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Analysis and Design of Cognitive Radio Networks  

and Distributed Radio Resource Management Algorithms 
 

James O’Daniell Neel 

 

(Abstract) 

 

Cognitive radio is frequently touted as a platform for implementing dynamic distributed 

radio resource management algorithms. In the envisioned scenarios, radios react to 

measurements of the network state and change their operation according to some goal 

driven algorithm. Ideally this flexibility and reactivity yields tremendous gains in 

performance. However, when the adaptations of the radios also change the network state, 

an interactive decision process is spawned and once desirable algorithms can lead to 

catastrophic failures when deployed in a network. 

 This document presents techniques for modeling and analyzing the interactions of 

cognitive radio for the purpose of improving the design of cognitive radio and distributed 

radio resource management algorithms with particular interest towards characterizing the 

algorithms’ steady-state, convergence, and stability properties. This is accomplished by 

combining traditional engineering and nonlinear programming analysis techniques with 

techniques from game to create a powerful model based approach that permits rapid 

characterization of a cognitive radio algorithm’s properties. Insights gleaned from these 

models are used to establish novel design guidelines for cognitive radio design and 

powerful low-complexity cognitive radio algorithms. 

 This research led to the creation of a new model of cognitive radio network 

behavior, an extensive number of new results related to the convergence, stability, and 

identification of potential and supermodular games, numerous design guidelines, and 

several novel algorithms related to power control, dynamic frequency selection, 

interference avoidance, and network formation. It is believed that by applying the 

analysis techniques and the design guidelines presented in this document, any wireless 

engineer will be able to quickly develop cognitive radio and distributed radio resource 

management algorithms that will significantly improve spectral efficiency and network 

and device performance while removing the need for significant post-deployment site 

management.  
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Chapter 1: Cognitive Radio 
 “Cogito, ergo sum. [I think, therefore I am]” – René Descartes 

 
Aided by advances in processors, RF technology, and software, software radio 

technology has rapidly progressed since the coining of the term “software radio” by Joe 

Mitola in 1991 [Mitola_00]. Software radio (SDR) currently forms the core of the US 

military’s multi-billion-dollar-a-year Joint Tactical Radio System (JTRS) which has 

resulted in SDRs being fielded by General Dynamics (DMR [GDDS]), Thales (JEM 

[Thales]), and Harris (RF-300M-HH [Harris]), to name a few. Beyond the military, 

commercial standards are beginning to be preferably implemented in software (802.16 

[Picochip]) and commercial base stations are being implemented as software radios 

(Vanu [Vanu]). The reality of software radio and the support for moving a single radio 

through multiple standards has led the Institute of Electrical and Electronics Engineers 

(IEEE) to begin standardizing vertical handoffs between networks employing different 

standards (802.21 [802.21]).  

 

However, the numerous envisioned applications for SDR – multiband multimode radio, 

porting waveforms across platforms, over-the-air updates – are accompanied by the 

numerous envisioned problems – viruses or worms that render the radio unusable, 

unforeseen software/hardware combinations that turn radios into jammers, and cell 

phones that crash to reveal a “blue screen of death.” Accordingly, SDR research and 

development has focused as much on overcoming the problems created by SDR as it has 

the opportunities and realization of SDR. 

 

Now consider a radio that autonomously detects and exploits empty spectrum to increase 

your file transfer rate. Suppose this same radio could remember the locations where your 

calls tend to drop and arrange for your call to be serviced by a different carrier for those 

locations. These are some of the ideas motivating the development of cognitive radio
1. In 

effect, a cognitive radio is a software radio whose control processes leverage situational 

knowledge and intelligent processing to work towards achieving some goal related to the 

                                                 
1 This term, too, was coined by Mitola in 1999 [Mitola_99]. 
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needs of the user, application, and/or network. Arising from a logical evolution of the 

control processes of a software radio, cognitive radio presents the possibility of numerous 

revolutionary applications.  

 

Opportunistic spectrum utilization can find available spectrum in a crowded network, 

leading to 10-fold gains in capacity [Marshall_05a]. By learning their environment, 

cognitive radios can dramatically improve link reliability and help networks 

autonomously improve coverage and capacity. True radio interoperability can be 

achieved when radios learn to autonomously negotiate services and protocols. Smart 

collaborative signaling techniques promise significant range extension and data-rate 

increases. Advanced network topologies can dramatically extend coverage and increase 

bandwidth. The global roaming of radios can be dramatically simplified when a radio is 

responsible for autonomously detecting the location specific operating requirements. 

Autonomous determination of bandwidth requirements and spectrum availability will 

greatly enhance the opportunities for rapid reallocation of spectrum resources. Finally, 

smart spectrum use can overcome the deficiencies of inexpensive analog components 

allowing lower-priced radios to be fielded [Marshall_05a]. 

 

But what’s to say that cognitive radios will not act maliciously – opportunistic spectrum 

use into spectrum bullying? Given the infinite number of environments that a radio will 

encounter and a design that how can we hope to verify that the radio will behave as 

intended? How can we be certain that radios will be able to even recognize the 

opportunities they are presented? What if the interaction of several seemingly benign 

algorithms yield disastrous network behavior – something that seems all too possible 

once selfish radios are competing for spectrum?  

 

This work concentrates on this last problem – the interaction of cognitive radios in 

distributed radio resource management settings – by developing techniques for modeling 

and analyzing cognitive radio algorithms to determine steady-states, convergence, and 

stability and by developing frameworks for designing cognitive radio algorithms that 

yield good performance for the radio and for the network. Beyond cognitive radio, the 
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techniques developed and presented in this work can also be extended to the modeling, 

analysis, and design of distributed and automated radio resource management. Serving as 

a foundation on which to build the subsequent models, analysis techniques and 

development frameworks, this chapter focuses on the concept, implementation, and 

applications of cognitive radio and is organized as follows. Section 1.1 formally defines 

cognitive radio and differentiates cognitive radio from some closely related terms. 

Section 1.2 discusses high-level implementation aspects of cognitive critical to 

understanding the analysis of interactive cognitive radio. Section 1.3 discusses some of 

the frequently discussed applications of cognitive radio and some limited current 

deployments of cognitive radio. Section 1.4 presents some of the major technical hurdles 

that must be cleared for widespread deployment of cognitive radio. Section 1.5 briefly 

overviews the objectives and original contributions of this work. Section 1.6 presents 

work related to the big-picture objectives of this work and outlines the material to be 

presented over the remainder of the text.  

1.1 Basic Cognitive Radio Concepts 
While the cognitive radio community has had significant success popularizing the 

concept of cognitive radio and developing prototypes, applications, and critical 

components, the community has had a surprisingly difficult time agreeing upon exactly 

what is and is not a cognitive radio beyond. Perhaps echoing the sentiment of former 

Supreme Court Justice Potter Stewart, many members of the cognitive radio community 

believe that “they know it when they see it,” even if a precise definition is ineffable. 

Some have succeeded in formulating a definition of cognitive radio but have found their 

definitions at significant variance with others’ definitions.  

 

While these definitions are likely to converge over time from either an international 

consensus (the goal of IEEE 1900.1 group) or from a de facto definition taken from the 

first cognitive radio to dominate the market, this dissertation must plunge ahead with 

some formalization of cognitive radio and related concepts to formally analyze their 

interactions. To that end, the remainder of this introductory section presents a definition 

of cognitive radio that is hopefully suitably encompassing and discriminating for other 

researchers to use and reasonably well-justified by its preceding discussion. To enhance 
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the offered definition’s usefulness, terms frequently discussed in relation to cognitive 

radio are subsequently defined and differentiated from cognitive radio. 

1.1.1 Defining “Cognitive Radio” 

Tautologically, a cognitive radio could be defined as “A radio that is cognitive,” or 

paraphrasing Descartes, “Cogitat, ergo est cognitive radio.”2 In the absence of a Turing 

test for radios, applying this definition is nontrivial and implies a level of functionality 

that many researchers consider excessive. Indeed, while many researchers and public 

officials agree that upgrading a software radio’s control processes will add significant 

value to software radio, there is currently some disagreement over how much “cognition” 

is needed which results in disagreement over the precise definition of a cognitive radio. 

The following provides some of the more prominently offered definitions of cognitive 

radio. 

 

In the 1999 paper that first coined the term “cognitive radio”, Joseph Mitola III defines a 

cognitive radio as [Mitola_99]: “A radio that employs model based reasoning to achieve 

a specified level of competence in radio-related domains.”  

 

However, in his recent popularly cited paper that surveyed the state of cognitive radio, 

Simon Haykin defines a cognitive radio as [Haykin_05]: “An intelligent wireless 

communication system that is aware of its surrounding environment (i.e., outside world), 

and uses the methodology of understanding-by-building to learn from the environment 

and adapt its internal states to statistical variations in the incoming RF stimuli by making 

corresponding changes in certain operating parameters (e.g., transmit-power, carrier-

frequency, and modulation strategy) in real-time, with two primary objectives in mind:  

• highly reliable communications whenever and wherever needed;  

• efficient utilization of the radio spectrum. 

 

                                                 
2 It thinks, therefore it’s a cognitive radio. 
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Coming from a background where regulations focus on the operation of transmitters, the 

FCC has defined a cognitive radio as [FCC_05]: “A radio that can change its transmitter 

parameters based on interaction with the environment in which it operates.” 

 

Meanwhile, the other primary spectrum regulatory body in the US, the NTIA [NTIA_05], 

adopted the following definition of cognitive radio that focuses on some of the 

applications of cognitive radio: “A radio or system that senses its operational 

electromagnetic environment and can dynamically and autonomously adjust its radio 

operating parameters to modify system operation, such as maximize throughput, mitigate 

interference, facilitate interoperability, and access secondary markets.” 

 

The international spectrum regulatory community in the context of the ITU Wp8A 

working document is currently working towards a definition of cognitive radio that 

focuses on capabilities as follows: “A radio or system that senses and is aware of its 

operational environment and can dynamically and autonomously adjust its radio operating 

parameters accordingly.” 

 

While aiding the FCC in its efforts to define cognitive radio, IEEE USA offered the 

following definition [IEEEUSA_03]: “A radio frequency transmitter/receiver that is 

designed to intelligently detect whether a particular segment of the radio spectrum is 

currently in use, and to jump into (and out of, as necessary) the temporarily-unused 

spectrum very rapidly, without interfering with the transmissions of other authorized 

users.” 

 

The broader IEEE tasked the IEEE 1900.1 group to define cognitive radio which has the 

following working definition [IEEE 1900.1]: “A type of radio that can sense and 

autonomously reason about its environment and adapt accordingly. This radio could 

employ knowledge representation, automated reasoning and machine learning 

mechanisms in establishing, conducting, or terminating communication or networking 

functions with other radios. Cognitive radios can be trained to dynamically and 

autonomously adjust its operating parameters.” 
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Likewise, the SDR Forum participated in the FCC’s efforts to define cognitive radio and 

has established two groups focused on cognitive radio. The Cognitive Radio Working 

Group focused on identifying enabling technologies uses the following definition:  “A 

radio that has, in some sense, (1) awareness of changes in its environment and (2) in 

response to these changes adapts its operating characteristics in some way to improve its 

performance or to minimize a loss in performance.” 

 

However, the SDR Forum Special Interest Group for Cognitive Radio, which is 

developing cognitive radio applications, uses the following definition: “An adaptive, 

multi-dimensionally aware, autonomous radio (system) that learns from its experiences 

to reason, plan, and decide future actions to meet user needs.” 

 

Finally, the author of this text participates in the Virginia Tech Cognitive Radio Working 

Group which has adopted the following capability-focused definition of cognitive radio 

[VT CRWG]: “An adaptive radio that is capable of the following: 

 a) awareness of its environment and its own capabilities, 

 b) goal driven autonomous operation,  

 c) understanding or learning how its actions impact its goal,  

 d) recalling and correlating past actions, environments, and performance.” 

 

While it appears to be unlikely that there will be a harmonization of these definitions in 

the near future, an examination of the salient functionalities of these definitions, as 

summarized in Table 1.1, reveals some commonalities among these definitions. First, all 

of these definitions assume that cognition will be implemented as a control process, 

presumably as part of a software defined radio. Second, all of the definitions at least 

imply some capability of autonomous operation. Finally, the following are some general 

capabilities found in all of the definitions: 

1. Observation – whether directly or indirectly, the radio is capable of acquiring 

information about its operating environment.  

2. Adaptibility – the radio is capable of changing its waveform. 
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3. Intelligence – the radio is capable of applying information towards a purposeful 

goal.  

Table 1.1: Cognitive Radio Definition Matrix.  
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FCC • • • •        

Haykin • • • • • • • •    

IEEE 1900.1 • • • • •       

IEEE USA • • • • • •     • 

ITU-R • • • • • •      

Mitola • • • • • • • • • •  

NTIA • • • • • • •     

SDRF CRWG • • • • •  •     

SDRF SIG • • • • • • • • •   

VT CRWG • • • • • • • • •   

 

Note that this definition of intelligence3 implies that even those definitions that do not 

explicitly mention a goal (or provide a specific goal such as performance) still implicitly 

require the existence of some goal for intelligent adaptation. By using only these common 

features of all these definition we arrive at the definition of cognitive radio given in 

Definition 1.1. 

Definition 1.1: Cognitive Radio (*)4
 

A cognitive radio is a radio whose control processes permit the radio to leverage 
situational knowledge and intelligent processing to autonomously adapt towards some 
goal.  

 

                                                 
3 Intelligence as defined by [American Heritage_00] as “The capacity to acquire and apply knowledge, 

especially toward a purposeful goal.” The definition for intelligence as applied to cognitive radio differs 
only in that the acquisition of knowledge has been subsumed into the observation process. 
4 The asterik denotes that this definition is original to the author. Throughout this document when chapters 
present both original and prior work by others, original definitions and theorems are noted by an asterik. 



  

 8 

Throughout the remainder of this text Definition 1.1 will be what is meant when the 

phrase “cognitive radio” is used. When different capabilities (sometimes more, 

sometimes less, sometimes more specific) are required, we will make use of different 

terms defined in the following section.  

1.1.2 Related Terms 

As part of our discussion of cognitive radio, we will find it useful to rigorously define 

some related terms. Specifically we will find it useful to make use of the terms software 

defined radios, policy based radios, procedural radios, and ontological radios. 

 

The logical authority for a definition of software defined radio, the Software Defined 

Radio Forum defines a software defined radio (SDR) as shown in Definition 1.2 [SDR 

Forum_05]. 

Definition 1.2: Software Defined Radios (SDRs) 
“Radios that provide software control of a variety of modulation techniques, wide-band 
or narrow-band operation, communications security functions (such as hopping), and 
waveform requirements of current and evolving standards over a broad frequency range. 
The frequency bands covered may still be constrained at the front-end, however, 
requiring a switch in the antenna system.” 

 

While others5 consider Definition 1.2 to be that of a “software controlled radio,” this text 

will utilize the definition of SDR provided by the SDR Forum and will refer to radios 

whose functionality is primarily realized in software as “software implemented radios.” 

While a radio could be implemented via software or hardware and controlled via 

software, the emphasis on software control is important to the cognitive radio concept as 

software control permits rapid adaptation of the radio’s operation – perhaps as short as 

the time required to readdress a program address counter – and provides a logical 

mechanism on which to implement a cognitive radio’s “control processes [that] permit 

the radio to leverage situational knowledge and intelligent processing to autonomously 

adapt towards achieving some goal.” It should be pointed out that while many treat that 

cognitive radio as an SDR with enhanced control processes (as was done in the 

introduction to this chapter), some researchers correctly emphasize that a cognitive radio 

                                                 
5 Here, the term “others” includes this author. 
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need not be implemented on an SDR as the control processes could be implemented in 

hardware and indeed have implemented a hardware cognitive radio [Rondeau_04]. 

However, such “hardware controlled cognitive radios” appear likely to share the fate of 

Babbage’s Analytical Engine due to the far greater flexibility and ease of programming 

provided by SDR cognitive radios. 

Although the definition of the term waveform is a frequent point of discussion at 

conferences due to variances in usage, we have used the term repeatedly throughout the 

preceding and hope its usage has been clear from context up to this point. However, as 

we just wrote “waveform requirements” as part of a formal definition, completeness 

dictates we formally define waveform. 

Definition 1.3: Waveform (*) 
A protocol that specifies the shape of an electromagnetic signal intended for transmission 
by a radio. 

 

Implicit to Definition 1.3 is the fact that a waveform is not solely defined by its physical 

layer algorithms. If specified as part of the protocol, then link layer, network layer, 

transport layer, and application layer algorithms will all influence the shape of the 

electromagnetic signal. However, not all waveforms specify algorithms at all layers. For 

example the FM broadcast radio waveform is a purely physical layer standard. In general, 

the only influence of signal shape that is excluded from the term “waveform” is the 

information bits being carried by the signal. 

 

Because cognitive radios and SDRs could conceivably be configured (or autonomously 

configure themselves) to implement almost any waveform, spectrum regulators need 

some mechanism to ensure that cognitive and software defined radios have a limited 

impact on licensed systems. To provide this mechanism, many researchers have proposed 

the use of policy radios. The IEEE 1900.1 group currently defines a policy radio as given 

in Definition 1.4 [IEEE 1900.1]. 

Definition 1.4: Policy Radio 

“A radio that is governed by a set of rules for choosing between different waveforms. 
The definition and implementation of these rules can be:  

 •  during the manufacturing process  

 •  during configuration of a device by the user;  
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 •  during over-the-air provisioning; and/or 

 •  by over-the-air control.” 

 

Particularly for cognitive radios, it is convenient to refer to the set of set of rules as the 

radio’s policy and a policy radio that is also a cognitive radio as a cognitive policy radio. 

In practice, a policy might specify a spectral mask which defines a set of maximum 

transmission powers for a number of different frequency bands that are specific to a 

particular location. Then as the policy-based radio is moved around the world, the policy-

based cognitive radio would be responsible for inferring and applying the policy that 

applies to its particular location, perhaps via GPS, a radio environment map [Zhao_06], 

or from a primary spectrum holder. Because of the needs of spectrum regulators and 

primary spectrum holders, it is expected that all cognitive radios will eventually be 

cognitive policy radios. In fact, the incorporation of policy into cognitive radio has been a 

major focus of DARPA’s xG program [Marshall_06]. 

 

Especially assuming the use of an SDR platform, the actual implementation of the 

cognitive and policy-related processes permits significant variation. The more traditional 

approach implements the control processes in a procedural language, such as C, where 

the adaptations spawned from specific observations can be traced to a specific pre-coded 

function. Such a cognitive radio is termed a procedural cognitive radio which is more 

formally defined as given in Definition 1.5. [Neel_06b]  

Definition 1.5: Procedural Cognitive Radio (*) 
A cognitive radio whose adaptations are determined by hard coded algorithms and 
informed by observations. 

 
Most implemented cognitive radio prototypes exhibit a significant degree of hard coding 

in their adaptation algorithms and are thus procedural cognitive radios. This includes 

Adapt4’s xG1 cognitive radio [Adapt4_06] which implements a dynamic frequency 

selection algorithm to adapt around legacy systems and CWT’s cognitive radio 

[Rondeau_04] which utilizes a genetic algorithm 6  to generate adaptations from 

                                                 
6 A genetic algorithm is a search algorithm from optimization theory which generates sequences of 
candidate solutions by using an algorithm based on the gene theory of evolution. As such the algorithm 
exhibits both randomness (e.g., “mutations” and random “chromosome” cross-overs to generate “children”) 
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observations. Due to its significant parameterization, the CWT radio is significantly more 

flexible than the Adapt4 radio and is significantly less hard-coded, but it remains a 

procedural cognitive radio. Also the CWT radio illustrates that though procedural, the 

adaptations of a procedural radio may be nondeterministic. Thus when possible we will 

distinguish between deterministic and nondeterministic procedural cognitive radios. 

 

However, as discussed in the text related to Fig 6 in the April 1900.1 draft, many 

researchers do not believe that a radio whose adaptations are determined by hard coded 

algorithms constitutes a cognitive radio. This is primarily because these researchers 

utilize a definition of cognitive radio which emphasizes a different implementation 

approach that utilizes a form of artificial intelligence. To provide this intelligence in a 

radio, [Mitola_00] proposes model-based reasoning using the Radio Knowledge 

Representation Language (RKRL) and [Baclawski_05] and [Kokar_06] propose 

ontological reasoning for cognitive radio applications. As defined by the IEEE 1900.1, an 

ontology is “the representation of terms in a vocabulary and their inter-relationships.” As 

such, RKRL would satisfy the IEEE 1900.1 definition of an ontology, thus these two 

different approaches could be said to be of the same “genus” (a cognitive radio that 

employs ontologies) if not the same “species” of ontology. The primary difference 

between the two approaches being the former’s usage of a vocabulary restricted to radio 

information while the latter uses the Web Ontology Language (OWL) to extend the 

radio’s knowledge base beyond radio-specific information.  

 
In the context of cognitive radio, ontologies are intended to permit a reasoning engine to 

make inferences about the radio’s operating environment and what actions would be in 

the cognitive radio’s interest. Such an ontological approach has been employed by the 

DARPA xG program to demonstrate the feasibility of multiple cognitive radios 

implementing dynamic frequency selection (DFS). For the purposes of this text, we 

consider cognitive radios that adapt based on the decisions of a reasoning engine and 

                                                                                                                                                 
and determinism (e.g., picking “surviving populations” based on their “fitness” which for cognitive radios 
is expressed in terms of the goal of the cognitive radio). More information on genetic algorithms and 
CWT’s genetic algorithm cognitive radio is available in [Reiser04]. 
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incorporate ontologies to be ontological cognitive radios which we formally define in 

Definition 1.6. [Neel_06b] 

Definition 1.6: Ontological Cognitive Radio (*) 
A cognitive radio whose adaptations are determined by some reasoning engine which is 
guided by its ontological knowledge base (which is informed by observations). 

 
Though this distinction is blurred for nondeterministic procedural cognitive radios, e.g., 

the biologically inspired cognitive radio [Rondeau_04], an ontological cognitive radio 

could conceptually perform both much better and much worse than a procedural 

cognitive radio. Whereas for a procedural cognitive radio we typically know what action 

the radio will take when a known collection of observations are input to the radio, the 

same can not be said for an ontological cognitive radio as it truly has a mind of its own 

(the reasoning engine). Instead, for an ontological cognitive radio we only know that the 

radio will take an action the radio believes (or the engine calculates) furthers the radio’s 

goal. While this imprecision appears to be a significant hurdle to analyzing the 

interactions of cognitive radios, we introduce techniques for analyzing these radios 

beginning in Chapter 4.  

1.2 Cognitive Radio Implementation and 
Standardization 

The differences in the definitions for cognitive radio can be largely attributed to 

differences in the expectations of the functionality that a cognitive radio will exhibit. In 

his dissertation [Mitola_00], Joseph Mitola III considers the nine levels of increasing 

cognitive radio functionality shown in Table 1.2, ranging from a software radio to a 

complex self-aware radio. 
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Table 1.2: Levels of Cognitive Radio Functionality. Adapted from Table 4-1 
[Mitola_00].  © 2000 Dr. Joseph Mitola III; used with permission; comments © 2006 

James Neel.  

Proposes and Negotiates New ProtocolsAdapts Protocols8

Generates New GoalsAdapts Plans7

Autonomously Determines Structure of 

Environment
Learns Environment6

Settle on a Plan with Another RadioConducts Negotiations5

Analyze Situation (Level 2& 3) to Determine Goals 

(QoS, power), Follows Prescribed Plans
Capable of Planning4

Knowledge of Radio and Network Components, 

Environment Models
Radio Aware3

Knowledge of What the User is Trying to DoContext Awareness2

Chooses Waveform According to Goal.  Requires 

Environment Awareness.
Goal Driven1

A software radioPre-programmed0

CommentsCapabilityLevel

Proposes and Negotiates New ProtocolsAdapts Protocols8

Generates New GoalsAdapts Plans7

Autonomously Determines Structure of 

Environment
Learns Environment6

Settle on a Plan with Another RadioConducts Negotiations5

Analyze Situation (Level 2& 3) to Determine Goals 

(QoS, power), Follows Prescribed Plans
Capable of Planning4

Knowledge of Radio and Network Components, 

Environment Models
Radio Aware3

Knowledge of What the User is Trying to DoContext Awareness2

Chooses Waveform According to Goal.  Requires 

Environment Awareness.
Goal Driven1

A software radioPre-programmed0

CommentsCapabilityLevel

 
 

As a reference for how a cognitive radio could achieve these levels of functionality, 

[Mitola_00] introduces the cognition cycle, shown in Figure 1.1, as a “top-level control 

loop for cognitive radio.” In the cognition cycle, a radio receives information about its 

operating environment (Outside world) through direct observation or through signaling. 

This information is then evaluated (Orient) to determine its importance. Based on this 

valuation, the radio determines its alternatives (Plan) and chooses an alternative (Decide) 

in a way that presumably would improve the valuation. Assuming a waveform change 

was deemed necessary, the radio then implements the alternative (Act) by adjusting its 

resources and performing the appropriate signaling. These changes are then reflected in 

the interference profile presented by the cognitive radio in the Outside world. As part of 

this process, the radio uses these observations and decisions to improve the operation of 

the radio (Learn), perhaps by creating new modeling states, generating new alternatives, 

or creating new valuations.  
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Figure 1.1: Cognition Cycle. Reproduced from Figure 4-2 [Mitola_00]. © 2000 Dr. 
Joseph Mitola III; used with permission. 

 
As the learning process can be quite cycle intensive and is not necessary for many of the 

envisioned applications and as artificial intelligence is not yet ripe for deployment, many 

researchers have assumed lower levels of functionality in their cognitive radio. For 

instance, in his remarks at the 2005 MPRG Technical Symposium, Bruce Fette, Chief 

Scientist at General Dynamics Decision Systems, noted that many members of the 

defense community refer to the cognition cycle as the “OODA” loop – emphasizing only 

the observation, orientation, decision, and action portions cognition cycles. Even the 

source of the most expansive interpretation of cognitive radio [Mitola_00] suggests that 

learning would occur during sleep or “prayer” (insight gained from external entities) 

epochs and that during wake epochs the cognitive radio would primarily operate as an 

OODA loop augmented by some light planning capabilities. Whether implemented as an 

ontological cognitive radio or as a procedural cognitive radio, all cognitive radios are 
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likely to make use of a goal driven OODA loop for its adaptations. This assumption of an 

explicit or implicit OODA loop is reflected in the modeling introduced in Chapter 2. 

1.2.1 Radios 

The following sections briefly describe some initial cognitive radio implementations and 

their relationship to the levels of cognitive radio functionality and our classification of 

cognitive radios. The first two radios discussed – CR1 and DARPA’s xG architecture – 

are examples of ontological reasoning radios. The next two radios – a biologically 

inspired cognitive radio and CORTEKs – are examples of nondeterministic procedural 

radios. The last cognitive radio presented – XG1 – is an example of a deterministic 

procedural radio. 

1.2.1.1 CR1 

CR1 or Cognitive Radio 1 is the cognitive radio architecture developed by Mitola as part 

of his dissertation [Mitola_00]. CR1 utilizes case-based and natural language reasoning 

guided by an OODA loop and an ontological description of the radio’s capabilities 

(Radio Knowledge Representation Language) to determine the adaptations of the radio. 

 

Figure 1.2: CR1 Natural Language Architecture. Reproduced from Figure 8-3 in 
[Mitola_00]. © 2000 Dr. Joseph Mitola III; used with permission.  
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1.2.1.2 xG 

Though hesitant to call its work cognitive radio, DARPA’s xG program is pursuing an 

implementation of cognitive radios that incorporate ontological reasoning into the 

decision process. A general architecture for their radio is shown in Figure 1.3 where 

software control is exerted over the radio platform (making the platform an SDR). Note 

that their radio actually includes two different reasoning engines – one dedicated to 

policy and one dedicated to waveforms (strategy).  
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Figure 1.3: DARPA XG High-Level Architecture [IEEE 1900.1] Used with Permission. 

 

1.2.1.3 Biologically Inspired Cognitive Radio 

The biologically inspired cognitive radio was the dissertation topic of Christian Rieser 

[Rieser_04]. Leveraging earlier work on channel sounding, this cognitive radio uses 

channel measurements to build a hidden Markov model (HMM) of its environment. This 

HMM is then used by a genetic algorithm to internally predict the performance of 

different combinations of waveform components for the observed channel conditions.    
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Originally intended for use on a Proxim hardware radio, the architecture has since been 

updated (see Figure 1.4) for use on a software radio. This updated architecture now 

includes support for policy, classification of signals via neural nets, and user driven 

inputs. Further, this cognitive engine is intended to be with portable across hardware 

platforms [Scaparoth_06] and as such the engine has been applied to a GNU7 radio and to 

a radio built using Fujitsu test equipment, and will be applied this year to the Innovative 

Wireless Technologies (IWT) Unified Radio Architecture (URA).  

 

Figure 1.4: Updated Biologically Inspired Cognitive Radio Architecture [Le_06]. Used 
with Permission. 

1.2.1.4 CORTEKS 

The CORTEKS radio is another procedural cognitive radio implemented at Virginia Tech 

using a PC that leverages Virginia Tech’s OSSIE SCA implementation and the following 

test equipment from Tektronix  

• Arbitrary Waveform Generator AWG430 – used to create a multi-mode 

transmitter 

                                                 
7 GNU is a recursive acronym which stands for “GNU is Not Unix” 
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• Logic Analyzer – used for signal characterization (identifying bit patterns, 

protocols, etc.) 

• Real Time Spectrum Analyzer (RSA3408A) – used to perform signal 

demodulation. 

 

Governed by software defined policy, the CORTEKS radio acts as a secondary spectrum 

user and adapts its frequency and modulation to maximize goodput while avoiding 

interference with primary users. To help determine the presence of primary spectrum 

users, the CORTEKS radio employs neural nets for signal classification.   

 

Figure 1.5: CORTEKS Components and Interface 

1.2.1.5 Adapt4 XG1 

Adapt4 has developed and is currently fielding a cognitive radio called XG1. Intended to 

operate as secondary spectrum devices, their radio uses a proprietary algorithm known as 
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Automatic Spectrum Adaptation Protocol (ASAP). According to [Adapt4_technology] 

this algorithm incorporates dynamic frequency selection, frequency hopping, and 

transmission power control with the intent of avoiding (when possible) and minimizing 

interference to primary spectrum users. 

1.2.2 Cognitive Standards 

As highlighted in Section 3, many currently envisioned cognitive radio applications 

represent “low-hanging-fruit” that could be implemented by incorporating knowledge 

about the environment and the device into a software radio’s control process. Thus it 

should not be surprising to see that some efforts are already underway to develop 

cognitive radios with some  

1.2.2.1 Policy Radio Deployments 

Policy based radios are the logical result of software radio and global mobility. Because 

of varying historical local needs, different regions of the world implement different sets 

of regulations. While there has been some movement towards spectrum harmonization, 

e.g., the push to harmonize the 5 GHz access for unlicensed 802.11, it seems unlikely that 

all spectral regulations around the world will be harmonized in the near future. 

 

Accordingly, as a radio moves around the world, it requires some mechanism for 

determining which set of regulations it is operating under. In addition to global phones 

which are in some sense policy-based radios, though not cognitive policy-based radios, 

WLAN standards 802.11e and 802.11j can be seen as establishing a protocol that 

necessitates the use of a policy based radio when operating in the 5GHz band. 

 

A more generalized policy-based radio suitable for cognitive radio is being developed by 

DARPA under the xG program. As noted in [Berlemann_05], an XML based policy 

description language has been developed which is loosely based on concepts from game 

theory. As noted in [Marshall_05b], these declarative policy languages have had 

significant success with Dynamic Frequency Selection algorithms.  
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1.2.2.2 Emerging Cognitive Radio Standards and Deployments 

The IEEE 802 community is currently developing two standards the directly relate to 

cognitive radio – 802.22 and 802.11h. Additionally, 802.11k is developing techniques for 

incorporating radio resource management information into WLAN operation – in effect 

incorporating knowledge about the environment and the radios.  

1.2.2.2.1.1 802.22 

There are three applications typically discussed for coexistence with initial trial 

deployments of cognitive radios: television, microwave point-to-point links, and land 

mobile radio. Each of these applications has been shown to dramatically underutilize 

spectrum on average. However, only television signals have the advantage of incumbent 

signals that are easy to detect (as opposed to a microwave point-to-point links) and not 

involved in life-critical applications (as would be the case for many land mobile radio 

systems).  

 

Throughout its history, the UHF bands were under-allocated as regulators underestimated 

the cost-effectiveness of establishing new TV towers in these bands. It was not until the 

advent of cable TV that smaller TV stations were capable of cost-effective operation. 

Now with the introduction of HDTV technology, regulators in the US plan to force a 

nation-wide switch to this more efficient modulation by 2009 [Rast_05] accompanied by 

a completion of a de-allocation from analog TV of 108 MHz of high quality spectrum. 

 

With these bands in mind, the 802.22 working group is pursuing the development of a 

waveform intended to provide high bandwidth access in rural areas using cognitive radio 

techniques. In a report presented at DySPAN [Cordeiro_05], it is stated that the 802.22 

standard intends to achieve spectral efficiencies of up to 3 bits/sec/Hz corresponding to 

peak download rates at coverage edge at 1.5 Mbps. Simultaneously, the 802.22 system 

hopes to achieve up to 100 km in coverage.  

 

While the PHY and MAC are still under development, the MAC will provide the 

cognitive capabilities as it manages access to the physical medium, responsible for 
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quickly vacating a channel as needed. The standard under development has specified the 

following thresholds for vacating a channel for the following signals:  

• Digital TV: -116 dBm over a 6 MHz channel 

• Analog TV: -94 dBm at the peak of the NTSC (National Television System 

Committee) picture carrier 

• Wireless microphone: -107 dBm in a 200 kHz bandwidth. 

 

Thus these radios will be required to both detect and classify signals in its environment. 

To help minimize the interference induced to these signals, the 802.22 protocol is 

currently considering using spectrum usage tables that will be updated both automatically 

and by the system operator. To limit the impact when the systems fail to detect the 

incumbent systems, the standard also places traditional maximum transmission power 

limits and out-of-band emission limits. 

 

While a promising approach, it is difficult to estimate how wide-scale a deployment 

802.22 will enjoy as WiMAX was first to market with deployments in Korea (WiBro) 

and planned deployments in the US [Segan_06] and will be able to provide the same 

target service: high data rates to rural users. 

1.2.2.2.1.2 802.11h 

Unlike 802.22, 802.11h is not formulated as a cognitive radio standard. However, the 

World Wireless Research Forum [WWRF_04] has noted that a key portion of the 

802.11h protocol – dynamic frequency selection – has been termed a “cognitive 

function”.  To see why an 802.11h WLAN might be considered a cognitive radio, 

consider that the 802.11h protocol requires that a WLAN be capable of the following 

tasks. 

• Observation – 5.4.4.1 in [802.11h] requires WLANs to estimate channel 

characteristics such as path loss and link margin and 5.4.4.2 further requires the 

radios estimate channel characteristics such as path loss and link margin. 
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• Orientation – Based on these observations, the WLAN has to determine if it is 

operating in the presence of a radar installation, in a bad channel, in band with 

satellites, or in the presence of other WLANs. 

• Decision – Based on the situation that the WLAN is encountering, the WLAN has 

to decide to change its frequency of operation (Dynamic Frequency Selection), 

adjust the transmit power (Transmit Power Control), or both. 

• Action – The WLAN has to then implement this decision. 

Reviewing most of the definitions from before, only learning or “recalling and correlating 

past actions, environments and performance” is not required as part of the standard. 

However, if we move beyond the requirements of the standard to expected 

implementations, it seems reasonable that many vendors will include and leverage some 

memory of past observations (useful for detecting intermittent transmitters) which 

implies that both cognitive radio definitions will be satisfied. 

1.2.3 Institutional Initiatives 

Beyond these initial deployments, several entities have started publicly acknowledged 

initiatives into cognitive radio including DARPA, the SDR Forum, IEEE, and the FCC. 

1.2.3.1 DARPA 

DARPA sees cognitive radio as a key enabling technology to their vision of advanced 

networking by allowing less individually capable radios to perform complex operations 

needed make better use of spectrum and support high data rate applications. Currently, 

DARPA is exploring many different aspects of cognitive radio as part of the xG program 

and other ongoing programs. Unfortunately, many of the results of the DARPA programs 

are not currently in the public domain. However, Preston Marshall, program manager for 

DARPA’s cognitive radio initiatives has promised that contracting organizations will be 

required to disclose most of their results online in the near future. In the interim, Marshall 

highlighted many of DARPA’s plans and results in a presentation at DySPAN 

[Marshall_05a] and during a panel session at the SDR Forum [Marshall_05b].  

 

In the area signal classification and detection, DARPA has developed a sensor capable of 

processing 5 GHz/second frequency capable of sub-noise-floor signal detection (20 dB 
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below) by exploiting cyclostationarity properties. DARPA has contracted with Rockwell 

to miniaturize this sensor.  

 

Believing that procedural approach would result in too much code and too many detailed 

policies, DARPA has developed a declarative policy language that is independent of the 

implementation platform. Already successfully demonstrating small networks of 

Dynamic Frequency Selection networks, DARPA hopes to extend their policy work to 

construct a “provable framework” that supports policy enforcement and optimization 

(current focus is just on making the technology work, the Wireless Networking After 

Next program is intended to include optimization as a goal). Another demonstration  of  

radios from Lockheed-Martin, Shared Spectrum, and Raytheon with the target of 90% 

connectivity and 90% chance of finding available spectrum found that 15 times more 

radios could be fielded using the xG approach. By August 2007, DARPA plans to have 

field trialed systems of interacting and collaborating 25 xG nodes.  

 

DARPA also believes that advanced network topologies will be a key application of 

cognitive radios and is starting the CBMANET program to explore advanced networking 

topologies based on the xG radio. To help support these new dynamic topologies and the 

proposed optimization routines Marshall believes there may need to be new layers 

inserted into the protocol stack for topology an optimization because of the intelligence 

required in those operations. 

 

The most notable anticipated activity from DARPA is the launching of the Wireless 

Adaptable Node Network (WANN) project this September.WANN hopes to demonstrate 

reduced device cost (targeting ~$500/node) via intelligent adaptation and greater node 

density. Additionally, the WANN program is hoping to achieve significant gains in 

throughput and network scalability through the incorporation of intelligence in the radios. 

1.2.3.2 SDR Forum 

The SDR Forum chartered two groups in 2004 to explore cognitive radio issues: the 

Cognitive Radio Working Group and the Cognitive Radio Special Interest Group. The 

working group is tasked with standardizing a definition of cognitive radio and identifying 
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the enabling technologies for cognitive radio. The special interest group is tasked with 

identifying attractive commercial applications of cognitive radio for which the working 

group should identify the enabling technologies.  

 

At the 2005 SDR Forum Technical Conference, significant emphasis was given to 

cognitive radio with two paper sessions, one panel session, a tutorial, and a keynote talk 

dedicated to the subject of cognitive radio. Then in April 2006, the SDR Forum held a 

Cognitive Radio Workshop in San Francisco. 

1.2.3.3 IEEE 

The IEEE has expressed significant interest in cognitive radio. As a body, IEEE 

submitted the proposed definition to the FCC noted in Section 2. To allow for more 

focused development, the IEEE has started the IEEE 1900 group to study the issue of 

cognitive radio. Currently, the 1900 group has three subgroups with the following 

focuses: 

• 1900.1 - Standardize definitions and terminology related to cognitive radio 

• 1900.2 – Standardizing a process for testing and verifying the operation of 

cognitive radios. 

• 1900.3 – Standardizing approaches for qualifying software modules. 

• 1900.a – Regulatory certification of cognitive radios. 

 

The IEEE Communications Society held its first Dynamic Spectrum Access Networks 

(DySPAN) in November 2005 with a primary focus on how cognitive radio, including the 

following: 

• technologies needed to implement cognitive radio ranging from sensing, analysis 

of interactions, and advanced networking technologies 

• appropriate regulatory approaches for cognitive radio 

• potential market opportunities for cognitive radio 

• trial implementations of cognitive radio systems. 

 



  

 25 

The IEEE is playing an expanding role in the development of cognitive radio forming the 

1900.4 workgroup (joining the 1900.1, 1900.2, and 1900.3 groups described in the 

December 2005 report) to support standardization of radio regulatory compliance, 

sponsoring CrownCom2006 – a cognitive radio focused conference – and two special 

issue journals on cognitive radio, and the 802.22 group which merged its final two 

proposals in March implying that the standard could be agreed upon within the next year. 

1.2.3.4 FCC 

On May 19, 2003, the FCC convened a workshop to examine the impact that cognitive 

radio could have on spectrum utilization and to study the practical regulatory issues that 

cognitive radio would raise. After a series of public interactions, the FCC adopted the 

transmitter-centric definition of cognitive radio listed in Section 2 and appears interested 

in adjusting its regulations in a way that will accommodate the deployment of cognitive 

radio in unlicensed bands and possibly in a portion of the new bands being opened up by 

the upcoming UHF reallocation with possible later extensions to the public safety and 

ISM bands. 

 

Since then, the Federal Communications Commission (FCC) has also taken steps to 

increase the opportunities for cognitive radio deployment by expanding the unlicensed 5 

GHz and requiring that devices operating in those bands support both Dynamic 

Frequency Selection (DFS) and Transmit Power Control (TPC) – characteristics of 

802.11h which was characterized in the December 2005 report as indicative of minimal 

cognitive radios. In light of the expanded introduction of cognitive radios, the FCC issued 

proposed rules for compliance testing DFS radios in April [FCC_06a] with comments 

due on May 15. The results of this process were compiled into a document released on 

June 30, 2006 that provides a standard for testing DFS and TPC compliance with regard 

to radar avoidance and minimizing interference with satellites [FCC_06b]. It is expected 

that these actions will enhance the opportunities for cognitive radio deployments. 
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1.2.3.5 Other Institutions 

Several other institutions are also currently pursuing cognitive radio research including 

E2R, Virginia Tech, Winlab, and BWRC.  

 

E2R is a European initiative into supporting End-to-End Reconfigurability with numerous 

participating European universities and companies. E2R is focused primarily focused on 

incorporating dynamically radio resource management schemes into existing cellular 

structures to achieve advanced end-user services with efficient utilization of spectrum, 

equipment and radio resources on multi-standard platforms. 

 

Virginia Tech currently has several significant cognitive radio initiatives. Two different 

cognitive radio testbeds that leverage test equipment to effect powerful yet easy to 

implement software radios are under development with a focus on both public safety and 

commercial interests. These two projects are exploring techniques for enhancing 

detection and classification capabilities, learning algorithms, knowledge representation 

and the effect of interaction of cognitive radios. Work is being performed exploring 

techniques to exploit collaborative radio to improve network performance. Other projects 

are exploring techniques for analyzing the interactions of cognitive radios, developing 

environmental awareness maps, and MAC protocols that can trans. Virginia Tech also 

maintains a publicly accessible cognitive radio wiki as part of its cognitive radio special 

interest group at http://support.mprg.org/dokuwiki/doku.php?id=cognitive_radio. 

Additionally, Virginia Tech is organizing the MANIAC (Mobile Ad Hoc Networking 

Interoperability And Cooperation) challenge wherein researchers from numerous 

universities will independently design cognitive radios which will then be brought 

together to “compete” to see which cognitive radio algorithms yield desirable network 

behavior. A similar competitive cooperative contest is in the planning for DySPAN 2007 

though details are unclear at this point. 

 

Winlab at Rutgers University is developing a cognitive radio testbed for disaster response 

using commercially available components. BWRC is currently developing a cognitive 
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radio for sensing and opportunistically using the spectrum. Additionally, BRWC is 

researching techniques for improving spectrum sensing algorithms. 

1.3 Cognitive Radio Applications 
Applications are often included in the definition of cognitive radio because of the 

compelling and unique applications afforded by cognitive radio. Additionally, there are 

many existing SDR techniques that cognitive radio is expected to enhance. This section 

reviews the following frequently advocated applications of cognitive radio some of which 

will be used as inspiration for example analyses later in this document: 

• Improving spectrum utilization & efficiency 

• Improving link reliability 

• Less expensive radios 

• Advanced network topologies 

• Enhancing SDR techniques 

• Automated radio resource management. 
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Spectrum TradingSpectrum Trading
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Figure 1.6: Cognitive Radio Applications 
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1.3.1 Improving spectrum utilization and efficiency 

Wireless technologies and wireless devices have proliferated over past decade 

dramatically increasing the demand for electromagnetic spectrum. Because of the current 

approach to spectrum access, spectrum supply has not kept up with spectrum demand 

leading to the appearance of scarcity in the electromagnetic spectrum.  

 

However, research performed by various entities such as the FCC indicates that this 

assumption is far from reality; there is available spectrum since most of the spectrum 

allocated sits underutilized. In a recently completed NSF funded study of allocated 

spectrum utilization, researchers at Kansas University found an average U.S. spectrum 

occupancy of 5.2% with a maximum occupancy of 13.2% in New York City. 

[McHenry_05] performed averaged measurements over the following six locations:  1. 

Riverbend Park, Great Falls, VA, 2. Tysons Corner, VA, 3. NSF Roof, Arlington, VA, 4. 

New York City, NY, 5. NRAO, Greenbank, WV, 6. SSC Roof, Vienna, VA and found a 

peak spectral occupancy of 25%. So while the dramatically increasing demand for 

spectrum has fostered a perception that spectrum is scarce, the reality is that spectrum is 

abundant but poorly utilized. 

 
This underutilization is the result of a number of different factors including overly 

conservative allocation of guard bands; a migration from spectrally inefficient analog 

waveforms to more efficient digital waveforms, and the natural gaps in utilization that 

occur throughout the day due to variations in demand. As an example of variations in 

demand, Figure 1.7 shows a Matlab depiction of spectrum measurements made in 

Germany at Karlsrhue in a more heavily used band. As the figure illustrates there is 

significant variation in spectrum underutilization in time and frequency, and though not 

depicted, there is also significant variation in terms of location. 
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Figure 1.7: Matlab capture of channel measurements from Germany [Jondral_04] Used 
with permission 

 
To improve spectrum utilization, opportunistic spectrum utilization has been proposed 

wherein devices occupy spectrum that has been left vacant. An illustrative example of 

opportunistic spectrum utilization is shown in   

Figure 1.8. In the left half of the figure, a pair of transmitted carrier signals is present in 

the lower frequency bands while a random access system and a TDMA system are 

operating in the upper bands. After observing the spectrum holes - points in time and 

frequency where spectrum is underutilized – opportunistic devices could fill in these 

holes to support concurrent services as illustrated in the diagram on the right.  
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Figure 1.8: Conceptual example of opportunistic spectrum utilization 

 
According to the xG program manager [Marshall_05a], cognitive radios that employ 

opportunistic spectrum utilization have been shown to provide a 10-fold gain in capacity 

by implementing dynamic frequency selection algorithms. 

 

Of course, opportunistic use of spectrum presents significant challenges to the technical 

and regulatory communities. From a technical perspective, the devices must be able to 

autonomously resolve conflicts over spectrum access and when operating 

opportunistically should be able to avoid interfering with incumbent signals. While 

avoiding introducing interference to a signal that is continuously present, it is more 

difficult with regularly structured, but intermittent signals such as a TDMA signal, and 

impossible to guarantee with a random access signal. To some extent this implies that the 

control processes of cognitive radios will need to be able to operate over multiple time 

scales as is proposed in [Moessner_05]. 

 

Since there is a technical problem, there is also a regulatory problem. Current spectrum 

licensees are generally only amenable to opportunistic spectrum access when they can be 

assured that their signals will not be degraded. Figuring out how to achieve the 10-fold 

gain in capacity while limiting the impact of existing services is currently a topic of much 

debate in the regulatory community. 
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1.3.2 Improving Link Reliability 

After improving spectrum utilization, the second most commonly discussed application 

of cognitive radio is improving link reliability. Many adaptive radios currently improve 

link reliability by adapting transmission power levels, modulations or error correction. 

However, a cognitive radio that is capable of remembering and learning from its past 

experiences can go beyond these simple adaptations as can be shown via the following 

simple example. 

 

Figure 1.9 illustrates a path that a mobile subscriber might follow on his daily commute 

through a particular area of a city where signal quality usually drops to an unacceptable 

level (shown in red) due to a coverage gap. Perhaps the first time or perhaps after several 

occurrences, the cognitive radio would become aware of this problem. Then via some 

geo-locational capability or by learning the expected time of day when this occurs, the 

radio could anticipate the coverage gap and signal to the base station the need to alter the 

signal characteristics as the user approaches the coverage gap. 

 

Good Transitional PoorSignal Quality
 

Figure 1.9 Path and associated signal quality for a cognitive radio.  
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The same concept of detecting coverage gaps could also be employed at the base station 

where the base station would learn to correlate particular areas of its coverage area with a 

gap and then could adjust its operation (perhaps via beam forming) to eliminate the gap. 

Without including a cognitive base station, cognitive mobiles could share such 

information among themselves so that the mobiles may learn to improve their link 

performance without first experiencing the coverage gap. This, however, highlights 

another key challenge to realizing cognitive radios – how to represent the knowledge a 

cognitive radio needs to operate in a machine-usable and machine-to-machine 

translatable way. 

1.3.3 Less Expensive Radios 

While adding complexity to a radio’s control processes would appear at first glance to 

necessarily increase cost, the inclusion of a cognitive control process may significantly 

decrease device cost when cognition is enabled. To resolve this apparent paradox of 

adding features but reducing cost, it is important to note that many of the proposed 

applications of cognitive radios represent “low-hanging fruit” that can be implemented 

via low complexity control processes. Further, these cognitive processes would be 

implemented in a software defined control process for which additional computations are 

relatively insignificant, especially when compared to the cost of improving the 

performance of analog components. Adding a couple hundred software cycles per second 

is virtually costless; improving the performance of a RF front end by 3 dB can be a very 

expensive undertaking.  

 

As noted in the preceding, the inclusion of opportunistic spectrum utilization permits 

significant gains in terms of capacity. Instead of only improving capacity, some of the 

spectrum gain could be “given” to accommodating lower performance analog 

components in the transmitter which generally result in signal energy outside of the 

intended band. These lower performance transmitter analog components can be included 

in the cognitive radios or among “dumb” radios.  

 

For example consider the spectrum utilization diagram shown below in Figure 1.10 

where the signal from one device exhibits significant spurious components and the 
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remaining cognitive devices are capable of observing this signal and adapting around 

these spurs. In this particular example, there would be no degradation in total 

informational throughout bandwidth when compared with the example considered in   

Figure 1.8 as all opportunistic devices are still capable of finding spectrum holes to 

transmit in. However, any degradation in terms of out-of-band energy necessarily 

decreases the available bandwidth for opportunistic spectrum utilization so some tradeoff 

has to be made. 

 

Figure 1.10: Opportunistic spectrum utilization in the presence of device with significant 
signal degradation. 

  

If the lower performance analog components are present only at the receiver, then there is 

no direct effect on the observable spectrum. However, cognitive radio processes similar 

to those assumed necessary for ensuring link reliability can be applied to overcome the 

limitations of poorly performing analog front ends. For example, adaptive beam forming 



  

 34 

or nulling can provide additional SINR or opportunistic spectrum utilization routines 

could seek “deeper” spectrum holes to overcome low-Q anti-aliasing filters. 

 

Whether included in transmitter or the receiver, cognitive radio facilitates the use of 

lower cost analog components. Of course, these gains can be supplemented by software 

radio techniques such as dithering data converter inputs and predistortion for power 

amplifiers. 

1.3.4 Advanced network topologies 

Under a MANET operational scenario, the access points or base stations do not have to 

maintain direct connections to the more distant regions of their clusters or cells. Instead, 

each base station only needs to be able to reach a handful of the closest subscribers while 

the devices farther from the base station gain access by communicating through a 

sequence of intermediate devices to reach the base station. As illustrated in Figure 1.11, 

in a MANET the average propagation distance for each link is much shorter than would 

be the case for a star topology with the same number of base stations. The shorter 

propagation lengths means that greater effective spectral reuse factors can be achieved 

which some have said would lead to a gain of up to 30 dB in system capacity [Fette_05].  

  

Figure 1.11: Star and Ad-hoc Topologies 
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While the deployment and advantages of MANETs do not inherently require the use of 

cognitive radio, cognitive radio can be seen as an enabling technology. For a MANET to 

successfully operate two criteria should be satisfied. First, a high node density should be 

present to permit the use of lower power links. In general, the denser the network of 

devices is, the greater the theoretical capacity of the MANET. Second, the devices must 

be capable of supporting the dynamic routing and link maintenance routines required 

ensure network connectivity.  

 

As described previously in this document, cognitive radios can be used to significantly 

increase the usable bandwidth and decrease device cost which in turn implies that many 

more devices can be expected to be fielded in the future, thus implying greater device 

density. For the second criterion, the environmental and device awareness implicit to a 

cognitive radio facilitate implementation of the algorithms needed to support the 

MANET routing and link maintenance algorithms.  

1.3.5 Collaborative Techniques 

A collaborative radio is a radio that leverages the services of other radios to further its 

goals or the goals of the networks. As introduced in the previous section, collaborative 

radio can be viewed as an application of cognitive radio. However, a collaborative radio 

could be implemented without a full implementation of cognitive radio. For instance, 

many collaborative applications require only trivial learning processes. Nonetheless 

cognitive radio can be viewed as an enabler of collaborative radio in that cognitive 

processes simplifies the identification of potential collaborators and intelligent 

observation processes facilitates the inclusion of distributed sensing – a characteristic of 

many collaborative radio applications. 

 

One of the more frequently discussed ways in which radios can collaborate is by 

implementing relay channels. In a relay channel, a radio serves as an intermediate node in 

the path between the client device and the access node. In general, this relaying process 

can be implemented at the relay node by amplifying and forwarding the received signal 

or by decoding and forwarding the signal. In the former case, radio complexity is 

relatively low as the signal does not have to be received; in the latter, radio complexity is 
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generally much higher as the relay has to completely receive the transmitted signal. 

However, the added complexity incurred by a decode-and-forward approach is generally 

accompanied by improved performance (low latency waveforms being the most 

noticeable exception) so there exists a tradeoff between the two approaches. 

 

The concept of using relay radios is currently the focus of the 802.16j workgroup which 

considers three types of relays: fixed relays, nomadic relays, and mobile relays. As 

illustrated in Figure 1.12, the relay radios in 802.16j are intended to extend the coverage 

of 802.16 networks where the relay nodes are intended as an extension of the 802.16 

infrastructure. 

Mobile Relay

Fixed Relays

Nomadic Relay

 

Figure 1.12: Conceptual operation of 802.16j Modified with permission from Fig 1 in 
IEEE 802.16mmr-05/032  

While the relays in 802.16j are dedicated infrastructure installations, the existence of 

mobile relays (intended to support mass transportation) implies that the relaying concept 

should be extendable to subscriber units. While relaying with subscriber units implies 

that performance may be more difficult to guarantee, it should be possible to improve 

overall network performance and coverage with less deployment costs by judicious 

choice of relay nodes. However, wisely choosing which subscriber units should act as 

relay nodes implies some knowledge of the state of the network and the traffic and 
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mobility characteristics of other subscriber units in the area. For a traditional radio, this 

knowledge would be difficult to come by, but if the subscribers were cognitive radios 

then presumably the radios would be gathering and processing the relevant information as 

part of the normal processing.  

1.3.5.1 Distributed Antenna Arrays 

Of course there will be situations where a group of subscribers is out of range of an 

access node and no subscriber device will be positioned well enough to serve as a relay 

node. However, if the subscriber devices collaborate, their effective range can be 

dramatically increased, perhaps far enough to reach an access point.  

 

In this form of collaboration, several radios collaborate to realize an antenna array 

thereby leveraging the processing gains of an antenna array without each subscriber unit 

needing to have its own antenna array. Because of the likely spacing of devices, it seems 

unlikely that beamforming will be a readily used application for a collaborative array of 

radios, but diversity applications should be usable. For instance, two different diversity-

based collaborative antenna applications are illustrated in Figure 1.13. In a simple 

diversity scheme a number of radios can coordinate to transmit or receiver the same 

signal thereby realizing a transmit or receive diversity algorithm. With some additional 

coordination, those same collaborating radios could implement a MIMO, MISO, or 

SIMO algorithm depending on the operational context.  
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Figure 1.13: Distributed Antenna Array Possibilities 

 
Particularly for the distributed MIMO/MISO/SIMO schemes and to a lesser extent the 

collaborative transmit and receive algorithms, good timing and localization information 

will be of significant aid to the performance of these algorithms. Again, the normal 

processes of cognitive radio may be able to provide the information necessary or perhaps 

this information could be collaboratively collected into some environmental map. 

1.3.5.2 Distributed Mapping 

Assuming radios are aware of their location and capable of making observations, it 

should be possible for radios to collaborate to build maps of their environment. One such 

map could be the radio environment map discussed in [Zhao_06] which can help inform 

cognitive radio adaptations. Maps targeted to the service providers and subscribers 

instead of the radios themselves could also be built via radio collaboration.  

 

For instance, by collecting signal strength measurements and feeding this information 

back to the infrastructure, a network’s coverage map can be built. With this continually 
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updated coverage map, service providers can quickly identify coverage holes and take 

steps to rectify the problems. Assuming the network infrastructure is implemented using 

cognitive radio technology, these coverage holes could be automatically filled, 

significantly decreasing the chances of a subscriber experiencing a dropped call and 

improving subscriber perception of service. 

 

As another example, suppose the mobiles are continuously returning their location 

information to the network’s base stations. By integrating this information, the network 

can get an accurate picture of its subscriber density by location. While a subscriber 

density map will be useful for network planning, it also implies a unique subscriber 

service – real time traffic maps and real time traffic updates. Specifically, when higher 

subscriber densities are located on roads, this should be indicative of higher density 

automobile traffic – information which other drivers may be willing to pay so as to avoid 

traffic jams. Thus by simply collecting location information from each of its subscribers, 

a service provider can provide a novel service of real time traffic updates. 

1.3.5.3 Enhanced Security 

Certain radios will tend to be used in close proximity with other radios. For instance, the 

various Bluetooth devices in an automobile will typically be operated with the mobile (or 

mobiles) of its owners onboard. By learning and recognizing the MAC addresses of the 

mobiles of an automobile’s owners, the automobile should be able to flag situations that 

are inconsistent with normal operation, for instance if the car was in operation and a 

different mobile than the owners’ mobiles was on board. In and of itself, this situation 

will not be sufficient to know that the automobile has been stolen, but it should be 

enough to make the situation a scenario worth further examination. Conceptually, this 

could be viewed as similar to the process wherein credit card companies flag purchases 

that do not fall into normal patterns. Similarly, this sort of information could be 

incorporated into an enhanced authentication system where contextual information 

gleaned from other authorized radios can provide degrees of authentication assuredness.  
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1.3.5.4 Collaborative Sensing 

For many emerging wireless standards, such as 802.22, it will be important for radios to 

be able to detect and classify signals in its environment to ensure proper network 

behavior. Introductory statistics courses teach that an increasing number of independent 

(and unbiased) observations reduce the variance of estimated parameters. Thus the 

decisions as to if a signal is present and what kind of signal is present (for example is a 

TV broadcast present or more generally is the incumbent user transmitting) could be 

improved by incorporating more observations from other devices. Beyond 802.22 

applications, collaborative sensing should be able to help mitigate the hidden node 

problem endemic to most standards. 

