the link allowed to adapt at any particular time is chosen randomly, and is 
stable. 
 
Shown below in Figure 2 is the output of a simulation of this system where there are 10 
links, B = 1 MHz, [ ]0,10F =  MHz, and each master node chooses the frequency that 
maximizes its utility. Figure 3 shows another realization of this simulation. Note that 
while the existence of a steady state, convergence to a steady state, and stability of any 
steady-state is assured by virtue of being a potential game, there are actually numerous 
steady-states in this network, not all of which achieve the optimal channel spacing. Also 
note that since there are numerous fixed points, no fixed point is globally stable. 
 



 
Figure 2 Frequency Selection AIA 

 
Figure 3 Frequency Selection AIA 

 
4.2 OFDM Channel Filling 
Consider a closely space an ad-hoc network of cognitive radio links operating in master-
slave fashion. Each link, j, has a number of channels, C over which it can transmit and 
chooses an action aj that corresponds to a choice of zero to many channels to 
simultaneously operate on. The benefit that each node gets from transmitting on a 
particular channel, c, is given by ( )( )c cf aσ  where ( )c aσ returns the number of links 
simultaneously operating on channel c given that the radios are playing action tuple a.  
 
A single iteration of this game can be expressed as a normal form game as follows. The 
player set, N, is given by the set of master nodes. The action set of each player is given by 
the power set of the channel set, 2C . A utility function for this any player, j, is given by 
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Thus this network is assured of having a steady-state which can be identified by solving 
for the maximizers of V(a), is assured of converging assuming each link acts in its own 
interests and the link allowed to adapt at any particular time is chosen randomly, and is 
stable. Note as there are numerous steady-states for this game, no steady-state is globally 
stable, though each steady-state is locally stable. 
 
4.3 Distributed Power Control 
Now consider an ad-hoc network of cognitive radio links operating in master-slave 
fashion. All links are operating on the same channel using a waveform that has spreading 
factor K. Each master node, j, has power levels max0,jP P =    and directs the link to 

change transmit power level in an attempt to achieve a target SINR, γj. increase is 
implementing a waveform with bandwidth B and center frequency fj.  
 
A single iteration of this game can be expressed as a normal form game as follow. The 
player set, N, is given by the set of master nodes. The action set of each player is given by 
its set of power, Pj. A utility function for this any player, j, is given by 
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∑  where hjk is a nonnegative scalar 

representing the fraction of power transmitted by link j that is actually received by link k. 
This game can be identified as a supermodular game as follows. 
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. Thus this network is assured of having a steady-

state and is assured of converging assuming each link acts in acts in its own locally 
optimal manner. 
 
A simulation was constructed for a two cluster network with 11 nodes, K=63, and a path 
loss exponent of 4 was constructed where each link has a target SINR of 8.4 dB. A 
noiseless version of this simulation is shown in Figure 4 and a noisy version is shown in 
Figure 5. Note that the noisy simulation implies that the system is also stable. 

 
Figure 4 Noiseless Simulation 

 
Figure 5 Noisy Simulation

5. Summary 
We have shown how the cognition cycle maps into a normal form game model and 
identified five issues that any application of game theory to cognitive or adaptive radio 
should address: steady state existence, steady state identification, steady-state optimality,  
convergence, and stability. To address these issues, we have adopted a model-based 
approach to analyze cognitive radio physical layer algorithms. Using potential and 
supermodular game models, we can readily identify when a cognitive radio algorithm has 
a steady state, determine the kinds of adaptations that are assured of convergence, and 
establish stability regions. We then reviewed a few different physical layer algorithms 
and used these game models to assure the existence of a steady-state, convergence, and 
stability. We then verified these theoretical results through simulation.  
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