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Abstract— Game theory is a set of tools developed to
model interactions between agents with conflicting interests,
and is thus well-suited to address some problems in commu-
nications systems. In this paper we present some of the
basic concepts of game theory and show why it is an appro-
priate tool for analyzing some communication problems and
providing insights into how communication systems should
be designed. We then provided a detailed example in which
game theory is applied to the power control problem in a
CDMA-like system.

I. Motivation

Game theory is a tool for analyzing the interaction of de-
cision makers with conflicting objectives. Economists have
long used it as a tool for examining the actions of economic
agents such as firms in a market. In recent years, it has
seen some application by computer scientists to problems
such as flow control and routing (e.g. [1] and [2]), but we
believe that it can be applied fruitfully to a much broader
class of problems in communications systems.

Modern day communications systems are often built
around standards. Some such standards are open, such
as the TCP/IP standard on which the internet is based.
Other standards, such as IS-95 (CDMA), contain intellec-
tual property which must be licensed by the developer. In
most cases, though, devices to access these systems are be-
ing built by a variety of different manufacturers. In many
cases, these manufacturers may have an incentive to de-
velop products which behave “selfishly” by seeking a per-
formance advantage over other network users at the cost
of overall network performance. In other cases, end users
may have the capability to alter products to behave in a
“selfish” manner. Given our reliance on standards, it seems
that we should design and build systems that are prepared
to cope with users who behave selfishly. If possible, such
systems should make selfish behavior unprofitable, so that
users will prefer to behave in a manner which is optimal
for the system as a whole. When this is not possible, de-
signers should at least be aware of the impact that selfish
users would have on the operation of the specified system.

Note that while specifications can establish the “rules of
interaction,” it is difficult for a specification to enforce a
specific algorithm for the end user to execute. For instance,
consider a slotted Aloha system. While the system designer
can specify that users use slotted Aloha for access to a
given channel, it may be impossible for the designer to
ensure that every user uses the Pseudo-Bayesian algorithm
to estimate the number of backlogged users and choose a
retransmit probability. In this case, it is impossible for
a central controller to know what retransmit probability
the end user is using, making it difficult to enforce such a
choice.

Another reason that game theory is an appropriate tool
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in the setting of communications networks is that game
theory deals primarily with distributed optimization — in-
dividual users, who are selfish, make their own decisions
instead of being controlled by a central authority. Many of
the problems which must be solved in a communications
system are known to be NP-hard; as a result solving these
optimization problems centrally becomes computationally
infeasible as network size increases. Because game theory
focuses on distributed solutions to system problems, we
expect systems designed with game-theoretic concerns in
mind to be highly scalable. (For examples of communica-
tions problems which are NP-hard, see [3] and [4].)

In some sense, game theory is better suited to solving
communication problems — where the “agents” are likely
to be computers — than to solving economics problems.
One of the main obstacles faced by economists applying
game theory to the study of human beings and human
institutions is game theory’s strong rationality assump-
tion. Game theory typically assumes that all players seek
to maximize their utility functions in a manner which is
perfectly rational. Obviously, human players are seldom
perfectly rational. When the players of a game become
computerized agents, though, it is reasonable to assume
that the device will be programmed to maximize the ex-
pected value of some utility function (at least in so far as
this maximization is computationally feasible). Thus the
strong rationality assumption seems more reasonable for
machines than for people.

II. Explanation

Having shown that game theory may be an appropriate
tool to solve some problems in communications systems,
we will now present a brief overview of some of the most
important concepts of game theory and some particular
concepts which will be important in our application.