 

In fact, collaborative radio itself holds the potential for numerous applications, including 

relay channels, distributed antenna arrays, improved localization algorithms, and 

collaborative mapping. However, many of these algorithms lack agreed upon models and 

algorithms. Without some unified approach, collaborative radios will likely go the way of 

networking and lack a sound theoretical basis. Lacking this theoretical basis, it will be 

important to construct prototypes and demonstration system before implementation or 

standardization can occur. 

 

1.3.6 SDR techniques enhanced by cognitive radio 

Similar to how cognitive radio will hasten the wide scale deployment of MANETs 

without being a requisite technology, several other techniques that require a software 

radio can be significantly enhanced by the use of cognitive radio. These SDR techniques 

include antenna array algorithms, spectrum trading, and interoperability.  

 

Smart antenna technology is a traditionally discussed advantage of software radio. 

However, network performance can be greatly improved by adding environmental 

awareness to smart antenna algorithms. For example consider the beamforming example 

shown in Figure 1.14 where two links are present – one between the gray nodes and one 

between the white nodes. When the bottom left node chooses to implement transmit 

beamforming, a significant gain in performance for the gray nodes’ link can be expected. 
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However, from a network perspective, this choice is not desirable as the benefit accrued 

by the beamforming link will not be as great as the added interference that the 

intermediate white node will experience. However, if the gray nodes are cognizant that 

one of the white nodes is operating within the potential beam, then the gray nodes could 

choose a different adaptation that would not impact the white nodes, perhaps via a 

combination of spatial and frequency multiplexing. 

 

Figure 1.14: An example of ad-hoc beam forming that would have negative effects on 
network performance. 

 
Spectrum trading has long been discussed as a potential benefit of the frequency agility of 

software radio. In spectrum trading, different spectrum owners purchase and sell 

spectrum to varying service providers in response to changes in market demand. In theory 

– the practice of spectrum trading is in its infancy having recently received limited 

approval in the UK and Guatemala [Hatfield_05] and FCC approval in the US for trading 

among public safety users – spectrum trading facilitates the allocation of spectrum in the 

most efficient manner in terms of demand.  

 

Fundamentally, the only technology required to support spectrum trading is software 

radio. With software radio, subscriber nodes can be instructed to change their band of 

operation following any spectrum trade. However, this implies spectrum trading at the 

service provider level which implies a process that requires weeks to months to complete. 

However, if each subscriber unit is capable of determining its own bandwidth 
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requirements, is aware of its environment and the availability of spectrum, and is capable 

of negotiating with service providers for bandwidth, then spectrum trading transactions 

could be conducted on the order of milliseconds for significantly smaller pieces of 

spectrum. Similarly cognitive base stations operated by service providers could quickly 

and dynamically shift spectral resources between providers to adjust to variations in 

spectral demand, significantly reducing the probability of a dropped or blocked call. 

 

Interoperability is another frequently touted benefit of the reconfigurability of software 

radios. Assuming perfect reconfigurability, a software radio can be readily reprogrammed 

to communicate using any waveform necessary to communicate with another radio, 

whether the second radio is a software radio or a legacy radio. One commonly discussed 

technique for supporting interoperability among different legacy systems is to utilize one 

radio as a gateway device and automatically retransmit messages using the waveforms 

that each legacy device understands. 

 

Elided in this discussion are the control processes that translate device reconfigurability 

into interoperability. With a software radio acting as the gateway, it is necessary for a 

network administrator to set up the connections between disparate legacy devices as the 

gateway node may have no idea of what devices are present or what connections need the 

services of the gateway. If a cognitive radio serves as the gateway, the cognitive radio 

can assume responsibility for these tasks in an automated fashion. 

1.3.7 Automated Radio Resource Management 

After a wireless network is deployed, wireless engineers typically spend a few weeks 

tuning the radio parameters to get the most out of a network. Channels allocations 

between sectors, call drop thresholds, power levels, timers, antenna patterns and many 

more parameters are all adjusted to improve network performance based on post-

deployment measurements. With the increasing number of wireless networks and the 

movement from centralized service providers to home and office wireless LANs, the 

need to optimize wireless networks will become an increasingly important but will be 

impractical to be performed at home or in rapidly deployed networks. For instance, 

Virginia Tech spent months carefully planning and checking up on the deployment of its 
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wireless LAN in order to maximize coverage with an acceptable capacity level – an 

unacceptable amount of time in a disaster response scenario. 

 

Because of its capacity to observe and learn how to improve its performance, cognitive 

radio networks could take over the task of post-deployment tuning and automatically 

update the radio parameters to best suit the needs of the particular deployment. Such an 

application would have a significant impact on rapidly deployed networks where 

emphasis, in home WLANs (which are rarely tuned), and in fixed commercial 

infrastructure where cognitive radio should be able to reduce the demand for post-

deployment engineering.  

1.4 Key Issues to Wide-Scale Deployment of Cognitive 
Radios 

Of course there are always significant challenges accommodating revolutionary changes. 

First, unleashing the revolutionary changes of cognitive radio demands the development 

of new regulatory ideas – traditionally a glacial process. Second, programming 

intelligence has always been a difficult undertaking, and for the first time intelligence 

needs to be included in the radio. Third, many cognitive radio applications assume 

advanced capabilities to detect and classify signals and identify unused spectrum in a 

timely manner – capabilities that still need improvement. Fourth, to the extent that 

cognitive radio is an evolved software radio, cognitive radio will also benefit from 

enhanced control over the hardware, increased processing power, smaller form factors, 

and improved software verification techniques. Finally, autonomous adaptations of 

cognitive radios lead to complex interactive decision processes that make performance 

guarantees and network planning difficult. 

 

Before deploying cognitive radios in a wide-scale manner, there are a number of issues 

that should be addressed. These include being able to predict how the interactions of 

cognitive radios influence network performance, addressing regulatory issues, improving 

environmental observational capabilities, and a number of SDR issues that are 

exacerbated by cognitive radio. 



  

 44 

1.4.1 Regulatory Issues 

Partially caused by the present uncertainty in predicting the effect of interacting cognitive 

radios and partially caused by ideological differences, how to regulate cognitive radios 

has emerged as a significant point of disagreement, dividing the policy community into 

two camps: property-rights and commons. While both camps agree that the traditional 

command and control model wherein spectrum is licensed for a particular application is 

less desirable and on the way out, there is little agreement between the two models how 

cognitive radios will be governed in the future.  

 

Under the commons model (also called the unlicensed model), a pure opportunistic usage 

approach would be adopted wherein a cognitive radio could make use of any available 

spectrum that it observed. Under the property rights model (also called the exclusive-use 

model), entities would “own” their spectrum instead of licensing it, thus entitling them to 

implement different waveforms as well as subdivide their spectrum for resale to 

secondary spectrum users for a variety of applications including opportunistic spectrum 

use.  

 

Property-rights proponents claim that the commons model will lead to a tragedy of the 

commons. A tragedy of the commons is a situation that can occur with a publicly-held 

finite resource where each person assigns receives a positive benefit from using more of 

the resource leading to overuse of the resource to the point of catastrophic results. 

Commons proponents are quick to point out that spectrum is an infinitely renewable 

resource so we will never run out and thus cannot experience a tragedy of the commons. 

However, property rights proponents respond that per unit time, spectrum is indeed finite 

and many apparently boundless resources have been overused when regulated with a 

commons approach.  

 

Commons advocates claim that a property-rights model may limit the development of 

technology and could lead to a tragedy of the anti-commons wherein a small number of 

entities secure the rights to spectrum and exclude others from using the spectrum thus 

increasing the value of their spectrum and leading to underutilization of the spectrum. 
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However, property-rights advocates note that spectrum presumably would not be used 

any worse than it is now and anti-trust laws exist for handling such an anti-commons 

situation. 

 

While the property-rights approach appears to have the better theoretical argument and 

while many incumbent service providers have explicitly stated their opposition to the 

commons model [Lynch_05], it is difficult to argue with the success of 802.11 which was 

deployed under a commons regulatory scheme in the ISM bands. 

 

While there are significant differences between the two camps, as noted in the remarks of 

Andy Mudar [Mudar_05], both communities have expressed interest in a simple 

regulation that could ensure proper and predictable operation of cognitive radios. 

However, no such regulation has yet to be identified. 

1.4.2 Knowledge Representation 

The capability to intelligently reason about the environment implies the existence of 

some language that captures the knowledge that the radio has about the environment. The 

need for such a language formed a significant portion of the discussion in the dissertation 

that proposed cognitive radio. Specifically, [Mitola_00] proposed the use of a Radio 

Knowledge Representation Language (RKRL) to describe the knowledge a radio may 

have about its own capabilities and its environment.  

 

Similarly the xG program has developed an XML-based language for representing in a 

declarative manner the policies that govern a cognitive radio’s actions [Berlemann_05]. 

In remarks at a cognitive radio panel discussion at the 2005 SDR Forum, Preston 

Marshall noted that this declarative language approach had shown significant success 

with Dynamic Frequency Selection (DFS) algorithms. However, at that same panel 

concern was expressed over how to validate an debug a radio whose operation is 

determined by a declarative language, such as Prolog, as opposed to a traditional 

procedural language, such as C. OWL – Web-based Ontology Language – has also been 

proposed as a language for representing radio knowledge in a declarative manner, but 
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primarily for the purpose of supporting knowledge queries between radios 

[Baclawski_05].  

 

Taking an entirely different though potentially complementary route, [Mohammed_05] 

has shown that significant amounts of information related to cellular channels can be 

collected and represented using a hidden Markov models (HMM). Further, these HMMs 

can be used to gain context and environmental awareness by correlating HMMs 

generated from run-time observations with  

 

At this point, it is uncertain how these languages will interoperate and if the combination 

will provide a sufficient basis for implementing the reasoning capabilities needed for 

cognitive radio. Once these knowledge representation languages have crystalized, 

additional work is expected to be performed in the area of artificial intelligence (AI), e.g., 

inference machines, which will further enhance the capabilities and advantages of 

cognitive radio. Fortunately, however, cognitive radio does not require fully operation AI 

for any of the applications discussed in Section  1.3. 

1.4.3 Improved Sensing Capabilities 

To properly respond to changes in its environment, cognitive radios will need to be able 

to detect and classify the signals in its environment. If deployed in an opportunistic 

manner, it will be important for the cognitive radios to differentiate between primary 

spectrum licensees whose signals must be protected from interference and from other 

opportunistic signals for which less complicated measures are required. Additionally, 

there may be a variety of different primary signals in the same band, each of which can 

handle a different level of interference. For example in the UHF bands in the US which 

have been suggested for initial cognitive radio deployments, there are currently three 

primary signals that must be protected - analog TV, digital TV, and wireless microphones 

– with the possibility of many more in the future. 

 

Somewhat repeating the process when spread spectrum moved from the military sphere 

to the commercial market, many of the needed technologies already exist, but are not 

publicly known. However, public researchers are now actively exploring the issue of 
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signal detection and classification with initial promising results from combinations of 

algorithms that exploit cyclostationarity properties to extract signal information and 

neural networks to make sense of the information [Fehske_05]. 

 

Even with the best sensing capabilities, there exists the possibility of failing to find the 

operating primary devices due to hidden node problems. To help combat this, a variety of 

solutions have been proposed [Brown_05] including maintaining spectrum usage tables, 

network assisted detection, and placing beacons on the primary license devices. Of these 

approaches, network assistance (wherein cognitive radios share their observations in the 

network) and spectrum usage tables (updateable by primary and secondary service 

providers) appear to be the most promising approaches. The IEEE 802.22 standardization 

committee is currently considering requiring the maintenance of spectrum usage tables as 

a part of its standard [Cordeiro_05].  

1.4.4 Software Radio Issues 

As cognitive radio is just an evolution of the software radio control processes, all 

software radio issues will also be issues for cognitive radio. This includes improving 

frequency flexibility and agility, enhancing data converter technologies and careful 

software architecting.  

 

Frequency flexibility and agility is critical to successful implementation of opportunistic 

spectrum utilization. While MEMS controlled RF devices should soon be able to provide 

both high performance and rapid RF reconfiguration, an intermediate solution may be 

available now using FETs to implement the same switches that would be used with 

MEMS. [Oh_04] has proposed the use of FETs to implement reconfigurable antennas and 

[Domalapally_04] has proposed the use of FETs to implement reconfigurable oscillators 

and anti-aliasing filters. Using FET-controlled RF, cheap reconfigurable RF can be 

achieved now with a clear upgrade path to MEMS.  

 

To sense available spectrum and other signals in the environment, wider bandwidth 

ADCs will be needed. Advances in data converter technologies appear to have 

accelerated recently [Le_05] so this may not be a significant limitation. Likewise 
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improved processors will greatly aid the development of the intelligent routines needed 

the advanced topology routines, learning, and environmental models. This too appears to 

be on a promising path with multiple core solutions being adopted by Intel and taken to 

the logical extreme by PicoChip whose picoArray contains hundreds of ARM processors. 

 

However, one of the more important unsolved issues facing cognitive radio is operational 

validation. As is the case for software radio, validating software is an NP-complete 

problem, i.e., for complete certainty in operation, every possible combination of inputs 

must be tried. For a cognitive radio expected to operate in many different environments 

with millions of possible adaptations, this could be a very lengthy process. While a 

number of different entities have recognized the importance of developing techniques for 

validating cognitive radio designs and implementations, e.g., testing for acceptable 

interference is the topic of IEEE 1900.2 and software module qualification is the subject 

of IEEE 1900.3, no generalizable techniques have yet been developed. 

1.4.5 Interactive Cognitive Radios 

While even minimally cognitive radios hold great promise, there is some concern that 

cognitive radios may negatively impact network performance. While how a cognitive 

radio can negatively impact network performance may not be immediately apparent from 

cognition cycle shown in Figure 1.1, a more realistic diagram of the processes of a 

cognitive radio in a network is shown in Figure 1.15 where cognitive radios react to both 

“dumb” and cognitive radios. Specifically, many cognitive radios will be reacting to an 

outside world whose state is jointly determined by the adaptations of several cognitive 

radios, making any network of two or more cognitive radios an interactive decision 

process. 
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Figure 1.15: The interactive cognitive radio model. Reproduced from Figure 15-1 in 
[Neel_06a]. 

While we intuitively understand the reaction of a cognitive radio to a collection of 

“dumb” radios, the interaction of a collection or cognitive radios is less clear as each 

cognitive radio waveform adaptation changes the state of the outside world for all the 

other radios. The actions of a collection of cognitive radios would then appear as a 

recursive interactive decision process as adaptation spawns adaptation after adaptation, 

perhaps infinitely as implied by Figure 1.16. Such an infinite process of adaptations 

makes performance guarantees difficult to make and networks nearly impossible to plan 

in a traditional sense. Further, while some authors have proposed having the receiver 

dynamically determine the adaptations of the transmitter; it seems more reasonable that 

any adaptations will be performed at least with the knowledge of the receiver, if not 

actually directed by the receiver. So an infinite recursion of adaptations may imply poor 

utilization of spectrum as bandwidth is consumed to signal these adaptations. 

 



  

 50 

 

Figure 1.16: A network of adaptive radios that has fallen into an infinite adaptation 
recursion. 

 

Even when these adaptations do not continue infinitely, the final state of the network 

might be quite undesirable. For instance, consider a single cluster DS-SS network with a 

centralized receiver where all nodes other than the centralized receiver are adjusting their 

transmitted power levels in an attempt to maximize their signal-to-interference-plus-noise 

ratio (SINR) as measured at the receiver. The initial state in terms of transmit power 

levels (blue) and SINR (green) for this network are shown in Figure 1.17. Following this 

implied adaptation scheme, the final state for this network is shown in Figure 1.18 where 

all terminals are transmitting at their maximum power levels. Clearly this is an un-

desirable outcome as (1) capacity is greatly diminished due to near-far problems (unless 

the nodes are all at the same radius from the receiver) and counter to a goal of MANET 

operation, (2) the resulting SINRs are unfairly distributed (the closest node will have a far 

superior SINR to the furthest node), and (3) battery life would be greatly shortened. 
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Figure 1.17: Initial network state. Figure 1.18: Final network state. 

 
Abstracting the problem of interactive cognitive radios, consider a network of three 

radios where repeated adaptations define out paths in the action space (the combined set 

of all possible choices of waveforms by the three cognitive radios). Sometimes these 

paths terminate in a stable point; under different conditions the paths may enter an 

infinite loop. There may also be points in the action space which are fixed points of the 

decision update rule but are unstable as any small perturbation in initial conditions drive 

the network away from the point. Each of these concepts is illustrated in the example 

interaction diagram shown in Figure 1.19 where paths are shown by the arrows and fixed 

points are labeled as “NE” in reference to “Nash equilibrium” – a concept introduced in 

Chapter 4. 
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Figure 1.19: A three radio interaction diagram with three steady states (NE1, NE2, and 
NE3) and adaptation paths. 

 

This conceptual interaction diagram illustrates the four different analysis questions that 

we would like to answer when considering a network of interactive cognitive radios.  

• What is the expected behavior of the network? 

• Does this behavior yield desirable performance? 

• What conditions must be satisfied to ensure that adaptations converge to this 

behavior? 

• Is the network stable? 

To answer these questions, several researchers [Neel_06a] [MacKenzie_01] have 

proposed the use of game theory to analyze the interactions of autonomous adapting 

wireless devices. 

1.5 Problem Statement and Research Contributions 
and Document Organization 

This section refines the problem addressed by this work, describes the contributions made 

as part of this work 



  

 53 

1.5.1 Problem Statement 

This research addresses the issue presented in Section  1.4.5 – how can we ensure that 

cognitive radio algorithms will behave well in a network? Tackling this issue requires us 

to handle three inter-related issues. 

• How do we model an interactive cognitive radio network? 

• How do we analyze an interactive cognitive radio network? 

• How do we design an interactive cognitive radio network? 

1.5.1.1 Modeling 

Modeling a cognitive radio network is a non-trivial task as cognitive radios can be 

implemented as either procedural or ontological radios and both implementation classes 

may be present in a single network. Thus to accurately model a cognitive radio network, 

we need models that simultaneously capture the adaptations and interactions of 

ontological and procedural (both deterministic and non-deterministic) radios. Further this 

model should be amenable to a wide variety of possible networking architectures, 

decision timings, waveform adaptations (possibly governed by policies), and operating 

environments. Of course, our models should also facilitate our analysis and design 

efforts. 

1.5.1.2 Analysis 

When analyzing a cognitive radio network, the interactions of a cognitive radio network 

can be viewed as creating a recursion of adaptations that modify the network state. As 

highlighted in Section  1.4.5, we wish to be able to analyze the recursions of cognitive 

radio algorithms to answer the following questions.   

• Will the recursion have a fixed point (steady state) and can we identify the steady-

state (or steady-states) so we can anticipate performance? 

• Will that performance be desirable?  

• What conditions will be necessary to ensure convergence? 

• Will the steady-states be stable or will the inherent variations of the wireless 

medium make the system unpredictable? 
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While we could attempt to address these issues via simulation and experimentation, this 

will be a very time consuming task even for limited systems considering limited 

scenarios. For example, in [Ginde_03], a desktop simulation of a modeled GPRS network 

that incorporated power and rate adaptations required days to fully simulate all possible 

combinations of powers and rates for a system with just seven subscriber units in a fixed 

position. Expanding this simulation to account for more units, different positions or even 

mobility would have required months of simulation time.  

 

Instead, we would prefer to be able answer our questions in just minutes by 

mathematically analyzing the structure and characteristics of the interactions of cognitive 

radios algorithms. As such, the goal of this research is to present a methodology suitable 

for quickly analyzing many cognitive radio networks with interactive and recursive 

decision processes with a particular focus on the kinds of cognitive radio algorithms that 

are deployed today – transmit power control and adaptive interference avoidance. 

 

Further, rather than effectively reinventing the wheel for each new network and 

algorithm, if our analysis can follow a model-based approach analytical effort can be 

more efficiently spent on establishing results for generalizable models and model 

identification criteria.  

1.5.1.3 Design 

If we are only able to model and analyze the interactions of cognitive radio networks, that 

would be a useful result in and of itself. However, the design of cognitive radio networks 

would remain a hit-or-miss affair as we would not know how a network would perform 

until we analyze it.  

 

We would prefer to be able to leverage our insights from modeling and analyzing 

cognitive radio algorithms to formulate algorithm design rules that result in behavior that 

converges to stable desirable steady-states. 
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1.5.2 Research Contributions 

This research presents an application-independent model of cognitive radio interactions 

which we can refine to application specific models dependent on the algorithms being 

studied. Addressing the analysis issues required the development of new models, new 

analysis results for contraction mappings, new applications of analysis techniques to 

cognitive radio algorithms, and the development of design frameworks. Techniques for 

analyzing procedural radios for determining steady-states, desirability, and stability are 

introduced based on dynamical systems, contraction mappings, and Markov chains.  

 

A game theoretic approach is proposed for the analysis of ontological radios and this is 

shown to be applicable to procedural radios as well. This research also refines two 

attractive game models – potential games and supermodular games – so they become 

suitable candidates for analysis of cognitive radio algorithms which required significant 

work developing the theoretical convergence and stability implications of these models as 

well as novel identification criteria. These approaches are applied to dynamic frequency 

selection (DFS) and transmit power control (TPC) algorithms – the two algorithms most 

commonly discussed for use in cognitive radios. An additional study of a self-configuring 

sensor network is also presented. 

 

These modeling and analysis results are leveraged to develop new algorithm design rules 

for cognitive radio networks. These rules are shown to yield cognitive radio networks that 

are low complexity, scalable, convergent to optimal performance, and suitable for 

implementation in either procedural or ontological radios.  

1.5.3 Document Organization 

The remainder of this document is organized as follows. 

 
Chapter 2:  Presents a model developed as part of this work suitable for modeling 

cognitive radio interactions. This model can be applied to all known 

cognitive radio algorithms and implementations and is amenable to a wide 

variety of analysis techniques. This model is used in all subsequent chapters. 
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Chapter 3: Discusses techniques for analyzing procedural cognitive radios. The chapter 

addresses dynamical systems theory, contraction mappings, and Markov 

chain theory. Techniques for establishing steady-states, optimality, 

convergence, and stability are presented. 

 

Chapter 4: Describes how game theory can be used to model procedural and 

ontological cognitive radios. Normal form games and repeated games are 

covered. General game theoretic techniques for establishing steady-states, 

optimality, convergence, and stability are presented including the concepts 

of Nash equilibria (NE), Pareto optimality, and the Finite Improvement 

Property. 

 

Chapter 5: Presents the theory of potential games which are particularly well suited as a 

design framework for ontological radios. The chapter shows how potential 

games simplify NE identification, introduces techniques for guaranteeing 

optimal performance, and exhibit broad convergence and stability 

conditions. Several novel game theoretic results are introduced. 

 

Chapter 6: Leveraging potential game theory, proposes a novel framework for 

designing cognitive radio algorithms – the Interference Reducing Networks 

(IRN) framework. This framework is shown to result in behavior that 

minimizes sum network interference and is shown to be implementable with 

either procedural or ontological cognitive radios. 

 

Chapter 7: Focuses on a particular realization of the IRN framework for Dynamic 

Frequency Selection (DFS) intended for implementation on procedural or 

ontological cognitive radios. This algorithm is a low complexity highly 

scalable algorithm that only requires local observations, yet reduces the 

interference of all cognitive radios in the network. 
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Chapter 8: As part of a process of introducing examples of a key game theory concept 

(weak FIP, this chapter presents the theory of supermodular games which 

are particularly well suited as a design framework for procedural radios. A 

commonly encountered class of ad-hoc power control algorithms is shown 

to be a supermodular game, and a sensor network algorithm is proposed and 

shown to have weak FIP. 

 

Chapter 9: Based on the modeling and analysis covered in the preceding chapters, this 

chapter draws conclusions on the design and implementation of cognitive 

radio networks and summarizes the results of this dissertation. 

 

Original research contributions are made in every chapter in this dissertation. Sometimes 

an entire chapter is an original contribution. Other chapters present theory which needed 

refining for application to cognitive radios. For chapters where original and previous 

related work are interspersed, original definitions and theorems are marked by an 

asterisk. Table 1.3 lists major original contributions to the modeling, analysis, and design 

of cognitive radio interactions made as part of this work. Papers and awards resulting 

from this research are listed in Chapter 9. 

Table 1.3: Major Novel Contributions Made as Part of this Work 

Chapter Research Contributions 

Chapter 1 
Definition of procedural and ontological cognitive radios. 
Definition of waveform 

Chapter 2 General model of cognitive radio interactions 

Chapter 3 
Application of dynamical systems to the analysis of procedural radios 
Stability of standard interference function (SIF) 
Application of SIF to ad-hoc networks 

Chapter 4 

Application of game theory to cognitive radios 
General game model of cognitive radio networks 
Novel random better response algorithm with broader convergence 
conditions 
Convergence analysis for basic game theoretic properties under different 
decision timings 
Ergodic Markov chain model of  noisy cognitive radio networks 
Necessary condition for convergence of myopic rational cognitive radios 

Chapter 5 
Application of potential games to wireless network design 
Multilateral Symmetric Interference Games 
Identification of ordinal potential games via better response  
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transformations 
Convergence of round-robin/random better response algorithms for 
potential games with infinite action spaces 
Convergence of asynchronous better response algorithms for finite action 
spaces 
Stability of potential games for discrete time adaptations 

Chapter 6 

Interference Reducing Network (IRN) design framework 
Global altruism algorithm 
Local altruism algorithm 
Bilateral Symmetric Interference identification condition 
General algorithm for implementing an IRN in an isolated cluster 
Close proximity algorithm 
Impact of legacy devices 

Chapter 7 
Novel Dynamic Frequency Selection algorithm for ad-hoc networks and its 
performance under non-ideal circumstances 

Chapter 8 
Condition for uniqueness and stability of supermodular games 
A convergence proof of typical ad-hoc TPC algorithms 
Novel sensor network formation algorithm 
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Chapter 2: Modeling and 

Problem Formalization 
“If we can really understand the problem, the answer will come out of it, because the 

answer is not separate from the problem.” - Jiddu Krishnamurti 

 

Before proceeding to develop solution techniques for cognitive radios interactions, we 

must first define what we wish to solve. This chapter presents a general model of the 

interactions of cognitive radios applicable to both procedural and ontological radios and 

refines the aspects of their behavior that we wish to be able to analyze. 

2.1 A General Model of Cognitive Radio Interactions 

Consider the interactive cognitive radio problem previously illustrated in Figure 1.18 and 

repeated in Figure 2.1. In this interaction problem, each radio reacts to observations of 

the outside world by choosing some adaptation (or waveform) that the radio believes will 

help bring it closer to its goal, whatever that goal may be. At any given point in time, the 

observation a cognitive radio makes will be a function of the passive operating 

environment of the network (the channel conditions and interference environment that 

would be observed if no cognitive radios were operating in the environment) and the 

decision processes of the cognitive radios – decision processes that may be implemented 

via procedures or via a reasoning engine. Regardless of the implementation of the 

decision process, by definition, the cognitive radios are guided in their adaptations by 

some goal.  
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Figure 2.1: The interactive cognitive radio problem. [Neel06] 

 

While application specific variables and models are introduced as needed later in this 

document, the following presents a collection of symbols and conventions that captures 

the general features of cognitive radio interaction and can be fashioned into a usable 

model of cognitive radio interactions.  

• N – The (finite) set of cognitive radios in the network where n is the number of 

elements in N, N . 

• i, j – Particular devices in N. 

• Aj – The set of actions available to radio j. While these sets are quite limited for 

many radios, they include all available adaptations to the radio. As the adaptations 

can include a number of independent types of adaptations, e.g., power levels, 

modulations, channel and source coding schemes, encryption algorithms, MAC 

algorithms, center frequencies, bandwidths, and routing algorithms, Aj will 

generally be a multidimensional set.  
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To simplify matters, we assume we are analyzing adaptations only over a short time 

interval so the Aj will not be a function of time, i.e., the radios are not learning new 

actions while they are adapting. This is consistent with the earlier discussion that 

cognitive radios’ learning processes are expected to be performed during sleep or prayer 

processes [Mitola_00]. However, if we consider time scales that spanned these sleep or 

prayer processes, Aj could be expected to grow as radio j learns new waveforms. 

• A – The action space, i.e., set of all possible combinations of actions by the radios 

in the network. Throughout, we assume that A is formed by the Cartesian product 

of each radio’s action sets, i.e., 1 2 nA A A A= × × ×� . For some algorithms, it is 

convenient to think of  A as a vector space with orthogonal bases A1 through An.  

• a – A particular combination of actions where each radio in N has implemented a 

particular action (waveform), i.e., a point in A or an action vector. Radio j’s 

contribution to a is written as aj, and the choice of actions by all cognitive radios 

other than j is written as a-j.  

• O – The set of all possible observed outcomes of the outside world as determined 

by the choice of actions available to each cognitive radio and the passive 

operating environment. 

• oj – An observation made by or supplied to radio j. For instance, an SINR 

measurement. 

• o – A vector of observed outcomes where all radios have observed an outcome, 

i.e., o∈O where o=(o1,o2,…,on). For instance, o may represent a vector of SINR 

measurements with each measurement associated with a particular cognitive 

radio. Frequently, we refer to this as an outcome. 

• dj – The decision rule which describes how radio j updates its decisions based on 

observations. 

Strictly, dj is a function that relates outcomes to actions, i.e., :j j jd o A→ . However, 

while the observed outcome may only be statistically related to the action vector, we will 

assume for the purposes of analysis that the relationship between actions and observed 
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outcomes is known and treat each decision rule as a function that relates action vectors to 

actions, i.e., :j jd A A→ .
1
 

 

For procedural cognitive radios, the decision rule may be explicitly given; for ontological 

cognitive radios, we may have to make broad generalizations such as the implemented 

decision rule selects a locally optimal action or the radio behaves selfishly. A more 

formal treatment of decision rules for ontological radios is presented in Chapter 4. 

However, throughout this report, we assume that each radio’s decision rule is guided by 

its goal or utility function. 

• uj(a) – The utility function which describes how much value radio j assigns to 

action vector a. In general, the utility function expresses some goal that the radio 

is working towards whether explicitly (ontological cognitive radio) or implicitly 

(procedural cognitive radio). Throughout this report we assume these values or 

utilities are described using real numbers, i.e., uj:A→� as it simplifies analysis in 

subsequent chapters. 

 

Again, a practical implementation of a cognitive radio’s goal would associate numbers 

with the radio’s observed outcomes, oj, and not the action vector as other radios’ actions 

will not generally be directly observable. However, for purposes of analysis we assume 

that the analyst knows the relation between actions and observed outcomes so that the 

analyst can express the utility function in terms of the action vector. Therefore, for 

analysis purposes, these utility functions capture the actions of the cognitive radios and 

the passive operating environment. 

 

Although elided in the introduction to this section, the exact times at which radios make 

their decisions can significantly influence the behavior of a network. In military circles, 

there is much effort placed on getting inside the enemy’s decision loop because of the 

potential advantages gained by the quicker decision maker. Or in a more mundane 

                                                 
1
 For a game theorist, the assumed decision rules would be called myopic decision rules. This topic is 

discussed in greater length in this and subsequent chapters. 
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circumstance, anyone who has met someone head on in a hallway and proceeded to 

repeatedly block each others’ attempts to pass knows the effects that there is a significant 

difference between synchronous and asynchronous decision timings. To capture the 

cognitive radio equivalent of these conditions, our model requires addition of the 

following symbols and conventions.  

• Tj – The times at which radio j can update its decision (a radio may have a time 

allocated for updating, but choose not to update its decision). Unless stated 

otherwise, we assume that each Tj is infinite, i.e., { }0 1, , , ,m

j j j jT t t t= … … . As we are 

ultimately modeling interactive software processes, we always assume that Tj is a 

discrete set. 

• T – The set of all times where decision updates can occur, i.e., 

1 2 nT T T T= ∪ ∪�∪ , where t T∈  denotes a particular updating time. For 

convenience, we treat t
k
 as the k

th
 element of T arranged chronologically.  

 

Further, when appropriate, we also use the notation t
d  to denote the network decision 

rule at time t where in general t
d captures the adaptations of the subset of radios that 

update their decisions at time t, i.e., 
( ) k
tMk

t dd
∈
×=  where ( ) { }

jTtNjtM ∈∈= : . While it 

is also possible that a radio bases its decisions on past observations and predictions about 

the future state of the network, this text assumes that t

jd
 
is only a function of cognitive 

radio j’s most recent observation.  

 

Additionally, we make use of the following terms in describing the timing of the decision 

update process: synchronous decision processes, round-robin decision processes, random 

decision processes, and asynchronous decision processes. 

 

Definition 2.1: Synchronous decision process 

Given 
( ) k
tMk

t dd
∈
×= , if M(t) = N Tt ∈∀ then we say that the network has a synchronous 

decision process and write ( )1k k kt t t
a d a+ = . 
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Definition 2.2: Round-robin decision process 

Given 
( ) k
tMk

t dd
∈
×= , if ( ) ( )NmtM

m ,mod= Tt ∈∀  we say the network is updating its 

decisions in round-robin order. 

 

Definition 2.3: Random decision process 

Given 
( ) k
tMk

t dd
∈
×= , if ( ) { }NrandtM m = Tt ∈∀ , then we say the network is updating its 

decisions in random order 

 

Definition 2.4: Asynchronous set decision process  

Given 
( ) k
tMk

t dd
∈
×= , if ( ) { }Nm randtM 2= Tt ∈∀ , then we say the network is updating 

its decisions in asynchronous order 

 

For asynchronously updating networks, there may be some points in time where  m k

i jt t=  

(the m
th

 update of radio i occurs at the same time as the k
th

 update of radio j) is satisfied 

for two or more radios. As we will see in subsequent sections, these different decision 

update timings – synchronous, round robin, random, and asynchronous – can have a 

significant impact on the analysis of our cognitive radio network. 

 

Systems with synchronous timings are most frequently encountered in centralized 

systems and thus will be rarely encountered in an interactive cognitive radio decision 

process as an interactive decision process implies some degree of distributed decision 

timings. A round-robin scheme can occur in centralized systems with distributed decision 

making with scheduling (as might occur in a hybrid ARQ scheme). Without a 

synchronizing agent and assuming an arbitrary fineness in the time scale, every 

distributed cognitive radio algorithm will be a random decision process. However, 

because real-world observations necessitate processing data collected over non-

infinitesimal intervals and because of signal propagation delays, a system with random 

timings will behave more like an asynchronous system. 

 

Summarizing this discussion, the basic model of cognitive radio interaction consists of a 

collection of a collection of cognitive radios, N, an action space A, a utility function for 

each cognitive radio j N∈  which is a function of the actions of each radio and the 
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passive operating environment, a decision rule for each cognitive radio, and a set of times 

at which these decisions occur. This can be compactly represented as the 5-tuple shown 

in (2.1). 

{ } { }, , , ,j jN A u d T  (2.1) 

 

The following chapters illustrate how this model can be applied to networks of 

procedural and ontological radios. For procedural radios, we place increased modeling 

emphasis on the decision rules; for ontological radios, we place increased emphasis on 

the radios’ goals. If we ignore the mapping from actions to outcomes, our model is 

implementation independent, though not particularly useful for analysis. With the 

mapping from actions to outcomes in place, our model is implementation specific – 

useful for analysis, though difficult to generalize. 

 

Example 2.1: Example: Modeling a Cognitive Radio Algorithm 

Consider two cognitive radios, {1,2}, with actions (waveforms) { }1 1,
a b

ω ω and { }2 2,
a b

ω ω , 

respectively, that are communicating with a common receiver which reports to each 

cognitive radio that radio’s signal-to-interference ratio (SIR). In this scenario, there are 

four different possible elements in A, which form the set ( ) ( ){ 1 2 1 2, , , ,
a a a b

ω ω ω ω  

( ) ( )}1 2 1 2, , ,
b a b b

ω ω ω ω . However, there are an infinite number of possible observations due 

to the infinite number of passive operating environments.  

 

In this case, the passive operating environment is defined by the gains from each 

cognitive radio to the common receiver, g1 and g2. We’ll consider the interference that 

one waveform induces on the other to be given by the absolute value of the correlation of 

their signal space representations, ( ),j jρ ω ω−  where ωj is the waveform chosen by radio 

{ }1,2j ∈  and jω−

 
is the waveform chosen by the other radio. In such a system, the 

observed outcome for each radio j is given by the SIR equation given in (2.2) 
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where { }1,2j ∈ , jγ  is the observed SIR for radio j, jg  is the link budget gain of radio j to 

the common receiver, and jg−  is the gain of the other radio to the common receiver. 

 

( ),

j

j j

j j j

g
o

g
γ

ρ ω ω− −

= =  (2.2) 

 

A reasonable goal or a utility function for a cognitive radio operating in this system 

would be to maximize (2.2) so that the greater the SIR the radio achieves, the higher the 

value the radio assigns to the outcome. Note that this goal incorporates both the relevant 

information from the passive operating environment (in this case, the link gains), the 

potential actions that could be taken by the radios, and the interactive nature of those 

actions. 

 

Particularly as each radio only has two waveforms to choose from, it seems reasonable to 

assume that whether procedurally or ontologically each radio implements a locally 

optimal decision rule or more formally as given in (2.3). 

 

( )
{ } ( ),

arg max
,j j ja b

j

j

j j j

g
d a

gω ω ω ρ ω ω∈
− −

=  (2.3) 

  

Finally, by controlling when observations are returned to the cognitive radios, the 

common receiver could conceivably enforce any decision timing scheme. However, this 

example will assume that adaptations occur in a round robin fashion with one adaptation 

permitted each half second, e.g.., T1 = n sec and T2 = n + 0.5 sec where n∈�. Based on 

this discussion, these various modeling parameters can be compactly summarized as 

shown in Table 2.1. 
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Table 2.1: Parameters for Example Model 

General Model Symbols Modeled System Parameters 

N (cognitive radio set) {1,2} 

A (action space) ( ) ( ){ 1 2 1 2, , , ,
a a a b

ω ω ω ω ( ) ( )}1 2 1 2, , ,
b a b b

ω ω ω ω  

{uj} (utility functions) ( )
( )

,
,

j

j j j

j j j

g
u

g
ω ω

ρ ω ω
−

− −

=  

{dj} (decision rules) ( )
{ }

( )
,

, arg max ,
j j ja b

j j j j j j
w

d u
ω ω

ω ω ω ω− −
∈

=

 
Tj (decision timings) T2 – 0.5s = T1 = N 

 

2.2 Analysis Objectives 

By using these modeling parameters and considering another example of cognitive radio 

interaction, we can begin to formalize our analysis objectives. Consider a network of 

three radios where each radio, { }1, 2,3j ∈ , can choose actions from a convex action set, 

Aj,  according to its decision update rule dj. Starting at any initial action vector, the 

repeated application of the decision update rules trace out paths in the action space.  

 

Definition 2.5: Path 

A path is a sequence of action vectors, { }kta formed by the recursion ( )1k k kt t t
a d a+ = . 

 

Note that even if the same network decision rule and the same passive operating 

environment are used, different paths result from different initial points, a
0
.  

 

Conceptually, a path may terminate in a stable point, but under different conditions a path 

may enter an infinite loop. There may also be points in the action space that are fixed 

points of the decision update rule but are unstable so that any small perturbation in initial 

conditions drives the network away from the point. Each of these concepts is illustrated 

in the example interaction diagram shown in Figure 2.2 where paths are shown by the 

arrows and fixed points are labeled as “NE” for reasons that will become clear in Chapter 

4. 
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Figure 2.2: A three radio interaction diagram with three steady states (NE1, NE2, and 

NE3) and adaptation paths. 

This conceptual interaction diagram illustrates the four different analysis questions we 

identified in Chapter 1 that we would like to answer when analyzing the interactions of a 

network of cognitive radios.  

1. What is the expected behavior of the network? 

2. Does this behavior yield desirable performance? 

3. What conditions must be satisfied to ensure that adaptations converge to this 

behavior? 

4. Is the network stable? 

 

The following formalizes the analysis objectives underlying each of these questions and 

previews some of the techniques introduced later in this text. 

2.2.1 Establishing Expected Behavior 

As is the case for many systems, the analysis in this report assumes that expected 

behavior of a cognitive radio network is equivalent to its steady-state behavior. 

Accordingly, establishing expected behavior is concerned with addressing the following 

issues: 
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• Existence – Does the system have a steady state? 

• Identification – What are the specific steady states for the system?  

 

In general, we will consider an action vector, a
*
∈A, to be a steady state for a network if it 

is a fixed point of the decision rule, a condition that is expressed more formally in 

Definition 2.6. 

Definition 2.6: Steady state 

An action vector a
*
 is a steady state for the cognitive radio network { } { }, , , ,j jN A u d T  

if there is some t
*
∈T such that for all t ≥ t

*
, ( )* *td a a= . 

 

Subsequent chapters will introduce a number of different techniques for demonstrating 

that a steady state exists and for identifying the steady states of the network. These 

include showing that the network decision rule is a variant of a contraction mapping, that 

the network can be modeled as an absorbing Markov chain, and that the network obeys 

certain game theoretic properties.
2
  

2.2.2 Desirability of Expected Behavior 

Of course, determining a cognitive radio network’s steady states tells us nothing about 

whether or not we should implement the algorithm under study. We also need to address 

whether those steady states are “good” steady states or “bad” steady states and if there are 

other action vectors that would be preferable from a network designer’s perspective. 

Again, there are two specific issues that we would like to address: 

• Desirability – How “good” are the steady states of the algorithm?  

• Optimality – Does an optimal action vector exist and how close do the steady 

states come to achieving optimal performance? 

 

There are many different ways of identifying whether or not an action vector is a “good” 

steady state, but we will make the assumption that the network designer has some 

objective function, J : A→� that he/she wishes to maximize or minimize (perhaps total 

system goodput or spectrum utilization). Assuming we wish to maximize J, we’ll treat 

                                                 
2
 Contraction mapping and absorbing Markov chain are defined in Chapter 3. The associated game 

theoretic techniques are defined in Chapters 4 and following. 



 73  

action vector a
2
 as more desirable than a

1
 if ( ) ( )2 1J a J a> . To determine if an optimal 

action vector exists and if our steady states are indeed optimal, subsequent chapters will 

introduce gradient techniques and Pareto optimality criteria.  

2.2.3 Convergence Conditions 

Even if we demonstrate that a cognitive radio network has desirable steady states, it is 

important to identify the conditions (decision rules, passive operating environments, 

initial conditions) under which paths converge, a concept formalized in Definition 2.7.  

Definition 2.7: Convergence 

Given path { }kta , we say that the path converges to some action vector a
*
∈A if for every 

0ε > , there is a *
t T∈  such that *

t t≥  implies ' *ta a ε− < . 

 

In other words, path { }kta
 
converges to a

*
 if for every arbitrarily small region around a

*
 

that we might define, there is a time after which { }kta
 
remains “trapped” in that region.  

 

For convergence, this research addresses the following issues: 

• Rate – Given a convergent sequence { }kta what is the relationship between 0ε >  

and t
*
? 

• Sensitivity – How do changes in the value of a
0
, slight variations in d

 t
 (perhaps 

asynchronous instead of round-robin timings) or changes in the passive operating 

environment impact the paths and the network’s steady states?  

 

Frequently when assessing convergence this text considers a time-independent decision 

rule, d, coupled with varying timings for implementing decision rule. For example, this 

text considers time-independent decision rules corresponding to locally optimal 

decisions, directional improvement, and randomly selected better responses coupled with 

synchronous, asynchronous, random, or round robin decision timings. This approach 

allows us to establish the sensitivity of the decision rules to timing variations more 

precisely. 
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2.2.4 Network Stability 

Implicitly, the preceding analysis objectives assume the radios have perfect knowledge of 

their operating environment and behave deterministically. However, wireless networks 

are stochastic, not deterministic. Accordingly, the cognitive radios’ observations will not 

be the deterministic functions and instead will be estimates of their operating 

environment. Because these are only estimates, the radios will frequently make 

adaptations that appear to be mistakes to the analyst. While this research assumes the 

radios’ estimates and errors are unbiased, there is the concern of stability as small 

perturbations could potentially lead to undesirable behavior. Because of this concern, this 

research addresses the following analytical issues with respect to a network decision 

rule’s steady state(s): 

• Lyapunov stability – After a small perturbation, will stay the system within a 

bounded region about the steady state? 

• Attractivity – After a small perturbation, will the network converge back to the 

steady state? 

2.3 Summary 

This chapter has presented a generalized model of cognitive radio interactions and 

identified important analysis objectives. This model is defined by the tuple 

{ } { }, , , ,i iN A u d T  where the associated symbols are summarized in Table 2.2. 

Subsequent chapters provide application-specific refinements of this model and introduce 

techniques for determining steady states, desirability of those steady states, convergence 

criteria, and stability.  

Table 2.2: Symbol Summary 

Symbol Meaning Symbol Meaning 

N Set of cognitive radios i, j Particular cognitive radios 

Aj Adaptations for j aj Adaptation chosen by j 

a-j Adaptation vector excluding aj uj Goal of j 

O Set of outcomes Oj Outcome observed by j 

dj Decision rule for j Tj Times when j adapts 

T Adaptation times ∀j∈N t An element of T 
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In general we will seek to design cognitive radio algorithms such that all of their steady-

states maximize the design objective for the particular application, are converged to and 

are stable under the broadest possible conditions, and require a minimal amount of 

signaling overhead and device resources to realize the algorithm. While this seems to be 

an impossible order to fill, by leveraging the analysis insights of the subsequent chapters, 

Chapters 6, 7, and 8 present several algorithms that meet all of these objectives. 
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Chapter 3: Tools for Analyzing the 

Interactions of Procedural Radios1 
“Before thinking outside the box, one should know what’s in the box. The box tends to 

have a lot of good ideas – that’s how they came to be in the box.” 

 

In this chapter we consider the problem of analyzing the interactions procedural radios 

based on the model presented in Chapter 2. In general, we can study the interactions of 

procedural radios via a reduced model that excludes their goals, namely the tuple 

{ }, , ,jN A d T . As this chapter shows, many traditional analysis techniques from 

engineering can be applied to the analysis of procedural radios, including dynamical 

systems theory, optimization theory, parallel processing (contraction mappings), and 

Markov chain theory. Before cognitive radio, before SDR, these techniques were being 

applied to the analysis of wireless algorithms. And as we show in this chapter, they are 

still useful for the analysis of procedural cognitive radios. Further, when we turn to the 

analysis of ontological radios in subsequent chapters many of the concepts presented in 

this chapter resurface. 

 

The remainder of this chapter is organized as follows. Section 3.1 considers dynamical 

systems and describes how the evolution function can be used to determine steady-states, 

optimality, convergence, and stability. Section 3.2 presents variants on contraction 

mappings, including the standard interference function and pseudo-contractions, and 

describes how they can be used to determine steady-states, optimality, convergence, and 

stability. Section 3.3 presents Markov chain theory which can be used to determine 

steady-states, optimality, convergence, and stability for non-deterministic procedural 

radios. 

3.1 A Dynamical Systems Approach 
Dynamical systems theory is concerned with analyzing the behavior of dynamical 

systems and designing mechanisms so the systems act in a desirable manner. Typical 

                                                 
1
 This chapter is based on a section in J. Neel. J. Reed, A. MacKenzie, "Cognitive Radio Network 

Performance Analysis" in Cognitive Radio Technology, B. Fette, ed., Elsevier, July 28 2006. 
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analysis goals of dynamical systems theory are similar to the ones that we set out in 

Chapter 2: determining the expected behavior, convergence, and stability of the system. 

 

Formally, a dynamical system is a system whose change in state is determined by a 

function of the current state and time. In other words, a dynamical system is any system 

of the form given by (3.1) which describes the change in the state of a system as a 

function of the system state, a, and time, t. Implicitly the system is assumed to be at state 

a(0) at time t=0. 

( ),a g a t=�  (3.1) 

 

When (3.1) is not directly dependent on t, i.e., ( )a g a=� , the system is said to be 

autonomous. For our purposes, it makes sense to treat synchronous systems as 

autonomous, but for random and asynchronous systems, it is difficult to eliminate the 

time dependency.   

 

The first goal of a dynamical systems analyst is to solve (3.1) to yield the evolution 

function that describes the state of the system as a function of time. This typically 

involves solving an ordinary differential equation – a task that we would preferably not 

undertake without knowing that a solution exists. Given a dynamical systems model, we 

can be assured that such a solution exists by the Picard-Lindelöf theorem [Walker_80]. 

 

Theorem 3.1: Picard-Lindelöf Theorem 

Given an open set D A T⊂ ×  and g as in (3.1), if g is continuous on D and locally 

Lipschitz continuous with respect to (a,t) for every (a,t)∈D, then there is a unique 

solution, t
d , to the dynamical system for every (a,t=0) while t

d remains in D.  

 

Note that Theorem 3.1 requires that g is not only continuous, but also locally Lipschitz – 

a term we define in Definition 3.1. Note that any function that is Lipschitz continuous is 

also continuous. 
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Definition 3.1: Lipschitz continuity 

A function, d������ 
t
 : A×T→A, A⊂�n 2

 is said to be Lipschitz continuous if there exists a 

K < ∞  such that ( ) ( ) ( ) ( ) ( ) ( ) TAtatatataKtadtad tt ×∈∀−≤− 221122112211 ,,,,,,,  d
t
 

would be locally Lipschitz continuous if this condition is satisfied for some open set 

D A T⊂ × .  

 

In general, the solution to (3.1) will take the form of the decision update rule, t
d , which 

we assumed existed as part of our model. So this section primarily serves the purpose of 

connecting our model to the model traditionally assumed in dynamical systems. 

However, Theorem 3.1 foreshadows the importance of fixed point theorems to the 

steady-states of procedural radio networks.  

3.1.1 Fixed Points and Solutions to Cognitive Radio Networks 

A solution for the evolution function t
d may imply a system that is changing states over 

time, perhaps bounded within a certain region or wandering over the entire action space. 

For some systems, continual adaptations may not be an issue and may even be desirable. 

However, continual adaptations for a cognitive radio network implies that significant 

bandwidth is being consumed to support the signaling overhead required to support these 

adaptations. 

 

For a cognitive radio network, we would prefer that the network settle down to a 

particular steady state and only adapt as the environment changes. Identifying these 

steady-states also allows a cognitive radio designer to predict network performance. In 

the context of our state equation, such a steady state is a fixed point of t
d . 

Definition 3.2: Fixed Point 

A point ( ) TAta ×∈** ,  is said to be a fixed point of ATAd
t →×:  if 

( )* * *ta d a t t= ∀ ≥ .  

 

As this notation is somewhat clumsy and to simplify subsequent analysis we generally 

assume that decision rules are not changing over time. and accordingly solve for fixed 

                                                 
2
 d

t
 is a function that maps from the Cartesian Product of the action space with the set of all update times to 

the action space, where the action space is a subset of all real n-tuples; that is, given an initial action state, it 

forms the action space over all time. 
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points of decision rules of the form AAd →:  . This assumption is reasonable when we 

are able to assume a reasonably short time frame where the environment is not changing 

and the radios are not learning new decision processes. While we are considering fixed 

points of decision rules which are functions in this chapter, subsequent chapters also 

consider fixed points of  mappings such that *
a A∈  is said to be a fixed point of 

A
Ad 2: →  if ( )** ada ∈ .  For one dimensional sets, it is convenient to envision a fixed 

point of a function as a point where the function intersects the line ( )x f x= . Figure 3.1 

illustrates a function, f(x), that has three fixed points.  

0 x

f(x)

 

Figure 3.1: A function with three fixed points (circled). For functions on a one 

dimensional sets, the points at which the function intersect the line f(x) = x (dashed) are 

fixed points. 

 

Solving for fixed points can be tedious as it may involve a search over the entire action 

space (an impossibility for an infinite action space, and a considerable undertaking for 

most realistic finite action spaces), so we would like to know if a fixed point exists before 

we begin our search. Fortunately, this can be readily established by the Leray-Schauder-

Tychonoff fixed point theorem given by Proposition 1.3 in Chapter 3 of [Bertsekas_97]. 

 

Theorem 3.2: Leray-Schauder-Tychonoff Fixed Point Theorem 

 If A⊂�n
is nonempty, convex, and compact (see Appendix B), and if : 2A

d A →  is a 

continuous correspondence, then there exists some *
a A∈ such that ( )** ada ∈ . 

 

For functions, an equivalent form is given by Brouwer’s fixed point theorem. 
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Theorem 3.3: Brouwer’s Fixed Point Theorem 

 If  A⊂�n
 is nonempty, convex, and compact (see Appendix B), and if :d A A→  is a 

continuous function, then there exists some *
a A∈ such that ( )** ada = . 

 

However, there are several limitations to these theorems. First, these theorems are 

inappropriate for finite action sets – a likely condition – as while finite sets are compact, 

they are not convex. Second, d may not be a continuous function. Third, actually solving 

for a fixed point under such general conditions can be much harder, though under these 

conditions a simultaneous solution of (3.2) is appropriate for identifying steady-states. 

( )* *

i ia d a i N= ∀ ∈  (3.2) 

 

3.1.2 Establishing Optimality 

Perhaps the easiest way to establish that a solution to a cognitive radio network is optimal 

is to show that it max(min)imizes some objective function J :A→�. For networks with a 

finite action space we can perform an exhaustive search and evaluate J at each point in A.  

 

However, this approach is impractical for infinite action spaces. But when J is 

differentiable and A is a compact interval of �
n
, we can reduce the search space by noting 

that if a particular action vector, a
*
, is optimal, then a

*
 must either be a boundary point or 

a point where ( )* 0J a∇ = where ( )
( ) ( ) ( )

1 2

1 2

ˆ ˆ ˆ
n

n

J a J a J a
J a a a a

a a a

∂ ∂ ∂
∇ = + + +

∂ ∂ ∂
�

3
 where 

each ˆ
ja  is the dimension of A under control by radio j. So in effect, this condition says 

that for a
*
 to optimize J, there must be no direction that can be followed from a

*
 that 

increases J. If J is pseudo-concave, we can change this to a sufficient condition, i.e., if 

there exists some point such that ( )* 0J a∇ = , then it is optimal.
4
 [Zangwill_69] 

                                                 
3
 The gradient of the cost function J, is in general a vector valued function that when evaluated at a 

particular point, a’’ indicates the magnitude and direction of greatest increase for J at a’’. When J is a 

function of a single dimension, then the gradient of J is equivalent to the slope of J. Note that when each 

radio’s action set is multidimensional, a more complicated expression is required. 
4
 This is a variant on the Karush-Kuhn-Tucker theorem. 
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Definition 3.3: Pseudo-concavity 

A function J :A→� is said to be pseudo-concave if ( ) ( ) 0J a a a′′ ′ ′′∇ ⋅ − ≤  

( ) ( )' ''J a J a⇒ ≤  for all points ', ''a a A∈ .  

 

More familiarly, a function that is concave is also pseudo-concave.  

 

Definition 3.4: Concavity 

A function,  J :A→�, is concave on the set A if for all 1 2,a a A∈ ,  ( )( )1 21J a aλ λ+ − ≥  

( ) ( ) ( )1 21J a J aλ λ+ −  for all [ ]0,1λ ∈ .  

 

Equivalently, a function is concave if it is impossible to join two points in the function 

with a line that contains points above the function. An example of a function that is 

pseudo-concave but not concave is J(a) = a
3
. In this case, ( ) aaaJ ˆ3 2=∇  and 

( )[ ]aaaaa ˆˆ3 21

2

2 −⋅  = 3

2

2

21 33 aaa − = ( )21

2

23 aaa −  which is less than or equal to zero only if 

a1≤ a2 which implies 3

2

3

1 aa ≤  which makes the function concave. However, plotting the 

function and drawing a line between (-2,-8) and (2,8) reveals that the line lies above the 

function for all a>0 implying that J is not concave.
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Figure 3.2: J(a) =a
3
 – A function that is pseudo-concave, but not concave. 

3.1.3 Convergence and Stability 

When discussing convergence and stability of a decision rules fixed point, it is 

convenient to make use of two forms of stability: Lyapunov stability and attractivity.  

 

Definition 3.5: Lyapunov stability 

We say that an action vector, a
*
, is Lyapunov stable if for every 0ε >  there is a 

0δ > such that for all 0
t t≥ , ( ) ( )0 * *

a t a a t aδ ε− < ⇒ − < 5
.  

 

While no particular relation between δ and ε can be inferred from this definition, an 

engineer may be more comfortable thinking of Lyapunov stability as akin to Bounded-

Input-Bounded-Output stability wherein after a bounded “stimulus” of δ is added to a 

system operating at a
*
, the system remains within a bounded distance ε of a

*
.  

                                                 
5
 Equivalently, the action vector a

* 
is said to be Lyapunov stable if for every arbitrarily sized ε>0, it is 

possible to identify a δ>0 such that after a pertubation to any point a(t
0
) no larger than δ, all subsequent 

action vectors are no more than a Euclidean distance of ε away from a
*
. 
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Definition 3.6: Attractvity 

The action vector a
*
 is said to be attractive over the region S A⊂ , 

{ }*:S a A a a M= ∈ − < ,  if given any ( )0a t S∈ , the sequence ( ){ }a t  converges to a
*
.  

 

Tying both concepts together is the asymptotic stability. 

 

Definition 3.7: Asymptotic Stability 

The action vector a
*
 is said to be asymptotically stable if it is both Lyapunov stable and 

attractive. 

 

Note that Lyapunov stability does not imply attractivity nor does attractivity imply 

Lyapunov stability. For instance, the fixed point (0,0) in Figure 3.3 is Lyapunov stable, 

but not attractive; meanwhile the fixed point (0,0) in Figure 3.4 is attractive, but not 

Lyapunov stable. However, the intuition that both stability and attractivity are frequently 

found together is borne out by Lyapunov’s Direct Method. 

x

y

x

y

 

x

y

 
Figure 3.3: Paths (formed by recursive 

application of d
 t
 with direction indicated 

by arrows) for a system that is Lyapunov 

stable but not attractive. 

Figure 3.4: Paths for a fixed point that is 

attractive but not Lyapunov stable. 

 

Instead of attempting to directly apply the definitions of Lyapunov stability and 

asymptotic stability, we can use Lyapunov’s direct method. The discrete time version of 

Lyapunov’s direct method is given in Theorem 3.4 of [Medio_01] as follows. 