A game has three components: a set of players, a set of
possible actions for each player, and a set of utility func-
tions mapping action profiles into the real numbers. We
denote the set of players as I and usually take I to be
finite with I = {1, 2, 3, . . . , I}. For each player i ∈ I we
denote by Ai the set of possible actions that player i can
take, and we let A = A1 ×A2 × · · · ×AI denote the space
of all action profiles. Finally, for each player i ∈ I we let
ui : A → R denote player i’s utility function. (At this
point, one often defines mixed strategies and utility func-
tions of mixed strategy profiles. Unfortunately, there are
some technical problems which must be dealt with when
the action sets are uncountable, as they will be in our ex-
ample. Rather than delve into those issues here, we restrict
our attention to pure strategies.) One more notational is-
sue before we move on: Suppose that a ∈ A is a strategy
profile and i ∈ I is a player; we let ai ∈ Ai denote player
i’s action in a and a−i denote the actions of the other I−1
players.

The most important equilibrium concept in game theory
is the concept of Nash Equilibrium. A Nash equilibrium is
an action profile at which no user may gain by unilaterally
deviating. So a Nash equilibrium is a stable operating point
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Fig. 1. An example game in matrix form.
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because no user has any incentive to change strategy. More
formally, a Nash equilibrium is a strategy profile a such that
for all ãi ∈ Ai,

u(ai, a−i) ≥ u(ãi, a−i)[5].

Pareto efficiency is another important concept for our
application of game theory. An action profile a ∈ A is said
to be Pareto efficient if there is no action profile ã ∈ A such
that for all i,

ui(ã) ≥ ui(a).
with strict inequality for at least one i. In other words, an
action profile is said to be Pareto efficient if it is impossi-
ble to improve the utility of any player without harming
another player.

Simple two-player games are often represented in the
form of a matrix. For an example game matrix which we
will use to illustrate several of our definitions, see figure 1.
In this case, we assume that players choose their moves si-
multaneously. Player 1 chooses a row, and player 2 chooses
a column. The ordered pair in each box represents the pay-
off which each player receives when that “strategy profile”
(choice of row and column) is realized; player 1’s payoff is
listed first in the ordered pair.

In the game of figure 1, there are two pure-strategy Nash
equilibria. The first is (U,L) and the second is (D,R). In
addition, note that (U,L) is the only Pareto efficient point
in the matrix. Hence, not every Nash equilibrium is Pareto
efficient. In some games, in fact, none of the Nash equilibria
are Pareto efficient. (See, for instance, the vast literature
on the Prisoner’s dilemma.)

Repeated games with observable actions are a class of
games which has been studied extensively. The basic idea
in a repeated game with observable actions is that a simple
game, the stage game, is played repeatedly by the same set
of players. After each play of the stage game, all of the
players learn what strategies were chosen by their oppo-
nents in the last round. As a result, players can condition
their choice of strategies on past actions of their opponents.
This gives rise to an enlarged strategy space; a strategy, si
for player i is now a map from the set of possible histories,
H, to the set of actions for player i, Ai.

Consider a repeated version of the game in figure 1. In
this case, the following set of strategies form a Nash equi-
librium: Player 1 always plays U. Player 2 plays L unless
player 1 has played D in a previous period, in which case
player 2 plays M. The reason that this is a Nash equilibrium
is simple. If player 1 always plays U, then playing L except
after player 1 has played D is an optimal response for player
2. Similarly, if player 2 will always play L unless player 1
has played D in the past, then always playing U is an opti-
mal choice of strategy for player 1. Nonetheless, something
seems wrong here. What if player 1 “accidentally” plays D
in one stage? (Perhaps player 1’s action must be communi-
cated through a noisy channel, for instance.) Then player

2 will play M forever after even though she would be better
off playing L or R. Player 2’s strategy seems foolish off the
equilibrium path. Thus, we need a stronger equilibrium
concept for repeated games.

After each possible history h ∈ H, the players in essence
start a new game, called the subgame starting at h. Like
any other game, the concept of Nash equilibrium applies to
the subgame starting at h. A subgame perfect equilibrium
is a strategy profile such that for every h ∈ H the players
will play a Nash equilibrium in the subgame starting at h.
The game in figure 1 has infinitely many subgame perfect
equilibria (as do most repeated games). One example of a
subgame perfect equilibrium is the strategy profile in which
player 1 always plays U and player 2 always plays L.

The concept of subgame perfection can be extended to
a much wider class of games than repeated games with ob-
served actions. For a more thorough treatment of these and
other topics in game theory, a simple introductory game
theory textbook at an undergraduate level is [6]. An ex-
cellent intermediate text is [5]. For those with a lifetime to
devote to the study of game theory, we suggest [7].

III. Application

The power control problem in a CDMA-based system is
one example of a problem in communication networks that
is appropriate for the use of game-theoretic tools. In the
power control problem, each user’s utility is increasing in
her signal-to-interference-and-noise ratio (SINR) and de-
creasing in her power level. If all other users’ power lev-
els were fixed, then increasing one’s power would increase
one’s SINR. In this case, a user could simply trade power
for SINR. In a real system, though, raising one’s power
has other consequences; when a user raises her transmis-
sion power, this action increases the interference seen by
other users, driving their SINRs down, inducing them to
increase their own power levels. Game theory is a good
tool for analyzing this situation.

The power control problem for data users in a CDMA-
like system was first framed as a game theory problem in
[8], [9]. This work was further expanded in [10], [11], [12].
In all of these papers, very similar utility functions are
developed and utilized. In this paper we will utilize the
same utility function used in [12]. We note, however, that
the issue of the proper utility function for data users on a
wireless network deserves further research.

In a wireless system, suppose that users transmit infor-
mation at the rate R bits/second in L bit packets over
a spread-spectrum bandwidth of W (Hz). Let pj be the
power transmitted by user j; we assume that users choose
their power levels from the set of non-negative real num-
bers, pj ∈ [0,∞). We define the signal-to-interference-and-
noise ratio of user j to be

SINRj = γj =
W

R

hjpj∑
∀i 6=j hipi + σ2

where hj is the path gain from user j to the base station
and σ2 is the power of the background noise at the receiver.
We assume that the background noise is additive white
Gaussian noise (AWGN).

Given these preliminaries, the utility function of user j
has the unit of bits/J and is expressed by

uj(pj , γj) =
R

pj
(1− 2BER(γj))L [12]

where BER(γj) is the bit error rate achieved by a given
transmission scheme.
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Fig. 2. An example of a user’s utility function.
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If our transmission scheme is non-coherent frequency
shift keying (FSK) in an AWGN channel, then we have

uj(pj , γj) =
R

pj
(1− e−0.5γj )L [12].

Observe that limpi↓0 ui = 0 [8]. For our purposes, we
define ui(0, γj) = 0.

An example of one user’s utility function, assuming that
all other users’ transmit powers are fixed, is shown in figure
2. In this figure, the horizontal axis shows the power at
which the user transmits, and the vertical axis shows the
user’s utility. If the user’s transmit power is too low, then
the user’s received power at the base station will be lower
than the received powers of other users. This will cause the
user’s SINR to be low, and hurt the user’s performance.
This is reflected by the drop in the user’s utility function
as pi ↓ 0. If the user’s transmit power is too high, then she
is squandering precious battery power while having little
impact on her bit error rate. This is reflected by the drop
in the user’s utility function as pi →∞.

To this point, we have defined our user’s objective func-
tions as well as the space from which they choose their
transmit powers (the non-negative real numbers). In the
vocabulary of game theory, we have defined the utility func-
tions and the strategy space. Suppose that we let each user
unilaterally decide how much power to transmit. The out-
come for each user is a function of that user’s own decisions
as well as the decisions of the other users. What will the
users decide to do? The users will attempt to make the
best possible choices, taking into account that the other
users are doing the same thing. By assumption, our users
have complete information about each other. We further
assume that our users are completely rational. Then, ac-
cording to game theory, our users will choose an operating
point which is a Nash Equilibrium.