 



 84 

Theorem 3.4: Lyapunov’s Direct Method for Discrete Time Systems 

Given a recursion ( ) ( )( )1k t k
a t d a t

+ ∈  with fixed point a
*
, we know that a

*
 is Lyapunov 

stable if there exists a continuous function (known as a Lyapunov function) that maps a 

neighborhood of a
*
 to the real numbers, i.e., L :N(a

*
)→�, such that the following three 

conditions are satisfied:  

 1) ( )* 0L a =  

 2) 0)( >aL ( )* *\a N a a∀ ∈  

 3) ( ) ( ) ( ) 0tL a L d a L a ∆ ≡ − ≤   ( )* *\a N a a∀ ∈  

 

Further, if conditions 1-3 hold and  

 a)  ( )*N a A= , then 
*

a   is globally Lyapunov stable; 

 b)  ( ) 0L a∆ < ( )* *\a N a a∀ ∈ , then a
*
 is asymptotically stable; 

 c)  ( )*N a A=  and ( ) 0L a∆ < ( )* *\a N a a∀ ∈ , then a
*
 is globally asymptotically 

 stable. 

 

Lyapunov’s direct method says, in effect, that if we can find a function that strictly 

decreases along all paths created by the adaptations of a cognitive radio network, then 

that cognitive radio network is asymptotically stable.  

 

It is also interesting to note that the existence of a Lyapunov function can be used to 

establish the existence of steady-states and identify the network’s steady-states, namely 

all points where ( )* 0L a = . Further, Lyapunov’s direct method can be readily applied to 

both synchronous and asynchronous cognitive radio networks – the only requirement 

being each adaptation must decrease the value of the Lyapunov function. Of course, there 

are cognitive radio algorithms with many steady-states which are so closely spaced that it 

is impossible to identify any combination of neighborhood and Lyapunov function that 

meets these definitions. Such a scenario is considered in Chapter 7.  

 

While this section does not present a particular example analysis of an evolution equation 

for fixed points, convergence, optimality, or Lyapunov stability, these concepts will be 

repeatedly applied throughout the remainder of this document. 
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3.2 Contraction Mappings                                              
and the General Convergence Theorem 

In the preceding discussion, we assumed a closed form expression for the next network 

state as a function of current network state. Now suppose that after one recursion of the 

network update rule we are unable to precisely predict the next network state. However, 

we are able to bound the network state within a particular set of states A(t
1
). Then 

suppose that armed with the knowledge that the network starts in A(t
1
), we could say that 

after the second iteration, the network state would have to be within another set A(t
2
), 

which is a subset of A(t
1
). Extending this concept, suppose that given any set of network 

states, A(t
k
), we know that the decision update rule always results in a network state in the 

set, A(t
k+1

), which is a subset of A(t
k
).  

 

In effect, this process is saying that as the recursion continues finer and finer 

approximations on the operating point of the network are possible, perhaps resulting in a 

prediction of a specific steady-state for the network. Such a sequence of finer 

approximations might look as shown in Figure 3.5 where the recursion of subsets, A(t
k
), 

converges to a single point. This iterative restriction on a recursion’s possible points 

forms the basis of numerous valuable algorithms and is a characteristic of special class of 

algorithms known as contraction mappings. 
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O10

O11
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A(t0)

A(t1)

A(t2)

A(t3)

A(t4)

A(t5)

A(t6)

A(t7)

A(t8)

A(t
8
)

A(t
9
)

 

Figure 3.5: A sequence of contracting sets, ( ) ( ) ( )2 1 0A t A t A t⊂ ⊂ ⊂� . 

Definition 3.8: Contraction mapping 

A decision rule, d, is said to be a contraction mapping with modulus α if there is an 

[ )0,1α ∈ such that ( ) ( ) ,d a d b a b b a Aα− ≤ − ∀ ∈ .  

 

3.2.1 Analysis Insights 

Knowing that our decision rule constitutes a contraction mapping immediately provides 

us with several valuable insights. From Banach’s contraction mapping theorem
6
 given in 

[Sundaram_99], we know that d has a unique fixed point to which the recursion f 

converges from any starting point. After k iterations, a bound on the distance of the 

current state from the fixed point is given by (3.3).  

( ) ( ) ( )* 1 0

1

k
k

a t a a t a t
α

α
− ≤ −

−
  (3.3) 

                                                 
6
 Banach’s fixed point theorem is simply that every contraction mapping has a unique fixed point. 
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(3.3) is also useful for bounding the error in estimating  d ’s fixed point by recursively 

evaluating d. Additionally, a Lyapunov function for any contraction mapping with fixed 

point *
a  is given by (3.4). Thus every contraction mapping, d, has a unique stable fixed 

point to which d converges at a predictable rate. 

( ) *L a a a= −  (3.4) 

3.2.2 Pseudo-Contractions 

A pseudo-contraction eliminates the contraction mapping’s requirement that all points 

move closer to each other after each iteration but still requires that after each iteration, all 

points move closer to a unique fixed point.  

Definition 3.9: Pseudo-contraction 

Given mapping :d A A→  with fixed point, a
*
, we say d is a pseudo-contraction if there 

is an [ )0,1α ∈ such that ( ) ( )* *
d a d a a aα− ≤ − a A∀ ∈ .  

 

By definition, d has a unique fixed point, a
*
, to which d converges at a rate given by 

(3.5). Note that evaluation of (3.5) requires knowledge of the fixed point, so unlike (3.3), 

it is not appropriate for bounding the error on an estimate of the system’s fixed point 

while iterating to solve for the fixed point. Also note that (3.4) serves as a Lyapunov 

function for a pseudo-contraction and that a* is globally asymptotically stable.  

( ) ( )* *0k k
a t a a aα− ≤ −  (3.5) 

3.2.3 General Convergence Theorem 

For most contraction mappings, it is assumed that the updating process occurs 

synchronously (recall the discussion of decision timings in Chapter 2). We can relax this 

assumption by introducing the general convergence theorem presented in Proposition 2.1 

of Chapter 6 in [Bertsekas_97]. 

 

Theorem 3.5: General Convergence Theorem 

Suppose we know that ( ) ( ) ( )1 0k kA t A t A t+⊂ ⊂ ⊂ ⊂� �  where A(t
k
) represents the 

possible states of the network after k iterations and ( )0A t  represents all possible initial 
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states for the network. Then if the following two conditions hold, then f also converges 

asynchronously.  

1)Synchronous Convergence Condition 

(a) ( ) ( ) ( )1 ,k kd a A t k a A t+∈ ∀ ∈  

(b) If {a(t
k
)} is a sequence such that ( ) ( )k ka t A t∈ for every k, then every limit   point 

of {a(t
k
)} is a fixed point of d. 

2) Box Condition 

For every k, there exist sets ( )k

j jA t A⊂ such that ( ) ( ) ( )1

k k k

nA t A t A t= ×� . 

 

For our purposes, the general convergence theorem states that under an assumption that 

each radio’s action sets are independent (thereby implying the action space satisfies the 

box condition), any contraction or pseudo-contraction mapping that converges 

synchronously also converges asynchronously. However, we can also apply the general 

convergence theorem to algorithms that are not obviously contraction mappings as seen 

in the following extended example. 

3.2.3.1 Standard Interference Function Model 

Many traditional analyses consider specific decision rules that model specific 

applications. The following discusses such an analysis that is also an example of a non-

obvious contraction mapping. [Yates_95] considers a power control algorithm operating 

on the uplink of a cellular system with uniform frequency reuse.
7
 For this algorithm, there 

is a set of N mobiles where each mobile, j, attempts to achieve a target received SINR, 

ˆ
jγ . The development of this algorithms assumes that each mobile is capable of observing 

its received SINR (perhaps via feedback from a base station) which is generally given by 

(3.6) where kjg  can be the link budget gain from mobile k to the base station of j, pk is the 

transmit power of mobile k, and Nj is the noise power at the base station that is receiving 

mobile j’s signal. 

 

jj j

j

kj j j

k N

g p

g p N
γ

∈

=
+∑

 (3.6) 

                                                 
7
 It is not stated in [Yates_95] that uniform frequency reuse is an assumption; rather this is the result of a 

conversation with Yates at DySPAN 05 about [Yates_95].  
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Based on observations of (3.6), the mobiles compute a scenario dependent interference 

function, Ij(p) , which is formed as the ratio of the target SINR, ˆ
jγ , and the effective 

SINR, jγ , i.e., as shown in (3.7) 

( ) ˆ /j j jI γ γ=p  (3.7) 

where p is the vector of transmit powers, ( )1 2, , , np p p=p … , drawn from the power 

vector space P. 

 

Generalizing beyond this ratio formalization, Yates defines any interference function to 

be standard if it satisfies the conditions given in Definition 3.10 where we write 1 2≥p p  

if 1 2

j jp p j N≥ ∀ ∈  and I(p) is the synchronous evaluation of all Ij(p). 

Definition 3.10: Standard Interference Function 

An interference function, I : P→�n, is said to be standard if it satisfies the following 

three conditions: 

1. Positivity - ( ) 0I >p  

2. Monotonicity – If 1 2≥p p then ( ) ( )1 2I I≥p p  

3. Scalability – For all 1α > , ( ) ( )I Iα α>p p  

 

Assuming the existence of a standard interference function, Yates defines a synchronous 

updating process of the form ( ) ( )( )1k k
t d t

+ =p p  where ( ) ( ) ( )1 nd d d= × ×p p p�  and fj 

is given by (3.8). 

( )( ) ( ) ( )( )k k k

j j jd t p t I t=p p  (3.8) 

 

[Yates_95] then considers the situation where the target SINR vector, ( )ˆ ˆˆ , , nγ γ…1γ= , is 

feasible. 

Definition 3.11: Feasible SINR Vector 

A target SINR vector, γ̂ , is said to be feasible if there exists a ∈p P  such that 

ˆ
j j j Nγ γ≥ ∀ ∈ . 
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When the target SINR is feasible, [Yates_95] is able to show that an algorithm updating 

the power vector according to (3.8) has the following properties: 

1. A fixed point exists, i.e., there is some p
*
 such that ( )* *d=p p  

2. This fixed point is unique 

3. Starting from any initial power vector, d converges to p
*
.  

 

While [Yates_95] shows these results in an ad-hoc manner, [Berggren_01] shows that 

this updating process constitutes a pseudo-contraction which could be used to establish 

these same results by applying the results of Section  3.2.2. Further we would also know 

that d is stable. The fact that d constitutes a pseudo-contraction implies that 

( ) ( ) ( )1 0k kt t t+⊂ ⊂ ⊂ ⊂P P P� � where ( )ktP  is the power vector space for iteration k. 

Coupled with the just established synchronous convergence of f and implicit satisfaction 

of the box condition, this means that d has satisfied the conditions for the general 

convergence theorem. Thus it is known that d converges both synchronously and 

asynchronously. These results are proven in a more rigorous fashion using different 

techniques in Chapter 9. 

3.2.3.2 Further Insights from the Standard Interference Function 

Assuming the SINR feasibility criterion is satisfied, [Yates_95] also shows that the 

following target SINR arrangements of base stations and mobiles have standard 

interference functions and thus converge synchronously and asynchronously to a unique 

power vector when the decision update rule is given as in (3.8). 

• Fixed assignment – each mobile is assigned to a particular base station;  

• Minimum power assignment – each mobile is assigned to the base station in the 

network where the mobile’s SINR is maximized 

• Macro diversity – all base stations in the network combine the signals of the 

mobiles;  

• Limited diversity – a subset of the base stations combine the signals of the 

mobiles; and 

• Multiple connection reception – the target SINR must be maintained at a number 

of base stations. 
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Feasible SINR 

Previously we defined a target SINR vector, γ̂ , as being feasible if there exists a ∈p P  such 

that ˆ
j j j Nγ γ≥ ∀ ∈ . Rather than performing an exhaustive search over P, [Zander_01] 

presents the following approach for determining if γ̂  is feasible. 

 

Consider a network with link gain matrix G formed as 

11 12 1

21

1 2

n

n n nn

g g g

g

g g g

 
 
 =
 
 
  

G

�

� �

� � �

�

 where 

jkg is the link gain as used in (3.8). Now form the normalized link matrix H as 

,
ji

ij

ii

g
h i j

g
γ= ≠ with 0iih = . Then p. 155 of [Zander_01] tells that the uniform target 

SINR vector ( )ˆ ˆ ˆˆ , , ,u γ γ γ= …γ is achievable if the spectral radius (largest eigenvalue)
8
 of 

H is less than or equal to one. When the spectral radius is exactly 1, then γ̂ is achievable 

only when there is no noise in the system. Interestingly, [Berggren_01] states that for the 

pseudo-contraction formed by the standard interference function, ( )α ρ= H  which 

allows us to estimate the convergence rate as well.  

 

A similar expression can be found for the nonuniform target SINR scenario where 

( )1 2
ˆ ˆ ˆ ˆ, , , nγ γ γ γ= … as follows where the link matrix, H’, is formed as '

max

ˆ
,

ˆ

jii
ij

ii

g
h i j

g

γ

γ
= ≠  

where { }max
ˆ ˆmax i

i N
γ γ

∈
= . 

 

Assuming the target SINRs are feasible, then the power vector corresponding to the 

unique fixed point specific can be found by solving (3.9) 

γ=Zp
�

 (3.9)  

                                                 
8
 Due to the work of Hilbert, spectral theory refers to a set of theories relating to matrices, eigenvalues and 

eigenvectors. In spectral theory, the set of eigenvalues for a matrix is said to be its spectrum. 
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where  

11 1 21 1 1

2 1 22 2 2

1 2

ˆ ˆ

ˆ ˆ

ˆ ˆ

n

n n

n n n n nn

g g g

g g g

g g g

γ γ

γ γ

γ γ

− − 
 − − =
 
 
− −  

Z

�

�

� � �

�

 and [ ]1 1 2 2
ˆ ˆ ˆ

T

n nN N Nγ γ γ γ=
�

� . 

3.3 Markov Models 
Perhaps because of uncertainty in the order of adaptation (as would be the case for a 

randomly or asynchronously timed process) or because of uncertainties in the decision 

rules (either from noise or a non-deterministic procedural radio), it may be impossible to 

derive a closed-form expression for an evolution equation or to even to bound the 

adaptations into sequential subsets. Instead, suppose we can model the changes of the 

cognitive radio network from one state to another as a sequence of probabilistic events 

conditioned on past states that the system may have passed through. When the probability 

distribution for the next state in time, a(t
k+1

), is conditioned solely on the most recent 

state as shown in (3.10), the random sequence of states, {a(t)} is said to be a Markov 

chain. A model of a system whose states form a Markov chain is said to be a Markov 

model. Throughout the remainder of this section we use these two terms interchangeably. 

 

( ) ( ) ( )( ) ( ) ( )( )kmkkmk taataPtaaataP |_,,0| 11 === ++  (3.10) 

 

Formalizing our model, let us assume that our state space is finite. This is not a 

requirement for a Markov chain, but the assumption is useful for the subsequent 

discussion. Further, let us assume that if the network is in state m
a A∈  at time t

k
, then at 

time t
k+1

, the network transitions to state n
a A∈  with probability pmn where 

0mnp ≥ ,m na a A∀ ∈  and 1mj

j A

p
≤

=∑ . Of course, it is also permitted that the system 

remains in state a
m
 which it does with probability mmp . To simplify notation, we make 

use of a transition matrix, which we represent with symbol P. The transition matrix is 

formed by assigning mnp  to the entry corresponding to the m
th

 row and n
th

 column. 
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3.3.1 Markov Model Analysis Insights 

From P we can then form 2P  as the matrix product PP. Now entry [P2
]mn in the m

th
 row 

and n
th

 column of 2P  represents the probability that system is in state n
a  two iterations 

after being in state a
m
. Similarly, if we consider the matrix kP formed as 1k k −=P PP  (an 

example of a Chapman-Kolmogorov equation for a Markov chain [Stewart_94]), then 

entry[P
k
]mn in the m

th
 row and n

th
 column of kP  represents the probability that system is 

in state n
a  k iterations after being in state a

m
.  

 

A similar relationship can be found when the initial state is specified by a random 

probability distribution arranged as a column vector ππππ where [ ]0,1mπ ∈ and 
1

1
A

m

m

π
=

=∑  

where πm represents the probability of starting in state a
m
. For such a situation, the state 

probability distribution after k iterations is given by ππππ T kP  where the superscripted T 

denotes the transpose operation.  

3.3.2 Ergodic Markov Chains 

Tying back into our analysis objectives of steady-states and convergence, we are 

particularly interested in determining the stationary distributions and limiting distribution 

of a Markov chain that models a cognitive radio network. 

Definition 3.12: Stationary Distribution 

A probability distribution such that ππππ*
 such that ππππ*T

 P =ππππ*T
 is said to be a stationary 

distribution for the Markov chain defined by P.  

 

Note that solving for a stationary distribution is equivalent to solving the eigenvector 

equation given in (3.11) where λ=1.  

ππππ*T
 P =λππππ*T

 (3.11) 

 

Definition 3.13: Limiting Distribution 

Given initial distribution ππππ0
 and transition matrix P,  the limiting distribution is the 

distribution that results from evaluating lim
k →∞

ππππ0 T kP .  
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While not generally a steady state as we considered in the previous discussion, showing 

that a Markov chain has a unique distribution that is both stationary and limiting would 

permit us to characterize the behavior of the network. Specifically, given the unique 

stationary limiting distribution ππππ*
, we could predict that at a particular instance in time 

and after a sufficient number of iterations, the network would be in state a
m
 with 

probability πm. Thus it is desirable to be able to identify when such a unique stationary 

limiting distribution exists as is done in the ergodicity theorem given in [Syski_92]. 

 

Theorem 3.6: Ergodicity Theorem
9
 

If a Markov chain is ergodic, then there exists a unique limiting and stationary 

distribution for all initial distributions ππππ0
. 

 

This theorem is in reality just a restatement of the definition of an ergodic Markov chain. 

However the theorem emphasizes a valuable insight – an ergodic Markov chain 

converges to the same limiting distribution regardless of the initial distribution. Thus 

when we can show that a cognitive radio network can be modeled as an ergodic Markov 

chain we gain the following insights: 

• The network has a unique “steady-state” distribution ππππ*
 

• This distribution can be found by solving the eigenvalue problem ππππ*T
 P =λππππ*T

 

where λ=1. 

• From all initial distributions, the network converges to ππππ*
. 

 

[Stewart_94] states that a Markov chain is ergodic if it is a) irreducible, b) positive 

recurrent, and c) aperiodic.  

 

Definition 3.14: Irreducibility 

A Markov chain is irreducible if ,m na a A∀ ∈ , there exist sequences of state transitions 

with nonzero probability that lead from a
m
 to a

n
 . 

 

Definition 3.15: Positive Recurrence 

A Markov chain is positive recurrent if m
a A∀ ∈ , the expected number of iterations to 

return to state a
m
 is less than ∞.  

                                                 
9
 This is also called the “Fundamental Theorem of Markov Chains.” 



 95 

 

Definition 3.16: Aperiodicity 

A Markov chain is aperiodic if m
a A∀ ∈ , there is no integer, n >1, such that once the 

system leaves the state, it can only return to the state in multiples of n iterations. 

 

Note that a network with round-robin timing will not satisfy aperiodicity as an adaptation 

away from state a
m
 on radio i’s turn can only return to a

m
 on one of radio i's turns which 

by definition only occurs every n iterations. However, if we treat an entire round as an 

iteration, then the aperiodicity can be satisfied by a network with round-robin timing. As 

an alternate to applying these definitions, Theorem 4.1.2 in [Kemeny_60] provides a 

readily applied identification criterion. 

Theorem 3.7: Ergodocity Criteria 

A finite Markov chains with transition matrix P is ergodic if and only if there is some k  

such that kP has no zero entries.  

 

Thus by identifying this simple condition, we know that a unique identifiable stationary 

limiting distribution exists when A is finite.  

 

Example 3.1: Markov Model of Cognitive Radio Adaptations 

Consider a network consisting of two cognitive radios where each radio can choose 

between two actions. This network would have four possible states which we could label 

{a
1
, a

2
, a

3
, a

4
}. Suppose that from experimental observation, we observe the probability 

transition matrix shown in (3.12) and illustrated in Figure 3.6 where each state is 

represented as a vertex (circle) and each transition is represented as a weighted and 

directed edge labeled with its associated transition probability. 

0.20.30.40.1a4

0.20.30.10.4a3

0.30.30.00.4a2

0.50.10.30.1a1

a4a3a2a1

0.20.30.40.1a4

0.20.30.10.4a3

0.30.30.00.4a2

0.50.10.30.1a1

a4a3a2a1

P =

 

(3.12) 

 



 96 

a1 a2

a4a3

0.1

0.3
0.2

0.4

0.3

0.3 0.4

0.3

0.1

0.1 0.5

0.2

0.40.1

0.3

 

Figure 3.6 Digraph Representation of (3.12) 

 

As specified by (3.12), P gives the probability of transitioning from state a
2
 to state a

3
 as 

0.3. After calculating P
2
 as shown below, we can immediately determine the probability 

of the system operating in state a
4
 after two iterations after starting in a

3
 ( 2

34 0.33p = ).  

0.270.280.140.31a4

0.330.220.230.22a3

0.320.220.270.19a2

0.260.280.240.22a1

a4a3a2a1

0.270.280.140.31a4

0.330.220.230.22a3

0.320.220.270.19a2

0.260.280.240.22a1

a4a3a2a1

P2 =

 

Similarly, given an initial distribution of states ππππ [ ]0.1 0.2 0.3 0.4
T

= , after two 

iterations, the probability of being in each state is given by                                              

ππππ [ ]2 0.25 0.203 0.25 0.297
T

=P . Because all elements in P
2
 are positive, there exists 

a stationary distribution ππππ*
which we can find by solving the eigenvector equation ππππ*T

 P 

=ππππ*T
 to yield ππππ*T

 [ ]0.2382 0.2352 0.2272 0.2938= . 
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3.3.3 Absorbing Markov Chains 

For cognitive radio networks that we can model as ergodic chains we can readily find the 

unique limiting distribution. However, this “steady-state” is somewhat unsatisfying as the 

network will not remain at a single state and all states will have nonzero probability of 

being occupied and thus the “steady-state” of an ergodic Markov chain does not conform 

to our expectations from Chapter 2. However, this is not a problem for absorbing Markov 

chains.  

 

A state k
a in a Markov chain is said to be an absorbing state if there are no paths that 

leave k
a . This is defined more formally in Definition 3.17.  

Definition 3.17: Absorbing State 

Given a Markov chain with transition matrix P, a state k
a  is said to be an absorbing state 

if 1kkp = .  

 

Definition 3.18: Absorbing Markov chain 

A Markov chain is said to be an absorbing Markov chain if  

a)  it has at least one absorbing state and  

b)  from every state in the Markov chain there exists a sequence of state transitions with 

nonzero probability that leads to an absorbing state. These nonabsorbing states in are 

called transient states. 

 

For example, (3.13) gives a transition matrix for an absorbing Markov chain where a
4
 

(note that p44=1) is the absorbing state and a
1
, a

2
, and a

3
 are the transient states where all 

transient states have a nonzero probability of transitioning directly to a
4
. As we will see 

in later examples, the existence of a direct transition to an absorbing state is not a 

requirement of an absorbing Markov chain nor must a transition matrix have only a single 

absorbing state.  

1000a4

0.20.30.10.4a3

0.30.30.00.4a2

0.50.10.30.1a1

a4a3a2a1

1000a4

0.20.30.10.4a3

0.30.30.00.4a2

0.50.10.30.1a1

a4a3a2a1

P =

 

(3.13) 
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3.3.3.1 Absorbing Markov Chains Analysis Insights 

Within the context of our analysis objectives, an absorbing state is a fixed point or steady 

state that once reached, the system never leaves. Similarly, valuable convergence insights 

can be gained when the system can be modeled as an absorbing Markov chain. However, 

establishing these convergence results requires the introduction of some additional 

matrices based on our transition matrix P. 

 

First let us write our Markov chain transition matrix in canonical form which is given by 

the modified transition matrix, P' shown in (3.14) where I
ab

 is the identity matrix 

corresponding to the state transitions between the absorbing states of the chain, Q 

represents the state transitions between the nonabsorbing states of the chain, 0 is a 

rectangular matrix filled with all zeros representing the probability of transition from 

absorbing states to nonabsorbing states, and R represents the rectangular matrix of state 

transition probabilities from nonabsorbing states to absorbing states. At this point we 

have not performed any operations on P, merely relabeled the states in a way which we 

will find convenient. 

(canonical form)                               ' ab

 
=  
 

Q R
P

0 I
 (3.14) 

 

Given P ', Markov theory provides us with information on convergence and the expected 

frequency that the system visits a transitory state. First, we know that recursive 

evaluation of P'
k
 yields lim k

k →∞
→Q 0 . Recall that we earlier said that the entry pmn in P

k
 

represented the probability of the system initially occupying state k

mnp in the m
th

 row and 

n
th

 column of kP  represents the probability that system is in state n
a  k iterations after 

being in state a
m
.  Thus lim k

k →∞
→Q 0  implies that that the probability of the system not 

being “absorbed”, i.e., not terminating in one of the absorbing states of the chain, goes to 

zero. 

 

Given an absorbing chain with a modified transition matrix as in (3.14), the fundamental 

matrix is given by (3.15). 
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(fundamental matrix)                         ( )
1−

= −N I Q  (3.15) 

 

Solving for the fundamental matrix N permits a number of valuable analytic insights. 

First, theorem 3.2.4 in [Kemeny_60] states that the entry nkm gives the expected number 

of times that the system will pass through state am given that the system starts in state ak. 

Second, theorem 3.3.5 in [Kemeny_60] states that if we evaluate =t N1where 1 is a 

column vector of all ones, then kt gives the expected number of iterations before the state 

is absorbed when the system starts in state ak. Finally, theorem 3.3.7 in [Kemeny_60] 

states that if we evaluate (3.16) 

=B NR  (3.16) 

where R is as given in (3.14), then entry kmb in B specifies the probability the system ends 

up in absorbing state am if the system starts in state ak.  

 

Thus, once we show that a Markov model for a network of cognitive radios with 

transition matrix P is an absorbing Markov chain, the following insights are readily 

gained: 

• Steady-states for the system can be identified by finding those states a
m
 for which 

pmm = 1. 

• Convergence to one of these steady-states is assured, and the expected distribution 

of states can be found by solving for B. 

• Given an initial state, a
k
, convergence rate information is given by solving for t.  

 

Example 3.2 describes a procedural cognitive radio DFS algorithm that can be modeled 

and analyzed using Markov models. It is interesting to note that with the additional 

stipulation that when adapting channels are chosen at random, the algorithm described in 

Example 3.2 can be readily scaled to any network of n radios with c ≥ n channels and still 

remain an absorbing Markov chain. However for n > c, the network is no longer an 

absorbing Markov chain and instead becomes an ergodic Markov chain. One approach to 

overcoming this limitation is to adjust the decision rule so that no radio switches to a 

channel which would be predicted to receive the same amount of interference. In such a 
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case, the network can again be modeled as an absorbing Markov chain. Chapter 7 will 

consider additional techniques for ensuring desirable behavior for a DFS algorithm where 

n > c. 

Example 3.2: DFS as an Absorbing Markov chain 

Consider two cognitive radios implementing dynamic frequency selection over the two 

channel set F={f1, f2}. Assume that these two radios are seeking to minimize the 

interference their signal and that both are implementing the simple decision rule that if an 

interfering signal is detected, then the radio switches to the other frequency. 

 

Using the model from Chapter 2, this system can be modeled as N = {1,2}, A = {(f1,f1), 

(f1,f2), (f2,f1), (f2,f2)}, ( )
1

1

j j

j

j j

f f
u a

f f

−

−

≠
= 

− =
, ( )

( )
( )

1
,

\ 1

j j

j j j

j j

f u a
d f f

f F f u a
−

 =
= 

∈ = −
, and 

T is asynchronous where due to a random timer for each t ∈T each radio gets a chance of 

0.5. 

 

This model can then be converted into a Markov model with the transition matrix shown 

in (3.17) and illustrated in Figure 3.7. 

0.250.250.250.25(f2,f2)

0100(f2,f1)

0010(f1,f2)

0.250.250.250.25(f1,f1)

(f2,f2)(f2,f1)(f1,f2)(f1,f1)

0.250.250.250.25(f2,f2)

0100(f2,f1)

0010(f1,f2)

0.250.250.250.25(f1,f1)

(f2,f2)(f2,f1)(f1,f2)(f1,f1)

P =

 

(3.17) 
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0.25

0.25

(f1,f1) (f1,f2)
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0.25

0.25

0.25

0.25

0.25

1

1 0.25

0.25
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Figure 3.7: Digraph of DFS Example. 

Note that this Markov chain forms an absorbing Markov chain with (f1,f2) and (f2,f1) as 

absorbing states and {(f1,f1) and (f2,f2) as transient states. Thus we immediately know that 

this network has two steady-states [(f1,f2) and (f2,f1)] and that the network will converge to 

these states. Further, by evaluating (3.15)and (3.16) for N, t, and B, respectively, we can 

determine how long we can expect to remain in a transition state and how what the 

distribution of steady-states will be given an initial choice of channels.   

 

So we know from (3.18) that with repeated trials of the network starts from (f1,f1), the 

system will on average pass through (f1,f1) 1.5 times and (f1,f2) 0.5 times, and we know 

from (3.19) that the system is equally likely to end up in either absorbing state.  

1.50.5(f2,f2)

0.51.5(f1,f1)

(f2,f2)(f1,f1)

1.50.5(f2,f2)

0.51.5(f1,f1)

(f2,f2)(f1,f1)

N =

 

(3.18) 
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0.50.5(f2,f2)

0.50.5(f1,f1)

(f2,f1)(f1,f2)

0.50.5(f2,f2)

0.50.5(f1,f1)

(f2,f1)(f1,f2)

B =

 

(3.19) 

 

3.4 Summary 
This chapter introduced several powerful techniques for analyzing the interactions of 

procedural cognitive radios based on the knowledge of an evolution function, d to 

determine steady-states, optimality, convergence, and stability. These models and the 

techniques for establishing if a cognitive radio network satisfies the conditions of the 

model are summarized in Table 3.1. 

Table 3.1: Presented Models 

Model  

(Section number) Basic model Identification 

Dynamical 

Systems 

(3.1) 

evolution equation 

( ) ( )( )1k t k
a t d a t

+ =  
Assumed to exist. 

Contraction 

Mappings 

(3.2) 

( ) ( )f a f b a bα− ≤ −  

,b a A∀ ∈  
Apply definition. 

Standard 

Interference 

Function Power 

Control ( 3.2.3.1) 

( )( ) ( ) ( )( )k k k

j j jd t p t I t=p p  
I(p) satisfies positivity, 

montonicity, and scalability 

Ergodic Markov 

Chain ( 3.3.2) 

( ) ( ) ( )( )
( ) ( )( )

1

1

| 0 , ,

|

k k

k k k

P a t a a a t

P a t a a t

+

+

=

= =

…

 ∃ k  such that kP has all 

positive entries 

Absorbing 

Markov Chain 

( 3.3.3) 

' ab

 
=  
 

Q R
P

0 I
 Apply model definition 

 

For these models, this chapter presented analysis insights that can be gleaned by 

demonstrating that a procedural cognitive radio network satisfies the modeling conditions 

for one of the models listed in Table 3.1. The steady-state properties, the convergence 

properties, and the stability properties for each of these models are summarized in Table 



 103 

3.2 Table 3.3, and Table 3.4, respectively. We also presented an approach to determining 

the desirability of network behavior –evaluation of a network objective function. 

 

Table 3.2 Steady-State Properties by Model 

Model  

(Section number) Existence Identification 

Dynamical Systems 

(3.1) 

Maybe, evaluate Leray-

Schauder-Tychonoff theorem on 

evolution equation 

Exhaustive Search, 

Solve ( )* *d a a=  

Contraction Mappings 

(3.2) 
Yes (Banach’s Theorem) 

Recursion  

(Unique steady-state) 

Standard Interference 

Function Power Control 

( 3.2.3.1) 

Yes ([Yates_95]) 

Recursion 

(Unique steady-state),  

γ=Zp
�

 

Ergodic Markov Chain 

( 3.3.2) 
Yes (Ergodocity theorem) 

Recursion  

(Unique distribution),  

Solve ππππ*T
 P =ππππ*T

 

Absorbing Markov 

Chain ( 3.3.3) 
Yes (Definition) pmm = 1 

 

Table 3.3 Convergence Properties by Model 

Model  

(Section number) Sensitivity Rate 

Dynamical Systems 

(3.1) 

Apply Lyapunov’s direct 

method (when possible) 
No general technique 

Contraction Mappings 

(3.2) 
Everywhere convergent ( ) ( ) ( )* 1 0

1

k
k

a t a a t a t
α

α
− ≤ −

−
 

Standard Interference 

Function Power 

Control ( 3.2.3.1) 

Everywhere convergent 
( ) ( )* *0k k
t α− ≤ −p p p p  

( )α ρ= H  

Ergodic Markov Chain 

( 3.3.2) 

Converges to distribution 

from all starting 

distributions 

Transition matrix dependent 

Absorbing Markov 

Chain ( 3.3.3) 
=B NR  =t N1  

 



 104 

Table 3.4 Stability Properties by Model 

Model  

(Section number) Lyapunov Stability Attractivity 

Dynamical Systems 

(3.1) 

Apply Lyapunov’s direct 

method (when possible) 

Apply Lyapunov’s direct 

method (when possible) 

Contraction Mappings 

(3.2) 
Global Global 

Standard Interference 

Function Power Control 

( 3.2.3.1) 

Global Global 

Ergodic Markov Chain 

( 3.3.2) 
No No 

Absorbing Markov 

Chain ( 3.3.3) 
Not guaranteed. If unique absorbing state 

 

As we saw with the Standard Interference Function, sometimes cognitive radio networks 

satisfy the conditions of multiple models. In these cases, the analytic insights from each 

of the applicable multiple models are available. While this Chapter presents a significant 

number of useful analytic results, the reader should be aware that this Chapter was only 

able to include a brief treatment of these extensive models. In fact, many of these models 

have entire disciplines dedicated to their analysis and application. Accordingly, the 

interested reader is encouraged to explore the texts listed in the references for further 

study.  
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Chapter 4: Game Theory 

 “My work is a game, a very serious game.” – M.C. Escher 

 

By applying the techniques of the preceding chapter, we can analyze the interactions of 

procedural cognitive radios with single-valued decision rules where the evolution of 

network states are captured by the evolution function ( )1k ka d a+ = . However, for 

ontological cognitive radios, e.g., [Kokar_06], and procedural cognitive radios whose 

decision rules incorporate a degree of randomness, e.g., the genetic algorithms of 

[Rondeau_04], it is not generally possible to express the network behavior in terms of an 

evolution function as the same input may produce very different outputs.  

 

Lacking an evolution function, the dynamical systems and the contraction mappings 

approaches considered in Chapter 3 will be insufficient for modeling or analyzing these 

systems. At least for genetic algorithms, the network could be modeled and then analyzed 

using Markov models. However, any useful transition matrix would have to be 

determined empirically – the very process we are seeking to avoid. So if we were limited 

to traditional engineering analysis techniques, modeling and analyzing of most cognitive 

radio network behavior would be impractical. 

 

Lacking a well defined evolution function the only information we may be able to infer 

about the decision processes of these radios are the actions available to each radio (as 

governed by local policy), the goals guiding each radio, and a general assumption that 

each radio will act in a way the radio believes will bring it closer to its goal. Fortunately 

as was first noted in [Neel_02], these conditions are sufficient for modeling and 

analyzing cognitive radio networks with game theory – a collection of models and tools 

for analyzing interactive decision problems originally developed in economics and since 

extended to numerous other domains such as evolutionary biology. With game theory we 

are able to model and analyze cognitive radio networks using the radios’ goals and only 

broad assumptions about the radios’ decision rules, e.g., that the radios attempt to choose 

waveforms that the radios believe will maximize their goal given their observations of the 
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network state. This chapter presents the insights that game theory can provide to the 

modeling, analysis and design of cognitive radios. 

 

While the numerous examples in this chapter make it clear that game theory is a natural 

modeling technique for cognitive radios, some of the assumptions made in the 

development of game theoretic models and analysis techniques intended to study the 

interactions of humans are inappropriate for the study of the interactions of cognitive 

radios. Humans tend to relate their desire for different outcomes ordinally, i.e., we may 

want an apple more than an orange but we find it difficult to quantify exactly how much 

more. Cognitive radios are currently explicitly evaluating their outcomes cardinally, i.e., 

a radio has a defined goal that assigns numbers to different outcomes, e.g., SINR, BER, 

and latency, which permits a cognitive radio to quantify exactly how much more valuable 

one resource allocation is than another. Humans make mistakes implementing their 

choices, a cognitive radio will never intend to implement one waveform and implement 

another. However, both humans and cognitive radios make observation errors – hearing 

one thing when another was said or misclassifying a signal. Sometimes these differences 

in assumptions are inconsequential to the analysis, and sometimes small differences in 

assumptions lead to very different results.  

 

While the game models and analysis techniques developed in economics will be 

applicable to most cognitive radio scenarios, they are sometimes inappropriate and 

sometimes less powerful than the techniques we introduced in Chapter 3. Because of 

these differences, game models and analysis techniques should not be uncritically applied 

to cognitive radio networks without first understanding the differences in assumptions 

and the analyst should be receptive to combinations of game theory and traditional 

engineering analysis. These differences are highlighted throughout the remainder of this 

chapter as they become important. 

 

The remainder of this is organized as follows. Section 4.1 presents the fundamental 

components of game models. Section 4.2 defines the basic game models used in 

subsequent analysis. Section 4.3 presents basic techniques for characterizing network 
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steady states. Section 4.4 presents the traditional game theoretic technique for 

ascertaining optimality. Section 4.5 shows how modeling a cognitive radio network 

permits the establishment of broadly applicable convergence properties. Section 4.6 

considers how the presence of noise impacts the steady-states and convergence properties 

of cognitive radio networks from a game theoretic perspective. Throughout these 

sections, the analytically derived properties of cognitive radio networks are used to draw 

novel implications for the design of cognitive radio networks. 

4.1 Basic Elements of Game Theory 
To begin our discussion of game theory and the analysis of cognitive radio networks, let 

us formally define what we mean by the terms game and game theory.  

 

Definition 4.1: Game  

A game is a model of an interactive decision process. 

 

In brief, an interactive decision process is a process whose outcome is a function of the 

inputs from several different decision makers who may have potentially conflicting 

objectives with regard to the outcome of the process. To an economics game theorist, 

calling a game a model of a generic interactive decision process may seem overly broad 

as most games are rigorously defined only for specific interactive decision processes with 

different game models, such as normal form games, extensive form games, and 

transferable utility games, applied to study specific classes of interactive decision 

processes.  

 

As the model of a cognitive radio network in Chapter 2 makes subtle violations of each of 

the traditional game models, a more traditional and narrower definition would eliminate 

our cognitive radio network model. However, our cognitive radio network model 

preserves enough of the features of traditional game models that most traditional game 

theoretic results and concepts can be directly applied to our models. In light of this fact, it 

seems logical to adopt a more expansive definition of game that encompasses both the 

traditional game models and our cognitive radio network model. 
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Definition 4.2: Game Theory 

Game theory is a collection of models (games) and analytic tools used to study interactive 

decision processes. 

 

Again this definition may seem overly broad to an economics game theorist who might 

feel more comfortable referring to more specific classes of noncooperative or cooperative 

game theory. For our analysis of cognitive radio networks we leverage many of the 

traditional analysis tools of noncooperative game theory but also draw on the analysis 

techniques of Chapter 3 indicating that the broader definition is again more appropriate.  

 

The following gives a brief description of these components in light of the cognitive radio 

network model we introduced in Chapter 2 and the modeling terminology applied to 

interactive decision processes. 

4.1.1 Basic Modeling Elements of a Game  

As defined in the preceding, a game is a model of an interactive decision process. 

Whether explicitly or implicitly, every game includes the following components: 

• A set of players, 

• Actions for each of the players, 

• Some method for determining outcomes according to the actions chosen by the 

players, 

• Preferences for each of the players defined over all the possible outcomes, 

• Rules specific to the model, e.g., the order of play. 

Each of the modeling elements in a game is related to a specific component of an 

interactive decision process as shown in Table 4.1.  
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Table 4.1 Relationships Between Game Elements  

and Interactive Decision Process Components 

Game ⇔ Interactive Decision Process  

Player ⇔ Decision Maker 

Actions ⇔ Inputs 

Outcomes ⇔ Outputs 

Preferences ⇔ Decision Maker Objectives 

Rules ⇔ Decision Timings, Radio Capabilities 

 

The following gives a brief description of these components in light of the cognitive radio 

network model we introduced in Chapter 2. 

4.1.1.1 Players 

The players are the decision making entities in the interactive decision process – the 

cognitive radios in the network. For notational continuity with Chapter 2, we refer to the 

set of players (cognitive radios) as N and individual players as i or j. As a rule, games 

only consider situations where there are two or more players as a single player game 

would by definition not be an interactive process. Throughout this chapter we use the 

terms radios and players interchangeably. 

4.1.1.2 Actions and Outcomes 

The actions are the adaptations available to the players where outcomes are determined 

by the actions and the particular system in which the players are operating. For our 

purposes, we continue to use actions and outcomes in the same manner as we used in 

Chapter 2 in that there is some function that relates action tuples to outcomes. The actions 

are the adaptations (waveforms) available to the radio, and the outcomes are the network 

states that result from each radio’s (or link’s) choice of waveform. 

4.1.1.3 Preferences and Utility Functions 

In a game, it is assumed that each player, j, has a preference relation, j≺
�

, that describes 

that player’s preferences with respect to all the possible outcomes in the outcome space, 

O. We write 2 1

jo o≺
�

 if player j prefers outcome o
1
 at least as much as it prefers outcome 

o
2
; 2 1

jo o≺  if j strictly prefers o
1 

to o
2
; and 

 2 1~ jo o  if j is indifferent between o
1 

and o
2
.  
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For example, suppose player j is faced with two possible outcomes – one where it 

receives apples and another where it receives oranges. If player j prefers apples to 

oranges, then we would write oranges j≺
�

apples implying that j is at least as satisfied by 

receiving apples as it would be by receiving oranges; if j is indifferent between the two 

outcomes, we write oranges ~j apples.  

 

For small games, we can list all of the preference relations for every player over all 

possible outcomes. However, as the size of the game grows this can quickly become 

unwieldy. For instance, a n player game where each player has m actions could 

reasonably have m
n
 different outcomes. Accordingly, a full listing of all the preferences 

for a single player requires defining ( )( )1 / 2n nm m + preference relations; a listing for all 

players requires defining ( )( )1 / 2n m n m n× × + preference relations. 

 

To capture these preference relations in a more compact way, game theorists frequently 

employ utility functions (sometimes called the players’ objective or payoff functions) 

where each player assigns a real number (called the payoff) to each outcome (for 

mathematical rigor, :iu O →� ) in such a way that if 2 1

io o≺ then ( ) ( )2 1

i iu o u o< , if 

2 1~ io o then ( ) ( )2 1

i iu o u o= , and if 2 1

io o≺
�

then ( ) ( )2 1

i iu o u o≤ .  

 

For cognitive radios, the opposite scenario exists – explicit utility functions exist and 

preferences must be inferred. Fortunately, it is very simple to go from utility functions to 

preference functions – simply use the relation that ( ) ( )2 1 2 1

i i iu o u o o o≤ ⇒ ≺
�

. Even for 

algorithms where a clear objective is not available, if we know a cognitive radio’s 

decision update rules, then we can infer some preference relations by examining the 

adaptations.
1
 Assuming other radios’ adaptations are fixed, if an adaptation of radio j 

causes a change from o
1
 to o

2
, then it is reasonable to assume that 1 2

jo o≺
�

, i.e., the 

algorithm “prefers” o
2
 to o

1
. Particularly in light of inferring preferences from the 

                                                 
1
 For the game theorist, we are implicitly assuming our players exhibit perfect rationality - an assumption 

that seems reasonable in light of the fact that our players are programmable machines.  
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behavior of algorithms, it can be readily seen that the concept of preferences can be 

applied to adaptive radios and not just to cognitive radios. Thus even the procedural 

radios considered in Chapter 3 can still be modeled and analyzed with game theory, 

though less elegantly. Still, a game theorist may feel more comfortable describing the 

preferences of a device that is actually aware of what it is doing. 

 

As utility functions are really intended to capture a player’s preference relation in a 

compact manner, the exact numbers assigned by utility functions are generally of 

secondary importance, assuming, of course, that the utility functions preserve the 

preference relations. For example, suppose player j prefers apples to oranges. From the 

perspective of preference relationships, ( ) 1ju apple =  and ( ) 0.5ju orange =  is 

equivalent to writing ( ) 1000ju apple =  and ( ) e

ju orange π= − ; faced with the choice 

between an apple and an orange, player j still prefers the apple and would be predicted to 

choose the apple. This reassignment of numbers is clearly appropriate for humans where 

utility functions are actually useful fictions that permit more elegant analysis than a 

reliance solely on preference relations. For cognitive radios, utility functions are not 

merely a useful fiction as cognitive radios are explicitly evaluating the benefit it receives 

from the network state. While this implies that we should carefully consider any similar 

reassignment of values for cognitive radios, we find the concept of preference preserving 

revaluations of utility functions useful in Chapter 5 for identifying a critical game 

property. 

 

Game theorists are frequently plagued with doubts if the utility function accurately reflect 

a player’s preferences and if the player can accurately evaluate its preferences. For 

instance, the inability to compare apples and oranges is part of our everyday conversation 

– yet the preceding not only assumed player j compared an outcome of apples to an 

outcome of oranges, the player was also capable of assigning numerical values to apples 

and oranges. If we permit fractional apples and oranges, would it be reasonable to assume 

a human would be able to differentiate between 3.00001 and 3 apples and be able 

compare the value of these two outcomes against receiving 5.3781 oranges? Fortunately, 
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this is not a problem for the cognitive radio analyst as a radio’s utility function is just the 

goal which informs the radio’s decision process. 

 

In game theory parlance, a player acting in its own interest (or acting in a way it believes 

increases its payoff) – no matter how difficult the calculation or fine the distinction in 

payoffs – is said to be rational [Osborne_94]. When we can assume rationality, these 

shortcomings can be ignored and our efforts can focus on the analysis. Fortunately we do 

assume our players are rational – an assumption that seems reasonable in light of the fact 

that our players are programmable machines evaluating cardinal utility functions. We 

also assume that the radios are acting autonomously. With autonomous rationality, we say 

that a player or its decision rule is autonomously rational, a concept formalized in 

Definition 4.3. 

 

Definition 4.3: Autonomously rational
2
 

A decision rule, :i id A A→  is said to be autonomously rational if ( )i ib d a∈ with i ib a≠  

implies ( ) ( ), ,i i i i i iu b a u a a− −> . 

 

Conventionally, a game theorist will define utility as a function of the action space under 

the implicit assumption that there is a clear mapping between actions and outcomes. This 

allows the game theorist to remove a step in the analysis process and instead study utility 

functions of the form :iu A →�  instead of :iu O →� . For cognitive radios, we have 

made the explicit assumption that there exists a clear relationship between actions and 

outcomes so the remainder of this document expresses the radios’ utility functions as 

functions of the action space instead of the outcome space.  

 

As different players generally ascribe different valuations to the same action vector (or 

outcome), it is sometimes convenient to make use of a payoff vector that lists the utility 

that each player assigns to a particular action vector. For example, rather than writing 

( )1 1u a = , ( )2 3u a = − , and ( )3 4u a = , we could write ( ) ( )1, 3, 4u a = − . With this 

                                                 
2
 A game theorist may recognize this as strict better response rationality.  
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notation, it also sometimes makes sense to describe a single utility function that maps A 

into n
� where n is the number of players in the game. 

4.1.1.4 Modeling Rules 

Different games model different kinds of situations, where most of the differences are 

captured by varying the players, actions, and utility functions. However, different 

situations have different decision timing rules that determine when the players are 

allowed to “play” (choose or change an action). As with the cognitive radio network 

model introduced in Chapter 2, the games in this chapter adopt synchronous, 

asynchronous, round-robin, or randomly ordered turns of play (iterations of t
d ).  

 

Depending on the system we are modeling it may be appropriate to assume different 

device capabilities such as knowledge of the other radios’ goals or actions (or not), 

perfect observations (or not), and long memories of past behavior (or not). For each of 

the games presented in this chapter and subsequent chapters, the rules assumed as part of 

the model are listed.  

4.1.2 Mapping the Cognition Cycle to a Game  

Fundamentally, game theory can be applied to the analysis of the interactive adaptations 

of any set of intelligent agents, and the cognition cycle represents the processes that go on 

in any intelligent being – including humans. So it is not surprising that we can establish 

connections between the components of a game and the cognition cycle. 

 

Going from the cognition cycle to a game, every node in a network that implements the 

decision step of the cognition cycle is a player (making it a decision maker in the 

interactive decision process). Each radio’s available adaptations form the associated 

player’s action set, and the Cartesian product of the radios’ adaptations form the action 

space. The cognitive radio’s goal supplies a player’s utility function, and the outputs of 

the cognitive radio’s observation and orientation steps are the arguments and valuation 

for this utility function. Loosely, the observation step provides the player with the 

arguments to evaluate the utility function, and the orientation step determines the 
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valuation of the utility function. These connections are illustrated in Figure 4.1 and 

summarized in Table 4.2. 

 

Figure 4.1: Cognition Cycle and Game Components. Modified from Figure 4-2 in 

[Mitola_00] © 2000 Dr. Joseph Mitola III; used with permission; game components © 

2006 James Neel.  

Table 4.2: Related Modeling Elements in a Game and a Cognitive Radio Network
3
 

Game ⇔ Cognitive radio network 

Player ⇔ Cognitive radio 

Actions ⇔ Actions 

Utility function ⇔ Goal 

Outcome space ⇔ Outside world 

Utility function arguments ⇔ Observations/orientation 

Order of play ⇔ Adaptation timings 

 

The observant reader may have noted that the learning step of the cognition cycle has 

been ignored. This is neither an oversight nor indicative of a limitation of game theory.  

                                                 
3
 An economics game theorist may be uncomfortable with observations of forming the utility function 

arguments as in traditional game models a one-to-one mapping exists between actions and outcomes with 

players generally assumed to know the relationship between actions and outcomes. In this context, the 

study of players’ decision processes makes the most sense as a function of the players’ actions. However, 

cognitive radios will frequently have little to no knowledge of the relationship between actions and 

outcomes and may not know the value of an action until they try it. 
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Recall that learning of new waveforms, models, and goals is typically proposed to be 

performed during sleep or prayer modes [Mitola_00]. Thus these aspects of learning will 

not occur while the radios are interacting and can be excluded from our modeling and 

analysis. Still, it does seem reasonable that in a network setting cognitive radios will be 

learning its environment by trying out different actions, observing the outcome, and 

evaluating the outcome in its goal. In fact, such an approach is proposed in 

[Rondeau_04]. Subsequent chapters will consider the trial and error decision processes 

that result when a cognitive radio is unable to perfectly predict what the resulting utility 

will be when it adapts its waveforms. However, the remainder of this chapter assumes 

perfect knowledge so that no environmental or utility function learning occurs. 

4.2 Basic Game Models 
Depending on the interactive decision process being modeled, a game will treat the 

components of players, actions, outcomes, preferences, and rules for the order-of-play in 

different ways. Of course, these components vary from process to process – particularly 

the players, actions, outcomes, and preference – but it is possible to consider broad 

classes of game models that are particularly useful for analyzing cognitive radio 

networks. The following considers three such games – the normal form game, the 

repeated game, and what we’ll term the myopic repeated game. 

4.2.1 Normal Form Games 

The simplest and most frequently encountered game model used to describe an 

interactive decision making process is the normal form game. A normal form game 

assumes the following modeling rules: 

• Synchronous single-shot play – All players make their decisions simultaneously 

and only make a single decision. 

• Perfect information – The players know their own utility functions as functions of 

the action space and know the utility functions for all the other players in the 

game. 
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• Perfect implementation
4
 – All players exhibit perfect implementation, i.e., no 

player accidentally implements action 1

ja  instead of 2

ja .  

With these rules in place, a normal form game is completed by defining the player set, 

action space, and utility functions. As only these three components – player set, action 

space, and utility functions – vary for a normal form game, the model is completely 

specified by the 3-tuple
5
, { }, , jN A uΓ = , where N is the set of players, A is the action 

space, and { }ju is the set of utility functions (goals) such that each player j N∈ has its 

own utility function, :ju A → � . 

 

Particularly for two player games (i.e., |N| = 2), it is convenient to represent a normal 

form game in matrix form. In a matrix form representation of a two player normal form 

game, all of the possible action vectors in the action space are arrayed in a matrix such 

that player 1’s actions (the first component of the action vector) are given by the rows of 

the matrix and player 2’s actions (the second component of the action vector) are given 

by the columns of the matrix. Each cell in this matrix is thus determined by a unique 

action vector (row, column) and is filled with the payoff vector associated with the cell’s 

action vector. The following gives two examples of normal form games represented in 

matrix form. 

                                                 
4
 The trembling hand game is an example of a game where perfect implementation is not assumed. This 

topic is addressed in Section  4.6.1. 
5
 A tuple is an ordered set. For those more familiar with programming databases, think of a tuple as a 

record or a structure. 
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Example 4.1: Modeling a Game of Paper Rocks Scissors 

Consider a game of paper-rock-scissors where winning the game is associated with a 

utility of 1, losing with -1, and a tie with 0.
6
 This game could be expressed in matrix form 

as shown in Figure 4.2. For example if player 1 (the row player) played paper, p, and 

player 2 (the column player) played rock, R, the resulting action vector (p, R) produces a 

payoff vector of (1, -1) for the players.  

Γ P R S 

p (0,0) (1,-1) (-1,1) 

r (-1,1) (0,0) (1,-1) 

s (1,-1) (-1,1) (0,0) 

Figure 4.2: Matrix Form Representation of Paper-Rock-Scissors 

Example 4.2: The Cognitive Radios’ Dilemma 

Suppose two cognitive radios are operating in the same environment and are attempting 

to maximize their throughput. Each radio can implement two different waveforms – one a 

low-power narrowband waveform, the other a higher power wideband waveform. If both 

radios choose to implement their narrowband waveforms – action vector (n,N) – the 

signals will be separated in frequency and each radio will achieve a throughput of 9.6 

kbps. If one of the radios implements its wideband waveform while the other implements 

its narrowband waveform – action vectors (n,W) or (w,N) – then interference occurs with 

the narrow band signal achieving a throughput of 3.2 kbps and the wideband signal a 

throughput of 21 kbps. If both radios implement wideband waveforms, then each radio 

experiences a throughput of 7 kbps.  

 

These waveforms can be visualized in the frequency domain as shown in Figure 4.3 and 

represented in matrix form as shown in Figure 4.4. Without going into the analysis of this 

game (presented in Section 4.3), the insightful reader may already anticipate that this 

algorithm tends to lead to less than optimal performance.  

                                                 
6
 As the sum of the values for each payoff vector is zero, this game is an example of a zero-sum game. 
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Γ N W 

n (9.6,9.6) (3.2,21) 

w (21,3.2) (7,7)  

Figure 4.3: Frequency domain 

representation of waveforms in the 

Cognitive Radios’ Dilemma [Neel_06] 

Figure 4.4: The Cognitive Radios’ 

Dilemma in Matrix Form [Neel_06] 

4.2.2 Repeated Games 

As illustrated in Figure 4.5, a repeated game is sequence of “stage games” where each 

stage game is the same normal form game. Due to the repetition of the normal form 

game, it is assumed that play is synchronous, i.e., Ti = Tj ,i j N∀ ∈ . When the game has 

an infinite number of stages (e.g., Figure 4.5), the game is said to have an infinite 

horizon; if there are a limited number of stages, the game is said to have a finite horizon. 

Additionally, it may be the case that the game ends after a random and unknown number 

of stages. A randomly terminated repeated game can arise when modeling the adaptations 

of a mobile-assisted hand-off algorithm in cellular system where there is some nonzero 

probability of a radio leaving the network. 
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Based on their knowledge of the game – past actions, future expectations, and current 

observations – players choose strategies – a choice of actions at each stage. These 

strategies can be fixed, contingent on the strategies of other players, or adaptive to the 

actions observed in each stage. For notational continuity with Chapter 3 we denote player 

i's strategy by the symbol di indicating that like the decision rules of Chapter 3, the 

strategy of player i determines its action in each stage of the repeated game. However, 

unlike in Chapter 3, it is not assumed that di is simply reactive to the current state of the 

game as a strategy may also consider past states and future expectations. 

 

When players consider future expectations, the players employ utility functions that 

incorporate the payoff of the most recent stage and a time-discounted expectation of 

utility received from all future stages. As estimations of future values of ui may be 

uncertain, many repeated games modify the original objective functions by discounting 

the expected payoffs in future stages by the discounting factor δ, where δ∈(0,1] such that 

the anticipated value in stage k to player i is given by (4.1) where a
k
 denotes the action 

Stage 1

Stage 2

Stage k

Stage 1

Stage 2

Stage k

Figure 4.5 A Repeated Game is a 

Sequence of Stage Games 



  121 

vector played in stage k. Note that if δ=1, then all future payoffs are given equal weight 

with the present payoff.  

(Discounted payoff in stage k)            ( ) ( )k k k

i iu a u aδ=�  (4.1) 

 

Assuming all players’ choices of strategies result in the sequence of action vectors (a
k
), a 

player, i, that considers future expectations for an infinite horizon would value this 

sequence as shown in (4.2). 

(Expected payoff over all stages)       ( )( ) ( )
0

k k k

i i

k

u a u aδ
∞

=

=∑
�

 (4.2) 

 

With players considering their future payoffs, it becomes possible for players to employ 

strategies designed to punish players in subsequent stages after they deviated from agreed 

upon behavior in prior stages. When punishment occurs, players choose their actions to 

reduce the payoff of the offending player. This topic is revisited in Section  4.3.3 in a 

discussion of enforceable steady-states of repeated games. 

 

With these components in place, we can represent a repeated game by the tuple 

{ } { }, , ,i iN A u d
�

 where iu
�

 evaluates the action tuple sequences generated by the 

strategies di. This is very similar to the model presented in Chapter 2 with the only 

differences being the following.  

1) Synchronous timing is implicit to the repeated game model.  

2) By choosing strategies, the players (radios) are deciding their actions for all future 

stages. 

3) The players (radios) are weighing future payoffs as part of their decision process. 

 

Example 4.3: Paper-Rock-Scissors Repeated Game 

To illustrate the concept of a repeated game, consider the game of paper-rock-scissors 

illustrated in Figure 4.6 which indicates continuous repetition of the paper-rock-scissors 

game of Example 4.3. Figure 4.6 shows a single iteration of the game where player 1 has 

chosen scissors and player 2 has simultaneously chosen paper. This dictates an outcome 



  122 

where player 1 wins (and player 2 loses), so player 1 accrues a utility of +1 and player 2 

receives a utility of -1.  

 

Figure 4.6: A Repeated Game of Paper-Rock-Scissors [Neel_06]  

In general the players continue to adapt their decisions based on their observations about 

previous actions/outcomes and their expectations for future play as guided by their 

decision rules – perhaps based off an observation that the other player tends to prefer to 

play scissors. Or considering specific strategies, suppose player 1 always plays rock and 

player 2 alternates between paper and scissors. If the players are discounting future 

payoffs by a factor of 0.5 and assuming player 2 starts with paper, then player 1 would 

value this combination of strategies as 2 1

0

0.5 k

k

∞
+

=

∑ =0.5/(1-0.25)=2/3 and player 2 as  1/(1-

0.25)=4/3. 

 

Example 4.4: Mobile Assisted Power Control 

Consider a single cell which has ten mobiles updating their power levels at a rate of 1 

kHz. In the interim between power level updates, each mobile has a probability of α of 

leaving the network and a new mobile enters the network with probability β. If a mobile 

leaves the network or if a mobile enters the network, the game terminates as the players 
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in the model have changed. So after k iterations the probability that the network is the 

same as when it began is given by (1-α)
k
(1-β)

k
.  

 

We can then represent this game as a repeated game with discounted payoffs as follows. 

A single power control iteration can be modeled by the normal form game <N, A, {ui}> 

where N = {1,2,…,10}, A is the action (power) space, and :iu A →�  represents the 

value that radio i assigns to the possible action tuples. When evaluating a strategy that 

results in the action sequence (a
k
), a radio’s discounted payoff in stage k is as shown in 

(4.1) and total expected benefit from the strategies that result in {a
k
} is as shown in (4.2) 

where ( )( )1 1δ α β= − − . 

 

4.2.2.1 Myopic Repeated Games 

Instead of considering past actions, future expectations, and current observations, players 

in a repeated game may also behave myopically. Then we assume that there is no 

communication between the players, memory of past events, or speculation of future 

events. Any adaptation by a myopic player is based on its most recent observation of the 

stage game. As players make no consideration of future payoffs, complex multi-stage 

strategies are not possible. However, simpler myopic strategies, such as the best response 

dynamic and the better response dynamic, can still be employed. As these myopic 

strategies are reactive as in Chapter 3, di in a myopic repeated game can be considered 

equivalent to Chapter 3’s decision rule. These strategies and others are discussed in 

Section  4.5.  

 

Myopic repeated games can be compactly represented by the tuple <N,A,{ui},{di}> 

where {ui} is the repeated stage game utility function and where synchronous updates are 

assumed. 

4.2.2.2 Non-Synchronous Myopic Repeated Games 

As typically defined in the game theoretic literature, all decisions at each stage in a 

repeated game are made simultaneously. While simultaneous play certainly happens in 

some interactive decision problems, the implied synchronization is difficult to achieve in 
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most cognitive radio networks so random or asynchronous decision timings are 

encountered more frequently. A game theorist might model such a situation as an 

extensive form game [Fudenberg_91], but the amount of structure inherent to a definition 

of an extensive form game is excessive for situations where radios retain the same actions 

and goals throughout the process. 

 

Instead, this chapter uses what we term the non-synchronous myopic repeated game. As 

its name implies, a non-synchronous myopic repeated game is a repeated myopic game in 

which decisions do not have to be made synchronously. This has the modeling effect of 

limiting the number of players permitted to update its strategy at each stage, which we 

illustrate using the terms defined in Chapter 2 in the following. 

• If modeling a process with round-robin timing, player k would get to adapt every 

k|N| stages. 

• If modeling a process with random decision timings, at each stage one player 

would be randomly selected and permitted to change its strategy. 

• If modeling an asynchronous decision process, at each stage a random subset of 

players would be permitted to change their strategies. 

• If modeling a synchronous decision process, the game is a myopic repeated game.  

 

With this in mind, it is useful in subsequent discussions to consider non-synchronous 

myopic repeated games represented by the tuple { } { }, , , ,i iN A u d T . Note that these are 

the same modeling components considered in the model of Chapter 2. 

 

Example 4.5: FM-AM-Spread Spectrum Repeated Game 

Two cognitive radios are operating in the same environment and are attempting to 

independently achieve the highest possible voice quality. Each radio can implement three 

different waveforms - an FM, an AM, and a spread spectrum waveform.  The general 

dynamics of this game are illustrated in Figure 4.7 where one randomly selected radio 

adapts its waveform in each cycle with the her radio’s waveform held constant for the 

stage (cycle). The combination of the adaptation by one radio and the continued 
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waveform by the other radio specify an action vector.  Via the outcome function, this 

action vector determines an outcome. In this case, the radios observe their SINR which 

based on the radios’ application-determined orientation and goal (voice quality) specifies 

a utility for that SINR. Based on their observations and inferences about the future, the 

radios’ cognition cycle would then determine their next action in the repeated game.  

 

Figure 4.7: A Repeated Two Player Cognitive Radio Game [Neel_06] 

4.3 Steady States  
Game theory provides a number of generalizable tools for analyzing games. However, 

unlike the techniques described in Chapter 3, game theoretic analyses are not limited to 

specific decision rules. Rather they can be applied to analyze entire classes of decision 

rules if the radios’ goals, observations, and available adaptations are known. The best 

example of this decision rule flexibility is the steady-state concept in game theory– the 

Nash equilibrium. 

4.3.1 Nash Equilibrium 

In game theory, the most frequently discussed steady-state concept is the Nash 

Equilibrium (NE). Informally, an action vector is an NE if no player (radio) can improve 

its performance without colluding with another player. Formally, an NE can be defined as 

shown in Definition 4.4.  
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Definition 4.4: Nash Equilibrium (NE) 

An action vector , a
*
 is said to be an NE if and only if ( ) ( )* *,i i i iu a u b a−≥ , i ii N b A∀ ∈ ∈ .  

 

[Osborne_94] interprets an NE as “A steady-state where each player holds a correct 

expectation of the other players’ behavior and acts rationally.” For a normal form game 

where perfect knowledge can be assumed, this is a reasonable interpretation. Moving 

from game models to cognitive radio networks, it may be reasonable to assume that the 

cognitive radios know the form of the other cognitive radios’ utility functions if all radios 

in the network have the same goal (e.g., maximizing SINR) or if the radios can poll the 

other radios. However, the infinite number of possible channel conditions makes it 

unlikely that a cognitive radio will know the precise values of other radios’ utility 

functions. Even without any ability to infer other players utility functions, the NE concept 

has a significant implication for cognitive radio algorithms modeled as a repeated game.  

 

Theorem 4.1: NE and Cognitive Radio Network Steady States (*) 

Given cognitive radio network { } { }, , , ,i iN A u d T  where all players are autonomously 

rational, if the game { }, , iN A u  has an NE a
*
, then a

*
 is a fixed point for d.  

Proof: Suppose a
*
 is not a fixed point. Then for some i N∈ , there must be some 

( )*

i ib d a∈ with *

i ib a≠  such that ( ) ( )* * *, ,i i i i i iu b a u a a− −> . But this contradicts the 

assumption that a
*
 is an NE. Therefore, a

*
 must be a fixed point for d. 

 

So without knowing anything about the network other than the players are autonomously 

rational, we know that a NE must be a fixed point for all decision rules that satisfy 

individual rationality. This does not preclude the existence of other non-NE fixed points 

for certain autonomously rational decision rules, but the following lists some selected 

conditions for which the set of fixed points of autonomously rational decision rules are 

coincident with the game’s NEs for round-robin, random, asynchronous, and 

synchronous timings. 

• Best response, i.e., ( ) ( ) ( ){ }: , ,i i i i i i i i i i id a b A u b a u a a a A− −= ∈ ≥ ∀ ∈  

• Random better response, i.e., ( ) ( ) ( ){ }( ): , ,i i i i i i i i id a rand b A u b a u a a− −= ∈ >  
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• Exhaustive better response on a finite action space, i.e., if there exists a 

( ) ( ): , ,i i i i i i i ib A u b a u a a− −∈ > , then ( ) ( ) ( ){ }: , ,i i i i i i i i id a b A u b a u a a− −∈ ∈ > . 

Example 4.6: Prisoners’ Dilemma7
 

In a scene that could be “ripped from the script” of a Law & Order episode, the original 

formulation of the Prisoners’ Dilemma considers a scenario where a serious crime and a 

minor crime have been committed and the police have two suspects that can be placed at 

the scene of the major crime and are known to have committed the minor crime. The 

police separate the two suspects and the district attorney (DA) independently offers each 

the following deal.  

 

If both suspects deny involvement, then the DA will charge both with the minor crime 

and each will get one year in prison. If however, one suspect chooses to confess to both 

of the suspects’ involvement in the major crime while the other continues to deny 

involvement, the one that confesses will be set free and the other will receive 15 years. 

Should they both choose to confess to the major crime, each will receive 10 years in 

prison.  

 

This situation can be visualized as a game as shown in Figure 4.8 where the Nash 

Equilibrium for this game is for both prisoners to confess – (c,C) as neither suspect would 

choose to deviate from confessing as to do so would increase their individual prison 

sentence from 10 to 15 years. The game also serves to illustrate the difference between 

the outcomes and utilities where the utilities are the negation of the outcomes (sentences 

in years). 

Γ C D 

c (-1,-1) (0,-15) 

d (-15,0) (-10,-10) 

Figure 4.8: Prisoners’ Dilemma Matrix Form Representation 

 

To give the game a more general setting, the prisoners’ dilemma can be abstractly 

defined using the 2×2 symmetric game matrix shown in Figure 4.9 where y < z < w < x. 

                                                 
7
 The introduction to this example is taken from [Neel_02]. 
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At its core, the prisoners’ dilemma models a situation frequently encountered in real life 

– where it is easy to put individual interests above the good of the group. If both players 

cooperate, the social maximum is obtained, but the incentives are such that both players 

see an individual benefit from not cooperating so the social minimum is obtained.  

Γ C D 

c (w, w) (x, y) 

d (y, x) (z, z) 

Figure 4.9: Abstract Representation of the Prisoners' Dilemma Game Matrix 

As such, this general model of the Prisoners’ Dilemma is the classic problem in game 

theory as economists attempt to develop additional structures such that the model’s 

steady-state aligns with the NE. The Prisoners’ Dilemma has been applied to the Cold 

War, trade negotiations, the game show Friend or Foe, a “team building” exercise I 

participated as a co-op at Nortel, and even has an entire book dedicated to applications of 

the problem [Poundstone_92]. One of the more commonly discussed methods for 

bringing behavior closer to the social optimum is to extend the interaction between 

players in the context of a repeated game which we consider in Section  4.3.3. 

 

Example 4.7: Identifying the NE of Cognitive Radios’ Dilemma 

Consider a systematic application of Definition 4.4 to the Cognitive Radios’ Dilemma of 

Example 4.2 whose matrix form representation is reproduced in Figure 4.10. For action 

vector (n,N), either radio can improve its performance by choosing a wideband waveform 

(21>9.6). For action vector (n,W) or action vector (w,N), the radio with the narrowband 

waveform can improve its performance by changing to a wideband waveform (7 > 3.2). 

For action vector (w,W), neither radio can improve its performance by switching to a 

narrowband waveform (3.2 < 7), thus (w, W) is identified as an NE for the game. 

 

(7,7)(21,3.2)w

(3.2,21)(9.6,9.6)n

WNΓ

(7,7)(21,3.2)w

(3.2,21)(9.6,9.6)n

WNΓ

 

Figure 4.10: The Cognitive Radios’ Dilemma. This game has a unique NE at (w, W).  
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Note that (n,N) would actually yield superior performance for both radios, but reaching 

(n,N) from (w,W) requires both radios to deviate from (w,W) which neither radio has a 

unilateral incentive to do (3.2 < 7) so the adaptation would fail the individual rationality 

condition. Thus the game’s NE is a steady state for all autonomously rational decision 

rules. Also note that this game satisfies the conditions of the abstract Prisoners’ Dilemma 

of Figure 4.9. In general most of the popular game models developed in economics 

settings have analogous applications in cognitive radio networks. Throughout the 

remainder of this chapter and subsequent chapters, connections between cognitive radio 

networks and traditional game models are noted and exploited. 

4.3.1.1 NE Identification 

As was the case for the controls theory approach, identifying the steady states of a 

general normal form or repeated game can be quite difficult. As the only generally 

applicable approach to identifying a game’s NE is to perform an exhaustive search with 

repeated application of Definition 4.4 (as we performed in Example 4.7), NE 

identification for a game is an NP-complete problem [Neel_04a]. As we will see in 

Chapters 5 and 8, it is possible to reduce this search process for some special games, but 

not all games satisfy the special properties of the games in Chapters 5 and 8. Alternately, 

some analysts are forced to turn to simulations – the very step we’re intent on 

minimizing. For example, [Ginde_03] used an exhaustive simulation that ran for days to 

show that a GPRS network employing joint rate-power adaptations had four NEs, even 

though the modeled system included only 7 players. 

 

For finite games, one valuable algorithm for identifying NE  is the Iterative Elimination 

of Dominated Strategies (IEDS) where a dominated strategy is defined in Definition 4.5. 

Definition 4.5: Dominated Strategy 

An action (strategy) ai is said to be dominated by action bi if ( ) ( ), ,i i i i i iu b a u a a− −≥  for 

all i ia A− −∈  and ( ) ( ), ,i i i i i iu b b u a b− −>  for some i ib A− −∈ . 

 

In subsequent discussions the following related terms are used: 

• Undominated Strategy – an action (strategy) ai for which there exists no action 

i ib A∈  that dominates ai. 
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• Dominant Strategy - an action (strategy) ai that dominates all \i i ib A a∈ . 

 

With these terms in mind, an algorithm can be defined for identifying NE in normal form 

game { }, , iN A uΓ = . 

Algorithm 4.1: Iterative Elimination of Dominated Strategies (IEDS) 

1. Assign k=0, A
k
 = A. 

2. k:= k+1 

3. Form k k

i
i N

A A
∈

= × by removing all dominated strategies (actions) from 1k

iA
− ∀ i∈N. 

4. If A
k
 = A

k-1
, terminate the algorithm. Otherwise return to step 2.  

 

If Algorithm 4.1 terminates with A
k
 as a single action vector a

*
, then a

*
 is an NE 

([Dutta_99], Proposition 5.3]) and Γ is said to be IEDS solvable or dominance solvable. 

An example of an IEDS solvable game is given in the Cognitive Radios’ Dilemma of 

Example 4.2 where after a single iteration the algorithm terminates in the action tuple 

(w,W) which was identified as an NE for the game in Example 4.7.  

 

However, not all games are IEDS solvable as seen in the paper-rock-scissors game of 

Example 4.1. Further not all games with an NE are IEDS solvable. For instance, consider 

the channel selection game presented in Figure 4.11 which has two NE – (Chan. 1, Chan. 

2) and (Chan. 2, Chan. 1) – and no dominated strategies.
8
  

Γ Chan. 1 Chan. 2 

Chan. 1 (-1,-1) (1,1) 

Chan. 2 (1,1) (-1,-1) 

Figure 4.11: A Channel Selection Game 

Even when a game is IEDS solvable, its solution may not be the only NE in the game. 

For example consider the costless channel construction game illustrated in matrix form in 

Figure 4.12.
9
 This game has two NE – (Create, Create) and (Idle, Idle) – yet Create 

dominates Idle for both players so Algorithm 4.1 only yields the NE (Create, Create). 

 

                                                 
8
 Loosely, this game can be considered to be modeling a scenario where two radios are performing dynamic 

frequency selection and each radio is seeking to minimize the interference it experiences from the other 

radio. 
9
 This game can be viewed as modeling a scenario where a pair of radios would prefer to create a 

communications channel, but experience no penalty if they fail to create the channel. 
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Γ Create Idle 

Create (1,1) (0,0) 

Idle (0,0) (0,0) 

Figure 4.12: A Channel Construction Game 

 

Some of these limitations are removed if instead of using dominance, we use strict 

dominance as defined in Definition 4.6.  

Definition 4.6: Strictly Dominated Strategy 

An action (strategy) ai is said to be strictly dominated by action bi if 

( ) ( ), ,i i i i i iu b a u a a− −>  for all i ia A− −∈ . 

 

Leveraging earlier terminology, we consider a strategy to be strictly dominant if it strictly 

dominates all other strategies and we can define an algorithm by requiring that strictly 

dominated strategies are removed at each iteration.  

Algorithm 4.2: Iterative Elimination of Strictly Dominated Strategies (IESDS) 

1. Assign k=0, A
k
 = A,. 

2. k:= k+1 

3. Form k k

i
i N

A A
∈

= × by removing all strictly dominated strategies (actions) from 

1k

iA
− ∀i∈N. 

4. If A
k
 = A

k-1
, terminate the algorithm. Otherwise return to step 2. 

 

If the revised algorithm terminates with A
k
 as a single action vector a

*
, then a

*
 is still an 

NE, but of more significance, the NE is the unique NE for the game.  

 

An example of an IESDS solvable game is given in the Cognitive Radios’ Dilemma of 

Example 4.2 whose unique NE, (w,W), results from application of Algorithm 4.2. Note 

that if Algorithm 4.2 is applied to the Channel Construction Game of Figure 4.12, the 

algorithm would fail as no strategy strictly dominates any other strategy. Also of value, 

Algorithm 4.2 can be modified so that rather than proceeding synchronously, any order of 

elimination is employed ([Dutta_99], p. 59]). 

4.3.1.2 NE Existence 

As we saw in the preceding, not all games with NE are IEDS solvable and not all games 

have NE. Consider the game of paper-rock-scissors we presented in Example 4.1. An 
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exhaustive application of Definition 4.4 will reveal that none of the action tuples are NE 

(indeed if any were, the game would not be very fun to play). So not only may we need to 

simulate for days to find the NE of a game, there might not even be any NE to find. So 

before searching for NE it is good to know if an NE exists. 

 

Similar to showing that a dynamical system has a steady-state, fixed point theory can 

show that a game has an NE. Define a set-valued best response function for player i, 

( )ˆ
iB a , which returns the set of actions that maximize the utility for player i for a given 

action vector a. This is written more formally as shown in (4.3). 

(Best Response)       ( ) ( ) ( ){ }ˆ : , ,i i i i i i i i i i iB a b A u b a u a a a A− −= ∈ ≥ ∀ ∈  (4.3) 

Now define the synchronous best response function for all players in the game, ( )B̂ a  as 

the simultaneous application of (4.3) ∀i∈N as shown in (4.4). 

(Synchronous Best Response)           ( ) ( )ˆ ˆ
i

i N
B a B a

∈
= ×  (4.4) 

 

Now consider an action vector a
*
 such that ( )* *ˆa B a∈ . Examining Definition 4.4, we see 

that a
*
 must be an NE. So if ( )B̂ a  has a fixed point, then the game has an NE. 

Determining that ( )B̂ a  has a fixed point requires the introduction of Kakutani’s fixed 

point theorem. 

Theorem 4.2: Kakutani’s Fixed Point Theorem [Osborne_94] 

Let f :X→ X be an upper semi-continuous convex valued correspondence from a non-

empty compact convex set X ⊂ R
n
, then there is some x*∈X such that x* ∈ f(x*) 

 

While a formal proof of this theorem is too long for inclusion here, that an upper semi-

continuous convex valued correspondence on a compact convex set implies the existence 

of a fixed point can be visualized in two dimensions as shown in Figure 4.13. where the 

convexity and upper semi-continuity of the function ensure that the function must 

intersect the line x =f (x). 
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x

f(x)

x

f(x)

 

Figure 4.13 Visualization of Kakutani’s Fixed Point Theorem in Two Dimensions. 

 

Assuming we know that ( )B̂ a  is an upper semi-continuous function and we know that A 

is a non-empty, compact and convex subset of Euclidean space, we know that the game 

has an NE. While verifying that A is a non-empty, compact and convex subset of 

Euclidean space is rather trivial, verifying that ( )B̂ a  is an upper semi-continuous 

function without solving for ( )B̂ a  appears to be rather difficult. Establishing the upper 

semi-continuity of ( )B̂ a  and thus the existence of an NE requires the introduction of a 

number of concepts, beginning with quasi-concavity as formally defined in Definition 

4.7. 

Definition 4.7: Quasi-concavity 

A function :f X → �  is said to be quasi-concave if 1 2,x x X∀ ∈ , ( )0,1α ∈  the 

following relationship is satisfied: ( )( ) ( ) ( ){ }1 2 1 21 min ,f x x f x f xα α+ − ≥ . 

 

The function f would be strictly quasi-concave if ( )( )1 21f x xα α+ − > . 

( ) ( ){ }1 2min ,f x f x . An equivalent definition of a quasi-concave function is a function 

for which all of its upper level sets are convex. Given a point a
*
 and a function 

:f A → � , the upper level set for a
*
 is given by ( ) ( ){ }* *:U a a A f a a= ∈ ≥ .  
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Contrasting quasi-concavity with the concepts of concavity and pseudo-concavity 

considered in Chapter 3, Figure 4.14 provides an example of a function that is quasi-

concave, but is neither concave nor pseudo-concave. Lack of concavity can be verified by 

noting that a line between a
0
 and a

2
 contains points above f(a). Lack of pseudo-concavity 

can be verified by noting that f(a) is not differentiable at a
2
. Relating these three 

concepts, all concave functions are pseudo-concave, and all pseudo-concave functions are 

quasi-concave. It could also be noted that this illustrated function is strictly quasi-

concave (Definition 4.7, but with strict inequality) and continuous which implies that the 

arg max of f is unique.  

a2a1

U(a1)

a

f (a)

a0 a2a1

U(a1)

a

f (a)

a0

 

Figure 4.14: A function that is quasi-concave but neither concave nor pseudo-concave. 

From Figure 15.3-15 in [Neel_06a] 

With these terms defined, Theorem 1.2 in [Fudenberg_91] provides the following 

theorem for establishing the existence of an NE. 

Theorem 4.3: Glicksberg-Fan-Debreu Fixed Point Theorem [Fudenberg_91] 

Given normal form game { }, , iN A uΓ = where Ai are nonempty compact convex subsets 

of m
� i N∀ ∈ . If i N∀ ∈ iu is continuous in a and quasi-concave in ai then Γ has a pure 

strategy NE. 

 

There are a number of limitations to Theorem 4.3. If ui is neither continuous in a nor 

quasi-concave in ai, then Theorem 4.3 cannot be applied. Further if A is finite – a more 

commonly encountered condition, then Theorem 4.3 does not apply. In general, a game 

with a finite action space cannot be assumed to have an NE – see the paper-rock-scissors 
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game considered in Example 4.3. However, Chapters 5 and 8 introduce additional 

structure which assures the existence of an NE even for finite A. 

Example 4.8 Existence of a NE in a Power Control Game 

In a power control game, radios adjust their power levels in an attempt to maximize some 

utility function, typically some function that balances SINR or throughput against power 

consumption or battery life. For this example, consider the power control algorithm 

presented in [Goodman_00] which considers a single cell where the mobiles are adapting 

their transmit power levels in an attempt to maximize the utility function given in (4.5) 

( ) ( )0.5
1 i

L

i

i

R
u e

p

γ−= −p  (4.5) 

which is an expression of throughput for a FSK waveform divided by transmit power pi.   

 

In this expression, throughput is a function of the data rate, R, the packet length, L, and 

the received SINR of player i’s signal, γi, where γi is calculated as shown in (4.6) 

\

i i
i

k k

k N i

g pW

R g p
γ

σ
∈

=
+∑

 
(4.6) 

where W is the bandwidth of the transmitted signal, gk is the gain of the k
th

 mobile to the 

base station, pk is the transmit power of mobile k and σ is the noise power at the base 

station. This can then be modeled as a normal form game by the tuple { }, , iN uP  where 

P is the power (action) space formed by the Cartesian product of the sets of power levels 

available to each player i, iP ⊂ � .  

 

For the purposes of this example, assume that each Pi is compact and convex. Then 

comparing this game to the conditions in Theorem 4.3, it is seen that the action sets are 

nonempty compact convex subsets of � i N∀ ∈ , and that iu is continuous in p i N∀ ∈  

where p is the power vector formed by each radio i choosing a power level from Pi. For 

insight into the quasi-concavity of  ui in pi consider the sketch of the shape of ui shown in 

Figure 4.16 (the exact values of ui would be a function of p and the link gains, gk). For 

this shape, any upper level set is convex – an example of which is given by the upper 

level set of ui evaluated at pi,1, U(pi,1). 
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Thus the utility function is also quasi-concave and by Theorem 4.3 this game has at least 

one pure strategy NE and by Theorem 4.1 this NE must be a fixed point for all 

autonomously rational decision rules. 

pi

u
i(

p
i)

U(pi,1)

pi,1 pi

u
i(

p
i)

U(pi,1)

pi,1  

Figure 4.16: General Shape of Utility Function Given in (4.5). 

 

When a game’s utility functions are strictly quasi-concave, the best response function 

given in (4.3) becomes a single valued function (as opposed to set valued). Particularly 

when coupled with continuous and differentiable utility functions on a compact convex 

space, this implies that we can identify NE by simultaneously solving (4.7) ∀ i∈N. While 

this is very similar to the fixed point identification process of Chapter 3 (simultaneous 

solution of fixed points of the evolution functions), solving this system of equations 

identifies fixed points for all self-interested autonomous decision rules. 

( )ˆ
i iB a a=  (4.7) 

 

Example 4.9: Cournot Oligopoly and Bandwidth Selection 

The general Cournot Oligopoly consists of a set of n firms, all of which are producing an 

identical commodity, with each firm, i, free to determine the quantity of the commodity it 

produces, qi ∈[0,∞). Guiding this decision, each firm is attempting to maximize its profit 

given in (4.8)  

( ) ( ) ( )i i i iu q P q q C q= −  (4.8) 
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where P(q) is the price of the commodity determined by the quantity produced by all 

firms and Ci(qi) is firm i’s cost for producing qi units of the commodity. In general, P(q) 

decreases as the total number of commodity units are produced increases and Ci increases 

with increasing qi with the price and cost functions frequently approximated as linear 

functions. For instance [Fudenberg_91] gives (4.9) and (4.10) as functions for price and 

cost which when substituted into (4.8) yields (4.11). 

( ) max 0,1 i

i N

P q q
∈

 
= − 

 
∑  (4.9) 

( )i i ic q c q=  (4.10) 

( ) ( )1i k i i i

k N

u q q q c q
∈

 
= − − 
 
∑  (4.11) 

 

As with the Cognitive Radios’ Dilemma, it is frequently possible to quickly construct a 

scenario in a wireless network based on a well-known scenario from game theory. 

Suppose a network consists of five cognitive radios with each radio, i, free to determine 

the number of simultaneous frequency hopping channels the radio implements, ci ∈[0,∞). 

Guiding this decision, each radio is attempting to maximize the difference between a 

function of goodput and power consumption as given in (4.12)  

( ) ( ) ( )i i i iu c P c c C c= −  (4.12) 

where P(c) is the fraction of symbols that are not interfered with (making P(c)ci the 

goodput for radio i) and Ci(ci) is radio i’s cost for supporting ci simultaneous channels. In 

general, P decreases as the total number of channels implemented increases and Ci 

increases with increasing ci (more bandwidth implies more processing resources implies 

more power consumption). If we approximate these effects as linear functions, we can 

rewrite (4.12) as (4.13) 

( )i k i i

k N

u c B c c Kc
∈

 
= − − 
 

∑  (4.13) 

where B is the total bandwidth that the waveforms are hopping over, K is the cost of 

implementing each channel, and N is the set of cognitive radios. Comparing (4.11) and 

(4.13), we see that this cognitive radio game is just a simple reformulation of a Cournot 

oligopoly. Given (4.13), the best response for radio i is given by (4.14).  
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( )
\

ˆ / 2i k

k N i

B c B K c
∈

 
= − − 
 

∑  (4.14) 

 

Simultaneously solving (4.7) with the best response for each radio by (4.14) yields the 

following system of equations. 

      c1 + 0.5 c2   + 0.5 c3  + 0.5 c4
  

+  0.5 c5  =  (B-K)/2 

0.5 c1 +       c2   + 0.5 c3  + 0.5 c4
  

+  0.5 c5  =  (B-K)/2 

0.5 c1 + 0.5 c2   +       c3  + 0.5 c4
  

+  0.5 c5  =  (B-K)/2 

0.5 c1 + 0.5 c2   + 0.5 c3  +       c4
  

+  0.5 c5  =  (B-K)/2 

0.5 c1 + 0.5 c2   + 0.5 c3  + 0.5 c4
  

+        c5  =  (B-K)/2 

 

Simultaneously solving this set of equations yields the symmetric solution shown in 

(4.15). Generalizing this result to |N| radios, the unique NE is given by (4.16). 

( )ˆ / 6ic B K i N= − ∀ ∈  (4.15) 

( ) ( )ˆ / 1ic B K N i N= − + ∀ ∈  (4.16) 

 

4.3.2 Mixed Strategy Equilibria 

To overcome the limitation that finite normal games, such as paper-rock scissors, may 

not have an NE, many authors have suggested the use of the mixed extension to a normal 

form game. In the mixed extension to a normal form game players employ “mixed” 

(probabilistic) strategies in the place of discrete actions. 

Definition 4.8: Mixed Strategy 

Given (pure) action set Ai, a mixed strategy for player i, 

( ) ( ) ( )( )1 2, , , iA

i i i i i i ip a p a p aα = … , is an assignment of probabilities, ( )k

i ip a  to each 

k

i ia A∈  such that ( ) [ ]1 0,1i ip a ∈  and ( )
1

1
iA

k

i i

k

p a
=

=∑ .  

 

Those k

i ia A∈  for which pk >0 are said to be in the support of αi. Given action space A 

and player set N, the set of all possible mixed strategies for player i is denoted by the 

symbol ∆(Ai) and ( ) ( )i
i N

A A
∈

∆ = × ∆  is used to refer to the set of all possible mixed 

strategy tuples where ( )i iAα ∈ ∆ . To complete the terminology necessary for the mixed 
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extension of normal form game { }, , iN A uΓ = , given mixed strategy vector αi∈∆(Ai), 

player i has an expected utility, Ui(a) given by (4.17) where ( ) ( )i i
i N

p a p a
∈

= × . 

( ) ( ) ( )i i

a A

U p a u aα
∈

≡∑  (4.17) 

With the preceding terminology in mind, given normal form game, { }, , iN A uΓ = , its 

mixed extension is given by ( ) { }' , , iN A UΓ = ∆ , the mixed best response for player i to 

mixed strategy vector α is shown in (4.18), the synchronous best response to strategy 

vector α is shown in (4.19). 

( ) ( ) ( ) ( ) ( ){ }ˆ : , ,i i i i i i i i i i iB A U u A
α α β β α α α α− −= ∈ ∆ ≥ ∀ ∈ ∆  (4.18) 

( ) ( )ˆ ˆ
i

i N
B a B a

α α

∈
= ×  (4.19) 

 

[Osborne_94] (p. 32) states that (4.17) is a multilinear function which implies that (4.17) 

is both continuous and concave (and thus quasi-concave) which implies that (4.19) is 

upper-semicontinuous. This insight sets the stage for Nash’s fixed point theorem. 

Theorem 4.4: Nash’s Fixed Point Theorem ([Fudenberg_91] Theorem 1.1) 

Consider a normal form game { }, , iN A uΓ =  where Ai is a nonempty compact convex 

subsets of m
� i N∀ ∈ . If i N∀ ∈ iu is continuous in a and quasi-concave in ai then Γ has 

a pure strategy NE. 

 

Example 4.10: Paper-Rock-Scissors in Mixed Strategies 

Consider a mixed extension to the paper-rock-scissors game presented in Example 4.1 

with player 1’s probabilities of playing paper, rock, or scissors as 1 ,pp 1 ,rp  1

sp , 

respectively and player 2’s probabilities of playing paper, rock, or scissors as 

2 ,pp 2 ,rp 2

sp , respectively. Due to the symmetry in this problem, the best response for 

player 1 is *

1α =( 2 ,rp 2 ,sp 2

pp ) and for player 2 is *

2α =( 1 ,rp 1 ,sp 1

pp ). This situation yields 

a unique simultaneous solution for α*
 of *

1α  = (1/3, 1/3, 1/3) and *

2α = (1/3, 1/3, 1/3). 

Thus an NE exists in mixed strategies for the game of paper-rock-scissors even though no 

NE existed in pure strategies. 
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4.3.3 Enforceable Equilibria in Repeated Games 

In a myopic repeated game, it is reasonable to assume that the NE of a stage game will be 

the repeated game’s steady-state. However, if players are not myopic and are instead 

choosing their actions for each stage in an attempt to maximize the weighted sum of 

present and future payoffs as given in (4.2) and if the players incorporate the correct 

strategies, then many more equilibria are possible. 

 

Those who have studied psychology know that with a properly designed regimen of 

“carrots” (rewards) and “sticks” (punishments), almost any behavior can be coaxed out of 

any animal or person. Mice can be trained to push levers and run mazes for food; dogs 

can be trained to act as seeing-eye guides for the blind; and someday I may even learn 

how to cook.  

 

In the context of a repeated game, players may also seek to shape the behavior of other 

players. Here, the “carrots” are choices of actions in stages that increase another player’s 

utility and the “sticks” are choice of actions in stages that decrease another player’s 

utility. As frequently is the case in real life, there are limits to how much punishment and 

how much reward can be given to other players. Suppose all players in a repeated game 

conspire to minimize the payoff of player i. Having control over its own action, player i 

can ensure that it still receives some minimum payoff vi.  

 

For instance, consider a repeated game with the Cognitive Radios’ Dilemma as the stage 

game. If the row player wanted to punish the column player, the row player could play w 

which yields the smallest possible utility for the column player (3.2 < 9.6, 7 < 21). 

However the row player cannot actually force the column player to a throughput of 3.2 

kbps. So for a single stage game, no player can be punished with a throughput less that 7 

kbps. If the punishment were extended to all future stages in an infinite horizon game, 

then the expected payoff over all stages would be ( )
0

7 7 / 1k

k

δ δ
∞

=

= −∑ . 
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Γ N W 

n (9.6,9.6) (3.2,21) 

w (21,3.2) (7,7) 

Figure 4.17: Cognitive Radios’ Dilemma 

If the row player demanded the column player play any sequence of actions that resulted 

in the column player receiving more than 7/(1-δ), it would be rational for the column 

player to play that sequence of actions as long as the column player believed that the 

punishment is credible.  

Theorem 4.5: Grim Trigger Folk theorem [Fudenberg_91] 

In a repeated game with an infinite horizon and discounting, for every feasible payoff 

vector v > vi for all i∈N, there exists a δ < 1 such that for all δ∈(δ, 1) there is a steady-

state with payoffs v. 

 

To generalize the Folk theorem, given a discounted infinite horizon repeated game and 

through the proper choice of punishment strategies and discounting factor, δ, nearly any 

behavior can be designed to be the “steady-state” of the game, including sequences of 

actions that vary at each stage. Many authors (e.g., [Dutta_01]) have remarked that this is 

an unsatisfactory result because it permits too many equilibria (an infinite number, to be 

precise). However, this author argues that this condition merely reflects reality as 

evidenced by animal acts in circuses, dog shows, and cats that use toilets – all of which 

were trained using strategies of punishment and reward. 

 

Making punishments credible is quite difficult in finite horizon games and is clearly 

impossible in a “one-off” single stage game. However, for games that repeat several 

times, though not infinitely, reward and punishment strategies can still improve 

performance though this can be quite difficult. Because of this, many algorithm designers 

choose situations where the players would believe the game to have an infinite horizon – 

an assumption we made in Chapter 2 where we wrote that T contains elements that 

extend to ∞. 

Example 4.11 Punishment and Power Control 

[MacKenzie_01] considers a single cell power control algorithm where each mobile 

believes it is operating in an infinite horizon game and has an utility function of the form 

shown in (4.5) which we repeat in (4.20). As shown in Example 4.8, the stage game has 
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an NE. However, the NE power vector is suboptimal as lower transmit powers would 

yield a higher utilities for all of the mobiles.  

( ) ( )0.5
1 i

L

i

i

R
u e

p

γ−= −p  (4.20) 

When the radios only view their adaptations as a single stage, instead of an iterated 

sequence of adaptations, the network remains in the suboptimal equilibrium. However, if 

the radios incorporate future payoffs into their decision making process, then the Folk 

Theorem assures us that many other equilibria are possible and since all devices could 

perform better, it should be possible to construct a reward/punishment strategy that 

moves the network to a better equilibrium.  

 

[MacKenzie_01] adopts this approach and proposes that whenever a radio deviates from 

the optimal power vector, all other radios “punish” the offending radio by transmitting at 

maximum power for the duration of the next packet. This drives the offending radio’s 

throughput to near zero thereby offsetting throughput gains that may be made by 

violating the agreed operating point as it is assumed that the discounting factor is very 

close to 1. The improvement in utilities that results from all radios implementing and 

being aware of this punishment strategy is shown in Figure 4.18. 
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Figure 4.18 Improvement in Utilities from Enforcing a non-NE Equilibrium.   

© 2001 IEEE Reprinted, with permission, from Fig. 6 in [MacKenzie_01].  

 

While Example 4.11 employed a punishment strategy that applied maximum punishment 

in the stage subsequent to deviation, there are an infinite variety of punishment schemes 

that could be employed. Some of the most popular strategies are listed in the following 

where it is assumed that player k is the deviating player and player j is the punishing 

player.  

• Grim Trigger – Once player k deviates, j implements the action that minimizes k’s 

payoffs for all subsequent stages. Because this punishment carries the threat of the 

least possible payoff, it permits the greatest number of equilibria. However, it also 

minimizes the payoff of j if implemented so some automated mechanism is 

generally needed to make the punishment credible. 

• Tit for Tat – More formally defined for the Prisoners’ Dilemma, with a tit-for-tat 

strategy, deviations by k are met by deviations by j. After k returns to the agreed 

strategy, j returns to the agreed strategy. 

• Generous Tit for Tat – Rather than immediately triggering punishment, deviation 

is permitted to continue for a number of iterations before punishment continues. 
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After a number of iterations where k has returned to the agreed strategy, j also 

returns. 

• Tit for Tat with Forgiveness – After a defection, j chooses to play the agreed 

strategy with some small probability. Otherwise j behaves like a player 

implementing tit-for-tat. 

 

The question then arises: which strategy is the best? [Axelrod_84] reports on a study 

where participants were invited to code programs that would act as a player in a repeated 

Prisoners’ Dilemma with all players facing off pairwise in a round-robin tournament. The 

best deterministic strategy entered into the tournament was tit-for-tat with the best overall 

strategy being a form of tit-for-tat with forgiveness when imperfect signaling was 

introduced (addressed in Section  4.6.3). This led Axelrod to suppose that successful 

punishment and reward should be “nice” (initially cooperate), “retaliating” (punish 

defections), “forgiving” (occasionally autonomously revert back to cooperating), and 

“non-envious” (not trying to outscore its opponent).  

 

Some twenty years later, this tournament was run again, but this time a different strategy 

won, or more accurately a different team of strategies won [Grossman_04]. In this 

tournament, researchers could submit multiple programs and one school submitted 

programs coded so that each program would play a uniquely identifiable sequence of 

actions to start the game. If two programs from the same team played each other, then 

one program would switch to always confess while the other switched to always deny – 

thereby maximizing the payoff of one program and minimizing the payoff of the other. 

When one of these programs recognized that its opponent was not on its team, it would 

immediately switch to always confess which minimizes its opponent’s payoff.
10

 In the 

end the collaborating programs ended up with the top three scores and most of the bottom 

scores. So as a somewhat intuitive result, being nice is a good strategy, but gaming the 

system is even better. 

 

                                                 
10

 A similar strategy can be employed in winner-take-all poker wherein a team of players collaborate to 

give their stacks to one particular player. With the “big stack” this player normally has enough of an 

advantage to win the entire pot. As would be expected, this strategy is frowned upon in reputable circles. 
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Frequently, players may want to enforce different equilibria. For example, consider the 

game illustrated in matrix form in Figure 4.19. Given the choice, the row player would 

prefer to enforce (b,B) as an equilibrium and the column player would prefer to enforce  

(a,B) by threatening to play A if the row player switches to a. If these players attempt to 

punish to enforce either action tuple as an equilibrium without agreeing first coming to 

some agreement, then play could be very messy with round after round of punishment 

before one player gives in. This game also highlights the fact that the enforced 

equilibrium need not be an NE for the game as (b, B) is the unique NE, but the column 

player could force play to (a,B).  

Γ A B 

a (0,0) (5,10) 

b (0,0) (10,5) 

Figure 4.19: A Game Where Players Would Desire to Enforce Different Equilibria 

 

Thus while not generally discussed in the context of repeated games, when players wish 

to enforce different equilibria, the game changes from a traditional game to a bargaining 

game – a topic beyond the scope of this text.
11

 Due to the numerous different objectives 

and device capabilities likely to be encountered, it seems probable that cognitive radios 

will frequently be operating in networks where they would wish to enforce different 

equilibria. Thus if cognitive radios are to employ punishment algorithms, the cognitive 

radios should include some mechanism for negotiation so they can settle upon a common 

strategy to enforce. 

4.4 Desirability12 
The most typically encountered criteria in the game theory literature that demonstrates 

that a NE is desirable is Pareto optimality also known as Pareto efficiency, e.g., 

[Sung_03], [Krishnaswamy_02], and [Hayajneh_04], defined formally in Definition 4.9. 

 

                                                 
11

 However, the textbook version of this dissertation will consider bargaining games as negotiation is a key 

cognitive radio functionality. 
12

 This section is largely a continuation of a debate the author started at his preliminary examination when 

he declared Pareto optimality to be an “almost worthless” concept for cognitive radio analysis. The casual 

reader may wish to skip the material presented in this section after Figure 4.20 as material subsequent to 

Figure 4.20 is an extended and jargon laden justification of the author’s opinion of the utility of Pareto 

optimality in cognitive radio analysis. 
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Definition 4.9: Pareto optimality 

An action vector, a
*
, is said to be Pareto optimal if there exists no other action vector, 

a A∈ such that ( ) ( )*

i iu a u a≥ i N∀ ∈  and ( ) ( )*

j ju a u a> for at least one player j N∈ .  

Consider the Cognitive Radios’ Dilemma whose game matrix is reproduced in Figure 

4.20. This game has three Pareto optimal outcomes – (n,N), (w,N), and (n,W) – and only 

the NE is not Pareto optimal. This highlights a key implication for NE and optimality – 

an NE is not necessarily optimal nor are optimal points necessarily NE. 

Γ N W 

n (9.6,9.6) (3.2,21) 

w (21,3.2) (7,7) 

Figure 4.20: The Cognitive Radios’ Dilemma has Three Pareto Optimal Action Vectors. 

 

This author holds the controversial opinion that Pareto optimality is not particularly 

useful as a tool to aid cognitive radio algorithm design, especially in light of the 

assumption that the network designer will always have some specific design function, 

:J A → �  (as proposed in Chapter 3), in mind. In general, when designing a cognitive 

radio network, it is possible to ensure that the associated NE are Pareto optimal or 

maximizers of J. However, when ascertaining if a particular design is desirable, the 

following are weaknesses in the Pareto optimality concept when compared to evaluating 

J. 

 

(1) Imprecision – The large number of Pareto optimal states limits its predictive power. 

For instance, in the cognitive radios’ dilemma (n, N) would generally be considered the 

optimal point for the cognitive radios’ dilemma, but (n, N) is just one of three Pareto 

optimal points. In zero-sum games, such as paper-rock-scissors, every action tuple is 

Pareto optimal. In general, the Pareto front is quite large [Rondeau_04], but most of these 

will reasonably not be maximizers of J.  

 

(2) Cost – Frequently, though not always, the optimal point for J will also be a Pareto 

optimal point. However, even in the case where Pareto optimality can narrow the search 

space for J, this is an inefficient approach as determining Pareto optimality can require on 

the order of |A|
2
|N| calculations. In contrast, solving for the action tuple that maximizes 
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the sum of utilities requires on the order of |A||N| calculations.
13

 Particularly in light of the 

fact that typically |A|>>|N|, evaluating Pareto optimality will frequently be more costly 

than solving for the maximizers of J. 

 

(3) Incompleteness – There exist occasions where Pareto dominated solutions are 

desirable. For instance suppose a cognitive radio designer has available cognitive 

algorithms that yield the cognitive radios’ dilemma. Because of the existence of a legacy 

system which the radios cannot detect, the FCC has mandated a policy that when two or 

more cognitive radios are present, the system must operate as an underlay system which 

[Menon_06] has indicated yields superior legacy protection when compared to a 

cognitive overlay system. Such a concern for undetectable legacy systems is reflected in 

802.22 (TV receivers) and 802.11h (satellites) – the two most prominent cognitive radio 

standards. This could be resolved by including the legacy systems into the game, but 

perverts the definition of a game as the game now includes players that cannot make 

choices.  

  

(4) Counter Indicators – There exist points which are Pareto optimal and are undesirable. 

Example 4.12 gives an example of such an undesirable Pareto optimal point for a power 

control algorithm. More generally, there may be considerations external to the cognitive 

radios (e.g., legacy radios, implementation complexity, or security concerns) which make 

operating points that maximize the sum of cognitive radio utilities (a utilitarian Pareto 

optimal point) quite undesirable. 

Example 4.12: SINR maximizing power control 
In [Neel_04a] we briefly considered a single cluster DSSS (Direct Sequence Spread 

Spectrum) network with a centralized receiver where all of the radios are running power 

control algorithms in an attempt to maximize their signals’ SINR at the receiver. 

                                                 
13

 Each comparison of action tuples for Pareto optimality requires |N| comparisons. To determine if an 

action tuple is Pareto optimal then requires |A| assessments of comparative Pareto optimality. To find all 

Pareto optimal points, this process must be repeated |A|-1 times. In theory this could be reduced, but would 

still have the total computations on the order of |A|
2
|N|. To calculate the action tuple that maximizes the sum 

of utilities requires |N| additions for the sum utility of an action tuple. Then |A| comparisons and at most |A| 

store operations (a total of 2|A|) must be used to find the maximum(s) giving a total number of operations 

on the order of |A||N|.  
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A normal form game, { }, , iN A uΓ = , for this network can formed with the cognitive 

radios as the players, the available power levels as the action sets and the utility functions 

given by (4.21) where K is the statistical cross-correlation of the signals. 

( ) ( )
\

/ 1/i i i k k

k N i

u h p K h p σ
∈

 
= + 

 
∑p  (4.21) 

 

As might be expected, the unique NE for this game is the power vector where all radios 

transmit at maximum power. This outcome can be verified to be Pareto optimal as any 

more equitable power allocation will reduce the utility of the radio closest to the receiver, 

and any less equitable allocation will reduce the utility of the disadvantaged nodes.  

 

However, this is not a network we would want to implement because of the following:  

 (1) This state greatly reduces capacity from its potential maximum due to near-far  

  problems (unless our network is in the unlikely configuration of having all radios  

  the same radius from the receiver). 

 (2) The resulting SINRs are unfairly distributed (the closest node will have a far  

  superior SINR to the furthest node).  

 (3) Battery life is greatly shortened.  

 

Other than the abundance of Pareto optimal points (part of the imprecision issue) and its 

relative cost, the weaknesses of applying the Pareto optimality concept to cognitive radio 

networks when the designer wishes to maximize J derives from the fact that J and the 

Pareto optimality are two independent functions so it is an odd assumption that solving 

for the maximizers of one function will provide insights into the maximizers of another 

function. This same phenomenon is the source of common criticism that Pareto optimal 

points permit decidedly unfair solutions (as was the case in Example 4.12) and the source 

of Amartya Sen’s criticism of Pareto optimality that Pareto optimality is incompatible 
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with Liberalism
14

 [Sen_70]. Whether fairness, Liberalism, or system capacity, there are 

many goals a designer may have other than Pareto optimality.  

 

With these weaknesses in mind, one might ask why is Pareto efficiency so popular? In 

short, it is an excellent tool when analyzing human evaluated outcomes. Most people do 

not make choices based on the cardinal relationships of utility functions; instead they 

make decisions based on ordinally related preferences. This ordinality makes it 

impossible to perform interpersonal utility comparisons over varying outcomes which is 

necessary for evaluating utilitarianism and some measures of fairness and all social 

welfare functions that attempt to assign cardinal relationships to an ordinal phenomenon. 

Further difficulties in applying social welfare functions to the study of the interactions of 

people include their implicit paternalism (e.g., “You may think you prefer X, but in the 

long run you’ll thank me for making you take Y.”) which many people reject and the 

difficulty in coming to a consensus as to which function to apply – whether fairness or 

utilitarianism is the best welfare function remains a serious topic of debate in socio-

economic to this day. 

 

Now reconsider the definition of Pareto optimality. Earlier, Pareto optimality was defined 

in terms of cardinal utility functions in Definition 4.9, but in reality Pareto optimality is 

intended as a measure of the ordinal preferences of the players in a game. Specifically, an 

outcome, o
1
, is Pareto optimal if there is no other outcome, o

2
, such that o

2
 is strictly 

preferred to o
1
 by some player with all other players preferring (strict preference or 

indifferent) to o
2
. With an inability to justify the application of any cardinal relationship 

or a cardinal social welfare function, Pareto optimality appears to be the most agreeable 

criteria for saying an outcome is desirable – it is impossible to find any other outcome 

which the players would prefer with at least one player expressing strict preference. 

 

                                                 
14

 Sen defined Liberalism as permitting each player in a game (or society) to have control over at least one 

aspect of an outcome, particularly when the outcome only directly relates to that player. As an example of 

Liberalism Sen cited permitting a person to paint their walls pink instead of white with all other aspects of 

the outcome (society) being the same for the person and society. 
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So Pareto optimality eschews the problem of a lack of cardinal preferences by identifying 

outcomes which are optimal in an ordinal sense and the problem of interpersonal utility 

comparisons by treating all players’ preferences as equally valid. This leads to the last 

criticism of Pareto optimality when applied to cognitive radios. 

 

(5) Cardinality of cognitive radios’ preferences – In all considered cognitive radio 

designs to date, the radios’ preferences are cardinal, not ordinal. Specifically, to date all 

radios termed as cognitive radios have evaluated outcomes according to some explicit 

objective function. So for cognitive radios, it is possible to make interpersonal utility 

comparisons, it is possible to measure how utilitarian an outcome is, it is possible to 

quantify how much “happier” or “unhappier” a radio will be if the outcome is changed. 

So the advantages of Pareto optimality over other optimization approaches when 

evaluating human outcomes do not carry over to the analysis of cognitive radio networks 

and only Pareto optimality’s disadvantages remain. 

 

So in summary, Pareto optimality is an excellent tool for analyzing the optimality of 

human interactions as humans employ ordinal relationships. However, due to the 

comparative drawbacks of Pareto optimality, the fact that cognitive radios have cardinally 

ordered preferences, and the assumption that all cognitive radio designer will have some 

pre-existing design objective in mind, when designing a cognitive radio algorithm, it is 

preferable to adopt the approach of Chapter 3 wherein steady states are evaluated via 

some network cost function, such as Erlang capacity, that is appropriate to the cognitive 

radio engineer’s (and hopefully the user’s) design objectives. However, for those rare 

occasion where a cognitive radio analyst does not have a clear objective in mind, Pareto 

optimality may be appropriate, though the author would still argue that a utilitarian 

measure should be employed as while a utilitarian optimal point is necessarily a Pareto 

optimal point, it reduces the problem of imprecision. 

 

Following this recommendation, consider again the Cognitive Radios’ dilemma. If we 

seek to achieve a fair outcome, then either (n, N) or (w, w) would be optimal. If we seek 

to achieve the fair outcome with the highest possible net throughput, then (n, N) would be 
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optimal. If we sought to maximize total throughput, then (n, W) and (w, N) would be 

optimal. In light of this last result, if the cognitive radios’ are permitted to employ multi-

stage punishment and reward strategies, then many different mixtures of (n, W) and      

(w, N) could be enforced as an equilibrium for the game and would be optimal in terms of 

net throughput and, if equally mixed, fairness.  

4.5 Convergence 
It makes little sense to speak of convergence of a normal form game as it is defined as 

having only a single iteration. It also makes little sense to speak of the convergence of a 

repeated game to an enforceable equilibrium as play is assumed to start and remain at the 

enforced equilibrium. Accordingly, convergence is more frequently discussed in the 

context of myopic repeated games and the decision rules that guide the radios’ reactions 

to their observations of the network state.  

 

The remainder of this section is organized as follows. Section  4.5.1 defines the classes of 

decision dynamics to be studied for convergence. Section  4.5.2 defines important normal 

form game properties which will enable us to analyze myopic decision rules for 

convergence. Using the concepts defined in the previous two sections, Section  4.5.3 

establishes convergence conditions for myopic repeated games. Section  4.5.4 summarizes 

these results and uses these results to draw insights into the design of cognitive radio.  

4.5.1 Classes of Decision Dynamics 

While studying the set of all myopic cognitive radio interaction problems implies an 

infinite number of decision timing patterns and an infinite number of unique decision 

rules, it is believed that all currently known autonomously rational myopic cognitive 

radio dynamics can be categorized into the classes of decision timing and decision rules 

presented in this section. 

 

This section considers the convergence of 16 classes of cognitive radio dynamics defined 

by associating one of four classes of decision rule with one of four different classes of 

decision timings. These combinations are illustrated by the cells in Table 4.3 where the 

decision rules and decision timing classes are described in Section  4.5.1.1 and Section 
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 4.5.1.2, respectively. Subsequent sections will populate the cells in this table with the 

conditions for which the associated decision rule and timing are guaranteed to converge. 

Table 4.3 Considered Classes of Dynamics  

 Timings 

Decision Rules 
Round-

Robin Random Synchronous Asynchronous 

Deterministic Best Response     

Exhaustive Better Response     

Random Better Response
(a)

     

Random Better Response
(b)

     
(a) and (b) represent denote two different classes of algorithms that are defined in the following sections. 

4.5.1.1 Decision Timing Classes 

Chapter 2 defined the following classes of decision timings: synchronous decision 

processes, round-robin decision processes, random decision processes, and asynchronous 

decision processes. There may exist, however, decision timings not captured by these 

four classes. For example, some players might never get a chance to adapt, or to only 

adapt only a finite number of times – two scenarios which are dramatically different from 

normal expectations and excluded from this analysis. So the following analyzes a very 

broad class of decision timings, but not an exhaustive set of all possible decision timings. 

4.5.1.2 Decision Rule Classes 

Continuing the notation from Chapter 3, a decision rule is a mapping :i id A A→  that 

defines the action that a cognitive radio based on an observation of the network state. In 

general, this work constrains itself to autonomously rational decision rules as defined in 

Definition 4.3. 

 

While an infinite number of unique decision rules are possible and cognitive radios 

generally implement very specific decision rules, all autonomously rational myopic 

decision rules implemented by cognitive radios can be placed into the following classes. 
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Definition 4.10: Best Response Dynamic 

A decision rule :i id A A→  is a best response dynamic if each adaptation would 

maximize the radio’s utility if all other radios continued to implement the same 

waveforms, i.e., ( ) ( ) ( ){ }: , ,i i i i i i i i i i id a b A u b a u a a a A− −∈ ∈ ≥ ∀ ∈  

 

For instance, radios implementing a power control algorithm according to the standard 

interference function of Chapter 3 with a utility given by the negation of the distance 

between observed SINR and target SINR would be implementing a best response 

dynamic.  

Definition 4.11: Better Response Dynamic 

A decision rule :i id A A→  is a better response dynamic if each adaptation would 

improve the radio’s utility if all other radios continued to implement the same 

waveforms, i.e., ( ) ( )i id a B a∈  if ( )iB a ≠ ∅  and ( )i id a a=  otherwise where 

( ) ( ) ( ){ }: , ,i i i i i i i i iB a b A u b a u a a− −= ∈ > . 

 

If a radio always adapts when a better response exists, we say that the better response is 

exhaustive. If the radio is following a deterministic rule to choose which adaptation it 

makes out of all possible better responses, we say that the better response decision rule is 

a deterministic. For example a cognitive radio implementing a gradient search algorithm 

is a implementing a deterministic better response and a best response dynamic where the 

best response is always a single-valued function is a deterministic better response. Note 

that a deterministic better response dynamic need not be an exhaustive better response 

dynamic. For instance, a cognitive radio implementing a gradient search may become 

trapped at a local maximum when other actions would yield better performance. 

 

One class of algorithms not subject to this limitation are random better response 

dynamics.  

Definition 4.12: Random Better Response Dynamic (*) 

A decision rule :i id A A→  is a random better response dynamic if for each ti∈Ti, radio i 

chooses an action from Ai where each action has a nonzero probability of being chosen 

and implements the action if it would improve its utility. 
 

Random better response dynamics where all actions in Ai have the same nonzero 

probability of being chosen are termed uniform; if this condition does not hold, the 
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dynamics are termed nonuniform. Whether considering a uniform or nonuniform random 

better response dynamic, it is assumed that all actions have a nonzero probability of being 

chosen. Note that it is also possible to have a random or deterministic best response 

dynamic when multiple best responses are available.  

 

[Friedman_01] considers a class of algorithms very similar to a uniform random better 

response dynamic, but instead eliminates the player’s current action from Ai when 

randomly selecting an action.  

Definition 4.13: Friedman’s Random Better Response [Friedman_01] 

Player i chooses an action from Ai\bi where bi is player i's current action according to a 

uniform random distribution. If the chosen action would improve the utility of player i, it 

is implemented, otherwise, the player continues to play bi. 

 

[Friedman_01] specifically attaches this decision rule to a random decision timing 

pattern. For some situations, these distinctions are inconsequential. However, the broader 

treatment of decision timings and the inclusion of the current action as part of the random 

decision process permits us to more accurately model the behavior of cognitive radios 

implementing genetic algorithms as is done in [Rondeau_04]. In subsequent discussions 

of the convergence properties of random better response dynamics, we highlight 

situations where this distinction impacts convergence.  

4.5.2 Stage Game Properties 

The convergence properties of myopic decision dynamics are largely defined by the 

properties of their stage games, which is a normal form game. So to analyze the 

convergence of myopic decision dynamics, we turn to the following normal form game 

properties: IESDS solvable games, the finite improvement property (FIP), and the weak 

finite improvement property (weak FIP). Throughout this discussion, we assume a finite 

normal formal game defined by the tuple { }, , iN A uΓ = .  

 

While IESDS solvable games were defined in section  4.3.1.1, the remaining terms are 

defined in the following sections. While this section is only considering finite games, this 

should not be taken to mean that only finite games are IESDS solvable or only finite 
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games have weak FIP. For instance, the SINR maximizing cognitive radio network in 

Example 4.12 is IESDS solvable (trivially so) as transmitting at maximum power is a 

strictly dominant strategy.  

4.5.2.1 Improvement Path Terminology 

Before defining FIP and weak FIP, a number of terms need to be introduced.  