Implicitly assuming a one-shot game, Shah, Mandayam,
and Goodman prove that the power control game as de-
scribed here has a unique Nash Equilibrium [8]. This Nash
Equilibrium has the property that all users have the same
received power at the base station, and hence all users have
the same SINR [8]. In addition to its intuitively appealing
“fairness,” this property is optimal for despreading the re-
ceived signals in a CDMA system [13].

Another desirable characteristic of the outcome of a

game (or any optimization problem involving several differ-
ent objective functions) is Pareto efficiency. It is easy to see
that if the power control problem were centralized, then the
centralized controller would never want to choose an out-
come that was Pareto inefficient — a centralized controller
would always want to improve the outcome for a user if
such an improvement could be made without harming the
rest of the users. The Nash Equilibrium of the power con-
trol game is shown to be Pareto inefficient in [8].

Here, we will look at two alternative power control
games. The first game, which we call the Refereed Game,
allows the base station to “referee” the game by punishing
users who attempt to “cheat.” The second game is a re-
peated game, in which we assume that the players are not
myopic, but consider the impact of their current actions
on future play. A third alternative is the pricing game as
proposed in [12]; in this scenario, users are charged for the
interference that they cause to other users.

A. The Refereed Game
The problem with the Nash Equilibrium solution to the

basic power control game is that it is Pareto inefficient. If
all users decrease their transmit powers by a factor α < 1,
then all users can obtain a higher utility [8].

We will show that if the base station acts as a “referee,”
then it is possible to achieve a solution which is a Pareto im-
provement over the Nash Equilibrium of the simple pricing
game. Furthermore, it is possible to construct a scheme
where actual power control decisions are still left to the
discretion of individual users. In these cases, the base sta-
tion’s only power control function is to “enforce” the op-
erating point chosen by the users. Numerical simulation
suggests that the outcome obtained in the Refereed Game
is a Pareto improvement over the best outcome obtained
by linear pricing.

The number of ways in which such a system could be
designed are vast, so we will only consider a typical exam-
ple. Suppose that we wish for our system to be “fair” in
the sense that all users will have the same received power
(and hence the same signal to interference ratio) — a prop-
erty possessed by the Nash Equilibrium operating point.
In this case, we want the system to seek a received power
level which optimizes some measure of overall system per-
formance.

Consider the level of received power (p̃i = pi · hi) that
an individual user would choose given that all other users
will choose their power levels so that they have the same
received power at the base station. In this case, if N is the
number of users currently in the cell then user j’s signal to
noise ratio becomes

γj =
W

R

p̃j

(N − 1)p̃j + σ2
.

User j’s utility function is then

uj(p̃j) =
ERhj

p̃j
(1− exp(

−W

2R

p̃j

(N − 1)p̃j + σ2
))L.

Given that all users have the same received power and
that L > 1 , we can show that uj(p̃j) has a single local max-
imum on p̃j ∈ (0,∞) and that this local maximum is the
global maximum on the domain (see [14]). Furthermore,
this maximum is at the same level of received power for all
users, regardless of their path gain. This is obvious from
the fact that hj appears in uj(p̃j) only as a multiplicative
factor. Thus, the same value of p̃j will maximize uj(p̃j)
regardless of the value of hj . In other words, all users
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desire the same operating point given that the system op-
eration is such that all users will have the same received
power. Thus, our system should seek this operating point.
We will denote the value of p̃j which maximizes the above
utility function by p̃∗.

We believe that the operating point at which all users’
transmissions have received power p̃∗ is Pareto efficient.

It is difficult to find a closed-form expression for p̃∗. It
is, however, relatively easy to determine the value of p̃∗
numerically. Furthermore, p̃∗ depends only on the param-
eters of the system (the spreading factor, W/R, and the
packet length, L), the number of users in the cell, N , and
the level of AWGN, σ2; since these parameters are readily
available to the base station, the base station can compute
the desired received power and communicate it to the mo-
bile users. Alternatively, the individual users may compute
the desired received power themselves, using information
provided by the base station.