 

Definition 4.14: Path [Monderer_96] 

A path in Γ is a sequence γ = (a
0
, a

1
,…) such that for every k ≥ 1 there exists a unique 

player such that the strategy combinations (a
k-1

, a
k
) differs in exactly one coordinate. 

 

Equivalently, a path is a sequence of unilateral deviations. When discussing paths, we 

make use of the following conventions. 

• Each element of γ is called a step. 

• a
0
 is referred to as the initial or starting point of γ. 

• Assuming γ is finite with m steps, a
m
 is called the terminal point or ending point 

of γ and say that γ has length m. 

Formally, we a path, γ = {a
0
, a

1
,…,a

k
,…}, is finite if there exists an m ∈�  such that 

there is a bijection between γ and a set of the form {0,1,2,…, m}. Note that this m is the 

same as the length of γ. γ is infinite if there exists no such m.   

 

Definition 4.15: Improvement Path [Monderer_96] 

An improvement path is a path such that for all 1k ≥ , ( ) ( )1k k

i iu a u a −> where i is the 

unique deviator at step k. 

  

The improvement path is a critical concept to understanding the behavior of cognitive 

radios as all sequences of adaptations formed by autonomously rational myopic decision 

processes with random or round-robin timing must trace out an improvement path. So by 

studying a game’s improvement paths, we can identify the possible ways that 

autonomously rational myopic adaptations will move through the state space. For 

convergence analysis, one of the most important improvement path properties for a game 

is the Finite Improvement Property (FIP). 
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Definition 4.16: Finite Improvement Property (FIP) 

A game, { }, , iN A uΓ = , is said to have to have the finite improvement property if all  

improvement paths in Γ are finite. 

 

For finite games (finite player set, finite action space), an equivalent formulation of FIP is 

a game that lacks improvement cycles, a term that defined in the following.  

 

Definition 4.17: Cycle  

A (closed) cycle is a finite path γ = (a
0
, a

1
,…,a

m
) where a

m 
= a

0
. 

 

A cycle is said to be an improvement cycle if it is also an improvement path. The length 

of a cycle γ is the number of unique elements in γ. A cycle is said to be simple and closed 

if the only repeated elements are the initial point and the terminal point. 

 

Theorem 4.6: Improvement Cycles and FIP 

A finite normal form game, { }, , iN A uΓ =  has FIP if and only if Γ lacks improvement 

cycles. 

Proof:  

(⇒) Suppose that a finite game lacks improvement cycles. Then beginning from every 

initial point, any improvement path cannot contain more elements than A  (for finite A). 

To create an improvement path longer than A , some element of A must be repeated in 

the improvement path. However, this repetition constitutes an improvement cycle. 

(⇐) Given an improvement cycle γ, an infinite improvement path can be found as 

( ), ,γ γ γ∞ = … . Thus Γ does not have FIP. 

 

Another way to demonstrate that a game has FIP is to simply list all of its improvement 

paths and verify that they are finite. We follow this approach in the following example.  

 

Example 4.13: Improvement Paths in the Prisoners’ Dilemma 

Consider the 2x2 game shown in matrix representation in Figure 4.21. A complete 

listing of the improvement paths for this game is given in Table 4.4. Note that for 

notational convenience, compound improvement paths are listed. For example 

improvement path γ5 is listed as (γ1, (b, B)) to denote the sequence (a, A), (a, B), (b, 

B) where γ1 = (a, A), (a, B). From our exhaustive listing, we can readily establish that 
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this game has FIP and the longest path has a length of 3. Alternately, we can note that 

all possible simple and closed cycles are not improvement paths. 

γ2

γ1

γ3

γ4γ5

γ6γ2

γ1

γ3

γ4γ5

γ6

 

Figure 4.21 Prisoners’ Dilemma Game Matrix for Improvement Path Analysis 

Table 4.4 Improvement Paths for Game Presented in Figure 4.21 

γ1 = ((a, A), (a, B)) γ3 = ((b, A), (b, B)) γ5 = (γ1, (b, B)) 

γ2 = ((a, A), (b, A)) γ4 = ((a, B), (b, B)) γ6 = (γ1, (b, B)) 

 

 

The other improvement path property that needs to be introduced is the weak finite 

improvement path property given in Definition 4.18. One important way that a game with 

weak FIP may differ from a game with FIP is that a game with weak FIP may have 

improvement cycles as we show in Example 4.14. An example of a normal form game 

that has neither FIP nor weak FIP is shown in the Paper-Rock-Scissors game of Example 

4.1. 

Definition 4.18: Weak Finite Improvement Property (weak FIP) 

A game, { }, , iN A uΓ = , is said to have to have the weak finite improvement property if 

for all a A∈  there exists a finite improvement path that terminates in an NE.  

 

Example 4.14 A Game with Weak FIP 

An example of a game with weak FIP but not FIP is shown in Figure 4.22. Here an 

improvement cycle exists - (a,A), (a,B), (b,B), (b,A),(a,A) - and a NE also exists - (c,C) – 

but starting from any action vector, it is possible to find a finite improvement path that 

terminates in the NE (c, C). Also note that that this game is IESDS solvable as the bottom 

row strictly dominates all other actions for the row player and the rightmost column 

strictly dominates all other actions for the column player. 
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(2,2)(2,1)(2,0)c

(1,2)(1,-1)(-1,1)b

(0,2)(-1,1)(1,-1)a

CBAΓ

(2,2)(2,1)(2,0)c

(1,2)(1,-1)(-1,1)b

(0,2)(-1,1)(1,-1)a

CBAΓ

 
Figure 4.22: A game with weak FIP. (Taken from Figure 2 in [Neel_04a]) The game has 

an improvement cycle (shown in the arrow) and a NE (circled). 

4.5.2.2 General FIP and Weak FIP Properties 

In addition to the convergence properties discussed in Section 4.5.3, FIP and weak FIP 

have several valuable properties. By definition, all games with weak FIP have an NE, but 

all games with FIP also have an NE.  

 

Theorem 4.7: FIP and NE existence 

All games with FIP have at least one Nash equilibrium.  

Proof: Given a game with FIP, there must be at least one action tuple, a
*
, from which 

there exists no profitable unilateral deviation (otherwise the game would not have FIP). 

This action tuple a
*
 must be a Nash equilibrium as there exists no other a A∈ such that 

( ) ( )* *,i i i iu a a u a− > . 

 

As might be implied by the terms, all games with FIP also have weak FIP.  

 

Theorem 4.8: FIP and weak FIP 

If { }, , iN A uΓ =  has FIP and is finite, then Γ has weak FIP. 

Proof: Suppose Γ has FIP but not weak FIP. Then there exists some a A∈  for which 

there is no improvement path that terminates in an NE. For finite A, this means that a 

must be a step in an improvement cycle. Yet by Theorem 4.6 a game with FIP cannot 

have an improvement cycle. Thus for all a A∈  there must be an improvement path that 

terminates in an NE so Γ has weak FIP. 

 

[Friedman_01] provides the following list of games in addition to FIP games that have 

weak FIP: 

• IESDS solvable games, 

• Quasi-acyclic games, 

• Finite supermodular games, and 

• Continuous, two-player, quasi-concave games. 
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As noted for IESDS solvable games, a round robin best response dynamic is everywhere 

convergent to the game’s unique NE, thus supplying the requisite improvement path for 

weak FIP. As defined in [Friedman_01], a quasi-acyclic game is a normal form game 

such that from any a∈A there exists a finite sequence of strict best responses that 

terminate in an NE (thus supplying the requisite improvement path in the definition).  

 

Supermodular games merit a longer discussion and are addressed in Chapter 8. 

 

In a lengthy proof, [Friedman_01] shows that weak FIP holds for normal form games 

with the following properties which [Friedman_01] terms generic, two-player, quasi-

concave games.
15

 

• N = {1,2} 

• i N∀ ∈ , iA ⊂ �  and is compact and convex. 

• i N∀ ∈ , ui is strictly quasi-concave for all ai ∈ Ai and is twice continuously 

differentiable. 

Differentiating these games from quasi-acyclic games, [Friedman_01] provides the 

following example.  

Example 4.15 Friedman’s Generic Two-Player Quasi-Concave Game 

Consider a normal form game defined by the following components: N = {1,2}, Ai = 

[0,2], ( ) ( ) 2

1 2 1 14 4 2u a a a a= + − − , and ( ) 2

2 1 2 24 2u a a a a= + − . This can be readily 

verified as one of Friedman’s generic, two-player, quasi-concave games. However, it is 

not a quasi-acyclic game by considering the best response functions given by the 

following: ( )1 22B a a= −  and ( )2 1B a a= .  

 

Simultaneous solution of these equations yields (1,1) as an NE. However, starting from 

(0,0) and applying a round-robin best response dynamic yields the following 

improvement cycle: (0, 0), (2, 0), (2, 2), (0, 2), (0, 0). Thus this game is not quasi-acyclic. 

                                                 
15

 Many readers may find this term misleading as the game’s requisite conditions are quite specific, i.e., not 

generic, and strict quasi-concavity of utility functions as opposed to quasi-concavity is required.  
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However, we can verify that this starting point is not a counter-example to the game 

having weak FIP as the following improvement path terminates in an NE in a finite 

number of steps: (0, 0), (1, 0), (1, 1). 

 

Interestingly, it should be noted that it is not necessary for a game to be finite for it to 

have FIP. Consider the two player game where A1 = A2 = [0,1] and the utility functions 

for this game be given by (4.22). As there is no improvement path in this game longer 

than two steps, the game has FIP.
16

 

( )
1 0

0

i

i

a
u a

otherwise

=
= 


 (4.22) 

 

Elided in this discussion is how to identify games that have FIP beyond an exhaustive 

listing of improvement paths and cycles. In Chapter 5, we consider potential games and 

generalized ordinal potential games which are coincident with the class of games with 

FIP. 

4.5.3 Convergence Properties 

To study convergence properties, the myopic repeated game defined by the tuple 

{ } { }, , , ,i iN A u d TΓ =  can be broken into its constituent normal form game, 

{ }, , iN A uΓ = , the decision rules {di}, and the decision timings T. To facilitate the 

establishment of convergence and convergence rates, we rely heavily on the absorbing 

Markov chain theory introduced in Chapter 3. 

4.5.3.1 Convergence of IESDS Solvable Games 

An IESDS solvable game is characterized by a single action tuple remaining after the 

synchronous or round-robin elimination of strictly dominated strategies. This has 

important consequences for the convergence of best response algorithms.  

 

                                                 
16

 It is believed that this is the first example of an infinite game with FIP. 
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Best Response Decision Rules 

Intuitively, best response decision rules converge for IESDS solvable games. Putting this 

intuition on a firmer foundation, consider a round of play in any order (and possibly with 

some players adapting multiple times) such that all n players have had at least one chance 

to play their best responses. As all players have played best responses, no player would 

have played a strictly dominated action. Because the game is IESDS solvable, at least one 

player in this round must now have at least one action that it will never return to 

otherwise the round started at the unique NE or Algorithm 4.2 has failed and the game is 

not IESDS solvable. After the next round of best responses played on this effectively 

smaller action space (the player that “eliminated” a strictly dominated action will not play 

that action, reducing the effective action space), some player must eliminate another 

action from the effective action space. This process continues until no more actions are 

effectively eliminated, which for IESDS solvable games implies the game has converged 

to the unique NE. 

 

So assuming best responses, the best response dynamic converges for round-robin, 

random, synchronous, or asynchronous decision processes.  

Example 4.16 Convergence of SINR Maximizing Power Control 

Consider the SINR maximizing power control game of Example 4.12 which is IESDS 

solvable. For simplicity, assume there are three radios, each of which have two power 

levels available – low, and high which we label as L, and H, respectively. For best 

response decision rules and random or asynchronous decision timings, this corresponds to 

an eight state absorbing Markov chain. To determine the expected convergence time, we 

write the transition matrix for this network under random and asynchronous timings as 

shown in Table 4.5 and Table 4.6, respectively, assuming equal probabilities for drawing 

elements from N and 2 \N ∅ , respectively.
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Table 4.5 Transition Matrix for Random Timing 

R

Q

R

Q

 

Table 4.6 Transition Matrix for Asynchronous Timing 

R

Q

R

Q

 

As these matrices are already in canonical form, we can solve for the expected number of 

iterations for convergence to the absorbing state by evaluating ( )
1−

−I Q 1  where Q is the 

submatrix labeled in the tables, I is the identity matrix and 1 is a seven element column of 

ones. Evaluating this expression we find the expected convergence times given in Table 

4.7 and  

Table 4.8 for random and asynchronous timings, respectively, where starting in (H,H,H) 

requires 0 iterations for convergence. Note that when a network can be modeled as an 

IESDS solvable games with best response decision rules, the network will converge 

faster with asynchronous timings than with random decision timing on average. 

Table 4.7 Expected Convergence Times to (H,H,H) for Different Initial States               

for Random Timing 

 (L,L,L) (L,L,H) (L,H,L) (L,H,H) (H,L,L) (H,L,H) (H,H,L) 

Iterations 5.5 4.5 4.5 3 4.5 3 3 
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Table 4.8 Expected Convergence Times to (H,H,H) for Different Initial States                

for Asynchronous Timing 

 (L,L,L) (L,L,H) (L,H,L) (L,H,H) (H,L,L) (H,L,H) (H,H,L) 

Iterations 2.75 7/3 7/3 1.75 7/3 1.75 1.75 

 

 

Better Response Decision Rules 

By playing best responses, players are assured of never playing a strictly dominated 

action, so convergence was assured. However, the same does not hold for better response 

decision rules.  

 

Consider the game matrix shown in Example 4.14 which is IESDS solvable. Because of 

the existence of an improvement cycle, this game provides a counter-example to an 

assertion that the class of deterministic better response algorithms converge in an IESDS 

solvable game for any of the four classes of decision timings. However, the inability to 

guarantee convergence does not extend to random better response decision rules. 

However, proving this in the most general fashion requires the consideration of games 

with weak FIP.  

4.5.3.2 Convergence of Games with Weak FIP 

Recall that a game has weak FIP if for all a A∈  there exists a finite improvement path 

that terminates in an NE and that IESDS games, quasi-acyclic games, supermodular 

games, and games with FIP all have weak FIP. As this is a very general condition, the 

requisite improvement path is expected to vary by game model.  

 

For a game that is IESDS solvable, weak FIP is verified by any improvement path formed 

by round-robin application of best responses. For a quasi-acyclic game, there is always 

some sequence of strict best responses (not necessarily round-robin) that terminates in an 

NE. For a game with FIP, any round-robin sequence of best responses suffices as does 

any round-robin sequence of exhaustive better responses on a finite A. While all of these 

games satisfy weak FIP via round-robin best response improvement paths, this does not 

hold for the game in Example 4.15 which exhibits a best response improvement cycle. 
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Thus the only assumption that can be made about the class of games with weak FIP is  

that there always exists some finite improvement path that terminates in a NE. 

 

Best Response Decision Rules 

As stated in the preceding, Example 4.15 provides a counter example to any assertion that 

all members of the class of best response decision rules converges. A deeper examination 

of that game reveals that not the game would still exhibit the improvement cycle (0, 0), 

(2, 0), (2, 2), (0, 2), (0, 0) if played under any of the four classes of decision timings. 

 

Deterministic Better Response Decision Rules 

Again Example 4.15 and its best response improvement cycle provide a counter example 

where a deterministic better response rule fails to converge for a game with weak FIP. 

 

Random Better Response Decision Rules 

[Friedman_01] studies games with weak FIP and random decision timing which are 

coupled with the decision rule of Definition 4.13. For finite A, it is seen that for a game 

with weak FIP, this decision rule always has a nonzero chance of stumbling upon an 

improvement path that leads to an NE. As NEs constitute absorbing Markov states (for all 

players, there is no action in Ai\bi that would improve utility for any player), play can be 

modeled as an absorbing Markov chain. Thus convergence to an NE is assured for a 

random decision timing. 

 

Although not considered by [Friedman_01], this same decision rule would form an 

absorbing Markov chain for the asynchronous timing rule considered in this Section. 

Specifically, for asynchronous timings any finite single player ordering has a nonzero 

chance of occurring, so there must be a nonzero chance of replicating the same single 

player ordering generated by random timing.  

 

However, the random better response of [Friedman_01] can fail for synchronous timing. 

As a counter example to the assumption that it would converge for synchronous timings, 

consider the coordination game shown in Figure 4.23. As can be verified from Table 4.9, 
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if the network starts in state (a,B) or (b,A), play enters the cycle (a,B), (b,A). Note that 

while this is not an improvement cycle, it is a cycle that results from proper application of 

the decision rule for synchronous timings.  

Γ A B 

a (1,1) (0,0) 

b (0,0) (1,1) 

Figure 4.23: A Coordination Game which Can Fail to Converge for the Random Better 

Response of [Friedman_01] for Synchronous Timings. 

Table 4.9: The Markov Transition Matrix for the Game in Figure 4.23 with Synchronous 

Timings and Decision Rule of Definition 4.13 

 (a,A) (a,B) (b,A) (b,B) 

(a,A) 1 0 0 0 

(a,B) 0 0 1 0 

(b,A) 0 1 0 0 

(b,B) 0 0 0 1 

 

These timing difficulties disappear, however, when the random decision rule of 

Definition 4.12 is employed. The only difference between the two rules is that rather than 

choosing from Ai\bi, each player chooses from Ai. Importantly, this difference preserves 

the convergence criteria of the [Friedman_01] algorithm. 

 

Theorem 4.9: Better Responses and Markov Chain Implications (*) 

Given a particular decision timing, T, if implementing the decision rule of Definition 4.13 

forms an absorbing Markov Chain, then implementing the decision rule of Definition 

4.12 must also implement an absorbing Markov chain. 

Proof: As the set of choices for each adaptation in Definition 4.13 is a subset of the 

choices of Definition 4.12, then whenever any sequence of state transition generated by 

Definition 4.13 has a nonzero probability, the sequence must also have a nonzero 

probability of occurring under Definition 4.12. Further, it is clear that a state is an 

absorbing state for Definition 4.13, it is also an absorbing state for Definition 4.12. Thus 

if there exists an absorbing Markov chain for Definition 4.13, it must also exist for 

Definition 4.12. 

 

Theorem 4.9 immediately implies that for random and asynchronous timings, the 

decision rule of Definition 4.12 forms an absorbing Markov chain and therefore 

converges. However, the decision rule of Definition 4.12 forms an absorbing Markov 

chain for round-robin and synchronous decision timings as well. Specifically, as each 
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radio has a nonzero chance of choosing its current action, there is a nonzero probability 

of generating the sequence of adaptations corresponding to the action tuple’s finite 

improvement path.  

 

For instance, consider again the game shown in Figure 4.23, but now apply the Decision 

Rule of Definition 4.12 under synchronous timing. This yields the transition matrix 

shown in Table 4.10 which is readily verified as an absorbing Markov chain. Thus for 

games with weak FIP, the proposed decision rule converges for all decision timings and 

not just for random and asynchronous timings. 

Table 4.10: The Markov Transition Matrix for the Game in Figure 4.23 with 

Synchronous Timings and Decision Rule of Definition 4.13. 

 (a,A) (a,B) (b,A) (b,B) 

(a,A) 1 0 0 0 

(a,B) 0.25 0.25 0.25 0.25 

(b,A) 0.25 0.25 0.25 0.25 

(b,B) 0 0 0 1 

4.5.3.3 Convergence of Games with FIP 

As defined FIP in Definition 4.16, a normal form game has FIP if all improvement paths 

in Γ are finite. This implies that the only requirement for convergence is that the radios 

act in their own interest and that all unilateral adaptations have a nonzero chance of 

occurring (recall that improvement paths were defined in terms of unilateral deviations).  

 

Best Response Decision Rules 

Whether implemented deterministically or randomly, any sequence of adaptations 

generated by unilateral best responses necessarily results in an improvement path. As FIP 

guarantees that these paths are finite, we know that round-robin and random decision best 

response algorithms converge. As we reasoned before, asynchronous timing has a 

nonzero probability of generating the same sequence of adaptations generated under 

random timings. Thus a best response decision rule with asynchronous timing forms an 

absorbing Markov chain for games with FIP.  
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However, games with FIP need not converge under synchronous timings with best 

response decision rules. For example, best response decision rules with synchronous 

timings applied to the game of Figure 4.23, which has FIP, result in the same cycle seen 

before. 

 

Deterministic Better Response Decision Rules 

If we assume exhaustive better response decision rules, then all improvement paths 

generated by round-robin, random, and asynchronous decision timings must terminate in 

an NE thereby implying convergence. However, the game of Figure 4.23 again provides a 

counter-example to synchronous convergence for deterministic better response decision 

rules. 

 

Random Better Response Decision Rules 

As shown previously, all games with FIP have weak FIP. Thus when played on games 

with FIP, the random better response of Definition 4.12 converges for all four timing 

classes, and the random better response of Definition 4.13 converges for random and 

asynchronous decision timings. However, the decision rule of Definition 4.13 also 

converges when applied to round-robin timing rules. Specifically, this combination 

generates necessarily generates an improvement path and by FIP, this improvement path 

must be finite. As all possible better responses have a chance to be played, this algorithm 

must converge to a NE. 

4.5.4 Convergence Summary and Conclusions 

The criteria for assured convergence for the classes of games, decision rules, and decision 

timings are summarized in Table 4.11. Note that the broadest convergence conditions 

hold under random and asynchronous timings and for the random better response rules. 

This implies two important results for myopic cognitive radio network design. First, 

cognitive radio networks should in general be designed so decision timings are 

randomized instead of synchronized – a good thing as synchronized algorithms generally 

do not scale as well as randomized algorithms due to the increased overhead inherent in 

the synchronization process. In general, the decision engines in cognitive radios should 

support decision rules that satisfy the class of decision rules of Definition 4.12 as that rule 
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supports the broadest range of convergence conditions. However, it should be noted that 

when any of the other classes of decision rules converge, it should be possible to design 

algorithms that converge faster than the class of decision rules of Definition 4.12. This 

design suggestion appears to be reasonable as Virginia Tech has built a cognitive radio 

whose decision engine implements a decision process in this class of algorithms 

[Rondeau_04].  

Table 4.11: Convergence Criteria 

 Timings 

Decision Rules 
Round-

Robin Random Synchronous Asynchronous 

Best Response 1,3 1,3 1 1,3 

Exhaustive Better Response 3 3 - 3 

Random Better Response
(a)

 1,2,3 1,2,3 1,2,3 1,2,3 

Random Better Response
(b)

 1,3 1,2,3 1 1,2,3 
(a) Definition 4.12, (b) Definition 4.13, 1. IESDS, 2. Weak FIP, 3. FIP 

 

For all of the surveyed game model properties, it was seen that the choice of best 

response did not influence convergence criteria. However, Chapter 8 presents a class of 

games for which different choices of best responses can lead to convergence to different 

steady-states – an unsurprising result. Likewise, while we only considered  uniform 

random distributions of decision timings and better responses in the examples, it should 

be noted that the absorbing Markov chain properties used to establish convergence are 

also ensured for any non-uniform probability distribution that preserves the non-zero 

probabilities of the uniform distribution or more generally, preserves the non-zero 

probability that the relevant improvement path occurs. This section also ignored what can 

be said about convergence criteria for these games when the action space is infinite. The 

topic of convergence in games with infinite action sets in Chapters 5 and 8. 

 

It might be speculated that the random better response would converge for any finite 

game with an NE (obviously, a myopic process played on a game without an NE, such as 

Paper-Rock-Scissors, cannot converge). However, this is not generally the case as 

evidenced by Figure 4.24 which will remain trapped in the improvement cycle (a,A), 

(a,B), (b,B), (b,A), (a,A).  
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Γ A B C 

a (1,0) (0,1) (-10,-10) 

b (0,1) (1,0) (-10,-10) 

c (-10,-10) (-10,-10) (1,1) 

Figure 4.24 A Game with an NE, but not Weak FIP, FIP, or IESDS. 

 

In fact, if a finite game lacks an improvement path to an NE from an action tuple, then by 

definition, no sequence of myopic unilateral deviations can converge to an NE from that 

action tuple. 

Theorem 4.10: Weak FIP and Deterministic Myopic Convergence (*) 

If a finite game lacks the weak FIP property, then there exists at least four action tuples 

for which all autonomously rational myopic decision processes will not converge under 

round robin and random timings.  

Proof: Note that all rational myopic unilateral decision processes are constrained to 

follow improvement paths. By definition, lack of weak FIP implies that there must be at 

least one action tuple for which no improvement path leads to an NE. As this action tuple 

cannot be an NE (otherwise there exists a trivial improvement path of length 0 that leads 

to an NE), there must be at least one improvement path that leads away from the action 

tuple. As this improvement path cannot terminate in an NE, it must cycle through at least 

four action tuples that also do not have improvement paths to an NE (an improvement 

path of length four is the shortest possible improvement cycle) and thus any 

autonomously rational myopic decision processes will not converge under round robin 

and random timings when starting from these action tuples. 

 

Because rational myopic convergence is not assured without weak FIP, identifying that 

the intended algorithm satisfies weak FIP should be a step included in the process of 

designing myopic cognitive radio algorithms.  

 

In games without weak FIP, convergence requires higher-order rationality – the ability 

of players to reason beyond a single stage. For instance, in the game of Figure 4.24, the 

column player could play C – an irrational play in a myopic repeated game – knowing 

that the row player would respond with c which then places the network in a desirable 

steady-state. However, higher order-rationality implies that a cognitive radio minimally 

know the values of the other radio’s utility functions and frequently know the decision 

rules and internal states of the other radios. An alternate strategy to overcoming this lack 

of assured convergence would be to permit the radios to implement punishment and 
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reward strategies, though as previously discussed, this generally requires the radios be 

able to negotiate and may not scale well. As either approach significantly adds to the 

complexity of a cognitive radio implementation, it seems preferable to seek out cognitive 

radio algorithms whose goals and actions satisfy weak FIP. Beyond the broad 

classifications considered in this section, Chapters 5 and 8 present readily applied 

techniques for identifying when cognitive radio goals and action spaces satisfy weak FIP.  

4.6 Impact of Noise 
Any practical implementation of a cognitive radio network occurs in a noisy environment 

which corrupts the observation process. For instance, consider a radio observing the 

spectral energy across the bands defined by the set C where each radio k is choosing its  

band of operation fk. If noise were not present, radio i’s observation of the signal energy 

in channel ck could be described by (4.23)  

( ) ( ),i k ki k k k

k N

o c g p c fθ
∈

=∑  (4.23) 

where gki is the gain from radio k to where radio i is taking its measurement, pk is the 

transmit power of radio k and ( ), 1k kc fθ =  if fk = ck and ( ), 0k kc fθ =  otherwise. 

 

Because of noise in the receiver, (4.23) will be realized as (4.24) 

( ) ( ) ( ), ,i k ki k k k i k

k N

o c g p c f n c tθ
∈

= +∑�  (4.24) 

where ni(ck,t) is the noise at the receiver in channel k as measured at time t. If each radio 

is attempting to operate on the channel with minimum interference ( i iu o= − ), then 

instead of adapting to the channel that minimizes oi, the radio will operate on the channel 

that minimizes io� . Thus noisy observations lead to corrupted cognitive radio goals which 

lead to the implementation of actions that the analyst would interpret as being in error. 

 

Continuing to rely the assumption that communications theory permits us to map actions 

to goals, given cognitive radio network { } { }, , , ,i iN A u d TΓ = , we can model a noise 

corrupted cognitive radio network by { } { }, , , ,i iN A u d TΓ = �  where iu�  is defined as 

shown in (4.25)  
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(Noisy utility)                         ( ) ( ) ( ), ,i i iu a t u a n a t= +�  (4.25) 

where ni(a,t) is a stochastic process corrupting the evaluation of the player’s utility 

function at time t. So when a rational decision maker believes that 

( ) ( ), , , ,i i i i i iu b a t u a a t− −>� � , it may be because bi is a better choice, i.e., 

( ) ( ), ,i i i i i iu b a u a a− −> , or because noise has corrupted the observation at time t. For our 

purposes, this means that instead of implementing bi as would have normally been 

predicted, the radio may implement ai.  

 

Under the reasonable assumption that ni(t) is unbounded (perhaps because the noise 

source is Gaussian) and ui is bounded, there is a nonzero (though perhaps very small) 

probability that  ( ), ,i i iu b a t−
�  is less than ( ), ,i i iu a a t−

�  regardless of how much greater 

( ),i i iu b a −  is than ( ),i i iu a a − . So under normal operating conditions, a cognitive radio 

always has a nonzero chance of making a mistake. 

 

Game theoretic analyses typically attribute these decision errors to mistakes in 

implementation, e.g., a tremble in a player’s hand as it tries to implement its chosen 

action. For people, this is a phenomenon we are all familiar with. What basketball player 

has not missed a shot? Who has not accidentally handed over the wrong amount of cash 

at a restaurant? Who has not accidentally written a “tpyo”?  

 

In terms of the effect on play, a corrupted observation can appear to be analytically 

equivalent to a mistake in implementation so analysis can frequently proceed with either 

an assumption of errors in implementation or observation. However, there are some 

subtle, though important, analysis differences and in terms of design, that will be 

highlighted in the following. Also it is important for a cognitive radio designer to be 

aware that even with the reasonable assumption of perfect implementation of decisions, 

errors will still occur so a cognitive radio designer should include mechanisms for 

minimizing the negative impacts of these errors. 
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4.6.1 Noise and Nash Equilibria 

With noise in the system, an NE is no longer an ideal equilibrium for the system as play 

occasionally leaves the NE. Using the assumption that errors result from implementation 

mistakes, a different equilibrium definition can be defined – the trembling hand 

equilibrium which is a variation on the mixed strategy NE. 

Definition 4.19: Trembling Hand Equilibrium ([Osborne_94], Definition 248.1) 

A trembling hand equilibrium, α�  of a finite game is a mixed strategy profileα with the 

property that there exists an infinite sequence ( )kα  of mixed strategy profiles that 

converges to α� such that for each player i iα� is a best response to k

iα−
� k∀ . 

 

Intuitively, this definition makes sense as a noisy equilibrium for implementation errors 

as the trembling hand equilibrium is a best response to the errors (realized as mixed 

strategies). However, this definition is difficult to apply. A refinement concept is 

provided in ([Osborne_94], p. 248) – a mixed strategy α�  is a trembling hand equilibrium 

only if α� is not dominated by some other mixed strategy.  

 

The next section introduces a technique for identifying an equilibrium based on 

improvement paths and noise which we believe is more suitable to cognitive radio 

analysis as it permits a more direct calculation of the distribution of states. 

4.6.2 Noise and Decision Processes 

Instead of evaluating games for trembling hand equilibria, we can also analyze the impact 

of noise on improvement paths to characterize network behavior. As in Section 4.5, this 

discussion begins with an introduction of myopic decision rules, but now operating in the 

presence of noise. [Friedman_01] considers a noisy better response based on a trembling 

hand.  

Definition 4.20: Friedman’s Noisy Random Better Response [Friedman_01] 

Player i chooses an action ai∈Ai\bi where bi is player i's current action according to a 

uniform random distribution. If ui(ai,a-i)> ui(bi,a-i), then ai is implemented, however, if 

ui(ai,a-i) ≤ ui(bi,a-i), then player i still switches to ai with nonzero probability ρ. 

 

[Friedman_01] notes that when all players are implementing the dynamic given in 

Definition 4.20 with random timing, the game can be modeled as an ergodic Markov 
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chain. By Theorem 3.6, this implies that there exists a unique limiting and stationary 

distribution for all initial distributions ππππ0
. This means that solving the eigenvector 

problem given by (4.26) where P is the transition matrix and an eigenvalue of 1 is 

assumed yields the equilibrium behavior for the system. 

ππππ*T
 P =ππππ*T

 (4.26) 

 

Similar results can be noted for the following three noisy dynamics defined by 

substituting iu�  for iu into the best, better, and random better responses. 

 

Definition 4.21: Noisy Best Response Dynamic (*) 

A decision rule :i id A T A× →�  is a noisy best response dynamic if each adaptation would 

maximize the radio’s noisy utility if all other radios continued to implement the same 

waveforms, i.e., ( ) ( ) ( ){ }: , , , ,i i i i i i i i i i id a b A u b a t u a a t a A− −∈ ∈ ≥ ∀ ∈� � �  

 

Definition 4.22: Noisy Better Response Dynamic (*) 

A decision rule :i id A T A× →�  is a noisy better response dynamic if each adaptation 

would improve the radio’s utility if all other radios continued to implement the same 

waveforms, i.e., ( ) ( ) ( ){ }: , , , ,i i i i i i i i id a b A u b a t u a a t− −∈ ∈ >� � � . 

 

Definition 4.23: Noisy Random Better Response Dynamic (*) 

A decision rule :i id A T A× →�  is a random better response dynamic if for each ti∈Ti, 

radio i chooses an action from Ai with nonzero probability and implements the action if it 

would improve iu� . 

 

For all three dynamics, every i ia A∈  has a nonzero probability of being the next action of 

player i. Thus for synchronous and asynchronous timings, it is apparent that the transition 

matrix has no zero entries, implying that the Markov chain is ergodic. For a random 

timing, it is clear that the Markov chain is irreducible, positive recurrent, and aperiodic 

implying that the Markov chain is ergodic.  

 

For round robin timing, however, the system is periodic in that once a state is left, the 

system can only return in multiple of n iterations implying that the system is not ergodic. 
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However, if we define an “iteration” as a complete round, then this Markov chain is 

aperiodic and the Markov chain is ergodic. 

 

Earlier it was noted that mistakes in observation can lead to effects similar to mistakes in 

implementation. In this case, the three proposed decision rules with noisy observations 

and the trembling hand implementation of [Friedman_01] all yield ergodic Markov 

chains. However, as the following example makes clear, the different sources of error 

result in different steady-state distributions. 

Example 4.17: Noisy DFS Decision Processes 

Consider a network consisting of three access points implementing DFS over two 

channels with random locations. Each access point seeks to minimize the interference 

that it receives from the other two access points as measured at its own location. 

Assuming equal transmit powers, p, each radio would observe its interference as shown 

(4.23). Further, let us assume that these access points are located so that the symmetric 

link gain matrix shown in Table 4.12 results.  

Table 4.12: Link Gain Matrix 

gik 1 2 3 

1 1 0.5 0.1 

2 0.5 1 0.3 

3 0.1 0.3 1 

  

Assuming a transmit power of p = 1, the possible noiseless observations for this system 

are shown in Table 4.13.  

Table 4.13 Noiseless Observations 

(f1,f1,f1) (f1,f1,f2) (f1,f2,f1) (f1,f2,f2) (f2,f1,f1) (f2,f1,f2) (f2,f2,f1) (f2,f2,f2) (f2,f1,f1) 

(0.6,0.8,0.4) (0.5,0.5,0.0) (0.1,0.0,0.1) (0.0,0.3,0.3) (0.0,0.3,0.3) (0.1,0.0,0.1) (0.5,0.5,0.0) (0.6,0.8,0.4) (0.0,0.3,0.3) 

 

One typical DFS algorithm objective, and the one that we use here, is for that each radio 

is trying to minimize its perceived interference, i.e., ui = -oi. Assuming the radios are 

randomly making implementation errors with a probability of 0.1 and adapting according 

to a random timing scheme, the transition matrix for this system is given by Table 4.14. 
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Note that the two NE for this system – (f1,f2,f1) and (f2,f1,f2) – have the largest 

probabilities of remaining in the same state. 

Table 4.14 Transition Matrix for Better Response, Trembling Hand, ρ=0.1, and     

Random Timing 

P (f1,f1,f1) (f1,f1,f2) (f1,f2,f1) (f1,f2,f2) (f2,f1,f1) (f2,f1,f2) (f2,f2,f1) (f2,f2,f2) 

(f1,f1,f1) 0 1/3 1/3 0 1/3 0 0 0 

(f1,f1,f2) 1/30 3/10 0 1/3 0 1/3 0 0 

(f1,f2,f1) 1/30 0 9/10 1/30 0 0 1/30 0 

(f1,f2,f2) 0 1/30 1/3 3/5 0 0 0 1/30 

(f2,f1,f1) 1/30 0 0 0 3/5 1/3 1/30 0 

(f2,f1,f2) 0 1/30 0 0 1/30 9/10 0 1/30 

(f2,f2,f1) 0 0 1/3 0 1/3 0 3/10 1/30 

(f2,f2,f2) 0 0 0 1/3 0 1/3 1/3 0 

 

Solving the eigenvalue problem ππππ*T
 P =ππππ*T

 yields the following vector of steady-state 

probabilities. Note the two NE for this system – (f1,f2,f1) and (f2,f1,f2) – have the largest 

probabilities of remaining in the same state. 

(f1,f1,f1) (f1,f1,f2) (f1,f2,f1) (f1,f2,f2) (f2,f1,f1) (f2,f1,f2) (f2,f2,f1) (f2,f2,f2) 

0.0161 0.0293 0.3846 0.0699 0.0699 0.3846 0.0293 0.0161 

                            

If however, we assume that errors are the result of a noisy observation process, a different 

distribution results. Specifically, now a best response adapts whenever it believes 

( ) ( ), , , ,i i i i i iu b a t u a a t− −>� � . Let us assume that ni is a zero mean Gaussian stochastic 

variable with standard deviation of 1. Then the probability that radio 3 will evaluate fk as 

better than f1 from action vector (f1,f1,f1) is given by (4.27) 

( ) ( )( ) ( )( ) ( )
2

0 0.4 / 4

3 1 1 2 3 1 1 2

0

1
, , , ,

2

x
P u f f f u f f f e dx

π

∞
− − +

> = ∫� �  (4.27) 

or
0.4

2
Q

− 
 
 

. Generalizing to other possible adaptations for this system, the probability 

that player i adapts from ai to bi is given by (4.28).  

( ) ( ), ,

2

i i i i i iu b a u a a
Q

− −− 
 
 

 (4.28) 

With this formula in hand, we can write the transition matrix for the noisy best response 

as shown in Table 4.15. Note that the two NE for this system – (f1,f2,f1) and (f2,f1,f2) – 
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have the largest probabilities of remaining in the same state, although the probability of 

making an error is much higher and some transition probabilities are no longer zero, e.g., 

(f1,f1,f1)→ (f1,f1,f1). 

Table 4.15: Transition Matrix for Best Response and Random Timing with Observations 

Corrupted by N(0,1) Gaussian Noise  

P (f1,f1,f1) (f1,f1,f2) (f1,f2,f1) (f1,f2,f2) (f2,f1,f1) (f2,f1,f2) (f2,f2,f1) (f2,f2,f2) 

(f1,f1,f1) 0.3367 0.2038 0.2381 0 0.2214 0 0 0 

(f1,f1,f2) 0.1295 0.4813 0 0.1854 0 0.2038 0 0 

(f1,f2,f1) 0.0953 0 0.6273 0.1479 0 0 0.1295 0 

(f1,f2,f2) 0 0.1479 0.1854 0.5548 0 0 0 0.1119 

(f2,f1,f1) 0.1119 0 0 0 0.5548 0.1854 0.1479 0 

(f2,f1,f2) 0 0.1295 0 0 0.1479 0.6273 0 0.0953 

(f2,f2,f1) 0 0 0.2038 0 0.1854 0 0.4813 0.1295 

(f2,f2,f2) 0 0 0 0.2214 0 0.2381 0.2038 0.3367 

 

Solving the eigenvalue problem ππππ*T
 P =ππππ*T

 yields the following vector of steady-state 

probabilities. Note the two NE for this system – (f1,f2,f1) and (f2,f1,f2) – have the largest 

probabilities of remaining in the same state, although this is significantly smaller than for 

implementation errors. 

Table 4.16: Steady State Distributions for a Standard Deviation of 1 

(f1,f1,f1) (f1,f1,f2) (f1,f2,f1) (f1,f2,f2) (f2,f1,f1) (f2,f1,f2) (f2,f2,f1) (f2,f2,f2) 

0.0709 0.1120 0.1765 0.1406 0.1406 0.1765 0.1120 0.0709 

 

Intuitively, the distribution of states becomes more clustered about the NE as noise power 

reduces as shown in Table 4.17. 

Table 4.17: Steady State Distributions Different Standard Deviations 

 (f1,f1,f1) (f1,f1,f2) (f1,f2,f1) (f1,f2,f2) (f2,f1,f1) (f2,f1,f2) (f2,f2,f1) (f2,f2,f2) 

σ=1.00 0.0709 0.1120 0.1765 0.1406 0.1406 0.1765 0.1120 0.0709 

σ=0.50 0.0540 0.1040 0.1984 0.1436 0.1436 0.1984 0.1040 0.0540 

σ=0.10 0.0129 0.0647 0.2857 0.1366 0.1366 0.2857 0.0647 0.0129 

σ=0.05 0.0033 0.0397 0.3387 0.1183 0.1183 0.3387 0.0397 0.0033 

σ=0.01 0 0.002 0.46 0.038 0.038 0.46 0.002 0 
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4.6.3 Noise and Enforceable Equilibria 

In the previous discussion of repeated games and enforceable equilibria, the radios 

implicitly observed the adaptations of the other radios and punished or rewarded based on 

those adaptations. However, in the model developed in Chapter 2, the cognitive radios do 

not directly observe the actions of the other radios and are instead observing the 

observable outcomes, e.g., SINR, throughput, and end-to-end delay, frequently 

interpreted through the valuations of their utility functions. When each element of the 

action space is associated with a unique element in the outcome space, i.e., there exists a 

bijective mapping between the action space and the outcome space, and each player 

associates each outcome with a unique real number, then it is possible for a player to 

reason from utilities to actions and correctly assess when a deviation from the agreed 

strategy has occurred. But the presence of noise violates these assumptions and inhibits 

the determination of what actions led to their measured utilities. 

 

For instance consider a repeated cognitive radios’ dilemma where the radios have agreed 

to operate at (n,N) which yields throughputs of (9.6,9.6). Without noise, one radio could 

detect that the other radio has deviated to a wideband waveform if its throughput dropped 

to (3.2). If we naively approximate the impact of noise as a zero-mean Gaussian process 

added to the utility functions, then the maximum likelihood threshold for determining 

that deviation has occurred is a measured throughput of 6.4 or less. With this threshold 

and assuming that neither radio has actually deviated and a standard deviation of 1.0, a 

radio will incorrectly assess that the other radio has switched to the wideband waveform 

with a probability of 6.8714 x 10
-4

.  

 

While this low probability makes an erroneous detection seem improbable, consider a 

similar game being played by hundreds of radios over hundreds of iterations. The 

probability of having a false alarm in a single iteration is now 6.6% and the probability of 

having a false alarm from any of the 100 radios over 100 iterations is 99.9% - a virtual 

certainty. 
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Now suppose that each radio is employing a grim trigger strategy wherein detection of a 

wideband signal (whether correctly or erroneously) leads to the radio transmitting its own 

wideband waveform for the remainder of the iterations. In short order, the other radios 

will all be transmitting wideband waveforms because they detected the punishing radio 

transmitting a wideband signal and must punish the punishing radio. Or if the radios are 

employing tit-for-tat strategies, it is clear that after a single erroneous punishment, the 

network will cascade to a state where all radios are employing wideband waveforms. 

 

One way to address this problem is to decrease the probability of false alarm. For 

example, [Srivastava_06a] considers a network of devices which are contributing 

resources to a network. Unfortunately, the stage game has the property that not 

contributing resources to the network is an NE. To enforce a more desirable equilibrium, 

the devices jointly agree to employ a grim trigger strategy to punish any device that does 

not make a large contribution to the network. To determine when a deviation has 

occurred, all devices monitor a signal available to all of the devices, in this case 

aggregate network goodput. Because of noise in the system, this signal is assumed to 

represent an imperfect mapping of the actions to the monitored goodput values. 

 

[Srivastava_06a] then considers the following three different deviation detection 

scenarios or “triggering” events: 1) a single detected deviation where the signal is below 

a threshold, 2) a running average of three consecutive iterations below the threshold, and 

3) three consecutive iterations below the threshold. Intuitively, the probabilities of false 

alarms under these three scenarios are related by p1 > p2 > p3 where pk is the probability 

of a false alarm in scenario k∈{1,2,3}. This relationship is reflected in Figure 4.25 which 

depicts the percentage of simulated runs where false alarms do not trigger a cascade of 

punishments.  
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Figure 4.25 Percentage of Runs where a Cascade of Punishments Occurred due to 

Imperfect Signaling. © 2006 IEEE Reprinted, with permission, from Figure 4 in 

[Srivastava_06a]. 

 

Theoretically, all three curves should asymptotically approach zero as with a sufficient 

number of iterations or radios, the probability of a false alarm asymptotically approaches 

one for all nonzero probabilities of false alarms. As a cascade of punishments is a 

catastrophic event for the network, this is a very discouraging result – all such 

implemented radio networks will eventually meet a catastrophic failure. 

 

One reason that this network terminates in a catastrophic failure is the grim trigger 

punishment scheme ensures that once the network enters a bad state, it can never recover. 

Instead of employing the permanent punishments of [Srivastava_06a], the one-off 

punishment employed by [MacKenzie_01] would seem to limit the immediate impact of 

a false alarm to a single packet or single event.  

 

However, the other reason that the network of [Srivastava_06a] must fail catastrophically 

would still be present in one-off punishments of [MacKenzie_01]. Specifically, by only 

monitoring the public signal, other radios cannot differentiate between punishment and 
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selfish deviation. So when one radio in [MacKenzie_01] punishes a false alarm, many 

other radios will interpret this as a deviation leading to the same catastrophic cascade. 

 

So in addition to Axelrod’s suggestion [Axelrod_84] that equilibrium enforcement 

schemes be “nice”, “retaliating”, “forgiving”, and “non-envious”, the network must 

include some additional mechanism to signal when a radio is engaging in punishment so 

other radios can differentiate between selfish deviations and punishment. Note that all of 

these properties should be present. For example, even with a “punishment signal” a 

unforgiving scheme perhaps with the grim triggers in [Srivastava_06a] will still 

eventually converge (albeit more slowly) to the catastrophic network. However, the 

coupling of a punishment signal with the forgiving scheme of [MacKenzie_01] should 

never lead to a catastrophic network if the network starts at the agreed state (nice), 

properly incentivizes the cooperative strategy (retaliating) and the radios do not attempt 

to ensure that they outperform other radios (non-envious).  

 

In addition to the implicit additional complexity of ensuring that punishment is not 

confused with deviations [Neel_04b], this signal will also be fraught with errors and, 

worse, may be subject to radios gaming this “punishment signal”. Fortunately, the 

gaming of the punishment signal could largely be eliminated for weak CRs which are 

constrained by their programming. Thus for weak CR, gaming of the punishment signal 

could be eliminated by reviewing the radio’s programming perhaps as part of a device 

testing and certification process. However, a strong CR, which is not constrained by its 

programming, cannot be guaranteed to not misuse the punishment signal.  

4.7 Analysis Summary and Design Implications  
This chapter introduced several powerful techniques for analyzing the interactions of 

ontological and procedurally random cognitive radios based on knowledge of the radios’ 

goals, actions, and interactions and broad assumptions about the radios’ decision rules, 

e.g., that the radios act in their own self interest in response to their observations. While 

most of these techniques presented were originally developed in game theory to study the 

interactions of humans, they are surprisingly useful for analyzing the interactions of 

cognitive radio networks, though with some difficulties when ascertaining optimality and 
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the impact of noise. It was also seen that it is possible to incorporate approaches from 

both game theory and the traditional engineering techniques of Chapter 3 to yield 

powerful insights, such as the convergence results of Section  4.5 which used Markov 

chain concepts from Chapter 3 and stage game properties to assess the convergence 

criteria of broad classes of decision algorithms under various decision timings. 

 

These analysis insights are summarized in Section  4.7.1 and then applied as design 

guidelines for cognitive radio in Section  4.7.2. 

4.7.1 Analysis Summary 

The cognitive radio network modeled in Chapter 2 by the tuple { } { }, , , ,i iN A u d T  can 

be seamlessly recast as a game with N as the players (radios), A as the action space 

(adaptations), {ui} as the utility functions (goals), {di} as the decision rules, and T as the 

decision timings. The normal form game which models a single-shot synchronous 

adaptation by all players is given by the tuple <N, A, {ui}>. The repeated game 

{ } { }, , ,i iN A u d  models cognitive radio networks that adapt repeatedly with 

synchronous timing and is especially well suited for networks where radios incorporate 

punishment and reward strategies. The myopic repeated game { } { }, , , ,i iN A u d T  

models scenario where radios adapt to the most recent state of the network under a 

variety of different decision timings. The mixed strategy game, ( ) { }' , , iN A UΓ = ∆ , 

models scenarios where radios can probabilistically play different waveforms. 

4.7.1.1 Steady States 

The primary steady-state concept introduced in this chapter was the Nash Equilibrium 

(NE) which is a fixed point for all self-interested myopic decision rules. An NE is known 

to always exist for finite normal form games that are IESDS solvable (Algorithm 4.2), 

have FIP (Theorem 4.7), or have weak FIP. In infinite games where action sets are 

convex and compact, an NE exists if the utility functions are continuous in a and quasi-

concave in ai (Theorem 4.3). For mixed extensions to finite normal form games, a mixed 

strategy NE always exists (Theorem 4.4). While identifying these equilibria can require 

exhaustive searches for finite games, the unique NE for an IESDS can be found by 
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Algorithm 4.2 and the NE for games with continuous best responses can be found by 

simultaneously solving (4.7) ∀ i∈N .  

 

It was seen that repeated games with punishment where players incorporate discounted 

future payoffs can enforce an infinite number of different equilibria (Theorem 4.5).  

 

4.7.1.2 Optimality 

This chapter presented the concept of Pareto Optimality (Definition 4.9), a traditional 

technique use in game theory to assess optimality. It was seen that when a cognitive radio 

network designer already has a particular objective function in mind, the designer would 

be better off ignoring the Pareto optimality of the network’s steady-states due to the 

computational cost, imprecision, and potentially misleading results yielded by evaluating 

Pareto optimality. However, when the network designer does not have a particular 

objective for the network in mind, then Pareto optimality is a reasonable criteria to assess 

network performance. 

4.7.1.3 Convergence 

This chapter particularly focused on the convergence of myopic repeated games wherein 

radios adapt their waveforms based on their most recent observations. In order for play in 

these games to guaranteed to converge, it was seen the stage game needed to exhibit 

special properties such as IESDS solvability, weak FIP, or FIP. It was seen that for finite 

games, the widest set of convergence conditions held when at least one of the following 

circumstances held: the cognitive radios incorporate randomness into their decision 

processes, the network exhibits random or asynchronous decision timings, or the stage 

game has FIP.  

4.7.1.4 Noise 

It was seen that noise can significantly impact the behavior of cognitive radio networks. 

While game theory typically treated errors in play as being implementation errors – a 

reasonable assumption for humans – the source of errors for cognitive radios is more 

likely to be caused by observations being corrupted by noise. Regardless of the source, 

these errors lead to the Markov models of the networks changing from absorbing Markov 
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chains to ergodic Markov chains. This ultimately has the meaning that for networks that 

can be modeled as myopic repeated games, the presence of noise means that the network 

has a theoretically nonzero chance of passing through every possible network state. 

However, the original absorbing states tend to remain the most commonly visited states 

in the network. So even with noise in the system, the Nash equilibrium concept 

(absorbing states for games with weak FIP) retain significant power for predicting the 

state of the network. 

 

For networks incorporating punishment strategies, it was seen that noise can have a 

catastrophic impact on the performance of a network. Specifically, a cascade of 

punishments can be spawned by a single misdetection of a deviation, the probability of 

which asymptotically approaches 1 for networks that run over thousands of iterations. 

Rather than simply improving deviation detection algorithms, it was seen that it was 

necessary to incorporate forgiveness and some means to signal that punishment is 

occurring. 

4.7.2 Design Implications 

While numerous game models were considered, this chapter effectively considered two 

broad approaches for implementing cognitive radios. 

• Loner radios – radios that myopically choose actions to improve their own 

performance as part of a distributed network of autonomous radios.  

• Social radios – radios that, along with other radios in the network, enforce an 

equilibrium condition on all radios in the network by adapting their actions so as 

degrade the performance of radios that deviate from the equilibrium or improve 

the performance of radios that adhere to the equilibrium.  

4.7.2.1 Loner Radios 

A loner radio is a myopic autonomous cognitive radio that chooses its actions without 

specific regard to how its adaptations will influence the adaptations of other radios. Their 

adaptations are guided solely by their own most recent observations of their own 

performance.
 
More generally, these observations may be informed by client nodes or a 

receiver, but these cognitive radios are not explicitly considering other cognitive radios’ 
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actions nor their utilities. In general, loner radios are the simplest to implement as they do 

not have to be aware of how their behavior is influencing other radios and can frequently 

be implemented with very simple decision algorithms.  

 

A network of loner radios could be modeled as a myopic repeated game. As such the 

network cannot be assured to have a steady-state, nor to be optimal, nor to converge. 

However, the existence of a steady state and convergence conditions can be assured if it 

can be shown that the radios’ goals and actions form a normal form game has special that 

is IESDS solvable or has FIP or weak FIP. When these conditions are satisfied, broad 

classes of self-interested myopic algorithms are known to converge to an NE and that the 

absorbing states remain the most likely states even when noise corrupts the processes.  

 

If the NE are also optimal, then loner radio networks with FIP or weak FIP can realize 

what would otherwise be assumed as a panglossian scenario – low complexity radios that 

place no additional demands on the network, such as decision coordination and 

distribution, yet autonomously reason their way to a desirable state with relatively simple 

decision rules. The key to realizing this best possible of all possible cognitive radio 

networks will be establishing when the loner radios’ goals and available adaptations can 

be modeled as a game with weak FIP or FIP. Because of the great promise of this 

approach, the remaining chapters of this work focus on establishing when a cognitive 

radio network can be modeled as having FIP or weak FIP and developing applications 

that leverage this knowledge. 

4.7.2.2 Social Radios 

Unlike a loner radio, a social radio takes into specific consideration the actions and 

utilities of other radios in the network. With this knowledge, a social radio can fashion 

algorithms that utilize combinations of punishment and reward to enable the network to 

enforce the large number of equilibria permitted by the Folk Theorem.  

 

With social radios, it is relatively trivial to ensure that a network of social radios operates 

at an optimal equilibrium – simply specify that action tuple as the operational state and 

have the radios enforce the state – and without noise, convergence to that state can be 
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trivially assumed. Further, the social radio approach can theoretically be leveraged to 

achieve optimal performance for any operational scenario, and convergence is implicit to 

the punishment and reward with no further analysis required to theoretically know in 

what state the network will operate.  

 

However, there are several practical considerations that must be addressed when 

implementing social radios. First, social radios must agree on the state that should be 

enforced. This either implies that the cognitive radios are capable of negotiating this state 

among themselves or that the network includes some authority that sets the operational 

state. Either solution would expect heavy usage as the optimal solution will be constantly 

changing as radios enter and leave the network, multipath profiles change, mobility alters 

network topologies, and user applications change. 

 

Second social radios must have some means of gathering the requisite actions and 

utilities of the other radios. As directly observing the actions of other social radios may 

be very difficult, a radio may need to be able to infer other radios’ actions from its own 

utility function. Alternately, the network may need to include some mechanism for 

distributing this information, perhaps via a dedicated channel or via calls to a Radio 

Environment Map [Zhao_06].  

 

Third, it will be important for social radios to be able to differentiate between punishment 

and deviation as the failure to differentiate will cause any punishment scheme to 

converge to a catastrophic network. Again this problem could be solved through a 

dedicated channel or through calls to a Radio Environment Map [Zhao_06].  

 

Finally, it will also be necessary to carefully understand the tradeoffs in the design of the 

punishment, reward, and detection schemes, and how those schemes impact the 

performance of the network. In general, the recommendations of [Axelrod_84] and this 

document note that these schemes, should be nice, retaliating, forgiving, and non-

envious, with discriminating diction. But when determining specifics, the optimal point in 

the detection/false-alarm space is a function of the impact of erroneous 



  186 

punishment/reward with the operational environment influencing both. Thus, while a 

social radio approach should be generally applicable to any operational scenario, the 

optimal design of social radio algorithms will vary by operational scenario implying that 

significant analysis work should also be performed before fielding a social radio 

network.
17

 

 

So while a network of social radios may simplify the requisite analysis required to ensure 

convergence and optimality as compared to a network of loner radios, analysis must still 

be performed. Further proper operation of a social radio network necessitates additional 

signaling mechanisms to support negotiation, distribution of action and utility 

information, and to differentiate between deviations and punishments.
18

 It also generally, 

though not always, implies greater complexity in the radio itself. While addressing these 

various issues is beyond the scope of this document, they likely will be addressed as part 

of the follow-on work to [Srivastava_06b]. 
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Chapter 5: Potential Games 

 “All roads lead to Rome.” - proverb 

Suppose this proverb were literally true. Then starting from any place in the world, you 

could start walking down any road, and assuming you picked the right direction (if all 

roads lead to Rome, then all roads also lead away from Rome), you would eventually end 

up in Rome. Further, suppose that during your travel you came to an intersection, you 

could choose to follow any road at the intersection and again assuming you picked the 

right direction, you would still end up in Rome. Indeed this conclusion would hold for 

any number of intersections. Now suppose that during your travel you occasionally make 

a mistake choosing a direction at an intersection. Assuming that you make a limited 

number of mistakes, you would still arrive in Rome. Further suppose that once in Rome 

you accidentally wander out of Rome. Again assuming you generally pick the right 

direction on each road, you’ll come back to Rome.  

 

Of course, not all roads lead to Rome – just consider driving to Rome from Virginia! But 

this maxim is reminiscent of a normal form game property defined in Chapter 4 - the 

Finite Improvement Property (FIP). A game has FIP if all improvement paths are finite, 

or less precisely, if players follow an improvement path for enough iterations, they will 

terminate at a Nash Equilibrium (NE). The maxim does differ somewhat from FIP as a 

game with FIP may have multiple equilibria. Then again, according to Dr. Allen 

MacKenzie, there is a saying at the University of Virginia that all dirt roads lead to 

Blacksburg. So perhaps there’s room for multiple equilibria in the maxim as well. 

 

While Chapter 4 showed that FIP was a very strong property – implying convergence of 

many self-interested cognitive radio algorithms, determining when a game has FIP was a 

daunting task – either an exhaustive listing of improvement paths or an exhaustive search 

for improvement cycles. Overcoming this difficulty, this chapter presents a class of 

readily identified games known as potential games that have FIP. In fact, one particular 

class of potential game – generalized ordinal potential games – is coincident with the set 

of games that have FIP.  
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Beyond the implications of FIP covered in Chapter 4, potential games also satisfy the 

conditions of some of the more powerful concepts from Chapter 3, specifically 

Zangwill’s convergence theorem, and Lyapunov stability, bringing procedural radio 

analysis techniques to ontological radios. Using these theorems will enable us to extend 

the convergence and noise results of Chapter 4 to games with infinite action sets.  

 

Because of the ease of verifying that a cognitive radio algorithm satisfies the conditions 

of a potential game (as simple as evaluating a second-order derivative), the readily 

identified equilibria, and the broad class of low complexity algorithms are guaranteed to 

converge to stable equilibria, the potential game model is particularly attractive for the 

design of cognitive radio algorithms. The primary limitation of designing cognitive radio 

algorithms with potential games is that loner radio networks cannot be assured of 

desirable performance. However, Chapter 6 introduces some additional conditions to the 

potential game concept that ensure that loner radio networks realize desirable behavior 

from selfish adaptations.  

 

This chapter focuses on developing techniques for determining if a cognitive radio 

network and establishing the performance implications Subsequent chapters leverage 

these results to develop powerful cognitive radio algorithms. In the remainder of this 

chapter, Section  5.1 formalizes the concept of the potential game model and establishes 

the connection between FIP and potential games enabling us to apply the results of 

Chapter 4. Section  5.2 discusses how potential games can be identified and specifically 

how a cognitive radio needs to be designed to be a potential game. Section 5.3 presents a 

number of special properties of potential games that aid the design and analysis of 

cognitive radios. Then addressing our four analysis objectives, Section 5.4 discusses the 

steady-state properties of potential games, Section  5.5 discusses the desirability 

properties of potential games, Section  5.6 presents conditions under which decision rules 

converge, and Section  5.7 considers the impact of noise on potential game networks. 

Section  5.8 concludes with a discussion of the use of potential games in the wireless and 

cognitive radio literature and the impact of potential games on the modeling, analysis, 

and design of cognitive radio networks.  
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5.1 Potential Games 
As formalized in [Monderer_96], a potential game is a normal form game which has the 

property that there exists a function known as the potential function, :V A → � , that 

reflects the change in value accrued by every unilaterally deviating player. This concept 

can be refined into the following five fundamental classes of potential games: exact 

potential games, weighted potential games, ordinal potential games, generalized ordinal 

potential games, and generalized ε-potential games. Under typical conditions, these 

games satisfy Zangwill’s convergence theorem and exhibit FIP and a related property 

known as Asymptotic Finite Improvement Property. In this section, these classes games 

are formally defined and categorized and the relationship between potential games and 

FIP is formalized. 

5.1.1 Potential Game Definitions 

This section defines exact, weighted, ordinal, generalized ordinal, and generalized ε-

potential games and provides examples of each of these games. 

5.1.1.1 Exact Potential Games 

Definition 5.1: Exact Potential Game  

A normal form game, { }, , iN A uΓ = , is said to be an exact potential game if there exists 

a function, :V A →� , known as an exact potential function, that satisfies 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i iu b a u a a V b a V a a− − − −− = −  ,i N a A∀ ∈ ∀ ∈ . 

 

For everywhere differentiable utility functions, an equivalent condition is the existence of 

an exact potential function, V, which satisfies (5.1) ,i N a A∀ ∈ ∀ ∈ . 

( ) ( )i

i i

u a V a

a a

∂ ∂
=

∂ ∂
 (5.1) 
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Example 5.1: A 2x2 Exact Potential Game 

Consider the prisoners’ dilemma variant shown below in matrix representation labeled as 

Γ and the function V that accompanies Γ. 

Γ A B 

a (3,3) (0,5) 

b (5,0) (1,1)  

V(⋅) A B 

a 0 2 

b 2 3  
 

Examining Table 5.1, which provides a listing of all profitable unilateral deviations in Γ 

(all unprofitable unilateral deviations can be found by reversing the direction of the 

deviations listed in the left column), we see that 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i iu b a u a a V b a V a a− − − −− = −  ,i N a A∀ ∈ ∀ ∈ ,  thereby satisfying the 

conditions of Definition 5.1.  

Table 5.1: Unilateral Deviation Relationships for Γ and V 

 Unilateral 

Deviation 

Change in utility for 

deviating player Change in V 

(a,A)⇒(b,A) 3⇒5 (+2) 0⇒2 (+2) Row 

Player (a,B)⇒(b,B) 0⇒1 (+1) 2⇒3 (+1) 

(a,A)⇒(a,B) 3⇒5 (+2) 0⇒2 (+2) Column 

Player (b,A)⇒(b,B) 0⇒1 (+1) 2⇒3 (+1) 

 

There are a couple of additional insights that may be gleaned from this example. First, the 

definition of an exact potential game does not imply differential equality condition for 

multilateral deviations as (a,A)⇒(b,B) reduces the utility for both players (3⇒1) while V 

actually increases (0⇒3). Simply because an action tuple maximizes V (making the 

action tuple an NE), it does not mean that the action tuple is optimal or desirable as 

evidenced by the fact that the NE is the only point that is not Pareto efficient. Second, this 

exact potential function is not unique. In fact any number of other exact potential 

functions for Γ can be found as 'V V c= + , where c is an arbitrary real constant added to 

all elements in the range of V. For instance, the function given below, V’, is also an exact 

potential function for Γ and is given by ' 1V V= − .  
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V’(⋅) A B 

A -1 1 

B 1 2 

 

5.1.1.2 Weighted Potential Games 

A weighted potential relaxes the conditions on the exact potential game so that the 

differential equality relationship is scaled by a weight for each player. More formally, a 

weighted potential game can be defined as shown in Definition 5.2. 

Definition 5.2: Weighted Potential Game 

A normal form game, { }, , iN A uΓ = , is said to be a weighted potential game if there 

exists some function, :V A → � , known as a weighted potential function, that satisfies 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i i iu b a u a a V b a V a aα− − − −− = −   ,i N a A∀ ∈ ∀ ∈ , 0iα >  

 

Like the exact potential game, an equivalent formulation for a weighted potential game 

exists when the utility functions are everywhere differentiable. Specifically, a normal 

form game is a weighted potential function if there exists a function V such that (5.2) is 

satisfied ,i N a A∀ ∈ ∀ ∈ . 

( ) ( )i

i

i i

u a V a

a a
α

∂ ∂
=

∂ ∂
 (5.2) 

 

Example 5.2: A 2x2 Weighted Potential Game 

Slightly modifying the payoffs of the game in Example 5.1, consider the two player 

normal form game, Γ, shown in matrix representation below which is accompanied by 

the function V.  

Γ A B 

a (3,3) (0,5) 

b (7,0) (2,1)  

V(⋅) A B 

a 0 2 

b 2 3  
 

Table 5.2 tabulates all profitable unilateral deviations in Γ (all unprofitable unilateral 

deviations can be found by reversing the direction of the deviations listed in the left 

column). Note that for unilateral deviations by the row player, the change in V and the 

change in utility are no longer exactly equal. However, if V is scaled by a factor of 2, 
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equality is again achieved. Thus, this game is a weighted potential game with weights 

2rowα =  and 1colα =  thereby satisfying the conditions of Definition 5.2. 

Table 5.2: Unilateral Deviation relationships for Γ and V 

 Unilateral 

Deviation 

Change in utility 

for deviating player Change in V αj 

(a,A)⇒(b,A) 3⇒7 (+4) 0⇒2 (+2) Row 

Player (a,B)⇒(b,B) 0⇒2 (+2) 2⇒3 (+1) 
αrow=2 

(a,A)⇒(a,B) 3⇒5 (+2) 0⇒2 (+2) Column 

Player (b,A)⇒(b,B) 0⇒1 (+1) 2⇒3 (+1) 
αcol=1 

 

Note that this modified game preserves the preference relations, improvement paths, and 

potential function of the previous example’s game. Because of this, these two games are 

said to be better-response equivalent – a concept considered more fully in Section  5.2. 

5.1.1.3 Ordinal Potential Games 

If we further relax the conditions on the relationship between V and the utility functions 

so that only sign changes are preserved, then we have an ordinal potential game, more 

formally defined in Definition 5.3. 

Definition 5.3: Ordinal Potential Game 

A normal form game, { }, , iN A uΓ =  is said to be an ordinal potential game if there 

exists some function, :V A → � , known as the ordinal potential function, that satisfies 

( ) ( ) ( ) ( ), , 0 , , 0i i i i i i i i i iu b a u a a V b a V a a− − − −− > ⇔ − > ,i N a A∀ ∈ ∀ ∈ . 

 

Like the previous potential games, an equivalent formulation exists for everywhere 

differentiable utility functions and is satisfied when there exists a function, :V A → �  

that satisfies (5.3) ,i N a A∀ ∈ ∀ ∈ .
1
 

( ) ( )
sgn sgn

i

i i

u a V a

a a

∂ ∂   
=   

∂ ∂   
 (5.3) 

 

Interestingly, if a game is an exact or weighted potential game with differentiable utility 

functions, then its potential function must also be differentiable. However, if a game is an 

                                                 
1
 It is believed that this differentiable definition of an ordinal potential game is a novel result, but this is 

unclear as it is a rather obvious extension of the differentiable definitions of exact and weighted potential 

games. 
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ordinal potential game with differentiable utility functions, then the potential function 

need not be differentiable. 

 

Example 5.3: A 2x2 Ordinal Potential Game 

Consider the normal form game, Γ, shown in matrix representation below with 

accompanying function V.  

Γ A B 

a (1,-1) (2,0) 

b (2,0) (0,1)  

V(⋅) A B 

a 0 3 

b 1 2  
 

Table 5.3 tabulates all profitable unilateral deviations in Γ (all unprofitable unilateral 

deviations can be found by reversing the direction of the deviations listed in the left 

column). Based on the listed relationships, Γ is neither a weighted nor an exact potential 

game. However, the sign is always preserved (increases in utility are reflected in 

increases in V) making this game an ordinal potential game.  

Table 5.3: Unilateral Deviation relationships for Γ and V 

 Unilateral 

Deviation 

Change in utility 

for deviating player Change in V 

(a,A)⇒(b,A) 1⇒2 (+1) 0⇒1 (+1) Row 

Player (b,B)⇒(a,B) 0⇒2 (+2) 2⇒3 (+1) 

(a,A)⇒(a,B) -1⇒0 (+1) 0⇒3 (+3) Column 

Player (b,A)⇒(b,B) 0⇒1 (+1) 1⇒2 (+1) 

 

Note that this game, like the previous two games has the FIP property and that the 

potential function is monotonically increasing along each improvement path. In general, 

there is a close relationship between the FIP property and potential games, a relationship 

clarified in the following.  

5.1.1.4 Generalized Ordinal Potential Games 

While the ordinal potential game definition seems closely related to FIP, not every game 

with FIP is an ordinal potential game. Consider the 2x2 game represented in matrix form 

shown in Figure 5.1 which was originally presented in [Monderer_96] and is quite similar 

to the previous example. 
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Γ A B 

A (1,0) (2,0) 

B (2,0) (0,1) 

Figure 5.1: A Game with FIP but no Ordinal Potential [Monderer_96] 

This game can be readily verified to have FIP by listing all improvement paths as done in 

Table 5.4. However, for this game to have an ordinal potential, the following 

relationships would have to be satisfied – V(a, A)< V(b, A)< V(b, B)< V(a, B)< V(a, A) – a 

logical impossibility. 

Table 5.4: Improvement Paths for Game in Figure 5.1 

γ1 = ((a, A), (b, A)) γ3 = ((b, B), (a, B)) γ5 = (γ2, γ3) 

γ2 = ((b, A), (b, B)) γ4 = (γ1, γ2) γ6 = (γ1, γ5) 

 

While not all games with FIP are ordinal potential games, all games with FIP do belong 

to a broader class of games known as generalized ordinal potential games.
2
 

Definition 5.4: Generalized Ordinal Potential Game  

A normal form game, { }, , iN A uΓ = is said to be a generalized ordinal potential game if 

there exists some function, :V A → � , known as the generalized ordinal potential 

function, that satisfies ( ) ( ) ( ) ( ), , , ,i i i i i i i i i iu b a u a a V b a V a a− − − −> ⇒ >  ,i N a A∀ ∈ ∀ ∈ . 

 

Unsurprisingly, it can be maddeningly difficult to identify games that are generalized 

ordinal potential games but are not also ordinal, weighted, or exact potential games. 

Reviewing the game in Figure 5.1 we can verify that Figure 5.2 is a generalized ordinal 

potential function for the game. Note that while ( ) ( ), ,i i i i i iu b a u a a− −> ⇒  

( ) ( ), ,i i i iV b a V a a− −>  is true, the following relationship, which would be required for Γ 

to be an ordinal potential game, fails: ( ) ( ) ( ) ( ), , , ,col colu a A u a B V a A V a B> ⇐ > .  

V(⋅) A B 

a 0 3 

b 1 2 

Figure 5.2: Generalized Ordinal Potential Function for Game in Figure 5.1 

                                                 
2
 For the moment, we assert this property without proof. However, a proof of this property is provided in 

Section  5.3.1. 
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5.1.1.5 Generalized εεεε-Ordinal Potential Games 

We present one more class of potential games, generalized ε-potential games, which are 

especially useful for establishing convergence of potential games with infinite action sets.   

Definition 5.5: Generalized ε-Potential Game (*)  

A normal form game, { }, , iN A uΓ =  is said to be a generalized ε- potential game if 

there exists some function, :V A → � , known as the generalized ε-potential function, that 

given 1 0ε >  there is an 2 0ε >  such that ( ) ( ) 1, ,i i i i i iu b a u a a ε− −> + ⇒  

( ) ( ) 2, ,i i i iV b a V a a ε− −> + ,i N a A∀ ∈ ∀ ∈ . 

 

It may be that the sets of generalized ordinal potential games and generalized ε-potential 

games are coincident. However, the author does not know of a proof to that effect, nor 

has he identified a promising approach for proving such a connection and it seems likely 

that if a game with an infinite action space is a generalized ordinal potential game, it need 

not also be a generalized ε-potential game. With this in mind, this document treats these 

two concepts independently. 

5.1.2 Relationships between Potential Game Classes 

By applying the definitions of the preceding section it is readily apparent that every exact 

potential game is a weighted potential game (where 1i i Nα = ∀ ∈ ); every weighted 

potential game is an ordinal potential game; and every ordinal potential game is a 

generalized ordinal potential game. Further every weighted potential game is also a 

generalized ε-potential game. 

Theorem 5.1: Weighted and Generalized ε-Potential Games (*) 

If { }, , iN A uΓ =  is a weighted potential game, then Γ is also a generalized ε-potential 

game. 

Proof: As ( ) ( ) ( ) ( ), , , ,i i i i i i i i i i iu b a u a a V b a V a aα− − − −− = −   i N∀ ∈ ,  

( ) ( ) 1, ,i i i i i iu b a u a a ε− −> + ⇒ ( ) ( ) 1, ,i i i i iV b a V a a α ε− −> + . Setting { }2 1min i
i N

ε α ε
∈

=  then 

supplies the requisite 2ε >0 for Definition 5.5. 

 

While we previously wrote that generalized ordinal potential games and generalized ε-

potential games are likely not equivalent for infinite action spaces, the two classes of 

games are equivalent for finite action spaces and every generalized ε-potential game is a 
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generalized ordinal potential game for all action spaces as shown in the following two 

theorems. 

 

Theorem 5.2: Generalized ε-Potential Games are a Subset of Generalized Ordinal 

Potential Games
3
 

If { }, , iN A uΓ =  is a generalized ε-potential game, then Γ is also a generalized ordinal 

potential game. 

Proof: Suppose ( ) ( ),i i i iu b a u a− > . Then by choosing 1 0ε >  as ( ) ( )10 ,i i i iu b a u aε −< < −  

implies that there is some 2 0ε >  such that ( ) ( ) 2,i iV b a V a ε− > + . As ( ) ( )2V a V aε+ > , 

this implies that the potential for the generalized ε-potential game is also generalized 

ordinal potential. 

 

Theorem 5.3: Generalized ε-Potential Games and Generalized Ordinal Potential Games 

for finite A
4
 

If { }, , iN A uΓ =  is a generalized ordinal potential game and A is finite, then Γ is also a 

generalized ε-potential game. 

Proof: Suppose ( ) ( ),i i i iu b a u a− > . Then choose 1 0ε >  as ( ) ( )10 ,i i i iu b a u aε −< < − . An 

appropriate 2 0ε >  can be found as ( ) ( )( ) ( ) ( ){ }2 2min , : ,i i i i iV b a V a u b a u aε ε− −= − − + . 

 

Considering the set of exact potential games, EPG, the set of weighted potential games, 

WPG, the set of ordinal potential games, OPG, the set of generalized ordinal potential 

games, GOPG, and the set of generalized ε-potential games, the relationships between 

these sets can be visualized using the Venn diagram shown in Figure 5.3.  

                                                 
3
 Proof suggested by Dr. Robert P. Gilles. 

4
 Proof suggested by Dr. Robert P. Gilles. 
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Figure 5.3: Potential Game Venn Diagram. Adapted with Permission from Fig.1 in 

[Voorneveld_00]. 

 

For the remainder of this chapter, we use the term “potential game” to refer to a 

generalized ordinal potential game. In general this nomenclature will be quite useful as an 

exact potential game is a weighted potential game is an ordinal potential game is a 

generalized ordinal potential game and all generalized ordinal potential games have FIP. 

However, when a particular property is restricted to a subclass of potential games or is a 

property of generalized ε-potential games, then the term that corresponds to the broadest 

class of applicable potential games is used.  

5.2 Identification Techniques  
While the definitions introduced in Section  5.1.1 can be used to show that a particular 

game is an exact potential game, this approach requires a seeming deus ex machina 

introduction of a potential function. This section presents various techniques by which 

exact and ordinal potential functions can be shown to exist and by which exact and 

ordinal potential functions can be identified. This section also includes a review of 

classes of games that can be shown to be exact potential games and examples of games 

frequently encountered in the field of economics applicable to cognitive radio networks 
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that can be shown to be exact potential games. Throughout the discussion in this section 

it is assumed that we are working with a normal form game defined as { }, , iN A uΓ = . 

5.2.1 Exact Potential Game Identification 

For normal form games with utility functions that are everywhere twice differentiable, 

there exists a simple technique for determining whether or not the game is an exact 

potential games. 

5.2.1.1 Twice Continuously Differentiable EPG Existence  

When all { }k iu u∈ are twice continuously differentiable and V is a EPF, [Monderer_96] 

states that (5.4) must hold ,i j N a A∀ ≠ ∈ ∀ ∈ .  Further, (5.5) constitutes a sufficient 

condition for the existence of a potential function. 

( ) ( ) ( )22 2

ji

i j j i i j

u au a V a

a a a a a a

∂∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂
 (5.4) 

( ) ( )22

ji

i j j i

u au a

a a a a

∂∂
=

∂ ∂ ∂ ∂
 (5.5) 

 

When (5.5) is satisfied, [Monderer_96] gives the following equation for finding the 

potential function. 

( ) ( )( ) ( )
1

'

0

i
i

i N

u
V a x t x t dt

a∈

∂
=

∂
∑∫  (5.6) 

where x is a piecewise continuously differentiable path that connects some fixed action 

tuple b to some other action tuple a such that :[0,1]x A→ (x(0) = b, x(1) = a).  Although 

quite general, the evaluation of (5.6) can be tedious. Frequently, the solution of a 

potential function is more easily accomplished by demonstrating that the game is one of a 

handful of common exact potential game forms and then applying an associated equation 

to find the exact potential function. 

5.2.1.2 Common Exact Potential Game Forms 

In the following we show that the following are exact potential games: coordination-

dummy games, coordination games, dummy games, bilateral symmetric interaction 

games, and multilateral symmetric interaction games. While some of the considered 
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games are trivial, more complex exact potential can be formed through the linear 

combination of exact potential games as shown in Section  0.  

5.2.1.2.1 Coordination-Dummy Games 

If all players in a game have an objective function that can be characterized as in (5.7) 

( ) ( ) ( )i i iu a C a D a−= +  (5.7) 

where :C A →� and :i iD A− → � , then the game is said to be a coordination-dummy 

game. The potential for this game can be written as ( ) ( )V a C a= .  

 

C(a) defines what is known as a coordination (identical-interest) function wherein all 

players receive the same payoff for a particular action tuple a, and ( )i iD a− defines a 

dummy function – a function where the outcome for player i is not dependent on the 

actions of i and is instead solely a function of the actions of the other players. Note that 

each player in the coordination-dummy game may have its own dummy function. 

 

It is relatively easy to show that C(a) is an exact potential for this game by noting that 

( ) ( ) ( ) ( ), , , , , ,i i i i i i i i i iu a a u b a C a a C b a i j N a A− − − −− = − ∀ ∈ ∀ ∈ . In fact all exact potential 

games can be expressed as coordination-dummy games.  

 

Theorem 5.4: Exact Potential Games, Coordination Games, and Dummy Games 

Γ is an exact potential game if and only if there exist functions :C A →� and 

:i iD A− → � such that ( ) ( ) ( )i i iu a C a D a−= + ,i N a A∀ ∈ ∈ . 

Proof: 

⇒Suppose there is no :C A →�  such that ( ) ( ), ,i i i i i iu b a u a a− −− =  

( ) ( ), ,i i i iC b a C a a− −− i N∀ ∈ . Then no exact potential exists for the game per Definition 

5.1. Therefore there must be a :C A →�  such that ( ) ( ), ,i i i i i iu b a u a a− −− =  

( ) ( ), ,i i i iC b a C a a− −− i N∀ ∈  and a potential is given by V = C. 

⇐  Sufficiency was established in the preceding discussion. 
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Example 5.4: Coordination-Dummy Game 

Consider the two player normal form game, Γ, shown in matrix representation in Figure 

5.4.  

Γ A B 

A (1,0) (3,3) 

B (4,4) (0,1) 

Figure 5.4 Relaxed Coordination Game 

This game can be equivalently expressed as a coordination-dummy game with the 

following coordination, C(⋅), and dummy, D(⋅), functions. 

C(⋅) A B 

a 0 3 

b 3 0  

D(⋅) A B 

a (1,0) (0,0) 

b (1,1) (0,1)  
 

5.2.1.2.2 Weighted Coordination-Dummy Game 

A similar game can be introduced for a weighted potential game wherein all players’ 

utility functions are of the form (5.8). 

( ) ( ) ( )i i i iu a C a D aα −= +  (5.8) 

where :C A →� , :i iD A− → � , and iα ∈� . This can be readily verified as a weighted 

potential game by applying Definition 5.2. Using (5.8), a theorem similar to Theorem 5.4 

can be established. 

Theorem 5.5: Weighted Potential Game Existence 

Γ is a weighted potential game if and only if there exist functions :C A →� and 

:i iD A− → � and scalars iα ∈�  such that ( ) ( ) ( )i i i iu a C a D aα −= + ,i N a A∀ ∈ ∈ . 

Proof: 

⇒ Suppose it is not possible to identify a function C such that 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i i iu b a u a a C b a C a aα− − − −− = −    i N∀ ∈ . Then no weighted potential 

exists for the game per Definition 5.2. 

⇐ Sufficiency was established in the preceding discussion. 

 

Note, an equivalent formulation to Theorem 5.5 is given by Theorem 2.1 in [Fachini_97]. 

5.2.1.2.3 Coordination Games 

If all players have utility functions given by (5.9) 

( ) ( )iu a C a=  (5.9) 



 203 

where :C A →� , then the game is said to be a coordination game. This is just a 

coordination-dummy game where 0id i N= ∀ ∈ and thus is an exact potential game with 

potential function C. A similar game – a weighted coordination game - can also be 

constructed wherein ( ) ( )i iu a C aα= where iα ∈� and can similarly be shown to be a 

weighted potential game. 

5.2.1.2.4 Dummy Games 

A dummy game is just a coordination-dummy game where ( ) 0C a a A= ∀ ∈ .  Note that 

the potential function for any dummy game is any arbitrary constant function, i.e., 

( )V a c a A= ∀ ∈  where c ∈� . 

5.2.1.2.5 Self-Motivated Games 

If all players have utility functions given by  

( ) ( )i i iu a S a=  (5.10) 

where :i iS A →� , then this “game” is said to be a self-motivated game. The term game 

is placed in quotation marks as we have defined a game to be a model of an interactive 

decision process. For a self-motivated game, there is no interaction and thus the term 

game is technically inaccurate. A potential function for a self-motivated is given by the 

expression: ( ) ( )i i

i N

V a S a
∈

=∑ . However, the concept of a self-motivated game is useful 

for analysis of additive potential games, a topic explored in Section 5.3. 

5.2.1.2.6 Bilateral Symmetric Interaction (BSI) Games 

As introduced in [Ui_00], if every player’s utility function can be characterized by (5.11) 

( ) ( )
{ }

( )
\

,i ij i j i i

j N i

u a w a a S a
∈

= −∑  (5.11) 

where :ij i jw A A× →�  and :i iS A →� such that for every ( ),i j i ja a A A∈ × , 

( ) ( ), ,ij i j ji j iw a a w a a= , then the game is a bilateral symmetric interaction (BSI) game.  

 

An exact potential function for a BSI game is given by (5.12). 
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( ) ( ) ( )
1

1

,
i

ij i j i i

i N j i N

V a w a a S a
−

∈ = ∈

= −∑∑ ∑  (5.12) 

Again, it is relatively straight-forward to demonstrate that this is an exact potential as 

( ) ( ) ( ) ( ) ( ) ( ), , , ,i i i i i i ij i j ij i j i i i i

j N j N

u a a u b a w a a w b a S a S b− −
∈ ∈

− = − − +∑ ∑  and 

( ) ( ) ( ) ( ) ( ) ( ), , , ,i i i i ij i j ij i j i i i i

j N j N

V a a V b a w a a w b a S a S b− −
∈ ∈

− = − − +∑ ∑ . 

5.2.1.2.7 Multilateral Symmetric Interaction Games (*) 

Given a game where all players have utility functions that can be characterized as (5.13) 

( ) ( )
{ }

( ),

2 :N

i S i S i i

S i S

u a w a D a−

∈ ∈

= +∑  
(5.13) 

where :i iD A− → � , S is a particular subset of N to which i belongs, S i
i S

a A
∈

∈ × , 

, :S i Sw A →� , S k S kA A∈= × , is a function that assigns a real number to every possible 

action vectors in AS, and it is assumed that ( ) ( ), , ,S i S S j Sw a w a i j S= ∀ ∈ . Then the game 

is said to be a multilateral symmetric interaction (MSI) game. An expression for the 

exact potential function for a MSI game is given in (5.14). 

 

( ) ( )
2N

S S

S

V a w a
∈

= ∑  (5.14) 

 

Equation (5.14) can be shown to be an exact potential for the MSI game by applying 

Definition 5.1 and noting that that ,i N a A∀ ∈ ∀ ∈ , 

( ) ( ) ( )
{ }

( )
{ }

, ,

2 : 2 :

, , , ,
N N

i i i i S i i i S i i i

S i S S i S

V a a V b a w a a w b a− − − −

∈ ∈ ∈ ∈

− = −∑ ∑  

( ) ( ) ( )
{ }

( )
{ }

, ,

2 : 2 :

, , , ,
N N

i i i i i i S i i i S i i i

S i S S i S

u a a u b a w a a w b a− − − −

∈ ∈ ∈ ∈

− = −∑ ∑ . 

The following are some interesting relations between the previously discussed games and 

the MSI game:  

• A coordination game is a MSI game where there is only one subset, S, for which 

0Sv ≠ , and this S = N and ( ) 0iD a i N= ∀ ∈ . 
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• A dummy game is a MSI game where 0 2N

Sw S= ∀ ∈ . 

• A coordination-dummy game is the combination of the preceding conditions. 

• A self-motivated game is a MSI game where the only coalitions for which 0Sv ≠  

are those S such that 1S = . 

A BSI game is a MSI game where the only coalitions for which 0Sv ≠  are those S such 

that 1S = or 2S = . 

Theorem 5.6: MSI and Exact Potential Game Equivalence (*) 

Γ is an exact potential game if and only if Γ is a MSI game. 

Proof: 

⇒ Necessity is established by leveraging the fact that all coordination-dummy games 

have a MSI game representation. Thus as all exact potential games must have a 

coordination-dummy game representation, then they must also have a MSI game 

representation. 

⇐(5.14) provides sufficiency.  

 

These exact potential game forms, the conditions on the utility functions, and the exact 

potential are summarized in Table 5.5. 

Table 5.5 Common Exact Potential Game Forms 

Game Utility Function Form Potential Function 

Coordination Game ( ) ( )iu a C a=  ( ) ( )V a C a=  

Dummy Game ( ) ( )i i iu a D a−=  ( ) ,V a c c= ∈�  

Coordination-Dummy 

Game 
( ) ( ) ( )i i iu a C a D a−= +  ( ) ( )V a C a=  

Self-Motivated Game ( ) ( )i i iu a S a=  ( ) ( )i i

i N

V a S a
∈

=∑  

Bilateral Symmetric 

Interaction (BSI)  

Game 

( ) ( )
{ }

( )
\

,i ij i j i i

j N i

u a w a a S a
∈

= −∑  

where ( ) ( ), ,ij i j ji j iw a a w a a=  

( ) ( ) ( )
1

1

,
i

ij i j i i

i N j i N

V a w a a S a
−

∈ = ∈

= −∑∑ ∑  

Multilateral Symmetric 

Interaction (MSI) Game 

( ) ( )
{ }

( ),

2 :
N

i S i S i i

S i S

u a w a D a−

∈ ∈

= +∑  

where ( ) ( ), , ,S i S S j Sw a w a i j S= ∀ ∈  

( ) ( )
2

N

S S

S

V a w a
∈

= ∑  

 

Example 5.5: A Bilateral Symmetric Interaction (BSI)  
Interference Avoidance Game [Neel_06a] 

Consider a network with a frequency reuse scheme such that cross cluster interference is 

negligible. Each cluster is power controlled so that received power at the cluster head for 

all radios is constant. However, each radio that is communicating with the cluster head is 
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also attempting to minimize the interference its signal experiences at the receiver by 

adapting its waveform. 

 

We can model this as a myopic repeated game with the normal form stage game modeled 

as follows. Each cognitive radio in a cluster is a player, the actions for each radio are its 

available waveforms, and utility functions given as (5.15) where ( ),j ka aρ is the 

statistical correlation between waveforms aj and ak with the assumption that 

( ) ( ), ,j k k ja a a aρ ρ= . 

( ) ( )
\

,j j k

k N j

u a a aρ
∈

= − ∑  (5.15) 

 

Examining Table 5.5, we can see that (5.15) satisfies the conditions for a BSI game 

where ( ) 0jS a = j N∀ ∈ . Using  Table 5.5, we then know that (5.16) is an exact potential 

function for this game. 

( ) ( )
1

1

,
i

i j

i N j

V a a aρ
−

∈ =

=∑∑  (5.16) 

5.2.1.3 Common Exact Potential Games 

Many games frequently encountered in economics can be shown to be exact potential 

games including the Prisoners’ Dilemma, the Cournot Duopoly, and the congestion game 

discussed in the following. 

5.2.1.3.1 Prisoners’ Dilemma 

Recall that the prisoners’ dilemma can be abstractly defined using the 2×2 symmetric 

game matrix shown in Figure 5.5 where y < z < w < x.  

 

Γ A B 

a (w, w) (x, y) 

b (y, x) (z, z) 

Figure 5.5 Prisoners' Dilemma Game Matrix 

This game can be expressed as a coordination dummy game as shown in Figure 5.6. Note 

that the exact potential function for this game is given by C(⋅).  
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C(⋅) A B  D(⋅) A B 

A x-z+w-y x-z  a (z-x+y, z-x+y) (z, z-x+y) 

B x-z 0  b (z-x+y, z) (z, z) 

Figure 5.6: Coordination-Dummy Game Representation of a Prisoners' Dilemma 

Note that the Cognitive Radios’ Dilemma satisfies these conditions and is thus an exact 

potential game. Also this formulation is not dependent on the relationships between x, y, 

w, and z, this same formulation holds for any 2×2 symmetric game.  

 

Of interest, [Ui_00] shows that the Prisoners’ Dilemma is also a BSI game. The original 

game can be expressed using the bilateral interaction functions and self-interested 

functions shown in Figure 5.7 where utility functions are formed as in (5.11). 

 

wij(⋅) A B 

a w x 

b x z+ x-y 

S(⋅) A B 

A (0, 0) (0, x-y) 

b (x- y, 0) (x- y, x-y) 

Figure 5.7: BSI Representation of Prisoners’ Dilemma. 

 

When (5.12) is applied to find the potential function, a function similar to the one found 

using the coordination dummy-game method is found. Specifically, the BSI exact 

potential function is offset by the scalar z+x-y. In general, every exact potential game has 

an infinite number of exact potential functions. However, the difference between any two 

exact potential functions for this game is always a scalar. 

5.2.1.3.2 Cournot Oligopoly 

Recall that in a Cournot oligopoly, there are a set of firms which compete in a commodity 

market by adjusting their production levels in an attempt to maximize their profit. The 

market is assumed to have an inverse demand function and follow a fixed per-unit cost 

function for production costs. This game can be modeled as a normal form game with the 

following components: 

• A finite set of players, N = {1,2} 

• max

1 2 0,A A a = =    

• ( )i i k i

k N

u a a M a ca i N
∈

 
= − − ∀ ∈ 

 
∑  where M is the total market demand. 
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Following the approach for a Cournot duopoly shown in [Ui_00], we can rewrite the 

utility functions to yield the following equivalent equation for an oligopoly: 

( ) ( )2

\

i i k i i i

k N i

u a a a Ma a ca
∈

= − + − −∑ i N∀ ∈ . With this rearrangement, this game can be 

immediately recognized as a BSI game with ( )ij i jw a a a= −  and 

( ) ( )2

i i i i iS a Ma a ca= − − − . Applying (5.12) to this rewritten utility function yields the 

following exact potential function. 

( ) ( )2
n

i k i i i

i N k i i N

V a a a Ma a ca
∈ > ∈

= − − − −∑∑ ∑  (5.17) 

Note that the action tuple, * , ,
1 1

M c M c
a

n n

− − 
=  

+ + 
… maximizes (5.17) and is also the 

traditional NE solution of the Cournot duopoly. As we show in Section 5.4, the 

maximizers of a potential function are always NEs. Finally it is interesting to note that we 

can also verify that the Cournot oligopoly as formulated is an exact potential game by 

applying the second order conditions of (5.5) to yield: 

( ) ( )22

1 , ,
ji

i j j i

u au a
i j N a A

a a a a

∂∂
= = − ∀ ∈ ∈

∂ ∂ ∂ ∂
. 

As it satisfies these basic modeling properties, the Bandwidth Selection game of Example 

4.9 is also an exact potential game. 

5.2.1.3.3 Congestion Games 

The congestion model has the following set of components: 

• a finite set of actors (players), N ={1,2,…,n}, 

• a set of facilities, F={1,2,…,g} 

• a set of payoffs, cf(k) where f F∈ and k is the number of users of facility f. 

 

The congestion game for this model is a strategic form game defined as follows. The 

player set, N, is the set of actors. The action set, iA , for each player is the elements of the 

power set of F (that is each player may choose any subset of facility set, F). And the 

utility function for each player is the sum of the payoffs for each facility that the player 
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chooses to use, i.e., ( ) ( )( )
i

i f f

f a

u a c aσ
∈

= ∑  where ( ) { }# :f ia i N f aσ = ∈ ∈ (i.e., the 

number of players who chose to use facility f). 

 

[Monderer_96] shows that the congestion game is an exact potential game by introducing 

the potential function: 

( ) ( )
( )

1
1

f

n
i i

a

f

kf a

V a c k

σ

=
=∈

 
=   

 
∑ ∑
∪

 (5.18) 

 

To show that (5.18) is an exact potential function for the congestion game, consider the 

following effects that can happen to a particular facility, f, when player i changes its 

facility allocation from ai to bi: 

• ( )f aσ can remain the same 

• ( )f aσ can increase by one 

• ( )f aσ can decrease by one. 

Should ( )f aσ be unchanged, then ( )( )f fc aσ remains unchanged and there is no change 

in ui(a) or V(a). Should player i add facility f, then ( )f aσ increases by one and player i’s 

utility increases by ( )( )1f fc aσ + . For the potential function, ( )
( )

1

f a

f

k

c k

σ

=

∑ goes to 

( )
( ) 1

1

f a

f

k

c k

σ +

=

∑ and thus also increases by ( )( )1f fc aσ + . If player i removes facility f, then 

( )f aσ decreases by one and player i’s utility decreases by ( )( )f fc aσ . For the potential 

function, ( )
( )

1

f a

f

k

c k

σ

=

∑ goes to ( )
( )

( )( )
1

f a

f f f

k

c k c a

σ

σ
=

−∑ and thus also decreases by 

( )( )f fc aσ . As both ui and V are sums of the real valuations of the sets of facilities and 

any change in utilization of a particular facility produces the same change for both ui and 

V, given allocations a-i, for any unilateral change of allocation of player i from ai to bi 

yields the following relationship: ( ) ( ) ( ) ( ), , , ,i i i i i i i i i iu b a u a a V b a V a a− − − −− = − . Thus V 

is an exact potential function for the congestion game. 
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Example 5.6: Distributed Channel Assignment 

Consider a collection of radios, each of which are choosing a set of up to two channels to 

operate on while attempting to maximize their throughput. With a single radio occupying 

the channel, radio’s link can achieve a throughput of 1 Mbps; with two radios in a 

channel interfering with each other, each radios’ link achieves a throughput of 400 kbps; 

with three 100 kbps; and with four or more radios 0 kbps  

 

This scenario can be modeled as a normal form game as follows. 

• The radios as the players, N ={1,2,…,n}. 

• A set of channels, C={1,2,…,c} 

• Action sets for each player, iA , which is all subsets of the power set of C that 

contain two or fewer elements.  

• Utility functions of the form ( ) ( )( )
i

i c c

c a

u a t aσ
∈

=∑  where 

( ) { }# :c ia i N c aσ = ∈ ∈ (i.e., the number of players who chose to use channel c) 

and tc is given by ( )0 0ct = , . ( )1 1ct = , ( )2 0.4ct = , ( )3 0.1ct = , and 

( ) 0, 3ct k k= > . 

Though with cognitive radios and channels rather than people and facilities (or clubs), 

this game is also a congestion game. Accordingly, this game is an exact potential game 

with an exact potential function given by (5.19). 

( ) ( )
( )

1

c a

c

c C k

V a t k

σ

∈ =

 
=   

 
∑ ∑  (5.19) 

 

5.2.2 Ordinal Potential Game Identification 

Unlike exact potential games, there are not as many well known game forms for verifying 

that a game is an ordinal potential game. A common proposed method is to show that a 

particular game is a generalized ordinal potential game with some special properties that 

make it an ordinal potential game. Another approach developed by the author is to find a 
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series of ordinal transformations, or better response transformations, such that the 

resulting game is an exact potential game. The following examines these two approaches. 

5.2.2.1 Ordinal Potential Games as Special Generalized Ordinal 
Potential Games 

Two papers – [Monderer_96] and [Voorneveld_97a] – have introduced techniques by 

which an ordinal potential game can be identified. In [Monderer_96], the following 

condition is given for an ordinal potential game. 

Theorem 5.7: Ordinal Potential Game Existence 

Suppose a finite game { }, , iN A uΓ = has FIP. If for all i ia A− −∈ and all i N∈ , 

( ) ( ), , ,i i i i i i i i iu a a u b a a b A− −≠ ∀ ∈  then Γ is an ordinal potential game. 

Proof : Since the game has FIP, then it has a generalized ordinal potential, V. However, 

since ( ) ( ), , ,i i i i i i i i iu a a u b a a b A− −≠ ∀ ∈ , ( ) ( ), ,i i i i i iu a a u b a− −> ⇔  ( ) ( ), ,i i i iV a a V b a− −> . 

 

A similar formulation introduced in [Voorneveld_97a] gives the following pair of 

conditions for establishing that a finite game Γ is an ordinal potential game: 

1. Γ lacks weak improvement cycles 

2. A is properly ordered on the preference relationship, ≺ . 

 

A discussion of these conditions necessitates the introduction of a number of definitions. 

 

Definition 5.6: Non-deteriorating Path 

A path, γ , is said to be non-deteriorating if ( ) ( )1k k

i iu a u a− ≤ for all ka γ∈ where i is the 

unique deviator at step k.  

 

Definition 5.7: Weak Improvement Cycle 

A path, γ , is said to be a weak improvement cycle if γ  is a cycle,γ is non-deteriorating, 

and for at least one ka γ∈ , ( ) ( )1k k

i iu a u a +< . 

 

Definition 5.8: Properly Ordered Set 

A set, X, is said to be properly ordered with order ≺  where ≺  is an irreflexive and 

transitive binary relation if there exists a function :F X → � such that 

( ) ( )x y F x F y⇒≺ ≺  ,x y X∀ ∈ .  

 

These definitions allow [Voorneveld_97a] to introduce the following theorem for 

identifying ordinal potential games. 
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Theorem 5.8:  Ordinal Potential Games and Weak Improvement Cycles 

[Voorneveld_97a] 

A normal form game { }, , iN A uΓ =  is an ordinal potential game if and only if the 

following two conditions are satisfied: 

1) A has no weak improvement cycles 

2) ( ),A ≺ is properly ordered.  

Proof: A proof is given in [Voorneveld_97a]. 

 

Note that for countable games, the conditions of Theorem 5.8 can be relaxed to only a 

lack of weak improvement cycles. 

Example 5.7: Ordinal Potential Games and  
Generalized Ordinal Potential Games 

Consider the normal form game Γ1 shown in Figure 5.8. As we showed in Figure 5.1, Γ1 

is a generalized ordinal potential game and has FIP but is not an ordinal potential game. 

Note that ( ) ( ), ,col colu a A u a B=  so the conditions for Theorem 5.7 are not satisfied. Also 

as γ=((a,A), (b,A), (b,B), (a,B), (a,A)) is a weak improvement cycle, Theorem 5.8 says 

that Γ1 cannot be an ordinal potential game either. 

 

Γ1 A B 

a (1,0) (2,0) 

b (2,0) (0,1) 

Figure 5.8: A Generalized Ordinal Potential Game. 

Now consider the normal form game Γ2 shown in Figure 5.9 which we previously 

showed to be an ordinal potential game. In Γ2, which has FIP, ( ) ( ), ,i i i i i iu a a u b a− −≠  

,i i ia b A∀ ∈  and there is no weak improvement cycle. So by Theorem 5.7 and Theorem 

5.8,  Γ2 is an ordinal potential game. 

Γ2 A B 

A (1,-1) (2,0) 

B (2,0) (0,1) 

Figure 5.9: An Ordinal Potential Game. 
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5.2.2.2 Equivalence Relationships (*) 

Somewhat at odds with our original intention of introducing potential games, applying 

the techniques in the preceding section requires one to exhaustively search for weak 

improvement cycles or to first establish that a game has FIP and then verify that there are 

no action vectors for which a unilaterally deviating player would be indifferent.  

 

This section takes a different approach and introduces a new technique for identifying if a 

normal form game is an ordinal potential game – the use of better response 

equivalencies. This section defines the concepts required to establish better response 

equivalence and introduces a number of valuable theorems for identifying ordinal 

potential games. 

Definition 5.9: Better-response equivalence 

A game { }, , iN A uΓ = is said to be better response equivalent to game 

{ }' , , iN A vΓ = if i N∀ ∈ , a A∈ , ( ) ( ) ( ) ( ), , , ,i i i i i i i i i i i iu a a u b a v a a v b a− − − −> ⇔ > . 

 

For notational convenience we indicate that Γ is better response equivalent to 'Γ  by 

writing 'Γ ≈ Γ . We can also define a similar concept - best response equivalence.  

Definition 5.10 Best-response equivalence [Morris_02] 

A game { }, , iN A uΓ = is said to be best response equivalent to game { }' , , iN A vΓ =  if 

i N∀ ∈ , a A∈ , ( ) ( )arg max , arg max ,
i i i i

i i i i i i
a A a A

u a a v a a− −
∈ ∈

= . 

 

For notational convenience we will indicate that Γ is best response equivalent to 'Γ  by 

writing 
max

'Γ ≈ Γ . We can also define a similar concept ε-best response equivalence.  

Definition 5.11:ε-better-response equivalence (*) 

A game { }, , iN A uΓ = is said to be ε-better response equivalent to game 

{ }' , , iN A vΓ =  there are 1 2, 0ε ε >  such that ( ) ( ) 1, ,i i i i i iu a a u b a ε− −> + ⇔  

( ) ( ) 2, ,i i i i i iv a a v b a ε− −> +  i N∀ ∈ , a A∈ . 

 

For notational convenience we will indicate that Γ is ε-better response equivalent to 'Γ  

by writing '
ε

Γ ≈ Γ . 
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Theorem 5.9:  Better response equivalence of ordinal potential games and coordination  

games (*) 

Given an ordinal potential game, { }, , iN A uΓ = , with potential V, then Γ is better 

response equivalent to the coordination game defined as { }' , , iN A v VΓ = = . 

Proof: As Γ is an ordinal potential game, ( ) ( ), ,i i i i i iu a a u b a− −> ⇔  

( ) ( ), ,i i i iV a a V b a− −> .  Since iv V= , ( ) ( ), ,i i i i i iu a a u b a− −> ⇔  ( ) ( ), ,i i i i i iv a a v b a− −>  

and 'Γ ≈ Γ . 

 

Theorem 5.9 leads to the following interesting result. 

 

Corollary: (*)  

All ordinal potential games are better response equivalent to an exact potential game. 

Proof: By Theorem 5.9, all ordinal potential games are better response equivalent to a 

coordination game. As we showed previously, all coordination (identical-interest) games 

are also exact potential game. 

 

Using the idea of better response equivalence, a similar corollary can be formulated. 

Corollary: (*) 

Γ is an ordinal potential game if and only if f there exists a game { }' , , iN A C DΓ = +  

where :C A →� and :i iD A− → �  such that 'Γ ≈ Γ . 

 

This implies that a different technique can be used to identify if a game is an ordinal 

potential game, specifically showing that the there exists another game which is an exact 

potential game and better response equivalent to the original game. 

 

Theorem 5.10: Identifying Ordinal Potential Games (*) 

A normal form game { }, , iN A uΓ =  is an ordinal potential game if and only if it is 

better response equivalent to an exact potential game. 

Proof: By the second corollary above, a Γ is an ordinal potential game if and only if there 

exists a game { }' , , iN A C DΓ = +  where :C A →� and :i iD A− → �  such that 'Γ ≈ Γ . 

By Theorem 5.4, 'Γ is an exact potential game. So Γ is an ordinal potential game if and 

only if Γ is better response equivalent to an exact potential game. 

 

5.3 Special Properties of Potential Games 
The following are some valuable properties of potential games which are not directly 

related to steady-states, optimality, convergence, or noise. Specifically, this section 
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considers the relationship between FIP and potential games, the relationships between 

AFIP and potential games, the implications of equivalence properties on FIP and AFIP, 

continuity properties of potential games, the net improvement properties of exact 

potential games, and the linear space properties of exact potential games. 

5.3.1 FIP and Potential Games 

When we introduced potential games, we stated without proof that all potential games 

have FIP. In fact, we strengthen this claim in the following by showing that a finite 

normal form game has FIP if and only if the game has a generalized ordinal potential 

function. 

Theorem 5.11: FIP and Generalized Ordinal Potential Games 

All finite generalized ordinal potential games have FIP. 

Proof: (Along the lines of a proof given in [Monderer_96]) Suppose { }, , iN A uΓ =  is a 

generalized ordinal potential game with potential V. Now consider any improvement path 

γ = (a
0
, a

1
,…) in A. Then ( ) ( )1k k

i iu a u a+ > where i is the unique deviator at step k+1. As 

Γ is a generalized ordinal potential game, ( ) ( ) ( ) ( )1 1k k k k

i iu a u a V a V a+ +> ⇒ > . Then 

V(a
0
) < V(a

1
) < … and V(γ) forms a monotonically increasing sequence. Since A is finite 

and V(γ) is monotonic, γ must be finite. 

 

Establishing a relationship in the reverse direction requires the introduction of a few 

preliminary results and terms. Define ( )aσ as the set of improvement paths that 

terminate in a and ( )( )aσL  as the length of the longest improvement path that 

terminates in a. Finally, let us define the concept of L-FIP.  

 

Definition 5.12: L-FIP (*) 

A game { }, , iN A uΓ = is said to have the L-FIP property if there exists some L ∈�  

such that the length of all improvement paths in the game are less than L. 

 

While FIP and L-FIP are equivalent for many games and all games with finite action 

spaces and L-FIP implies FIP
5
, placing a formal bound on the length of the improvement 

                                                 
5
 The following example of a game with FIP but not L-FIP was suggested by Dr. Gilles. Consider a two 

player normal form game, N={1,2}, with action sets given by { }*

i k
k

A A b
∈

= ∪
�

�∪  where { }1 , ,
k k

k kA b b=� … . 

and utility functions given as ( ) 1/iu a m=  if k

i m ka b A= ∈ �  and i ka A− ∈ �  , ( )*
, 1.5i iu b a− =  if k

i i ka b A− −= ∈ � , 



 216 

paths in a game simplifies the analysis of infinite games. For example, consider (5.20) as 

a candidate generalized ordinal potential function for any game with L-FIP and the 

following theorem. 

( ) ( )( )V a aσ= L  (5.20) 

 

Theorem 5.12: Generalized Ordinal Potential Games and L-FIP (*)
 

All games with L-FIP are generalized ordinal potential games. 

Proof: Equation (5.20) can be verified as a generalized ordinal potential function for any 

game that has L-FIP. Consider any ( ) ( ), ,i i i i i iu b a u a a− −> . Then there exists an 

improvement path from ( ),i i iu a a−  to ( ),i i iu b a− . By (5.20) ( ) ( ), , 1i i i iV b a V a a− −≥ + . 

Thus ( ) ( ), ,i i i i i iu b a u a a− −> ⇒ ( ) ( ), ,i i i iV b a V a a− −> and Definition 5.4 is satisfied. 

 

Theorem 5.12 also appears in [Milchtaich_96] with FIP as opposed to L-FIP and a 

different potential function, specifically the “integer-valued function that assigns to a 

strategy-tuple the number of strategy-tuples which are the initial point of an improvement 

path with the terminal point a is easily seen to be a generalized ordinal potential.” 

However, for infinite games that have FIP or L-FIP, this potential function can quickly 

become unevaluatable.  

 

For instance, consider the following slight modification to the infinite game with FIP 

presented in Chapter 4 (and L-FIP as defined here). Consider the three player game 

where A1 = A2 = A3 = [0,1] where the utility functions for this game be given by (5.21) 

and (5.22).  

( ) ( )1 2

1 0

0

ia
u a u a

otherwise

=
= = 


 (5.21) 

( )
( )

3

1 0,0,0

0

a
u a

otherwise

 =
= 


 (5.22) 

 

                                                                                                                                                 

( )*
, 1.5i iu a b =  if ( )* *

, 2iu b b =   and ( ) 0iu a =  otherwise. An improvement path of length 2 k+2 is given 

by ( ),
k k

k kb b , ( )1,
k k

k kb b− , ( )1 1,
k k

k kb b− − , …, (1,1),(b
*
,1), (b

*
,b

*
).  So in this game there is no longest path 

(thereby violating L-FIP), but all path lengths are finite.  
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However, under the potential function of  [Milchtaich_96], V(1,1,0) = ∞ and V(1,1,1) = ∞ 

(specifically ∞ + ∞), yet u3(1,1,1)>u3(1,1,0) which would imply that ∞>∞, an 

uncomfortable proposition. However, this game does have L-FIP as the longest 

improvement path has a length of 3.  

 

One might suppose that the potential of (5.20) suffers from the same problem. However, 

this cannot be the case as the largest value of (5.20) is the length of the longest 

improvement path in the game. As L-FIP implies that the length of no improvement path 

in the game is unbounded, there can be no a for which ( )( )aσL  is unbounded. 

Specifically, the largest value that ( )( )aσL  assumes is always the length of the longest 

improvement path in the game. For example, in the previous example the largest value 

that ( )( )aσL  assumes is 3.  

 

Combining the results of Theorem 5.11 and Theorem 5.12 yields the following. 

 

Theorem 5.13: Equivalence of Generalized Ordinal Potential Games and FIP
6
  

A finite normal form game has FIP if and only if it has a generalized ordinal potential.  

Proof: Sufficiency and necessity are supplied by Theorem 5.11 and Theorem 5.12,.  

 

For our purposes, this is a very significant result as it provides a mechanism for 

determining if a game has FIP – specifically identifying that a game is an exact or ordinal 

potential game using the techniques of Section  5.2. This then enables us to apply the 

convergence criteria and noise properties of Chapter 4 to a broad class of readily 

identifiable games.  

5.3.2 Approximate Finite Improvement Property (AFIP) 

For a finite game, the definition of FIP is equivalent to saying that the game lacks 

improvement cycles. However for games with convex action spaces, this definition is 

lacking as an infinite sequence of increasingly smaller improvements can be created 

                                                 
6
 While unboundedness for infinite games with FIP is a problem for the assertion in [Milchtaich_96], it is 

not a problem for finite games as V could never take on values greater than |A|. Thus this assertion has been 

proven before even though one of the predicate theorems in this proof had not been previously shown. 
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without encountering an improvement cycle. For instance, consider the following game 

which we’ll call “Zeno’s Game” based on Zeno’s Dichotomy or Race Course paradox.  

Example 5.8: Zeno’s Game 

In Zeno’s game, there are two players, {1,2}. Player 1 chooses to walk a distance d1 

contained in the range [0,1] and player 2 also chooses to walk a distance d2 contained in 

the range [0,1]. The player that chooses the shorter distance must pay the other player the 

number of dollars indicated by the difference in distances, i.e., ( )1 2 1u d d d= −  and 

( )2 1 2u d d d= − .  

 

Now consider the following sequence of actions, { }kd . For 0
d , player 2 always chooses 

2 1d = and player 1 chooses 1 0d = . All other elements in { }kd , player 1’s choice of 

distances is equal to its current distance plus half of the remaining distance. This process 

generates the action sequence 
2 1

,1
2

k
k

k
d

 −
=  
 

where k goes from 0 to ∞ . Note that 

{ }kd constitutes an improvement path where player 1 improves its payoff by 

2 1
1 , 1

2

k

k
k

−
− ≥ . However this improvement path continues to improve for all k making 

the path an infinite improvement path. Yet this game has an exact potential given by 

( ) 1 2V d d d= + . 

 

Clearly, not every potential game has FIP. However, such an infinite improvement path 

seems counter-intuitive to our experiences. We all know that Zeno’s paradox (on which 

this game is based) is a false paradox as we have all walked across a room where an 

equivalent infinite improvement path exists. This is because we don’t take infinitesimally 

small steps - nor could we even if we wanted. Instead, there is a limit to our how small 

step sizes can be, a concept leveraged in the ε-improvement path. 
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Definition 5.13: ε-improvement path 

Given 0ε > , an ε-improvement path is a path such that for all 1k ≥ , 

( ) ( )1k k

i iu a u a ε−> +  where i is the unique deviator at step k. 

 

While it may not be possible to generally guarantee that an infinite convex game has 

finite improvement paths for potential games, it seems reasonable that it would be 

possible to guarantee when all ε-improvement paths are finite. This concept is formalized 

in the Approximate Finite Improvement Property (AFIP) [Monderer_96].  

 

Definition 5.14: Approximate Finite Improvement Property (AFIP) 

A normal form game, Γ, is said to have to have the approximate finite improvement 

property if for every ε>0 there exists an ( )L ε ∈� such that the length of all ε-

improvement paths in Γ are less than or equal to L(ε). 

 

In effect, AFIP states that all sequences of selfish deviations that improve the deviator’s 

payoff by at least some arbitrarily, but minimally small amount must be finite. Of course, 

L-FIP implies AFIP. 

Theorem 5.14: L-FIP and AFIP (*) 

All games with L-FIP also have AFIP. 

Proof: By definition, all ε-improvement paths are also improvement paths. So if the 

length of all improvement paths is bounded, then all ε-improvement paths must also be 

bounded. 

 

An obvious condition for a game to have AFIP is a bounded action space. This condition 

is not necessary, however – just consider the example infinite game with L-FIP but with 

the action sets extending to ∞. Further while boundedness proves useful, we cannot 

readily establish that bounded generalized ordinal potential games or ordinal potential 

games have AFIP as the action space is no longer finite. However, it can be shown that 

weighted potential games with bounded potential functions have AFIP.
7
 

 

Theorem 5.15: Weighted Potential Games and AFIP (*)
7 

Every weighted potential game with a bounded potential has AFIP. 

Proof: Consider a bounded infinite weighted potential game, { }, , iN A uΓ =  with 

bounded potential function V and weights { }iα  with { }max max i
i N

α α
∈

= . Then given 0ε >  

                                                 
7
 This may or may not be a new result due to ambiguous language in [Monderer_96]. 
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and any ε-improvement path in Γ, γ, V(γ) forms a bounded monotonically increasing 

sequence with minimum step size max/ε α . Thus V(γ) must be finite and  γ must be finite 

and bounded. 

 

We are able to establish a similar result for bounded generalized ε-ordinal potential 

games in Theorem 5.16. 

 

Theorem 5.16: Generalized ε-potential game and AFIP (*)
 

Every generalized ε-potential game with a bounded potential has AFIP.
 

Proof: Consider a generalized ε- ordinal potential games, { }, , iN A uΓ =  with potential 

function bounded with ( )V a B≤ < ∞  . Given 1 0ε > , for every ε1-improvement path, 

γ={a
0
, a

1
, …, a

n
,…} in Γ, there is an ε2 >0 such that V(a

0
)+ ε2 < V(a

1
), V(a

1
)+ ε2< V(a

2
), 

V(a
k
)+ ε2< V(a

k+1 
) and V(a

0
)+ kε2< V(a

k
). Now suppose γ is infinite. Then for 

22 /k B ε=    , V(a
0
)+ 2B < V(a

k
).  But ( )V a B≤ < ∞  so V(a

0
)+ 2B ≥ V(a

k
). So γ cannot 

be longer than 22 /k B ε=     and thus γ cannot be infinite. So every generalized ε- 

potential game with a bounded potential has AFIP. 

 

We can also establish that every game with AFIP is a generalized ε-ordinal potential 

game by identifying a generalized ε-ordinal potential function as follows. Given 0ε > , 

define ( )aεσ as the set of ε-improvement paths that terminate in a. Define ( )( )aεσL  as 

the length of the longest ε-improvement path that terminates in a. Then the following 

function is a generalized ε-potential function for any game with AFIP. 

( ) ( )( )V a aεσ= L  (5.23) 

 

(5.23) can be verified as a generalized ε-ordinal potential function for any game that has 

AFIP. Suppose ( ) ( ), ,i i i i i iu b a u a a ε− −> + . Then there exists an ε-improvement path from 

( ),i i iu a a−  to ( ),i i iu b a−  so ( ) ( ), , 1i i i iV b a V a a− −≥ + . So ( ) ( ), ,i i i i i iu b a u a a ε− −> +   

implies ( ) ( ), ,i i i iV b a V a a− −> and Definition 5.5 is satisfied. This result allows us to 

introduce the following theorem. 

 

Theorem 5.17: AFIP and Generalized ε-Potential Games (*)
 

A game has AFIP only if it is a generalized ε-potential game.  