Once the most desirable operating point has been deter-
mined, the system must “punish” any user whose received
power is higher than the chosen threshold. Inevitably, some
terminals will exceed the threshold unintentionally; for in-
stance, a terminal coming out of a deep fade may under-
estimate its path gain and transmit with excessive power.
The system must handle this situation gracefully; in other
words, the punishment should be adequate to ensure that
the user would be better off operating at the socially desir-
able operating point, but not so severe that a user’s perfor-
mance is seriously damaged by a transmission with slightly
too much power.

Suppose that user j’s transmission has a received power
p̃j which is x W higher than the target received power p̃t.
This user’s signal to noise ratio will increase by

∆γj =
W

R

x

(N − 1)p̃t + σ2
.

Recall that our user’s bit error rate is 0.5 exp(−0.5γj).
Thus, this increment in γj will improve user j’s BER over
the BER of the chosen operating point, multiplying it by
a factor of exp(−0.5∆γj).

In order to “punish” this user for improving her BER to
the detriment of other users, the base station can simply
increase the errant user’s BER by randomly inverting data
bits in the user’s packet with a certain probability, qbi.
Giving the user a BER equal to the desired operating BER
is adequate punishment. In this case, the user will have
expended extra power in order to obtain the same BER —
resulting in a lower utility than would have been obtained
at the socially desirable operating point. To obtain this
result, the base station should invert user data bits with
probability

qbi =
exp(0.5∆γj)− 1

2(1− exp(−0.5γj))
exp(−0.5γj).

In order for this scheme to be successful, some informa-
tion must be communicated from the base station to the
mobile terminals. First, the base station must inform all
users of the target received power at each instant (or must
provide them with current system parameters so that they
can calculate the target received power themselves). Sec-
ond, the base station must inform all users of the power
level at which their transmissions were received. This is
similar to the amount of control information required in
both the simple power control game and the power control
game with pricing.

B. The Repeated Power Control Game
From a game theory perspective and for the purpose of

simplifying base station operations, it is desirable to re-
move the base station from its role as a referee. In order
to do this while maintaining the efficiency of the refereed
game, the users will have to discipline themselves. Unlike
the base station in the previous section, however, users can-
not punish power violations instantaneously. Some period
of time will be required for the users to recognize (or be
notified) that another user is “cheating” and respond.

Although previous work in [8] has proposed an itera-
tive algorithm to search out the desired operating point,
the game-theoretic analysis has assumed that the power
control game is a one-shot game. In other words, users
are myopic; their only concern is the current value of the
utility function. These users are unable to consider the
consequences of their actions on future iterations. In order
to allow cooperation to develop between users, it is impor-
tant to model the power control game as a repeated game.
By modeling the situation as a repeated game, a user who
“cheats” in the current time slot may be punished by the
other users in future time slots.

In addition to modeling the situation as a repeated game,
we will also require that the power control game have an
infinite horizon. In other words, a user must always ex-
pect to transmit again in the next period. As we have
stated above, punishment in the repeated game will not
be instantaneous. If a user knew when her last transmis-
sion was coming, then she could exploit this information to
“cheat;” her immediate withdrawal from the game would
then allow her to go unpunished. The infinite horizon as-
sumption seems reasonable, however. In general, there are
two ways that a user might drop out of the game — she
can either leave the cell or she can stop actively using the
network. Provided that handoff decisions are made by a
central decision maker, the user will be unable to predict
with precision when she will pass into a new cell. If the net-
work is being used interactively — for example, by surfing
the web — then it will be impossible for the mobile termi-
nal to predict conclusively when the user will be done with
her task.

We will assume a discrete time model. In each time slot,
every user transmits one packet. Furthermore, we assume
every user knows the received power of all transmissions in
the previous time slots.