Proof: Equation (5.23) provides the necessary potential function to satisfy Definition 5.5.  
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5.3.3 Improvement Path Implications of Equivalence Properties 

In Section  5.2.2.2, we introduced a number of equivalence relationships which we can 

exploit to establish a number of useful analytic results for NEs, FIP, and AFIP. 

Theorem 5.18: Best Response Equivalence and NE 

If 
max

'Γ ≈ Γ , then the NE of Γ, if any exist, are coincident with the NE of 'Γ  

Proof: Suppose a
*
 is a NE of Γ, { }, , iN A uΓ = , and { }' , , iN A vΓ =  Then 

( )* arg max ,
i i

i i i
a A

a u a a i N−
∈

∈ ∀ ∈ . Since ( ) ( )arg max , arg max ,
i i i i

i i i i i i
a A a A

u a a v a a− −
∈ ∈

= , 

( )* arg max ,
i i

i i i
a A

a v a a−
∈

∈  i N∀ ∈ . Thus *
a is a NE for 'Γ as well. Similar logic holds in the 

reverse direction. 

  

As every game that better response equivalence implies best response equivalence, a 

similar result can be found for better response equivalent games. 

 

Corollary: Better Response Equivalence and NE (*) 

If 'Γ ≈ Γ , then the Nash equilibria of Γ, if any exist, are coincident with the Nash 

equilibria of 'Γ . 

Proof: If two games are better response equivalent, then they are also best response 

equivalent. 

 

So if the analysis of a game Γ proves difficult, we can instead analyze any other game 'Γ  

where 'Γ ≈ Γ or 
max

'Γ ≈ Γ  to solve for the Nash equilibria of Γ. Further, a better response 

transformation preserves FIP. 

Theorem 5.19: Better Response Equivalence and FIP (*) 

Given { }, , iN A uΓ =  and { }' , , iN A vΓ =  with 'Γ ≈ Γ  and A finite, then if Γ has FIP, 

then so does 'Γ . 

Proof: By Theorem 5.13, Γ has a generalized ordinal potential, V. Since for all a A∈ , 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i i i iu a a u b a v a a v b a− − − −> ⇔ >  and ( ) ( ), , 0i i i i i iu b a u a a− −− > ⇒ , 

( ) ( ), , 0i i i iV b a V a a− −− > then ( ) ( ), , 0i i i i i iv b a v a a− −− >  ( ) ( ), , 0i i i iV b a V a a− −⇒ − >  and 

'Γ  is a generalized ordinal potential game. By Theorem 5.12  again, 'Γ  must have FIP.  

 

We can establish a similar relationship for better response transformations and ordinal 

potential games. 
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Theorem 5.20: Ordinal Potential Games and Better Response Equivalence (*) 

If Γ is an ordinal potential game and 'Γ ≈ Γ , then 'Γ is also an ordinal potential game. 

Proof: Suppose { }, , iN A uΓ = with ordinal potential, V, and { }' , , iN A vΓ = . We know 

that  ( ) ( ) ( ) ( ), , , ,i i i i i i i i i i i iu a a u b a v a a v b a− − − −> ⇔ >  i N∀ ∈ , a A∈  and 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i iu a a u b a V a a V b a− − − −> ⇔ > . By the transitivity of > we thus have 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i iv a a v b a V a a V b a− − − −> ⇔ > . So V is also an ordinal potential for 'Γ . 

 

Finally, we can use the ε-better response equivalence to establish AFIP. 

 

Theorem 5.21: AFIP Equivalence (*)  

If '
ε

Γ ≈ Γ , then if Γ has AFIP, then so does 'Γ . 

Proof: Suppose { }, , iN A uΓ =  and { }' , , iN A vΓ = . By Theorem 5.17, Γ has AFIP iff  

Γ is a generalized ε-potential game with potential function V. Since 

( ) ( ) 1, ,i i i i i iu a a u b a ε− −> + ⇔ ( ) ( ) 2, ,i i i i i iv a a v b a ε− −> + i N∀ ∈ , a A∈  if 

( ) ( ) 1, ,i i i i i iu b a u a a ε− −− > ⇒ ( ) ( ) 3, ,i i i iV b a V a a ε− −− >  then 

( ) ( ) 2, ,i i i i i iv b a v a a ε− −− > ⇒ ( ) ( ) 3, ,i i i iV b a V a a ε− −− > . 

 

Example 5.9: Identifying An Ordinal Potential Game 

Consider the game { }, , iN A uΓ =  where { }1, 2, ,N n= … , [ ]0,1iA =  i N∀ ∈ , 

( )
\

1

2
i i k

k N i

u a a a
N ∈

= − − ∑ , i N∀ ∈ . The second derivative condition can not be applied 

as the first derivative is undefined for a wide range of values. However, consider the 

better response equivalent game with utility functions defined as 

( )
2

\

1

2
i i k

k N i

v a a a
N ∈

 
= − −  

 
∑ . Evaluating second order derivatives, we get the 

following
( ) ( )22

1ji

i j i j

v av a
i j

a a a a N

∂∂
= = − ∀ ≠

∂ ∂ ∂ ∂
. Thus the transformed game is an exact 

potential game, and the original game is an ordinal potential game. Further any exact (or 

ordinal) potential function for 'Γ  is also an ordinal potential for Γ . By applying this 

simple transformation, we are now able to apply potential game analysis techniques to the 

original game. 
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5.3.4 Continuity Properties of Potential Games 

In subsequent sections, the continuity of a game’s potential function is critical to 

establishing the steady-state, convergence, and stability properties for infinite potential 

games. Beyond directly evaluating continuity for each potential function, it is also 

possible to infer potential function continuity from utility function properties.  

 

Before discussing the continuity properties of potential games, we need to introduce a 

general result related to the continuity of the sum of functions. Recall that a function, 

:f A → � is said to be continuous at a A∈  where A is a metric space if for every 

0ε > there is a 0δ >  such that  'a a δ− <  implies ( )'f a a ε− < . 

Theorem 5.22: Continuity of Weighted Potential Function (*) 

Given an weighted potential game, { }, , iN A uΓ = with weights { }iα and potential 

function :V A → �  where A is a compact metric space, if :iu A → � is continuous in a 

and Di(a-i) is continuous in a i N∀ ∈ , then V is uniformly continuous in a for all i∈N. 

Proof: Recall that by Theorem 5.5 that Γ is a weighted potential game if and only if there 

exist functions :C A → � and :i iD A− → �  and scalars iα ∈�  such that 

( ) ( ) ( )i i i iu a C a D aα −= + ,i N a A∀ ∈ ∈ . The continuity of Di and ui implies that C is 

continuous as well. As any potential function for a weighted potential game must be of 

the form ( ) ( )VV a C a kα= +  and continuity is preserved for linear transformations, V(a) 

is continuous as well. As V is continuous, V is also uniformly continuous in a as A is 

compact. 

 

Note that the same conditions imply that an exact potential function is uniformly 

continuous as an exact potential game is a weighted potential game. Unfortunately, not 

all ordinal potential games are continuous even with continuous utility functions and a 

compact action space. For instance, Theorem 4.1 in [Voorneveld_97b] gives the 

following normal form game which is shown to be an ordinal potential game, but for 

which no continuous potential function can exist.  
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Example 5.10: An Ordinal Potential Game without a Continuous 
Potential Function [Voorneveld_97b] 

Consider the normal form game, { }, ,
i

N A uΓ = , with { }1, 2N = , [ ]1 2 0,1A A= =  and 

payoff functions defined as  

 ( )

( ) ( )

( )

1 2

6

1 21 1 2
3

2 2

1 2

0 , 0,0

,

a a

a au a a
otherwise

a a

=


= 
 +

  

 ( )

( ) ( )

( )

1 2

6

1 22 1 2
3

2 2

1 2

0 , 0,0

,

a a

a au a a
otherwise

a a

=


= 
 +

. 

Then an ordinal potential function for this game is given by  

 ( )

( ) ( )

( )

1 2

1 2

3
2 2

1 2

0 , 0,0a a

a aV a
otherwise

a a

 =


= 
 +

. 

The sequence ( ){ }/ 2 / 2
2 , 2

n n
γ

− −      = forms an infinite improvement path. However, as 

shown in [Voorneveld_97b]. V(γ) is an unbounded monotonically increasing sequence 

and thus has no maximum. As A is compact and V has no maximum, V cannot be 

continuous. [Voorneveld_97b] goes on to show that every ordinal potential game for Γ 

must be strictly increasing on γ and thus does not have a maximum. Accordingly there is 

no continuous ordinal potential function for Γ. 

5.3.5 Net Improvement Properties of Exact Potential Games 

Given a finite normal form game with utility functions, {ui}and a finite path 

( )0 1, , , ma a aγ = … , we define the net improvement of the path, I(γ, {ui}) as in (5.24) 

{ }( ) ( ) ( )1

1

,
k k

m
k k

i i i

k

I u u a u aγ −

=

 = − ∑  (5.24) 

where ik is the unique deviator at step k.  
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Example 5.11: Example Calculation of Net Improvement 

Consider the finite normal form game shown in Figure 5.10 and the path, γ = ((a,A), 

(a,B), (b,B), (b,A), (a,A)). We calculate the net improvement as I(γ, {ui}) = 2 + 1 - 1 – 2 = 

0. 

Γ A B

a (3,3) (0,5)

b (5,0) (1,1)γ

Γ A B

a (3,3) (0,5)

b (5,0) (1,1)

Γ A B

a (3,3) (0,5)

b (5,0) (1,1)γ
 

Figure 5.10 Exact Potential Game Γ 

 

The fact that I(γ, u)=0 in this example is not by chance. In Example 5.1, it was shown that 

this game is an exact potential game. For all exact potential games, there is a special 

property for finite closed cycles made explicit in Theorem 5.23. 

Theorem 5.23: Exact Potential Games and Net Improvement on a Cycle [Monderer_96] 

Let Γ be a finite normal form game. Then the following claims are equivalent: 

 (1) Γ is an exact potential game. 

 (2) I(γ,u) = 0 for every finite closed cycle γ. 

 (3) I(γ,u) = 0 for every finite simple closed cycle γ. 

 (4) I(γ,u) = 0 for every finite simple closed cycle γ of length 4. 

Proof: The proof of this theorem is omitted here due to its length. However, a full proof  

is provided in Appendix A of [Monderer_96]. 

 

Theorem 5.23 also forms the theoretical basis of the following algorithm for identifying 

exact potential games. 

 

Motivated by Theorem 5.4 (coordination dummy games and potential games) and assured 

by Theorem 5.23, we can establish the following algorithm which verifies that a game is 

an exact potential game by attempting to find its constituent coordination and dummy 

games. When applied to a finite exact potential game, the coordination-dummy algorithm 

yields the game’s constituent coordination and dummy functions. If the coordination-

dummy game algorithm is applied to a game that is not finite exact potential game, then 

the algorithm fails by giving different values for the same action tuple or by continuing 

indefinitely. .  
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Algorithm 5.1: Coordination-Dummy Game Algorithm 

Coordination Function Identification 

 (1) Pick any initial action tuple, a
*
. Assign ( )* 0C a = . 

 (2) Define the set A
*
 as the set of all profitable unilateral deviations from a

*
 contained 

  in A. 

 (3) For all *
a A∈ , assign ( ) ( ) ( ) ( )* *

i iC a C a u a u a= + − where i is the unique deviator 

  from a
*
 to a. 

 (4) Pick any *
a A∈ .  Define a

*
 = a.  

 (5) Repeat steps 2-4 until C(a) is defined for all a A∈ . 

 

If at any step two different valuations of C(a) are found, then the algorithm fails and the 

game is not an exact potential game. 

 

Dummy Function Identification 

Assuming the coordination function was successfully identified, then the dummy 

functions can be found as ( ) ( ) ( )i id a u a C a= − . 

5.3.6 Linear Space of Exact Potential Games 

Interestingly, [Fachini_97] shows that the set of all exact potential games with player set 

N and action space A form a linear (vector) space. This means that when we take linear 

combinations of exact potential games with a shared player set and common action space, 

the result is also an exact potential game.  

 

Definition 5.15: Linear Space 

Given a set X, X is said to be a linear space if for every , ,x y z X∈  and every ,α β ∈� it 

satisfies the following ten (10) properties:  

 (1)  Closure under addition, x y X+ ∈  

 (2)  Closure under scalar multiplication, i.e., x Xα ∈  

 (3)  Commutativity, i.e., x y y x+ = +  

 (4)  Additive Associativity, i.e., x y y x+ = +  

 (5)  Additive Identity, i.e., there is some 0 X∈ such that if x X∈ , 0 x X+ = . 

 (6)  Additive Inverse, i.e., for every x X∈ , there is some x X− ∈ such that   

  ( ) 0x x+ − = . 

 (7) Associativity of Scalar Multiplication, i.e., ( ) ( )x xα β αβ=  

 (8)  Distributivity of Scalar Sums, i.e., ( ) x x xα β α β+ = +  

 (9)  Distributivity of Vector Sums, i.e., ( )x y x yα α α+ = +  

 (10)  Scalar Multiplicative Identity, i.e., 1x=x. 
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To prove that the set of exact potential games form a linear space (or more accurately that 

subsets of exact potential games form linear spaces), we must first define the set of exact 

potential games and the addition and scalar multiplication operations for exact potential 

games. 

 

Following the notation in [Fachini_97], we define ,N AΓ  as the family of normal form 

games with player set, { }1, ,N n= … , action space i
i N

A A
∈

= × , and utility functions, 

:iu A →�  i N∈ , such that for each ,N AΓ ∈Γ , Γ is an exact potential game (implying 

possibly different potential functions). We’ll define the addition of two games, 

,

1 2, N AΓ Γ ∈Γ , { }1 , , iN A uΓ = , { }2 , , iN A vΓ =  as { }1 2 3 , , i iN A u vΓ + Γ = Γ = + . 

We’ll further define the scalar multiplication of game 1Γ  by α ∈� as 

{ }1 , , iN A uα αΓ = . These conventions permit the introduction of the following theorem. 

 

Theorem 5.24: Linear Space of Exact Potential Games [Fachini_97] 
,N AΓ  forms a linear space 

Proof: A proof of this result is given in [Fachini_97]. However, some key aspects of this 

proof are repeated in the following. An additive identity element is given by the game 

{ }, , 0N AΓ =  which has exact potential function ( ) 0V a = . Given exact potential 

games, ,

1 2, N AΓ Γ ∈Γ with potential functions V1 and V2, and scalars 1 2,α α ∈� , 

3 1 1 2 2α αΓ = Γ + Γ , then Γ3 is an exact potential game with potential V3 = α1V1 + α2V2.�    

 

Applications of Theorem 5.24 are given in Example 5.12 and Example 5.14. In general, 

the knowledge that we can scale, add constants, and add together exact potential games 

and still get a potential game is a valuable insight for cognitive radio analysis and design. 

For instance once a cognitive radio designer shows that his cognitive radio network forms 

an exact potential game, any number of individual cost functions can be additively 

introduced  to the radios utility function while preserving the implication that the network 

is an exact potential game. We return to this topic in Section 5.5 when we discuss the 

desirability and optimality of the steady-states of potential games.  
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Example 5.12: Linear Combination of Exact Potential Games 

Consider the finite normal form games shown in Figure 5.11. These games are exact 

potential games with potential functions shown in Figure 5.12. 

Γ1 A B 

a (3,3) (0,5) 

b (5,0) (1,1)  

Γ2 A B 

a (1,0) (1,1) 

b (0,0) (0,1)  
Figure 5.11 Exact Potential Games 

 

V1 A B 

a 0 2 

b 2 3  

V2 A B 

a 1 2 

b 0 1  

Figure 5.12 Exact Potential Functions 

If a third normal form game is formed as Γ3 =Γ1+Γ2, then Γ3 is an exact potential game 

with exact potential V3 = V1 + V2. 

Γ3 =Γ1+Γ2 A B 

a (4,3) (1,6) 

b (5,0) (1,2)  

V3 =V1+V2 A B 

a 1 4 

b 2 4  
 

 

Example 5.13: Linear Combination of Ordinal Potential Games8
 

Consider the finite normal form games shown in Figure 5.13. These games are ordinal 

potential games with potential functions shown in Figure 5.14. 

Γ1 A B 

a (3,3) (0,5) 

b (5,0) (1,1)  

Γ2 A B 

a (8,0) (0,-1) 

b (0,2) (4,0)  
Figure 5.13: Ordinal Potential Games 

 

V1 A B 

a 0 2 

b 2 3  

V2 A B 

a 3 0 

b 2 1  

Figure 5.14: Ordinal Potential Functions 

If a third normal form game is formed as Γ3 =Γ1+Γ2, shown in Figure 5.15, then Γ3 is not 

an ordinal potential game as it contains an improvement cycle. Thus the space of ordinal 

potential games is not closed under addition. Further as Γ1 is an exact potential game, it is 

                                                 
8
 A similar example is shown in [Voorneveld_96]. 
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seen that an additive combination of an exact potential game and ordinal potential game 

is not guaranteed to be a potential game either. This holds significant meaning for the 

identification of ordinal potential games as unlike exact potential games we cannot show 

that a game is an ordinal potential game merely by showing that it can be expressed as a 

sum of ordinal potential games. Instead, we have to show that the entire game is better 

response equivalent to some exact potential game. 

Γ3 =Γ1+Γ2 A B 

a (11,3) (0,4) 

b (5,2) (5,1) 

Figure 5.15: A Game Formed by Additive Combination of Ordinal Potential Games. 

 

Example 5.14: Target SINR Power Control9 (*) 

Consider a single cell network of cognitive radios adjusting their transmit powers in an 

attempt to achieve a target SINR at a common base station.  In general this can be 

modeled as a myopic repeated game as follows. The set of power adapting cognitive 

radios form the player set. Each player’s action set is defined by the associated radio’s 

available power levels, Pi = [0, pmax]. Each radio’s adaptations are guided by the utility 

function shown in (5.25) 

( )

\

ˆ

1/

i i
i

k k

k N i

g p
u

K g p

γ

σ
∈

= − −
 

+ 
 
∑

p  (5.25) 

where pi∈Pi, p = (p1,…,pn) is a transmit power vector, gi is the gain from radio i to the 

base station, K is the spreading gain, σ is the noise power at the base station, and γ̂  is the 

target SINR.  

 

As shown the utilities in this game are not well formed as the first derivative is not 

defined everywhere and the utility function is not in the form of one of the forms listed in 

Table 5.5. However, consider the objective function shown in (5.26) which is better-

response equivalent to (5.25) assuming noise power is greater than zero. 

                                                 
9
 The analysis in this example was originally presented in [Neel_04a]. 
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( )
2

'

\

ˆ /i k k i i

k N i

u K g p g pγ σ
∈

  
= − + −  

  
∑p  (5.26) 

Expanding and rearranging (5.26) yields (5.27).  

( )' 2 2

\

2

\

ˆ2 /

ˆ2 /

ˆ /

i i i i i

i k i k

k N i

k k

k N i

u g p K g p

K g g p p

K g p

γ σ

γ

γ σ

∈

∈

= − +

 
+  

 

  
− +  

  

∑

∑

p

 

(5.27)  

Now notice that { }2 2 ˆ, , 2 /i i i iN P g p K g pγ σ− +  is a self-motivated game; 

\

ˆ, , 2 / i k i k

k N i

N P K g g p pγ
∈

  
  

  
∑  is a BSI game with symmetric interaction term 

( ),ij i j i j i jw p p g g p p=  which has been scaled by the factor ˆ2 / Kγ ; and 

2

\

ˆ, , / k k

k N i
i N

N P K g pγ σ
∈

∈

    
+   

    
∑  is a dummy game. So by Theorem 5.24, the game 

{ }', , iN P u  is an exact potential game as it is a linear combination of exact potential 

games. Because { }', , iN P u  is a better response transformation of { }, , iN P u , by 

Theorem 5.10, { }, , iN P u  is an ordinal potential game with a potential function given 

by (5.28) 

( ) ( )2 2ˆ ˆ2 / 2 /
n

i k i k i i i i

i N i k i N

V K g g p p g p K g pγ γ σ
∈ > ∈

 
= + − + 

 
∑∑ ∑p  (5.28) 

5.4 Steady States of Potential Games 
In addition to some valuable convergence and stability properties that will be established 

in Sections 5.6 and 5.7, potential games have several interesting Nash equilibrium 

properties.  

 

Theorem 5.25: Nash equilibrium existence and finite potential games 

All finite potential games have at least one NE. 

Proof: As shown in Theorem 5.13 all finite potential games have FIP. As shown in 

Chapter 4, all games with FIP have at least one NE. 
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While Theorem 5.25, assures us of the existence of an NE in a finite potential game, it 

provides little help in identifying the game’s NEs. However, Theorem 5.26 provides a 

powerful result for identifying NE in finite and infinite potential games. 

 

Theorem 5.26: Potential function maximizers and Nash equilibria 

Given a potential game, { }, , iN A uΓ =  with potential function V, global maximizers of 

V are Nash equilibria.  

Proof: Suppose ( )* max
a A

a V a
∈

= is not a NE. Then there is some 'a A∈ where a' differs 

from *
a in coordinate i such that ( ) ( )*'i iu a u a> . But this implies that ( ) ( )*'V a V a>  and 

that *
a  is not a global maximizer of V. Therefore a

*
 must be a NE. 

 

The global maximizers of the potential function, V, may merely be a subset of the all NE 

in a game. Fortunately, only those NE that are isolated maximizers of V are stable for 

most selfish processes - a claim we prove in Section 5.7.  

 

In Chapter 4 we showed that all games with FIP must have an NE. However, this need 

not be the case for games with AFIP. Instead games with AFIP are assured of having 

what is known as an ε-Nash equilibrium (ε-NE). 

 

Definition 4.16: ε-Nash equilibrium 

An action tuple, a
*
, is said to be an ε-Nash equilibrium if for every i N∈ , 

( ) ( )* *,i i i i i iu a u a a a Aε−≥ − ∀ ∈ where 0ε ≥ . 

 

A game can have an ε-Nash equilibrium without having a Nash equilibrium. For instance, 

consider Zeno’s game introduced in Example 5.8, but with action sets defined as 

[ )1 2 0,1A A= = . In this scenario, there is no action tuple that cannot be improved upon by 

increasing ai meaning that there is no NE in the game However, given ε>0, all action 

tuples where both components are in the interval [ )1 ,1ε− are ε-Nash equilibria. Note that 

as an NE is an ε-Nash equilibrium for all ε>0, a game’s NE are always a subset of its ε-

NE for all for all ε>0. 
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Theorem 5.27:  AFIP and ε-NE Existence 

All games with AFIP have at least one ε-NE. 

Proof: Given a game Γ with AFIP, there must be at least one action tuple, a
*
, from which 

there exists no unilateral deviation that improves the payoff by at least ε (otherwise the 

game would not have AFIP). This action tuple a
*
 must be an ε-Nash equilibrium as there 

exists no other a A∈ such that ( ) ( )* *,i i i iu a a u a ε− > + . 

 

For generalized ε-potential games, results similar to Theorem 5.25 and Theorem 5.26 can 

be established for the existence and identification of ε-Nash equilibria.  

Theorem 5.28: Generalized ε-potential games and ε-Nash equilibria (*) 

All generalized ε-ordinal potential games have at least one ε-Nash equilibrium. 

Proof: As all generalized ε-potential games have AFIP, all generalized ε-potential games 

have at least one ε-Nash equilibrium as AFIP implies the existence of some action tuple 

action tuple, a
*
, for which there exists no '

ia  such that ( ) ( )' * * *, ,i i i i i i i iu a a u a a a Aε− −− ≥ ∀ ∈  

(otherwise no ε improvement path would be finite). 

 

Again, maximizers of an ε-potential function are also ε-NE.  

 

Theorem 5.29: Generalized ε-potential function maximizers and ε-Nash equilibria (*) 

Given a generalized ε- potential game, { }, , iN A uΓ =  with potential function V, 

maximizers of V are ε-Nash equilibria.  

Proof: Suppose ( )* max
a A

a V a
∈

=  is not an ε-Nash equilibrium. Then there is some 

'a A∈ where a' differs from *
a in coordinate i such that ( ) ( )*

1'i iu a u a ε> + . But this 

implies that ( ) ( )*

2'V a V a ε> +  and that *
a  is not a maximizer of V. Therefore a

*
 must be 

an  ε-Nash equilibrium. 

 

Unfortunately, not all functions can be assured of having a maximum so some conditions 

must be satisfied to ensure that a maximum of V exists.  

 

Theorem 5.30: Nash equilibria and continuous potential functions [Monderer_96] 

All potential games with a compact action space and a continuous potential function have 

at least one NE.  

Proof: All continuous functions on a compact action space are uniformly continuous and 

have a global maximum. So if the potential function is continuous and the action space is 

compact, then the potential function must have a maximum. By Theorem 5.26 this global 

maximum is an NE. 
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Note that as all NE are also ε-NE, Theorem 5.30 also supplies a sufficient condition for 

the existence of ε-NE. Thus for potential games, we have readily applied conditions for 

determining the existence of and identifying NE and ε-NE for finite and infinite potential 

games. Beyond directly evaluating the continuity of the potential function, techniques for 

determining the continuity of a potential game’s potential function are considered in 

Section  5.3.4.  

5.5 Optimality 
In general, little can be said about the optimality or desirability of the steady states of a 

cognitive potential game. They need not be Pareto efficient, and they are not generally 

maximizers of a design objective function. For example if we are trying to maximize the 

sum utilities of the radios, the steady-state of the cognitive radios’ dilemma is 

undesirable. 

 

However, when the potential function is also the network objective function, i.e., V J= , 

then if V admits a global maximum, then there exists a NE that is optimal. Further, as 

deterministic unilateral play increases the value of V with each iteration, it is safe to say 

that the stable steady-state of the network will give better performance than the initial 

state of the network. For example, consider the adaptive interference avoidance game of 

Example 5.5. While this game necessarily has numerous steady states, if the network’s 

designer is attempting to minimize total network interference, then the steady-states will 

generally be desirable and performance will improve with each adaptation.  

 

Alternately, it is a relatively straight forward task for a cognitive radio designer to move 

the steady-state of an exact potential game, a
*
 to some other desired valid state, a

**
 by 

exploiting the linear space properties of exact potential games. The procedure for doing 

so is as follows.
10

    

 

Introduce an identical interest network cost function, NC(a) which is found by solving 

(5.29) for NC(a) 

                                                 
10

 This procedure is taken from [Neel_02]. 
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( ) ( )** **

0
i i

V a NC a

a a

∂ ∂
+ =

∂ ∂
 (5.29) 

where V(a) is the original game’s potential function.  In other words, at the desired action 

tuple, the network cost function should have the negative slope of the potential function’s 

slope.  After solving for NC(a), “charge” the radios this cost function.  This can either be 

done by directly incorporating NC into each radio’s reasoning process or as a cost 

imposed by the network on the radios.  Thus the modified utility function for each radio 

takes the form shown in (5.30). 

( ) ( ) ( )'

i iu a u a NC a= +  (5.30) 

 

Since the original game was an exact potential game and NC(a) is an identical interest 

(coordination) game, the modified game is also an exact potential game with an exact 

potential given by (5.31). 

( ) ( ) ( )'V a V a NC a= +  (5.31) 

 

Note that this process may introduce additional NE depending on the characteristics of 

V(a) and the choice of NC(a). Care should also be taken so that the original NE is no 

longer a NE.  To minimize the creation of new NE, it is suggested that the function be of 

low order or a piecewise function. Ideally, V should be a concave function and NC a 

linear function as this combination preserves both the concavity and the uniqueness of the 

potential maximizing NE. Also note that it is possible to impose arbitrary cost functions 

to create arbitrary potential functions.  However, this will not in general be desirable, as 

significant alterations in the potential function will result in significant changes to the 

behavior of the network, perhaps negating the original advantages of the adaptation 

scheme.  Further, while this solution is deterministic, the actual channel conditions will 

be stochastic and the stability of the NE should also be considered.  Thus in general, it is 

anticipated that small changes in the neighborhood of the original NE will be more 

desirable than more significant continual alterations to the game. Finally note that while 

this example considered the addition of an additive cost identical interest function, 

similar results should be achievable using additive self-motivated functions (such as 

battery life for a transmit power control algorithm). 
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5.6 Convergence of Potential Games 
Unlike in Chapter 4, potential games permit us to establish convergence results for 

myopic repeated games for games with both finite and infinite action spaces. Continuing 

a trend from Chapter 4, by applying traditional engineering analysis tools in a game 

theoretic setting, we are able to analyze broad classes of cognitive radio algorithms and 

ontological radio algorithms instead of just a single procedural algorithm at a time. 

5.6.1 Decision Rule Classes 

As we study the convergence of potential games, it is useful to define some additional 

decision rules. Continuing the notation from previous chapters, a decision rule is a 

mapping :i id A A→  that defines the action that a cognitive radio based on an observation 

of the network state. As before, the convergence analysis of this chapter also constrains 

itself to individually rational decision rules as defined in Definition 4.3. 

 

In addition to the decision rules considered in Chapter 4, it will be useful to consider two 

more classes of decision rules - ε-better response dynamic and the intelligently random 

better response dynamic. 

Definition 5.17: ε-Better Response Dynamic 

A decision rule :i id A A→  is an ε-better response dynamic if given ε>0, each adaptation 

would improve the radio’s utility by at least ε if all other radios continued to implement 

the same waveforms, i.e., ( ) ( ) ( ){ }: , ,i i i i i i i i id a b A u b a u a a ε− −∈ ∈ ≥ + . 

 

In addition to being useful for convergence analysis in infinite potential games, an ε-

better response dynamic is also used in Chapters 6 and 7 to stabilize a system which is 

unstable because of a lack of isolated maximizers of V.  

 

Definition 5.18: Intelligently Random Better Response Dynamic 

A decision rule :i id A A→  is an intelligently random better response dynamic if for each 

ti∈Ti, radio i randomly chooses an action from its better response set, i.e., 

( ) ( ) ( ){ }: , ,i i i i i i i i id a rand b A u b a u a a− −= ∈ > . If the set is empty, then no adaptation 

occurs. 
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Like the random better responses of Definitions 4.12 and 4.13, intelligently random better 

response dynamics have certain analytical advantages such as their only steady states are 

NE and as we will see shortly, these decision rules converge under a broad range of 

conditions. On average, however, the intelligently random better response dynamic 

converges faster than the random better responses of Chapter 4 as the probability of 

lingering on a transient state by players trying a non-preferable adaptation is less for the 

intelligently random better response dynamic.  

5.6.2 Convergence in Finite Games 

As we established in Theorem 5.13, having a generalized ordinal potential is equivalent 

to having FIP for finite games. In Chapter 4, we established the conditions under which a 

finite game with FIP converges. Adding to these results, it is seen that both the ε-better 

response dynamic and the intelligently random better response dynamic generate 

improvement paths which by FIP must be finite. Thus these two decision rules converge 

under round-robin, random, and asynchronous decision rules. As before, both decision 

rules, however, can fail under synchronous timing. For instance, consider the game 

matrix shown in Figure 5.16. Repetition of a synchronous best response starting at (a,A) 

yields the oscillation ( ) ( ), ,a A b B↔  where neither ( ),a A nor ( ),b B are NE. Finally, it 

should be noted that even in a finite game, the ε-better response dynamic may not 

converge to an NE if ε is sufficiently large. For instance, consider again the game of 

Figure 5.16 with ε=3.  

 
Figure 5.16: Coordination Game With Synchronous Play 

 These convergence results are summarized in Table 5.6 where an entry of ‘Y’ specifies 

convergence and ‘N’ indicates that convergence is not assured.  
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Table 5.6: Guaranteed Convergence Conditions for Finite Potential Games 

 Timings 

Decision Rules 
Round-

Robin Random Synchronous Asynchronous 

Best Response Y Y N Y 

Exhaustive Better Response Y Y N Y 

Random Better Response
(a)

 Y Y Y Y 

Random Better Response
(b)

 Y Y N Y 

ε-Better Response
(c) Y Y N Y 

Intelligently Random Better Response  Y Y N Y 
(a) Proposed random better response  (b) Random better response of [Friedman_01] (c) Convergence to an 

ε-NE 

 

In general, finite potential games are guaranteed to converge under every set of timings 

with rational decision rules except for synchronous timings. However, it is possible for a 

game to simultaneously satisfy multiple models which can expand its convergence 

conditions. As these models supply sufficient, but not necessary, conditions for 

convergence, simultaneously satisfying multiple models implies that all convergence 

conditions are satisfied. For instance, a game may simultaneously be a potential game 

and IESDS solvable which would imply that such a game would also be guaranteed to 

converge under synchronous best responses and the random better response of 

[Friedman_01]. An example of a game that is both a potential game and IESDS solvable 

is the cognitive radios’ dilemma. 

5.6.3 Convergence in Infinite Games  

To study the convergence of play in infinite potential games, we make the following 

assumptions. 

• The cognitive radio network can be modeled as a myopic repeated game. 

• The stage game is a potential game with convex, compact A, and potential 

function V. 

5.6.3.1 Implications of FIP (*) 

As we showed in this chapter and in Chapter 4, games with infinite action spaces can 

have FIP. As these games have FIP, all sequences of better responses must converge in a 

finite number of steps. Thus all round-robin and randomly timed exhaustive better and 

best response decision rules must converge to an NE in infinite potential games. 
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Similarly, under asynchronous timing with a best response or exhaustive better response, 

the system must eventually happen upon one of the timing sequence of finite length that 

converges. Likewise ε-better response dynamic and the intelligently random better 

response dynamic generate improvement paths which by FIP must be finite. Thus these 

two decision rules also converge under round-robin, random, and asynchronous decision 

rules. 

 

Unlike before, the random better responses cannot be guaranteed to converge to an NE 

using the earlier techniques applied to games with FIP. As in the examples of infinite 

games with FIP, it may be the case that specific actions are required for improvement. In 

an infinite action space, where a player is randomly selecting its actions from an infinite 

set, each player would have a theoretically 0% probability of randomly choosing the 

single action that improves its performance. So the random better response decision rules 

could not be guaranteed to converge for any class of decision timings. So at odds with the 

results for finite games, the random better response decision rules converge to an NE 

under the fewest timings. However, these algorithms are still guaranteed to converge as 

will be shown in a Section  5.6.3.3. These convergence results are summarized in Table 

5.7. 

Table 5.7: Guaranteed Convergence Conditions for Infinite Potential Games with FIP 

 Timings 

Decision Rules 
Round-

Robin Random Synchronous Asynchronous 

Best Response Y Y - Y 

Exhaustive Better Response Y Y - Y 

Random Better Response
(a)

 - - - - 

Random Better Response
(b)

 - - - - 

ε-Better Response
(c) Y Y - Y 

Intelligently Random Better Response  Y Y - Y 
(a) Proposed random better response  (b) Random better response of [Friedman_01] (c) Convergence to an 

ε-NE 

5.6.3.2 Implications of AFIP 

The fact that all generalized ε-potential games have AFIP implies that all ε-improvement 

paths are finite in a game with AFIP. Thus the ε-better response converges for round-

robin and random timings. Further, as games with AFIP are characterized by some 
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L ∈� such that no ε-improvement paths is longer than L, the ε-better response also 

converges to an ε-NE for asynchronous timings as t→∞. As all games with FIP also have 

AFIP, all decision rules which are not guaranteed to converge under FIP are also not 

guaranteed to converge under AFIP. Specifically, the two random better response 

decision rules are not guaranteed to converge under AFIP.
11

  

5.6.3.3 General Convergence12 

Broader convergence implications can be drawn by introducing Zangwill’s Convergence 

Theorem A which for clarity requires a clarification on when a decision rule is closed.  

Definition 5.19: Closed Set-Valued Function 

A set valued function : 2Yf X →  is said to be closed at *
x X∈  if ( )k ky f x∈ the 

following pair of conditions 

 1) * lim k
k

x x
→∞

= , *,kx x X∈  

 2) * lim k
k

y y
→∞

= , *,ky y Y∈  

imply ( )* *y f x∈  where ( )k ky f x∈ . The function f is said to be closed on X if f is 

closed for all x X∈ .  

 

Applying this definition to functions of the form :d A A→ , d is a closed set-valued 

function if and only if ( )* 1lim k k

k
a a d a

+

→∞
= ∈  implies ( )* *a d a∈ . Thus d is closed if and 

only if all limit points of a recursive application of d are also fixed points of d.  

 

 

 

                                                 
11

 I am not drawing more general implications in this section because of the following scenario. Suppose 

that a round-robin sequence of best responses generates an action sequence defined by the harmonic series 

1, 1 + 1/2, 3/2 + 1/3, … Such a game would have AFIP as for any ε>0 there would come a point from 

which no single best response and thus no better response could improve by at least ε>0 (specifically the k
th

 

term where 1/k=ε). Thus an ε-better response would converge. However, all of the other decision rules 

would diverge. Unfortunately, I do not know of a normal form game that yields such a sequence of best 

responses, so this implication is left as a footnote to the discussion of AFIP. 
12

 The application of Zangwill’s Convergence Theorem to potential games was independently developed by 

the author. However, a later literature survey revealed that [Ermoliev_02] had previously made the 

application outside of the game theory or wireless literature. However, the broader convergence 

implications of Zangwill’s to the decision rules in D
V
 (defined in Definition 5.20) represent a novel 

contribution. Also the averaged best response decision rule, though a well known process, is shown to 

converge by leveraging Zangwill’s in [Ermoliev_02]. However, [Ermoliev_02] requires that ui be concave 

when only quasi-concavity is required. This distinction is important for many power control algorithms for 

which ui is quasi-concave but not necessarily concave. 
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Theorem 5.31: Zangwill’s Convergence Theorem A [Zangwill_69] 

Let d:A→A determine an algorithm that given a point a
0
 generates a sequence ( )

0

k
a

∞

 

through the iteration a
k+1∈ d(a

k
). Let a solution set, S

*⊂ A, be given. Suppose 

 (1) All points ( )
0

k
a

∞

 are in a compact set S A⊂ .  

 (2) There is a continuous function : Aα →� such that: 

  (a) if *
a S∉ , then ( ) ( ) ( )' 'a a a d aα α> ∀ ∈  

  (b) if *
a S∈ , then ( ) ( ) ( )' 'a a a d aα α≥ ∀ ∈  

 (3) d is closed at a if a∉S
*
. 

Then either the recursion a
k+1∈ d(a

k
) arrives at a solution (fixed point), or the limit of any 

convergent subsequence of ( )
0

k
a

∞

 is in S
*
. 

Proof: A proof of this theorem is given in [Zangwill_69]. 

 

It should be noted that while it is based on a monotonically increasing function, Theorem 

5.31 says nothing about the optimality or desirability of the solution set S
*
 and the choice 

of solution sets may be a function of the starting point, a
0
. While many functions which 

are not closed will also converge, the limit points of the recursive application of these 

functions are not guaranteed to be fixed points.  

 

For instance, consider the decision rule given by (5.32) on the set A=[0,3]. 

( )
1 0.5 2

1.5 0.5 2

a a
d a

a a

+ <
= 

+ ≥
 (5.32) 

Clearly, condition (1) is satisfied as A is compact. (2) is satisfied by α(a) = a. However 

(3) is not satisfied as for all 2a < , lim 2k

k
a

→∞
→ , yet ( )2 2.5d = . Thus while d converges 

for a<2, it does not converge to a fixed point of d.  

 

Before casting this theorem in a manner that is appropriate for potential games, let us first 

introduce the strict improvement algorithm set, D
V
, a very broad set of decision update 

algorithms whose adaptations are positively correlated with the potential function. 

Definition 5.20: VD - Strict Improvement Set (*) 

Given a repeated game with stage game Γ with potential V, the strict improvement set for 

Γ, VD is given by the set of all decision rules, d, such that  if 1k k
a a

+≠ , then 

( )1k ka d a+ ∈ ⇒ ( ) ( )1k kV a V a+ > . 
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In effect, a decision update algorithm, d, is a member of the strict improvement set for 

potential game, Γ , if the sequence of actions formed by the recursive evaluation of d 

strictly increases the value of V for all points in the action space other than fixed points of 

d. By definition all individually rational unilateral applied with unilateral timing (round-

robin or random) satisfy the conditions to be a member of the strict improvement set for a 

potential game’s potential function (assuming we eliminate repeated action tuples when 

radios do not adapt). So the best response, exhaustive better response, random better 

responses, ε-better response, and the intelligently random better response decision rules 

would all be members of every potential game’s strict improvement set. 

 

Theorem 5.32: Global Convergence of VD for an Infinite Action Space (*) 

Given a myopic repeated game with a stage game, Γ , which is a potential game with a 

convex compact action space A and potential V, if the following conditions hold, then the 

recursion the recursion ( )1k ka d a+ ∈ converges.  

1) V is continuous 

2) V
d D∈  

3) d is closed. 

Proof: This is just an application of Theorem 5.31 with Vα = . Thus d converges to some 
* *

a D∈ where D
*
 are the set of fixed points for d.  

 

While the members of D
V
 are guaranteed to converge to fixed points, there exist members 

of D
V
 which have non-NE fixed points. For instance, consider the following decision rule 

frequently which could be used as part of a local search algorithm in a cognitive radio. 

Definition 5.21: Directional Better Response 

A decision rule :i id A A→  is a directional better response dynamic if at each adaptation, 

radio i adapts its action according to the following where iK ∈� . 

( )
( ) ( )

( ), ,

k k

i ik k k k k

i i i i i i i i ik

i i i

k

i

u a u a
a K if u a K a u a a

d a a a

a otherwise

− −

  ∂ ∂
  + + >  = ∂ ∂  



 

 

A discretized version of the directional better response is commonly used in power 

control algorithms where power levels are stepped up or stepped down if observed 

performance is less or better than desired, respectively. It is also an example of a 
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distributed local search algorithm where Ki typically decreases over time to permit 

convergence to a NE instead of an ε-NE. Note that the directional better response 

satisfies all of the conditions of Theorem 5.32, so play converges to a fixed point of d. 

However, local maximizers and action tuples close to the top of sufficiently peaked 

potential functions will also be fixed points of this decision rule. Thus an additional 

condition is needed to ensure that play converges to an NE, and the obvious condition is 

that the only fixed points of d are NE. 

Theorem 5.33: Convergence of 
V

d to an NE (*) 

Given a myopic repeated game with a stage game, Γ , which is a potential game with a 

compact action space A and potential V, if the following conditions hold, then the 

recursion ( )1k ka d a+ ∈ converges to an NE. 

1) V is continuous 

2) V
d D∈  

3) d is closed. 

4) ( )* *a d a=  if and only if ( )* *ˆa B a= . 

Proof: This is just a variation of Theorem 5.32where the fixed points of d are constrained 

to the game’s NE. 

 

With this fourth condition in place, we are assured that the network would actually 

converge to the steady-state identified from our NE analysis. Examining the considered 

decision rules (best response, exhaustive better response, random better responses, ε-

better response, intelligently random better response) only the ε-better response and 

directional better response have fixed points other than NE. However, all fixed points of 

both decision rules are ε-NE, a generally acceptable result.  

 

It is also possible to identify decision rules which, under specific conditions, are members 

of D
V
 and whose only fixed points are NE. For example, consider the following decision 

rule.  
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Definition 5.22: Averaged Best Response 

A decision rule :i id A A→  is an averaged best response if at each adaptation, radio i 

adapts its action according to ( ) ( ) ( )ˆ1k k k

i i i id a a B aλ λ= + −  where ( )0,1λ ∈ . 

 

An example of an averaged best response is given in [Yate_95] which gives a variant of 

the standard interference function decision rule of (3.8) called an interference averaging 

algorithm which is shown in (5.33) where ( )0,1β ∈ . 

( )( ) ( ) ( ) ( ) ( )( )1k k k k

j j j jd t p t p t I tβ β= + −p p  (5.33) 

 

In general, the averaged best response cannot be guaranteed to be a member of D
V
 as it 

may not improve a player’s utility and thus would not increase the potential function. 

However, if ui is quasi-concave in ai for all i∈N then all of its upper level sets are convex 

and the averaged best response must increase the adapting player’s utility. Further, 

regardless of the quasi-concavity of ui, the only fixed points of Definition 5.23 are those 

points where ( )ˆk k

i i ia B a= , in other words, an NE. Thus for an infinite potential game, if 

every player’s utility function is quasi-concave then when all players play Definition 

5.21, play will converge to an NE. 

 

Thus by applying a well-known theorem from nonlinear programming, we have 

established conditions under which a broad range of decision rules will converge to an 

NE when the stage game is a potential game. Interestingly, the conditions under which 

the decision rules in D
V
 converge to an NE in infinite games are also sufficient for 

convergence in a finite game – recall that the only requirement on A is that it is compact 

and finite sets are compact. Thus we could have shown that the same algorithms 

converged for finite games under round-robin and random decision timings. However, we 

would’ve been unable to show that play converges under asynchronous timings as the 

algorithms in D
V
 need not strictly increase V under asynchronous timing – a problem for 

infinite A as well. 
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Example 5.15: Convergence of a Power Control Potential Game 

In Example 5.14, we considered a single cell network of cognitive radios adjusting their 

transmit powers in an attempt to achieve a target SINR at a common base station where 

each radio, i, can choose any power level from the set Pi = [0, pmax] as guided by the 

utility function shown in (5.34) 

( )

\

ˆ

1/

i i
i

k k

k N i

g p
u

K g p

γ

σ
∈

= − −
 

+ 
 
∑

p  (5.34) 

where pi∈Pi, p = (p1,…,pn) is a transmit power vector, gi is the gain from radio i to the 

base station, K is the spreading gain, σ is the noise power at the base station, and γ̂  is the 

target SINR. It was shown earlier that this game is an ordinal potential game with a 

potential function given by (5.35). 

( ) ( )2 2ˆ ˆ2 / 2 /
n

i k i k i i i i

i N i k i N

V K g g p p g p K g pγ γ σ
∈ > ∈

 
= + − + 

 
∑∑ ∑p  (5.35) 

 

Thus it is expected that the following decision rules converge: best response, exhaustive 

better response, random better responses, intelligently random better response, ε-better 

response, and directional better response all converge. Further as (5.34) is quasi-concave 

in pi, the averaged best response is also predicted to converge.  

 

A simulation of this network with seven mobiles targeting a linear SINR of 2.71 (which 

corresponds to a BER of about 10
-2

 for BPSK signals) operating at 5 GHz, randomly 

distributed about a 4 km
2
 with a spreading gain of 100, a path loss exponent of 3 confirms 

these claims. Based on the mobile distribution shown in Figure 5.17, Figures 5.15 

through Figure 5.23 depict the behavior of the network with round-robin timing and  

best-response, averaged best-response (λ=0.5), intelligently random better response, 

random better response, ε-better response, and directional better response (Ki=0.5) 

respectively. In these six figures, the top plot shows the value of the objective function 

and the lower plot depicts the change in power levels over time. Note that all six decision 
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rules converge to the same equilibrium
13

 with the best response algorithm converging the 

fastest and the directional better response the slowest. This is somewhat at odds with the 

supposition of Chapter 4 that convergent deterministic algorithms tend to converge at 

faster rates than random algorithms. However, the choice of a larger value for Ki will 

result in faster convergence. 

 

Figure 5.17: Radio Distribution 

 

Figure 5.18: Network Behavior Under Best 

Response Decision Rules 

 
Figure 5.19: Network Behavior Under 

Averaged Best Response Decision Rules 

  
Figure 5.20: Network Behavior Under 

Intelligent Random Better Response 

Decision Rules 

                                                 
13

 Technically, the ε-better response algorithm is converging to a point near the NE, but at this resolution it 

is difficult to see the difference. 
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Figure 5.21: Network Behavior Under 

Random Better Response Decision Rules 

  
Figure 5.22: Network Behavior Under ε-

Better Response Decision Rules 

 
Figure 5.23: Network Behavior Under Directional Better Response Decision Rules 

(Ki=0.5) 

5.6.4 Convergence Rate (*) 

Both FIP and AFIP are characterized by integers, LFIP and LAFIP, that bound the length of 

the longest improvement and ε-improvement path. LFIP can be quickly bounded by |A| 

and LAFIP by ( )max min / VV V ε−  for a generalized ε-potential game with a potential function 

bounded by Vmin and Vmax and minimum potential function increase εV. For round-robin 

decision timings, no more than |N|LFIP or |N|LAFIP iterations can be made for any 

deterministic better response or ε-better response decision rule, respectively. These 

particular bounds on the number of iterations comes from an assumption of an initial 

action vector such that ( )0

minV a V=  and the requirement that for every N  iterations at 

least one player must be able to improve its payoff for games with FIP and improve by at 
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least an ε  in games with AFIP as otherwise an NE or an ε-NE has been reached, 

respectively. 

5.7 Impact of Noise and Stability 
As covered in Chapter 4, any practical implementation of a cognitive radio network 

occurs in a noisy environment which corrupts the observation process. Given cognitive 

radio network { } { }, , , ,i iN A u d TΓ = , the noise corrupted cognitive radio network is 

modeled by { } { }, , , ,i iN A u d TΓ = �  where iu�  is defined as shown in (5.36) 

(Noisy utility)                         ( ) ( ) ( ), ,i i iu a t u a n a t= +�  (5.36) 

where ni(a,t) is a stochastic process corrupting the evaluation of the player’s utility 

function at time t. So when a rational decision maker believes that 

( ) ( ), , , ,i i i i i iu b a t u a a t− −>� � , it may be because bi is a better choice, i.e., 

( ) ( ), ,i i i i i iu b a u a a− −> , or because noise has corrupted the observation at time t. For our 

purposes, this means that instead of implementing bi as would have normally been 

predicted, the radio may implement ai.  

5.7.1 Operational State Characterization 

Under the reasonable assumption that ni(t) is unbounded (perhaps because the noise 

source is Gaussian) and ui is bounded, then there is a nonzero (though perhaps very 

small) probability that  ( ), ,i i iu b a t−
�  is less than ( ), ,i i iu a a t−

�  regardless of how much 

greater ( ),i i iu b a −  is than ( ),i i iu a a − . So under normal operating conditions, a cognitive 

radio always has a nonzero chance of making a mistake and the network has a 

theoretically nonzero chance of ending up in any state in the network. As covered in 

Chapter 4, this implies that any typical noisy cognitive radio network can be modeled as 

an ergodic Markov chain under any myopic individually rational decision rule and any of 

the considered decision timings except for a round-robin timing which violates the 

aperiodicity condition. 

 

Thus we could expect a cognitive radio network to wander aimlessly about its states, but 

as we saw in Chapter 4, cognitive radio networks tend to have a higher probability of 
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occupying an NE than other states. This trend is especially true for NE in potential games 

that are isolated potential maximizers as they are Lyapunov stable for myopic 

individually rational decision rules. 

5.7.2 Lyapunov Stability of Potential Games 

Almost as valuable of a result as its strong convergence properties, potential games are 

also characterized by strong stability properties. Specifically all decision rules with 

isolated fixed points that satisfy Theorem 5.33 are Lyapunov stable and thus 

asymptotically stable. 

5.7.2.1 Related Work 

To date, the game theory literature has treated stability of potential games as a continuous 

time phenomenon.
14

 For example, [Slade_94] showed that in a Cournot oligopoly there 

existed a “Fictitious objective function” :F A → �  that increased with every unilateral 

deviation, which as [Monderer_96] points out, makes the game a potential game. When 

considering stability [Slade_94] considered a continuous time directional better response 

dynamic given by (5.37).  

( ) ( )/ /i i i i ia da dt u a a h a= = ∂ ∂ =�  (5.37) 

[Slade_94] then showed that since ( ) ( ) ( ) ( )/ /i j i jJ a h a a H a F a a a   = ∂ ∂ = = ∂ ∂ ∂    ,  H 

is symmetric, and that H’s determinant is nonzero, its characteristic roots are all real and 

nonzero which then implies that all maximizers of F are locally asymptotically stable.  

 

[Anderson_99] generalizes the results of [Slade_94] to all infinite potential studies with 

compact action spaces under round robin directional better responses showing that the 

process is Lyapunov stable for continuous time adaptations. However, [Anderson_99] 

extends this result by introducing the Fokker-Planck given in (5.38) 

( )
( )

( ) ( ) ( )
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,

, , ,
2

i i
i i

i

F a t u
E a t f a t f a t i N

t a t

σ ∂ ∂
= − + ∀ ∈ 

∂ ∂ 
 (5.38) 

                                                 
14

 Other authors, e.g., [Hofbauer_01] and [Sandhom_01], have studied stability in the context of continuous 

player sets – a reasonable approximation for evolutionary dynamics of biological systems, but not generally 

a reasonable assumption for cognitive radio networks. 
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where [ ]E ⋅ is the expectation operator, ( ),iF a t is the probability that player i chooses an 

action less than or equal to ia , and ( ),if a t is the pdf that corresponds to ( ),iF a t . While 

(5.38) could be used to find a steady state distribution by evaluating (5.38) as t → ∞ , this 

can be quite tedious and then is only applicable to continuous time directional 

improvement algorithms corrupted by Gaussian noise processes.  

 

A more promising result is given in [Hicks_04b] which examines a noisy repeated 

potential game operating with a round robin best response decision update algorithm and 

shows that the algorithm almost surely converges to a region around a Nash equilibrium 

under the following conditions: 

1) Adaptations are corrupted by a noise process bounded by 0δ >  

2) V has no local maxima 

3) All global maxima of V are isolated 

4) V is strictly increasing for all a A∈  such that *a a η− <  where 0η > . 

 

In effect, [Hicks_04] indirectly exploits the Lyapunov stability of a round robin best 

response action tuple update algorithm to ensure that if play is disturbed by no more than 

an 0δ > , then play converges to an 0ε > of a potential maximizing NE.  

5.7.2.2 Stability of Potential Games (*) 

Unfortunately, the decisions made by people and the decisions made by cognitive radios 

are not made in continuous time. Decisions such as “I’ll go to the burger joint instead of 

the sub shack today,” or “I’ll implement FM instead of BPSK,” are discrete events. 

However, continual adaptations in continuous time make sense in control systems and 

analog circuitry which is why the continuous time version of Lyapunov stability makes 

sense in a controls setting. For cognitive radios implemented in digital circuits, a discrete 

time version of Lyapunov’s theorem is needed which we presented in Chapter 3 and 

reproduce in the following.  
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Theorem 5.34: Lyapunov’s Direct Method for Discrete Time Systems ([Medio_01]  

 Theorem 3.4) 

Given a recursion ( )1k k
t t

a d a
+

∈  with fixed point a
*
, we know that a

*
 is Lyapunov stable if 

there exists a continuous function (known as a Lyapunov function) that maps a 

neighborhood of a
*
 to the real numbers, i.e., *: ( )L N a → � , such that the following 

three conditions are satisfied:  

 1) ( )* 0L a =  

 2) 0)( >aL ( )* *\a N a a∀ ∈  

 3) ( ) ( ) ( ) 0L a L d a L a∆ ≡ − ≤   ( )* *\a N a a∀ ∈  

 

Further, if conditions 1-3 hold and  

 a)  ( )*N a A= , then 
*

a   is globally Lyapunov stable; 

 b)  ( ) 0L a∆ < ( )* *\a N a a∀ ∈ , then a
*
 is asymptotically stable; 

 c)  ( )*N a A=  and ( ) 0L a∆ < ( )* *\a N a a∀ ∈ , then a
*
 is globally asymptotically 

 stable. 

 

Now consider the function given by (5.39).  

( ) ( ) ( )*VL a V a V a= − +  (5.39) 

where V is a bounded continuous potential function with isolated potential maximizer a
*
. 

In the neighborhood of a
*
, (5.39) satisfies conditions 1 and 2 for being a Lyapunov 

function. Now consider any decision rule in D
V
 played on a potential game with potential 

function V. As this is a potential game, ( ) ( )1k kt t
V a V a+ ≥  so ( ) ( ) 0k k kt t t

V d a V a  − ≥  and 

( ) 0ktL a∆ ≤ ( )* *\a N a a∀ ∈  satisfying condition 3.  

 

Thus L
V

 is a Lyapunov function for any member of D
V
 with round robin or random timing 

that can be modeled as a potential game with a bounded continuous potential function. 

Further, all maximizers of V (our method for finding NE in a potential game) are also 

Lyapunov stable. Also note that if the game has a unique NE, then *
a is globally 

Lyapunov stable. And if the decision rule fits into one of the classes of algorithms that 

deterministically converge discussed in Section 15.4.1.3, then the algorithm is 

asymptotically stable as well.  
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Theorem 5.35: Stability of isolated maximizers of V under D
V
 (*)  

Given potential game { }, , iN A uΓ =  with potential V, if a
*
 is an isolated global 

maximizer of V, then a
*
 is asymptotically stable for all decision rules in D

V
. 

Proof: A sufficient Lyapunov function is given by (5.39). 

 

With this result we know that not only are specific decision rules Lyapunov stable (under 

continuous adjustments), but an entire class of decision rules is Lyapunov stable. So by 

examining the goals and actions of the radios and applying the potential game modeling 

criteria presented in this chapter, we can immediately know that a broad class of decision 

rules are convergent and stable and have readily identified steady-states. We illustrate 

this result in the following example.  

 

Example 5.16: Stability of a Power Control Potential Game 

Consider again the network of Example 5.15 which we previously showed to be a 

potential game and convergent under the following decision rules: best response, 

averaged best response, exhaustive better response, random better responses, intelligently 

random better response, ε-better response all converge, and directional better response. 

 

Now suppose that noise is present in the system so the radios are no longer observing 

their true SNR and are instead observing their SNR corrupted by additive Gaussian noise. 

Keeping the same parameters as before including the mobile distribution shown in Figure 

5.17, Figures 5.24 through Figure 5.29  depict the noise-corrupted behavior of the 

network with round-robin timing and best-response, averaged best-response (λ=0.5), 

intelligently random better response, random better response, ε-better response, and 

directional better response respectively.  

 

Note that while there exists a theoretical probability of the network operating in any state, 

the globally and asymptotically stable steady-state and the region closest to it is so much 

more probable that the network never wanders far from the steady-state implying that 

isolated potential maximizers are especially valuable for predicting the behavior of a 

cognitive radio network. 
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Figure 5.24: Network Behavior Under Best 

Response Decision Rules. 

 

Figure 5.25: Network Behavior Under 

Averaged Best Response Decision Rules. 

  
Figure 5.26: Network Behavior Under 

Intelligent Random Better Response 

Decision Rules.  

 
Figure 5.27: Network Behavior Under 

Random Better Response Decision Rules.  

  
Figure 5.28: Network Behavior Under ε-

Better Response Decision Rules/  

 
Figure 5.29: Network Behavior Under 

Directional Better Response Decision 

Rules (Ki =1). 
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5.8 Analysis Summary and Design Implications 
This chapter established several powerful insights for analyzing the interactions of 

cognitive radios when the radios’ goals and actions satisfy the conditions of a potential 

game. These analysis insights are summarized in Section  5.8.1 and then applied as design 

guidelines for cognitive radio in Section  5.8.2. 