Each transmission of a packet gives rise to some utility,
which is calculated via the same utility function which is
used for the one-shot game. The user values the repeated
game by taking a discounted sum of the utilities earned in
the transmission of each packet. The discount rate, δ ∈
(0, 1), is a measure of the value that the user places on
the future. If we let un

∞
n=0 be the sequence of utilities

achieved in repeated rounds of the one-shot game (by the
transmission of a stream of packets), then the user wishes
to maximize the utility for the repeated game, given by

urep =
∞∑

n=0

unδn.

We assume that δ is very close to one. Since packets
in a wireless network will come in such quick succession,
it seems unlikely that the user’s valuation of the current
packet will be drastically different than her valuation of
the next packet.

Now consider a particular choice of strategies and the
resulting system operation. We presume that after each
packet is received the system is able to instantaneously
announce to all users the number of users in the cell and

824



the power with which each user’s transmission was received.
We further assume that all of the “cooperating” users are
striving for the same operating point as was sought in the
refereed game. The desired received power may be either
announced by the base station or calculated at the mobile
terminal.

As long as no user exceeds the desired received power,
the system operates normally. If a user has exceeded the
desired receive power, however, then during the next packet
period, the rest of the users will punish the wayward user
by increasing their powers to the Nash equilibrium of the
one-shot game. Once adequate punishment has been dis-
pensed, the system returns to normal. According to our
simulations, punishment generally lasts only for the dura-
tion of one packet transmission.

As long as no one cheats, the operating point for our
repeated game system will be the same as the operating
point for the refereed game. In the numerical results of
the next section, the same results are shown for both the
refereed game and the repeated game. In reality, however,
the repeated game system will occasionally have to punish
a user, resulting in decreased system performance for ev-
eryone. In the repeated game, though, the base station is
able to be passive regarding power control — it simply re-
ports to all users the power with which transmissions were
received.

Finally, we observe that users who play this strategy are
playing a subgame perfect equilibrium.

C. Comparison of Power Control Schemes
We have chosen a static situation in which to compare

outcomes produced by our systems with those produced by
both the simple power control game and the power control
game with pricing, described in [12]. We suppose that 9
users are at the expected distances from the center of a
circular cell given that the users are uniformly distributed
around the cell of radius 5 km. The expected location of
the closest user is 1.42 km from the center of the cell; the
expected location of the farthest user is 4.74 km from the
center of the cell.

We use the PCS Extension to the Hata Model to predict
large-scale propagation loss [15]. We assume a center fre-
quency of 1.9 GHz, an effective mobile height of 2 m, and
an effective base station height of 80m. We also assume a
packet length of 64 bits (L = 64), a transmission rate of
10 kbps (R = 10000), and a bandwidth expansion factor
of 100 (W/R = 100). Finally, we assume the power of the
AWGN at the base station is 5×10−15 W (σ2 = 5×10−15).

Figures 3 and 4 show the results for our scenario. Figure
3 shows the utility versus distance from the base station for
this case. From this graph, it is easy to see that the refereed
game and the repeated game provide Pareto improvement
over the best Pareto improvement which can be achieved
with linear pricing. The logarithmic scale allows us to see
what happens to the user(s) located farthest from the base
station.

IV. Conclusion

We have shown that game theory is an appropriate tool
for analyzing a variety of problems encountered in the de-
sign and analysis of a communications network. After
presenting some basic game-theoretic concepts, we have
presented an application to the power control problem
in CDMA. Using game-theoretic insights we have demon-
strated two power control schemes which obtain outcomes
which we believe to be globally optimal. Hence, by using
game-theory we have eliminated the threat which a user
selfishly controlling her power might pose to the equilib-

Fig. 3. Comparison of user utility.
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Fig. 4. Comparison of user transmit power.
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rium operation of a CDMA system with distributed con-
trol.
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