5.8.1 Analysis Summary 

In Chapter 4, we identified FIP as an important property for cognitive radio networks as it 

provides broad conditions for convergence and assures us of the existence of an NE. 

However in Chapter 4, identifying that a game has FIP required either an exhaustive 

listing of improvement paths or an exhaustive search to confirm that the stage game 

lacked improvement cycles. This chapter introduced potential games which are 

coincident with the set of games that have FIP and techniques for identifying potential 

games. Thus the techniques presented in this chapters allow us to efficiently apply the 

implications of FIP to cognitive radio analysis.  

 

Beyond the implications of FIP, each potential game is characterized by a function (the 

potential function) that monotonically increases with every unilateral selfish adaptation. 

When coupled with a compact action space and the continuity of its monotonic function, 

a potential game is assured of convergence and stability. 

5.8.1.1 Steady States 

As noted in the preceding, finite potential games have FIP which implies the existence of 

an NE. But infinite potential games with continuous potential functions on a compact 

action space are also assured of the existence of an NE. Whether a finite or an infinite 

potential game, compactness of A and continuity of the potential function enable the 

analyst to identify NE by solving for the maximizers of V (Theorem 5.26). This chapter 

also considered another equilibrium concept, the ε-NE. It was shown that every  NE is 

also a ε-NE and that ε-NE can again be identified from the maximizers of V (Theorem 

5.27).  
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5.8.1.2 Optimality 

In general, little can be said about the optimality or desirability of the steady states of a 

potential game. They need not be Pareto efficient, and they are not generally maximizers 

of a design objective function. For example if we are trying to maximize the sum utilities 

of the radios, the steady-state of the cognitive radios’ dilemma is undesirable. Thus, 

potential games do not possess any special properties that ensure that steady-state 

behavior will be desirable.  

5.8.1.3 Convergence 

It was shown that all finite potential games have FIP. Thus based on the results from 

Chapter 4, it is known that play converges for all myopic self-interested algorithms under 

round-robin, random, and asynchronous timings. Further, the random decision rule 

proposed in Chapter 4 also converges under synchronous timing.  

 

For potential games with infinite action spaces, it was shown that some infinite games 

have FIP which implied the convergence of all myopic self-interested, deterministic, and 

exhaustive decision rules. However, except for the intelligently random decision rule, the 

random decision rules could not be guaranteed to converge based on the FIP property. 

For potential games with AFIP, it was seen that all round-robin, random, and 

asynchronous ε-better responses converge. Finally, for infinite action spaces, it was 

shown that all closed decision rules which were members of D
V
 converge and specifically 

to converge to an NE if their only fixed points are NE.  

 

The convergence results presented in this Chapter are summarized in Table 5.8 where 

each entry lists the conditions that ensure the convergence of the associated decision rule 

class and decision timing. Note that the widest set of convergence conditions hold when 

round-robin or random timing for which a very broad number of classes of decision 

algorithms converge while convergence under synchronous timing is only guaranteed for 

games with FIP implementing the random better response decision rule proposed in 

Chapter 4. 
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Table 5.8: Convergence Criteria for Potential Games 

 Timings 

Decision Rules 
Round-

Robin Random Synchronous Asynchronous 

Best Response 1,2,4 1,2,4 - 1,2 

Exhaustive Better Response 1,2  1,2 - 1,2 

Random Better Response
(a)

 1,2,4 1,2,4 1,2 1,2 

Random Better Response
(b)

 1,2 1,2 - 1,2 

ε-Better Response
(c) 1,2,3,4 1,2,3,4 - 1,2,3 

Intelligently Random Better Response  1,4 1,4 - 1,2 

Directional Better Response
(c)

 4 4 - - 

Averaged Best Response
(d)

 3,4 3,4 - - 
(a) Definition 4.12, (b) Definition 4.13, (c) Convergence to an ε-NE, (d) ui quasi-concave in ai  

1.Finite game, 2. Infinite game with L-FIP, 3. Infinite game with AFIP, 4. Infinite game with bounded 

continuous potential function (implication of D
V
) 

5.8.1.4 Noise 

While Chapter 4 illustrated that the unbounded noise of a wireless network ensures that a 

cognitive radio network has a nonzero chance of occupying any state, potential games 

limit these probabilities as all isolated maximizers of the potential function are Lyapunov 

stable for all decision rules in D
V
. Thus the network has a strong tendency to remain in 

the region about these isolated maximizers even with unbounded noise. So in addition to 

being steady-states, the maximizers of V are stable under most convergent decision rules.  

 

It was seen that noise can significantly impact the behavior of cognitive radio networks. 

While game theory typically treated errors in play as being implementation errors – a 

reasonable assumption for humans – the source of errors for cognitive radios is more 

likely to be caused by observations being corrupted by noise. Regardless of the source, 

these errors lead to the Markov models of the networks changing from absorbing Markov 

chains to ergodic Markov chains. This ultimately has the meaning that for networks that 

can be modeled as myopic repeated games, the presence of noise means that the network 

has a theoretically nonzero chance of passing through every possible network state. 

However, the original absorbing states tend to remain the most commonly visited states 

in the network. So even with noise in the system, the Nash equilibrium concept 

(absorbing states for games with weak FIP) retain significant power for predicting the 

state of the network. 
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5.8.2 Design Implications 

As [Neel_04b] emphasizes, constructing a cognitive radio network so it is a potential 

game simplifies many design challenges - equilibria are readily identifiable and virtually 

every self-interested algorithm converges to a stable equilibrium. Because ensuring 

convergence and stability in a potential game merely requires that the cognitive radios 

employ self-interested adaptations (to be a member of D
V
), very simple decision rules can 

be employed. Both deterministic (for convergence speed) and random (so a single 

structure can be used for both FIP and weak FIP games) decision rules can be employed 

implying that procedural, ontological, loner, and social radios can all be expected to 

converge to a stable equilibria and are appropriate for use in a potential game cognitive 

radio network.. Because of this broad range of acceptable implementations and 

algorithms, potential games permit the implementation of the least complex radios 

[Neel_04a]. 

 

While many different game models were shown to be potential games in this chapter, 

there is a common theme to many potential games – shared outcomes. Whether shared as 

an identical interest coordination function or shared via numerous bilateral symmetric or 

multilateral symmetric interaction terms, there is an implicit sharing of outcomes between 

pairs, groups, or the entire network of radios. Thus when designing a cognitive radio 

network to be a potential game, the designer should seek out situations where the radios 

perceive common outcomes from the interaction of their adaptations. This is known to 

happen with interference based goals for waveform adaptations (which form BSI games), 

for network selection algorithms (which are congestion games), target power control 

SINR algorithms (BSI games) and is exploited in Chapters 6 and 7 to develop powerful 

cognitive radio networks.  

 

Seemingly at odds with the preceding, the other theme of potential games is a complete 

lack of interaction, i.e., completely independent outcomes. Functions that model the 

interaction of transmit power and battery life, error correction coding and BER, and 

interleaver depth and BER are all examples of goals and adaptations where each 

adaptation only influences each radio’s own goal and would be potential games. 
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Combining these disparate goals – shared and independent outcomes – into a single goal 

can help a cognitive radio designer to overcome the primary limitation of potential game 

cognitive radio networks – it is not assured that a potential game’s steady-states will be 

desirable. As described in [Neel_02b], it is possible to adjust the equilibria of an exact 

potential game with an undesirable equilibrium to a desirable equilibrium by adding the 

appropriate self-interested function to the original utility function. For instance, a power 

control algorithm that transmits too much power can be modified to consider battery life 

which can lead to less transmitted power and a more desirable outcome. However, unless 

the original game is an exact potential game this technique may destroy the convergence 

and stability properties that made the original network attractive. As more potential game 

cognitive radio networks are ordinal potential games than exact potential games
15

 this is 

problematic for designing potential game cognitive radio networks.  

 

A better approach is to design potential game cognitive radio networks so the potential 

function is the network design function. When this happens, every unilateral adaptation in 

the network improves the network performance. Trivially, this can be accomplished by 

making each radio’s goal the network design function. However, as the network design 

function will typically involve the performance of all radios in the network, this approach 

necessitates significant message passing and generally will not scale well in a practical 

implementation. Nonetheless, it is possible to design scalable potential game cognitive 

radio networks where this occurs without distributing measurements between radios and 

only from the radios’ reacting to their own observations. Such an approach is followed in 

Chapters 6 and 7 and when possible should be used in the design of cognitive radio 

networks as it yields the best possible result – convergent, stable algorithms with 

desirable equilibria that perform for a broad range of implementations. 

 

                                                 
15

 This is tautologically true as all exact potential games are also ordinal potential games. However, many 

existing applications of potential games to cognitive radios are ordinal potential games and not exact 

potential games, so this statement does hold some significance. 
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5.8.3 Applications 

Because of their powerful implications, numerous physical layer potential game 

applications have been developed since potential games were first proposed for the 

design of wireless and cognitive radio networks in [Neel_02a]. The following 

summarizes some of the wireless algorithms that been proposed based on potential game 

theory. 

5.8.3.1 Power Control Applications 

[Neel_02b] considers games termed separable SINR games wherein each radio can 

separate its utility function into a function of received signal strength less a function of 

interference such that the radio’s objective function takes the form shown in (5.40) 

( ) ( )
{ }

( ),1 , ,2 ,

\ ,

, , , ,
i i i

i

i i i i i i j j ij i i i

j N i

u f p g f p g c pν ν ν
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ω ω ρ σ ω
∈

 
= − + −  

 
∑p  (5.40) 

where pi is the transmit power of radio i, ωi is the waveform used by radio i, 
iνσ is the 

noise power at the node of interest of radio i, vi (where radio i is measuring (5.40)) and ρij 

is the fraction of the received signal power transmitted by radio j that interferes with the 

signal of radio i. This is a widely applicable model to cognitive radios in ad-hoc networks 

as many adaptive modulation schemes perform their adaptation based on SINR estimates, 

and can be readily put in this form by working with SINR estimates in dB or by directly 

subtracting interference from noise. Also note that the nature of the functions of Received 

Signal Strength (RSS) and interference can be defined in arbitrary ways.  

 

For pure power control games [Neel_02b] limited each radio to only adjusting its power 

level in response to changes in SINR at its node of interest.  In this model, the waveform 

selected at link initialization remains fixed.  Every radio’s performance is impacted by 

interference and chooses an action to change its power level in response to SINR and 

maintains some minimum threshold, εi.  Additionally, each radio has some cost function 

associated with each power level, ei.  In this case each radio’s objective function can be 

written as shown. 
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This game can be verified to have a potential as shown. 
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By recognizing that fi,2 is a dummy function, a potential function can be written as shown. 
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[Neel_04a] introduced the potential game analysis of target single-cell SINR games 

presented in Example 5.14 showing that such an algorithm is a potential game.  

[Neel_04a] continued to show that power control algorithms guided by target throughput 

goals and throughput maximization goals are also potential games via better response 

equivalences.  

 

[Fattahi_05] proposes a power control algorithm which can be modeled by the game 

{ }, , iN uP  where ui is given by (5.41) 
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and claims that (5.41) is an exact potential for the game. 
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However, this is not an exact potential for this game as (5.43) is not the same as (5.44), 

an unsurprising result as the game is actually an example of the sum of an ordinal 

potential game and an exact (self-interested) potential game which we showed in 

Example 5.13 to not be closed under addition. 
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In fact, it is uncertain if a game with (5.41) as its a potential game at all as it fails the 

second derivative test (
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However, if (5.41) were modified as shown in (5.45), then the game is clearly an exact 

potential game as distributing the logarithm yields a utility function of the form shown in 

(5.40). 
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[Scutari_06] leverages potential game theory to propose two single cell CDMA power 

control algorithms with the intent of establishing convergence and stability. In the first, 
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[Scutari_06] equates the game given by { }, , log iN pP with the single cell standard 

(target SINR) power control algorithm of [Yates_99]. However, the correct potential 

function is given for this algorithm ( ( ) ( )log i

i N

V p
∈

=∑p ). This is actually an example of 

the catastrophic power control game that we used as a precautionary tale in Chapter 1 on 

the importance of the interactions of cognitive radios. 

 

Without noting this major limitation, [Scutari_06] proceeds to propose a second 

algorithm which is identical to the power control algorithm shown in [Fattahi_05] and 

repeats the erroneous claim that it is an exact potential game with the same erroneous 

potential function.
16

 

5.8.3.2 Waveform Adaptation Applications 

For waveform adaptations [Neel_02b] assumes that the radios are a part of a power 

controlled star network such that the energy received at the sole access point is the same 

for each radio.  Thus each radio has the same node of interest and only maintains a single 

link.  Waveform adaptation is employed and each radio may select any waveform from 

its waveform set Ωi.  The utility function for each radio now takes the form shown in 

(5.46) 
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where f2 is constrained to linear functions.  By recognizing that f2 is the sum of BSI 

terms, an exact potential function for this game can be written as shown in (5.47). 
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[Menon_04] uses this model (and better response equivalent modifications) to study 

signature sequence adaptations guided by the utility function shown in (5.48) where rij is 

                                                 
16

 [Scutari_06] also makes the erroneous claim that most CDMA cellular power control algorithms are 

potential games. This simply has never been shown and is likely not true. Most CDMA cellular power 

control algorithms are, however, supermodular games as [Altman_03] has shown. 
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the power of the signal transmitted by radio i as measured at radio j and si is the signature 

sequence transmitted by radio i.  

( ),

H H H H

i j j i ji i j j i ij

i

j i j iii jj

s s s s r s s s s r
u s r

r r≠ ≠

= − −∑ ∑  (5.48) 

 

This game has a potential given by (5.49) which is actually the negation of the total sum 

correlation of the signals. This makes the game an example of the interference reducing 

networks presented in Chapter 6. The existence of a potential function is used to establish 

the convergence of better and best response decision rules, an illustration of which is 

shown in Figure 5.30. 
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Figure 5.30: SINR levels under Best Response Adaptations of Signature Sequences from 

Figure 2 in [Menon_04]. Used with Permission. 

 

[Hicks_04a] uses potential games to design four different signature sequence noisy best 

response algorithms based on SINR maximization and mean square error (MSE) 
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minimization for correlator and maximum signal to interference and noise ratio (MSINR) 

receivers. These algorithms are guided by the utility functions shown in Table 5.9 where 

[ ]
H H

rr zzE rr = +R SPS R� . It is shown that the SINR maximization algorithms are ordinal 

potential games while the MSE Minimization games have weak FIP.
17

 

Table 5.9: Utility Functions in [Hicks_04a] 
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[Nie_05] considers a frequency selection game with utilities given by (5.50)  
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σ
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 and shows that it is a potential game and converges 

under a random best response. 

 

Using potential game theory and the design guidelines of Chapter 6, [Neel_06b] proposes 

a low complexity dynamic frequency selection algorithm which is shown to converge to a 

low interference steady-state. 
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Chapter 6: Interference Reducing 

Networks1 
“…he intends only his own gain, and he is in this, as in many other cases, led by an 

invisible hand to promote an end which was no part of his intention. Nor is it always the 

worse for society that it was no part of his intention. By pursuing his own interest he 

frequently promotes that of the society more effectually than when he really intends to 

promote it.” – A. Smith, Wealth of Nations 

 

When two people engage in a free trade of resources (perhaps in the form of money), 

they do so believing that the trade increases their own utility. It is only at best a 

secondary concern that the trade also increases their trading partner’s utility, yet their 

trading partner’s utility must also increase otherwise the partner would not agree to the 

trade. So barring errors in judgment, it is reasonable to expect that every trade increases 

both participants’ utilities. Beyond just this pair, each trade must also increase the sum of 

all utilities across society as no one else’s resource levels changed. In this manner, while 

the traders are pursuing their own self-interests they are simultaneously, though 

unwittingly, pursuing the social interest.  

 

Adam Smith analogized this result to the guidance of an invisible and benevolent hand. 

Ideally, we want our cognitive radio networks to be guided by their own invisible and 

benevolent hand. In this chapter we introduce rules for designing potential game 

cognitive radio networks so the potential function is the network design function – in this 

case minimizing the interference in the network. As we will see this can be accomplished 

many different ways including making each radio’s goal the network design function. 

However, as the network design function will typically involve the performance of all 

radios in the network, this approach necessitates significant message passing and 

generally will not scale well in a practical implementation. Later in this chapter we 

introduce a condition we call bilateral symmetric interference under which, to take 

liberties with Adam Smith’s analysis, when “each radio intends only its own gain, and it 

is in this led by an invisible hand to minimize the sum network interference which was no 

part of its intention.”  

                                                 
1
 This chapter is based on [Neel_06a]. 
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When this additional condition is satisfied, we term such cognitive radio networks 

interference reducing networks and we demonstrate that these networks exhibit the 

following desirable properties: 

• Network interference minimizers are steady-states for the system. 

• Round-robin, random, and asynchronous self-interested decision rules converge to 

these steady states. 

• Every unilateral self-interested adaptation improves network performance. 

• Isolated Lyapunov stability of isolated interference minimizers.  

 

The remainder of this chapter is organized as follows. Section 6.1 presents the basic 

terminology and modeling parameters used in the remainder of this chapter. Section 6.2 

reviews related work in algorithmic and game theoretic papers that will subsequently be 

shown to satisfy the design rules in later sections. Section 6.3 formally introduces key 

properties of interference reducing networks. Section 6.4 provides examples of 

interference reducing networks wherein global knowledge is incorporated into the 

cognitive radios’ goals, including those proposed by other authors. Section 6.5 gives 

examples of interference reducing networks wherein the radios only incorporate local 

knowledge. Section 6.6 describes a modified decision algorithm that improves the 

stability of IRNs. Section 6.7 discusses the performance of interference reducing 

networks in the presence of legacy devices. 

6.1 Modeling and Terminology 
The interference reducing network design framework applies to the process of waveform 

adaptation where a waveform was defined in Chapter 1 to refer to all aspects of a signal 

utilized in transmitting information between two devices. Thus changing a link’s 

waveform may refer to changes in frequency, modulation, spreading codes, transmission 

power, error correction, ARQ scheme, etc. One reasonable goal of a waveform adaptation 

algorithm is to adjust the parameters of a transmitted waveform such that the waveform is 

predicted to experience a minimal amount of interference. 
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With this in mind, consider a network of cognitive radios defined by the tuple, 

{ } { }, , , ,i iN u d TΩ  where N, {ui}, {di}, and T, are the same as defined in the cognitive 

radio model of Chapter 2 and Ω is the action space where the action set of radio i, Ωi, is 

the collection of waveforms iω available to radio i. Following the notational conventions 

of the previous chapters, we consider ω to be a point in the waveform space Ω defined by 

the vector of waveform choices ( )1 2, , , nω ω ω…  and write iω−  to indicate the waveform -

vector of length n-1 with component iω  removed, i.e., ( )1 2 1 1, , , , , ,i i i nω ω ω ω ω ω− − += … … .  

 

Let ( )iI ω , :iI Ω → � , represent the interference that cognitive radio i observes. From 

these observations, we can form a measure of the observed global network interference – 

the network interference function, ( )ωΦ  – by summing these interference terms as 

shown in (6.1). 

( ) ( )i

i N

Iω ω
∈

Φ =∑  (6.1) 

 

Using (6.1), we can define the key concept of this chapter – the interference reducing 

network.   

Definition 6.1: Interference Reducing Network (IRN) 

A cognitive radio network, { } { }, , , ,i iN u d TΩ , is said to be an interference reducing 

network if for all adaptations the value of Φ decreases, i.e., ( )d ω ω≠ ⇒ 

( )( ) ( )d ω ωΦ < Φ .  

6.2 Related Work 
Past work on waveform adaptation has concentrated on single-receiver systems 

(equivalent to the isolated cluster scenario considered later in this chapter). A distributed 

waveform adaptation algorithm for the uplink of a synchronous CDMA system with a 

single base-station is proposed in [Ulukus_01a] and [Rose_00]. In this algorithm, the 

system updates the signature sequence, sk, of each user, k, in a round-robin fashion where 

each update is intended to improve the SINR of user k at the base-station which is 
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implementing a Minimum Mean Square Error (MMSE) receiver. Specifically, given 

signature sequence sk(n) at iteration n the updated signature sequence is given by (6.2) 

( )
( )

( ) ( )

1

2
1

k k

k
T

k k k

n
n

n n

−

−
+ =

A s
s

s A s
 (6.2) 

where 2T

k j j n

j k

a
≠

= +∑A s s I  where a
2
 is the variance of the additive white Gaussian noise 

at the receiver. It is shown that the round-robin application of (6.2) results in a total 

monotonically decreasing sequence of total squared correlation (TSC) values where TSC 

is given by (6.3). 

( )
2

2T T T

k k k j j k k

j k

TSC γ
≠

 
= + + 

 
∑s s s s s s  (6.3) 

where ( )
2

T

k i j

i k j k

γ
≠ ≠

=∑∑ s s . As (6.3) is an expression of the interference perceived by each 

radio in the network, (6.2) is an example of a procedural radio implementation of an IRN. 

This same algorithm is examined with an asynchronous CDMA systems in [Ulukus_01b], 

multipath channels in [Concha_01], and multi-carrier systems in [Popescu_02]. 

 

Waveform adaptation in networks with multiple collaborative receivers is investigated in 

[Popescu_04] and [Sung_03b]. Specifically, the waveforms of different mobiles 

communicating with different base stations are jointly controlled to minimize interference 

between mobiles. In [Popescu_04], fixed points of greedy waveform adaptation 

algorithms in these networks are analyzed. In [Sung_03b], the user’s utility function is 

defined in terms of the weighted sum of the interference caused by the particular user at 

all the receivers in the system; this formulation is then used to prove the existence of NE 

for the system. These algorithms would be examples of the globally altruistic IRN 

scenario considered later in this chapter. 

 

Technically, this is not the same problem as we have been considering as there is only a 

single decision maker (the base station) and thus no interactive decision process. 

However, it is trivial to recast this problem as one where the mobiles are performing this 

process as other authors have done. For instance, in [Rose_02], presents these same 



 270 

algorithms in a distributed fashion and using a general signal space approach though still 

with the centralized receiver.  

 

A nonprocedural (and game theoretic) approach is developed in [Hicks_04] (presented in 

Chapter 5), where waveform adaptation for a centralized network is analyzed from a 

game theoretic perspective. It is shown that any game where users have one of several 

combinations of performance metrics (such as Mean Square Error or SINR) and receiver 

types (such as a correlator or MSINR receiver) results in convergent NE solutions. A 

similar game theoretic approach is studied in [Menon_04] where multiple users adapt 

their signature sequences at a common reception point to reduce their own interference. 

This has the effect of reducing the sum network interference making both [Menon_04] 

and [Hicks_04] examples of IRNs. [Neel_05] considers a dynamic frequency selection 

(DFS) algorithm wherein closely located radios are autonomously adapting their 

frequencies to minimize their perceived interference from one another. Convergence and 

stability of these algorithms are demonstrated via potential game theory. 

 

We can cast these papers into the operational scenarios identified in this chapter as 

follows. Specifically, [Hicks_04], [Menon_04], [Ulukus_01a], [Rose_02], [Ulukus_01b], 

[Popescu_02], [Concha_01] study systems that represent specific instantiations of the 

isolated cluster scenario considered in Section  6.5.1.  [Menon_04], [Popescu_04] and 

[Sung_03a] represent special cases of the globally altruistic scenario proposed in Section 

 6.4.1 [Neel_05] is an example of the close proximity network scenario proposed in 

Section  6.5.2.  

 

Beyond capturing in a single framework many previously proposed waveform adaptation 

protocols and formalizing operational scenarios that satisfy the proposed policy, this 

chapter develops new operational scenarios that ensure realization of an Interference 

Reducing Network, specifically local altruism (Section  6.4.2) and controlled observation 

processes (Section  6.5.3). This chapter considers the impact of legacy devices on the 

proposed policy (Section  6.7). Throughout this chapter, we draw on examples of DFS 

algorithms and spreading code adaptation to illustrate the operation of these scenarios. 
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6.3 IRN Properties 
While all of the examples of IRNs considered in this chapter are potential games, thereby 

permitting the characterization of the properties of broad classes of decision rules, a 

network does not have to be a potential game to be an IRN. For example the MMSE 

algorithms in [Hicks_04] are IRNs but not potential games
2
 and all of the preceding 

papers, except for [Hicks_04], [Menon_04], and [Neel_05], propose algorithms that have 

the effect of reducing sum network interference with each adaptation without applying 

potential game theory. Thus it is useful to briefly define and prove a few key properties 

of IRNs which are based on the monotonicity of Φ(ω) that results from repeated 

application of d. Specifically, this section establishes the following properties of IRNs: 

steady-state existence and optimality, convergence criteria, and stability. 

6.3.1 IRN Steady State Properties 

As we show in Theorem 6.1, IRNs have attractive steady-state properties. 

 

Theorem 6.1: Steady-state existence and optimality for IRNs 

Given IRN, { } { }, , , ,i iN u d TΩ , with continuous ( )ωΦ  and compact Ω, there exists at 

least one fixed point for d. Furthermore, at least one steady-state is optimal in the sense of 

minimizing sum network interference, Φ.  

Proof: As ( )ωΦ  is continuous and Ω is compact, there exists some *ω ∈Ω  such that 

( ) ( )*ω ω ωΦ ≤ Φ ∀ ∈Ω . Suppose that ω*
 is not a steady-state, i.e., there is some 

*ˆ \ω ω∈Ω  such that ( )*ˆ dω ω= . Since the network is an IRN, ( ) ( )*ω̂ ωΦ < Φ  which 

contradicts the condition placed on ω*
. Therefore, ω*

 must be a steady-state for the 

network and since it is a minimizer of ( )ωΦ , ω*
 is optimal in the sense of minimizing 

network interference.  

 

Theorem 6.1 also implies a method for identifying steady states of an IRN, namely 

solving for the global minimizers of ( )ωΦ . Depending on the decision rule being 

implemented, local minimizers of ( )ωΦ  may also be steady-states for an IRN. Also note 

that by definition, each adaptation of the decision rule must decrease ( )ωΦ . This implies 

that as time progresses the network state becomes progressively more desirable. 

                                                 
2
 The MSINR algorithms of [Hicks_04], however, are explicitly shown to be ordinal potential games. 
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6.3.2 IRN Convergence and Stability Properties 

Of course, when an IRN is a potential game, it preserves the convergence properties of 

potential games. To generalize these results beyond those IRNs which are potential 

games necessitates the introduction of the following theorems. 

Theorem 6.2: Convergence of closed decision rules for IRNs 

Given IRN, { } { }, , , ,i iN u d TΩ , with continuous ( )ωΦ  and compact Ω, all closed 

decision rules, d, converge to a fixed point of d. 

Proof: Recall that Zangwill’s Convergence Theorem A [Zangwill_69] states that the 

recursion ( )1k kdω ω+ ∈  converges to a fixed point of d if the following conditions are 

met:  

 (1) All points {ωk
} lie in a compact set;  

 (2) There exists a continuous function :α Ω → �  such that:  

  (a) if ω is not a fixed point, then ( ) ( ) ( )' ' dα ω α ω ω ω> ∀ ∈  and  

  (b) if ω is a fixed point,  

 then ( ) ( )'α ω α ω≤ ( )' dω ω∀ ∈ ;  

 (3) d is closed at ω if ω is not a fixed point of d. 

 

For an IRN with continuous ( )ωΦ , (1) is satisfied when Ω is compact and (2) is satisfied 

with ( ) ( )α ω ω= −Φ . Condition (3) is satisfied when the set of possible adaptations is 

closed for each interference reducing adaptation which was an assumed condition. Thus 

Zangwill’s is satisfied and d must converge to a fixed point of d. 

 

As we did in Chapter 4, we can also establish a broad range of decision timings that 

converge by applying weak FIP to the knowledge that a particular decision rule 

converges.  

Theorem 6.3: Convergence of asynchronous decision rules 

Given cognitive radio network { } { }, , , ,i iN u d TΩ  with finite Ω for which d realizes an 

IRN for round-robin T, then for random and asynchronous T
*
, d converges to one of the 

steady states for d under round-robin T. 

Proof:  

Paralleling our analysis from Chapter 4, under the assumption of unilateral adaptations, 

the change in decision timings does not impact the steady-states of the network. 

Convergence under T implies that under T
*
  and starting from any initial ω  there exists a 

sequence of adaptations that terminate in one of the network steady-states. Further this 

sequence must occur with non-zero probability. Thus { } { } *, , , ,i iN u d TΩ  constitutes an 

absorbing Markov chain where the steady-states of { } { }, , , ,i iN u d TΩ  are the absorbing 
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states. Therefore the network converges to one of the steady states for d under round-

robin T. 

 

Note that Theorem 6.3 does not imply that { } { } *, , , ,i iN u d TΩ  remains a strict IRN. 

Indeed, blips in the monotonic decrease are to be expected for asynchronous timing and 

may occur for random timing (unless { } { }, , , ,i iN u d TΩ  is also a potential game). 

However, { } { } *, , , ,i iN u d TΩ  and { } { }, , , ,i iN u d TΩ  will both converge to the same 

steady states even if the steady-state distribution may be somewhat altered by the 

changed timing process.
3
 For example Chapter 7 presents an algorithm for DFS in an 

802.11h network which is shown to be an IRN under round-robin or random timings but 

is not an IRN under asynchronous timings. However, the network still converges to a 

minimizer of Φ(ω). The results of a simulation of the DFS algorithm in an ad-hoc 

network for asynchronous timings are shown in Figure 6.1 where the channel numbers 

correspond to the channel appellations assigned to 802.11 in the 5 GHz band. Note that 

while the network converges, there are two blips where simultaneous adaptations 

temporarily increase Φ(ω).  

 

                                                 
3
 As this forms an absorbing Markov chain, the techniques from Chapter 3 could be used to characterize 

this distribution of steady-states. 
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Figure 6.1: Impact of Asynchronous Decision Timings. 

 

Likewise, from the definition of a Lyapunov function for discrete time systems 

[Medio_01], it is immediately apparent that for continuous ( )ωΦ  and compact Ω, 

isolated global minimizers of ( )ωΦ are Lyapunov stable under the d that yields the IRN. 

Again, isolated local minimizers of ( )ωΦ  may also be Lyapunov stable for certain 

network decision rules in an IRN. However, many minimizers of a waveform adaptation 

process are quite shallow and many are not isolated, so as we show in Section 6.4 

stabilizing an IRN frequently requires adjustments to d which make d an ε-improvement 

process. 
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6.4 IRNs that Leverage External Information 
It is relatively easy to envision scenarios wherein external observations are leveraged to 

realize a cognitive radio network that forms an IRN. The following presents two such 

scenarios. 

6.4.1 Globally Altruistic IRNs 

Suppose each radio i is capable of measuring its own interference, Ii(ω), and that this 

information is distributed to all other cognitive radios in the network. If each radio is 

guided by the altruistic goal given in (6.4), then this network is an example of a 

coordination game and thus has exact potential and interference functions given by 

( ) ( ) ( )i

i N

V Iω ω ω
∈

= − = −Φ∑ .  

( ) ( )i k

k N

u Iω ω
∈

= −∑  (6.4) 

 

Accordingly, if there exists some mechanism such that a single radio adapts at a time 

(perhaps via a random timer), then all “selfish” adaptations guided by (6.4) result in a 

monotonically increasing sequence of values for V and a monotonically decreasing 

sequence of values for Φ and the same steady-states exist and are converged to (though 

possibly with a different distribution) under asynchronous timing. 

 

In general, a globally altruistic IRN can be achieved by implementing the algorithm given 

in Algorithm 6.1. 

1. Given waveform vector ω, select some i∈N to adapt 

2. Radio i applies di to select some ˆ
iω  

3. Radio i polls all k∈N\i for Ik( ˆ
iω ). 

4. If (6.4) increases for i, assign ( )ˆ ,i iω ω ω−= , else ( ),i iω ω ω−=  

5. Return to 1. 

Algorithm 6.1: Algorithm for implementing a globally altruistic IRN. 

 

While this approach is likely unsuitable for implementation due to scalability concerns, 

[Zhao_06] defines one possible means for distributing the global interference 

measurements throughout the network, namely a radio environment map to which each 
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radio can poll and report observations. Further, several proposed algorithms effectively 

realize a globally altruistic IRN.  

 

The protocol proposed in [Nie_05], wherein each radio selects from a set of discrete 

channels in an attempt to minimize network interference, satisfies the conditions to be a 

globally altruistic IRN. As an interesting note, [Nie_05] proposes that measurements of 

the interference seen by other radios be estimated at the transmitter by exploiting 

environmental knowledge – a lower bandwidth, but higher computational complexity 

approach than in [Zhao_06]. Likewise, as previously covered, the algorithms of 

[Menon_04], [Popescu_04] and [Sung_03a] also satisfy the conditions of a globally 

altruistic network.  

6.4.2 Locally Altruistic IRNs 

Barring the existence of environmental knowledge as in [Nie_05], the amount of 

information transfer required to support the globally altruistic IRN quickly becomes 

prohibitive as networks grow in size. However, an IRN can also be created with cognitive 

radios implementing goals that require the exchange of significantly fewer external 

observations. Let i N⊆I  denote the set of radios with which the signal level of radio i is 

strong enough to produce non-negligible interference and consider the radio goal shown 

in (6.5) which considers the interference levels of only those radios in iI . iI  could be 

generated using the radio environment map of [Zhao_06] or the available resource map 

for infrastructure networks proposed in [Krenik_05]. 

( ) ( ) ( )
i

i k i

k

u I Iω ω ω
∈

= − −∑
I

 (6.5) 

 

Interestingly, a network of radios implementing this goal has the same exact potential as 

the globally altruistic IRN, namely ( ) ( )i

i N

V Iω ω
∈

= −∑ . Accordingly, if there exists some 

mechanism such that a single radio adapts at a time (perhaps via random backoff), then 

all “selfish” adaptations guided by (6.5) result in a sequence of monotonically increasing 

values of ( )kV ω  and a monotonically decreasing sequence of values of ( )kωΦ  and the 
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same steady-states exist and are converged to (though possibly with a different 

distribution) under asynchronous timing.  

1. Given waveform vector ω, select some i∈N to adapt 

2. Radio i applies di to select some ˆ
iω  

3. Radio i polls all ik ∈I  for Ik( ˆ ,i iω ω− ) . 

4. If (6.5) increases for i, assign ( )ˆ ,i iω ω ω−= , else ( ),i iω ω ω−=  

5. Return to 1. 

Algorithm 6.2: Algorithm for implementing a locally altruistic IRN. 

6.5 IRN Protocols with Internally Generated 
 Observations 

While designing cognitive radio algorithms to incorporate external observations permits 

the network to implement IRNs for a wide variety of network topologies and adaptations, 

it can introduce significant overhead to the system thereby reducing the spectrum 

efficiency gains of using cognitive radio. Interestingly, there exist operating scenarios 

that result in IRNs for broad classes of cognitive radio decision rules that do not rely on 

external observations. This apparent “free lunch” outcome wherein the interference 

reduction is realized without the additional overhead results from the fact that for certain 

network topologies and operating scenarios there is an implicit distribution of 

interference measurements throughout the network via the condition of bilateral 

symmetric interference.  

Definition 6.2: Bilateral Symmetric Interference 

Two cognitive radios, ,j k N∈ , exhibit bilateral symmetric interference if 

( ) ( ), ,jk j j k kj k k jg p g pρ ω ω ρ ω ω=  ,j j k kω ω∀ ∈Ω ∀ ∈Ω where pk is the transmission 

power of radio k’s waveform, gkj is the link gain from the transmission source of radio k’s 

signal to the point where radio j measures its interference, ( ),k jρ ω ω  represents the 

fraction of radio k’s signal that radio j cannot exclude via processing (perhaps via 

filtering, despreading, or MUD techniques). 

 

In general, ( ),k jρ ω ω  is determined by the absolute value of the correlation between the 

signal space basis functions modulated by ωk and ωj. So we frequently encounter 

situations where ( ) ( ), ,k j j kρ ω ω ρ ω ω= , e.g., adjacent and co-channel interference and 

cross correlation between signature sequences. There are some situations, however, for 
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which ( ) ( ), ,k j j kρ ω ω ρ ω ω≠ , most notably in typical beam forming applications. 

Additionally, differences in power or link gain can lead to violations of the bilateral 

symmetric interference condition. Nonetheless, we are able to identify several scenarios 

for which the bilateral symmetric interference condition holds. When bilateral symmetric 

interference holds, any waveform adaptation by radio j that reduces the effective 

interference that j measures from k’s signal results in an equal reduction in effective 

interference for radio k with respect to j’s signal. Thus intending only its own gain, a 

radio’s selfish adaptations nonetheless improves the performance of both radios. 

 

Using the following pair of equations, we can draw a powerful relationship between 

bilateral symmetric interference and IRNs. 

( ) ( ) ( )
\

,i i ki k k i

k N i

u I g pω ω ρ ω ω
∈

= − = −∑  (6.6) 

( ) ( )
1

1

,
i

ki k k i

i N k

V g pω ρ ω ω
−

∈ =

= −∑∑  (6.7) 

 

Theorem 6.4: Bilateral Symmetric Interference and IRNs 

Given ( ){ } { }, , , ,i iN A I d Tω− , the following the following three conditions hold, then 

the network is an IRN 

1) N is a network of cognitive radios with adaptations guided by (6.6). 

2) All adaptations are unilateral (no more than one radio adapts for each t∈T). 

3) Bilateral symmetric interference holds for all ,j k N∈ .  

Proof: Under the bilateral symmetric interference condition, (6.6) can be equivalently 

expressed as ( ) ( )
\

,i ki k i

k N i

u bω ω ω
∈

= −∑  where ( ) ( ), ,ki k i ik i kb bω ω ω ω= . Thus these goals 

are of the form required to be a BSI game (defined in Chapter 5) where 

( ) 0i iS i Nω = ∀ ∈ so the game has an exact potential given by (6.7). 

 

As a bilateral symmetric interference network is also an exact potential game, all 

sequences of selfish unilateral deviations increase the value of (6.7). However, note that 

the interference function for such a network is just ( ) ( )2Vω ωΦ = −  so any sequence of 

adaptations that results in a monotonically increasing V also results in a monotonically 

decreasing Φ , i.e., an IRN.  

 

Again, note that by Theorem 6.3, that adaptations of a finite network will converge to 

reduced interference states under round-robin or random timing, then it also will under 
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asynchronous timing. The remainder of this section describes three operating scenarios 

that satisfy the condition of bilateral symmetric interference networks and are thus IRNs 

for all sequences of unilateral adaptations guided by the goal in (6.6). These scenarios are 

verified as IRNs via simulations of networks implementing DFS algorithms and 

spreading code adaptation. 

6.5.1 Networks of Isolated Clusters 

Encountered in infrastructure based networks employing code or frequency reuse, in a 

network of isolated clusters the network consists of a set of clusters C for which the 

following operational assumptions hold: 

1. Perhaps through judicious frequency or code reuse between clusters, each radio i is 

operating in a cluster c C∈  for which iI  (the set of radios with which i interferes) 

is a subset of c. 

2. The cluster head enforces a uniform receive power, rc, on all radios k for signals 

transmitted to the cluster head. 

3. Waveforms are restricted to those waveforms for which ( ) ( ), ,k i i kρ ω ω ρ ω ω= .  

4. Cluster heads provide measurements of (6.6) to all client radios in the cluster. 

 

Under these assumptions it is readily apparent that the bilateral symmetric interference 

condition holds
4

, thereby ensuring that all sequences of unilateral self-interested 

adaptations realize an IRN. 

 

Though formulated differently and generally considering specific decision rules instead 

of any selfish decision rule, such a network is utilized in [Hicks_04], [Ulukus_01a], 

[Rose_02], [Ulukus_01b], [Popescu_02], [Concha_01] for spreading code adaptations. 

An algorithm for implementing a network of isolated clusters IRN in each cluster c is 

given in Algorithm 6.3. 

                                                 
4
 Symmetric received power implies gipi = gkpk. Coupled with the condition that ( ) ( ), ,k i i kρ ω ω ρ ω ω= , it 

is clear that ( ) ( ), ,i i k i k k i kg p g pρ ω ω ρ ω ω= . 
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1. Given waveform vector ω, select some i∈c to adapt. 

2. Radio i applies di to select some ˆ
iω  

3. The cluster head for c returns the updated value given by (4) to i. 

4. If (6.6)  increases for i, assign ( )ˆ ,i iω ω ω−= , else ( ),i iω ω ω−=  

5. Return to 1. 

Algorithm 6.3: Algorithm for implementing an IRN for a network of isolated clusters. 

 

Verifying that such a network constitutes an IRN, the results of a simulation of seven 

code-adapting (over six signal-space dimensions) cognitive radios guided by (6.6) and 

communicating at a constant received power (-50 dBm) with a common cluster head is 

shown in Figure 6.2.  The top plot shows the measured interference levels for the each of 

the cognitive client radio and the bottom plot shows Φ(ω) for the network. Note that each 

adaptation of the network reduces the value of Φ(ω) thereby satisfying the defining 

condition of an IRN.  

 

Figure 6.2: Simulation of seven code adapting cognitive radios operating in an isolated 

cluster. [Neel_06a] 

6.5.2 Close Proximity Networks 

In this operational scenario it is assumed that the radios are operating as an ad-hoc 

network in sufficiently close proximity and transmitting with sufficiently similar power 

levels that waveform correlation dominates the distance and transmitted power effects are 

negligible. Such a scenario may arise in a network of closely spaced WLAN devices 
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where the presence of any in-band energy triggers a collision event, although such a 

network would constitute an effective interference reducing network as opposed to the 

strict interference reducing network. Under these assumptions (6.6) is equivalent to (6.8).  

( ) ( )
\

,i k i

k N i

u ω ρ ω ω
∈

= −∑  (6.8) 

 

If we again assume that ( ) ( ), ,k i i kρ ω ω ρ ω ω= , then the system satisfies the bilateral 

symmetric interference condition and thus forms an IRN for all sequences of unilateral 

self-interested unilateral adaptations. An example of an algorithm that could be 

implemented to realize an IRN in a close proximity network is given in Algorithm 6.4. 

1. Given waveform vector ω, select some i∈N to adapt. 

2. Radio i applies di to select some ˆ
iω  

3. If (6.8) increases, assign ( )ˆ ,i iω ω ω−= , else ( ),i iω ω ω−=  

4. Return to 1. 

Algorithm 6.4: Algorithm for implementing an IRN for a close proximity network. 

 

Note that many implementations can improve upon this algorithm by exploiting 

information specific to the waveform being adapted. Such a situation is considered in the 

example of DFS in a close proximity network in an ad-hoc DFS network we presented in 

[Neel_05]. In that example, the cognitive radios are formed into a closely-spaced ad-hoc 

network with each cognitive radio evaluating FFTs to identify the frequency at which 

signal spacing is maximized. The goals in that example can be equivalently reformulated 

into the IRN form given in (6.8) as shown by (6.9) where 

( ) { }, max ,0i k i kf f B f fσ = − − , fi is the frequency of radio i, f is the frequency vector 

determined by the choices of frequency by all radios, and B is the bandwidth of the 

signals. Intuitively, this goal expresses a preference for greater frequency spacing up to 

the point where no signal overlap occurs. 

( ) ( )
\

,i i k

k N i

u f f fσ
∈

= −∑  (6.9) 
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Note that as formulated, ( ) ( ), ,i k k if f f fσ σ= , thereby satisfying bilateral symmetric 

interference. Thus it is expected that any sequence of self-interested unilateral frequency 

adaptations guided by (6.9) will behave as an interference reducing network.  

 

The operation of such a DFS network can be visualized via the following example 

simulation of ten cognitive radios which are operating in close proximity, free to adapt 

over a policy determined 10 MHz of available center frequencies, and supporting 

applications that require with 1 MHz bandwidth signals. The results of a simulation this 

network where a randomly selected radio is permitted to adapt at each iteration are 

depicted in Figure 6.3 and Figure 6.4. The top plot depicts the operating frequencies of 

each radio starting from random initial distributions of frequencies; the middle plot shows 

the evaluation of the goals of all the radios in the network; the bottom plot shows the 

value of Φ(ω).  

 

While implementing the same decision rule (choosing to operating at the frequency that 

minimizes interference) in both simulations, different steady-states are reached because 

of different initial states for the network. However, in both simulations Φ(ω) forms a 

bounded monotonically decreasing sequence and the adaptations reach a steady-state 

condition from which no further unilateral adaptations can improve a radio’s goal. Also 

note that while the second simulation in Figure 6.4 does achieve a globally optimal 

solution, i.e., Φ(ω)=0, this is not a property guaranteed to hold for IRNs as shown in the 

simulation of Figure 6.3 which achieves a good, though non-optimal solution. 
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Figure 6.3: Simulation of a close proximity 

network. 

 
Figure 6.4: Simulation of a close proximity 

network. 

6.5.3 Controlled Observation Processes  

Instead of adjusting network topologies, it is also possible to achieve the bilateral 

symmetric interference condition by controlling the observation processes of the 

cognitive radios.  

 

For instance suppose a network consists of a collection of clusters where each cluster is 

controlled by a fixed access node whose adaptations are guided by the goal given in (6.6). 

To estimate interference, each access node measures the received signal power of the 

RTS/CTS signals in the network which are assumed to be broadcast at the same 

maximum transmit power level, p. Further it is assumed that jk kjg g= 5
 and waveforms 

                                                 
5
 It is permissible that link gains between access nodes are frequency selective, but frequency selectivity of 

the gains must be reciprocal as well, i.e., ( ) ( )ik i ki ig f g f= . For purposes of analysis, this frequency 

selectivity can be considered a part of ( ),i kρ ω ω . 
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are restricted to those waveforms where ( ) ( ), ,k i i kρ ω ω ρ ω ω= . As a result of these 

restrictions on the observation processes, it is readily verified that 

( ) ( ), ,kj k k j jk j j kg p g pρ ω ω ρ ω ω=  ,j k N∀ ∈  thereby satisfying the bilateral symmetric 

interference condition. Such a network could be encountered in a business WLAN 

installation where multiple access nodes with the same maximum transmit power level 

are deployed throughout a building or in an infrastructure based WRAN deployment, 

thereby ensuring that the access nodes all have the same maximum transmit power. An 

example of an algorithm that could be implemented to realize an IRN in a close 

proximity network is given in Algorithm 6.5. Again, depending on Ω and the network 

topology it may be possible to design di such that adaptations will be known to increase 

(6.6) without needing to specifically evaluate (6.6) post-adaptation. 

1. Given waveform vector ω, select some i∈N that will be allowed to adapt. 

2. Radio i applies di to select some ˆ
iω  

3. If (6.6) increases assign ( )ˆ ,i iω ω ω−= , else ( ),i iω ω ω−=  

4. Return to 1. 

Algorithm 6.5 Algorithm for implementing an IRN under a controlled observation 

process. 

 

A simulation of thirty access nodes randomly distributed over 1 km
2
 with a path loss 

exponent of 3 implementing DFS with random adaptation timings and guided by (6.6) is 

shown in Figs. 9 and 10 starting from two different random distributions of frequencies. 

Note that while the networks converge to different steady-state frequency distributions, in 

both cases, Φ(ω) forms a monotonically decreasing sequence. Also note that unlike 

before, these frequencies are not approximately regularly spaced as before. Instead the 

network has naturally converged to a frequency reuse scheme wherein sufficiently 

separated radios operate at the same, or nearly the same, frequency. 
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Figure 6.5 30 randomly distributed DFS 

nodes adapting to interference measured at 

the transmitter. 

 
Figure 6.6 Simulation of system in Figure 

6.5 with different initial frequencies. 

6.6 Stabilizing IRNs 
Recall that IRNs are guaranteed to converge to a steady state but that many steady-states 

are not guaranteed to be stable because they are not isolated. This effect can be seen in 

Figure 6.7 where interference estimations are corrupted by noise at -90 dBm. While the 

networks again achieve reasonably good performance, the radios in the network are 

almost continuously adapting their transmit frequencies which reduce the intended gains 

in spectral efficiency. This phenomenon can be limited by adjusting the decision rule di 

such that a radio only adapts its transmit frequency if the resulting frequency is predicted 

to improve performance by at least some threshold, τ>0, or generalizing to waveform 

adaptations as shown in (6.10). 

( )
( ) ( )( ) ( ),i i i i i

i

i

d u d u
d

otherwise

ω ω ω ω τ
ω

ω

−
 ≥ +

= 


�  (6.10) 
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Note that this is an example of an ε-better response decision rule which converges for 

finite and infinite spaces under round-robin, random, and asynchronous timings for exact 

potential games with bounded continuous potential functions on a compact action space. 

With this threshold included, the system becomes stable as shown in Figure 6.8. However, 

this threshold slightly increases the operating interference levels of the network as the 

network is now stops adapting when it reaches an ε-NE.  

 
Figure 6.7 Simulation of system in Figure 

6.5 where interference estimates are 

corrupted by noise. 

 
Figure 6.8 Simulation of system in Figure 

6.5 where interference estimates are 

corrupted by noise, but threshold adaptations 

are employed. 

 

A similar scenario could be readily constructed for pure ad-hoc networks that observe 

RTS-CTS signals to estimate (6.6). Such a scenario may arise in an infrastructureless 

WRAN (802.22) or in an 802.11 ad-hoc network. The results from a simulation of an ad-

hoc code adapting network of twelve cognitive radios sharing six signal dimensions 

randomly distributed over 2500 m
2
 with a path loss exponent of 3 is shown in Figure 6.9 

and Figure 6.10. As was the case for the DFS system, adaptations still rapidly decrease 
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the value of Φ(ω) until the network nears a steady-state at which point the presence of 

noise can lead to an excessive number of adaptation as implied by the noisy simulation 

shown in Figure 6.9. However, the addition of a requirement that selfish adaptations 

decrease interference by at least a small threshold can again stabilize the network as 

indicated by Figure 6.10. Further it provides a means to estimate convergence time as 

shown in Theorem 6.5 which applies the convergence rate theory of Chapter 5 to IRNs. 

 

Figure 6.9: Code adaptation in a noisy ad-

hoc network. 

 

Figure 6.10: Code adaptation in a noisy ad-

hoc network where adaptations only occur if 

interference decreases interference by at 

least τ. 

 

Theorem 6.5: Convergence time of threshold adaptations 

Given an IRN with continuous exact potential V and compact Ω where Φ = -αV, α +∈� , 

if d is modified to be of the form given in (8), then no more than 

( ) ( ) ( )min /ω ω ατ Φ − Φ   adaptations can be taken before arriving at a steady-state 

where Φ(ω) is the current interference level and Φmin
(ω) is the global minimum of Φ.  

Proof: Theorem 6.1 supplies the existence of Φmin
(ω). By the definition of an exact 

potential game, each adaptation that increases ui by τ increases V by τ and decreases Φ by 

ατ. Dividing the difference between Φ(ω) and Φmin
(ω) by ατ yields the desired 

expression. 

6.7 Legacy Devices and IRNs 
The implicit observation and cooperation inherent to the bilateral symmetric interference 

condition extends to legacy devices which are unable to adapt their waveforms. If we let 
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L denote the set of legacy radios in the network where it is assumed that L N∩ = ∅ , then 

(6.11) gives a goal for a cognitive radio seeking to decrease its own interference levels.  

( ) ( ) ( )
\

, ,i ki k k i ki k k i

k N i k L

u g p g pω ρ ω ω ρ ω ω
∈ ∈

= − −∑ ∑  (6.11) 

 

Under the assumption that the left portion of (6.11) satisfies the bilateral symmetric 

interference condition, it is relatively straight forward to establish the following 

conditions for which the entire goal given in (6.11) will also satisfy bilateral symmetric 

interference. 

• Networks of Isolated Clusters – Trivially, if the legacy devices are also operating in 

their own isolated clusters, then ( ) ( ), , 0ki k k i ik i i kg p g pρ ω ω ρ ω ω= =  ,i N k L∀ ∈ ∈ . 

• Close Proximity Networks – If it is assumed that the legacy devices are also operating 

in close proximity and ( ) ( ), ,k i i kρ ω ω ρ ω ω= , then ( ) ( ), ,ki k k i ik i i kg p g pρ ω ω ρ ω ω= . 

• Controlled Observation Processes – If i N∀ ∈  the observation processes form a 

controlled observation process and it is assumed that the legacy devices have the same 

transmit power level, then ( ) ( ), ,ki k k i ik i i kg p g pρ ω ω ρ ω ω= .  

Under all three scenarios, an exact potential exists and is given by 

( ) ( )
1

1

,
i

ki k k i

i N L k

V g pω ρ ω ω
−

∈ =

= − ∑ ∑
∪

 which is related to Φ(ω) as Φ(ω)=-2V(ω) implying that 

the network is again an IRN even with legacy devices included in the network. 

 

Modifying the earlier simulation of 30 randomly distributed controlled-observation DFS 

devices so that five devices are incapable of adaptation, Figure 6.11 and Figure 6.12 

show the results of the simulation. Note that the interference seen by both the legacy 

(dotted lines) and the cognitive radios (solid lines) decrease during the operation of this 

network. However, the legacy radios tend not to achieve as low of an interference level, 

primarily because they are unable to separate themselves in frequency from other legacy 

radios in the network. 
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Figure 6.11: Noisy simulation of system in 

Figure 6.5 where five devices are incapable 

of adapting. 

 

Figure 6.12: Noisy simulation of system in 

Figure 6.5 where five devices are incapable 

of adapting, and the rest implement a 

threshold adaptation. 

 

It is also interesting to note that the continued existence of an exact potential game is not 

impacted if the addition of legacy radios violates the bilateral symmetric interference 

condition, perhaps by transmitting at a different power level. In such a situation, each 

legacy interference component forms a self-motivated function discussed in Chapter 5 

and takes on the form shown in (6.12). 

( ) ( ),i i ki k k i

k L

S g pω ρ ω ω
∈

=∑  (6.12) 

Combining this with the original utility function yields the expression shown in (6.13) 

which is the more general form of a BSI game defined in Chapter 5. 

( ) ( ) ( )
\

, ,i ki k k i ki k k i

k N i k L

u g p g pω ρ ω ω ρ ω ω
∈ ∈

= − −∑ ∑  (6.13) 
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Applying the potential function given in Chapter 5 for BSI games yields an exact 

potential given by (6.14). 

( ) ( ) ( )
1

1

, ,
i

ki k k i ki k k i

i N k i N k L

V g p g pω ρ ω ω ρ ω ω
−

∈ = ∈ ∈

= − −∑∑ ∑∑  (6.14) 

However, the relation Φ(ω)=-2V(ω) no longer holds. Under these conditions, sequences 

of unilateral self-interested adaptations will continue to monotonically increase V and 

decrease the sum interference perceived by the cognitive radios but they are not 

guaranteed to monotonically decrease Φ as summed over N L∪ . 

6.8 IRN Summary and Conclusions 
This chapter has proposed a powerful new framework for the design of cognitive radio 

algorithms – the interference reducing network – for which adaptations converge and for 

which each adaptation improves network performance. For arbitrary conditions, this 

policy can be implemented by incorporating observations made by other cognitive radios 

into altruistic goals of the cognitive radios. However, when the bilateral symmetric 

interference condition holds, the radios only need to utilize estimates of their own 

interference to inform their decision making processes resulting in networks with 

excellent performance and minimal overhead (presumably some signaling is required to 

support the adaptation of a link, but there is no need to distribute additional information 

to coordinate these decisions with other links in the network).  

 

However, these internal information scenarios are generally limited to those waveforms 

for which the reciprocal energy property holds. For example, it is relatively easy to 

envision transmit beam forming adaptations that while operating in one of the identified 

internal information scenarios and implementing locally desirable adaptations would 

nonetheless not implement an IRN. Conversely, receive beam forming adaptations would 

also not satisfy the reciprocal energy property, yet will implement an IRN for any 

network topology.
6

 Noting the fundamental tradeoff between external and internal 

                                                 
6
 Consider any network topology implementing receive beam forming. Each self-interested adaptation 

guided by reducing received interference will presumably decrease the interference measured at the 

adapting device while having no impact on the other cognitive radios in the network. Thus, given a 

sequence of such adaptations, the sum of all measured interference levels, Φ(ω), forms a monotonically 

decreasing sequence. 
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observations, namely complexity versus generalizability, an interesting line of research 

becomes immediately apparent – how can cognitive radios recognize when they are 

operating under the bilateral symmetric interference condition so that higher efficiency 

networks might be realized? This is a topic beyond the scope of this document, but is the 

intended subject of [Neel_06b]. 

 

For each scenario considered in this chapter, an exact potential game model was 

identified. While the existence of an exact potential game model is useful for analysis, it 

holds further implications for ontologically reasoning cognitive radios, that is to say, 

radios for which decision processes cannot be determined a priori, and are instead 

learning as they go. In such an event, the existence of an exact potential provides an 

assurance that as long as adaptations are performed unilaterally and each ontologically-

defined radio acts to improve its own performance the network will constitute an IRN. 

Likewise, rather than the specific procedures followed in calculations of [Ulukus_01a], 

[Rose_02], [Ulukus_01b], [Popescu_02], and [Concha_01], the radios can choose any 

waveform that improves its own goal. Further, the controlled observations scenario 

permits us to implement these algorithms without having to have a common receiver (or 

collocated receivers) as in [Hicks_04], [Menon_04], [Ulukus_01a], [Rose_02], 

[Ulukus_01b], [Popescu_02], and [Concha_01]. Finally the BSI condition assures us that 

this can be performed without the collaboration of other radios as in [Popescu_04], 

[Sung_03a], and [Nie_05].  

 

The examples considered in this chapter should represent only a fraction of cognitive 

radio networks that could be designed to implement IRNs and only a fraction that satisfy 

the bilateral symmetric interference condition. It should be possible to identify additional 

IRNs by considering alternate topology and observation constraints, adaptations beyond 

frequency and spreading codes, and combinations of constraints and multiple adaptable 

waveform parameters.  
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Chapter 7: Dynamic Frequency Selection1 
So Abram said to Lot, "Let's not have any quarreling between you and me, or between 

your herdsmen and mine, for we are brothers.  

Is not the whole land before you? Let's part company.  

If you go to the left, I'll go to the right; if you go to the right, I'll go to the left.” 

 - Genesis 13:8-9 

 

Over the past years the number of WiFi hotspots has exploded. We all know that if we go 

downtown or to a large apartment building, we can find dozens of open access points to 

log on to. In fact Philadelphia, San Francisco, and our own Roanoke have rolled out city-

wide WiFi services. So even before the wide-scale deployments of 3G and WiMAX 

systems high speed data services are already ubiquitous. 

 

While WiFi coverage has become less of a problem, external network interference has 

emerged as a significant problem as the networks fight for access to a limited number of 

channels (and frequently, the same channel!). In theory, this interference problem could 

be ameliorated by applying a frequency reuse pattern to the networks – a seemingly 

easily implemented approach as 802.11b has three nonoverlapping channels (1, 6, and 

11) and 802.11a has eight minimally interfering channels in the US (nineteen in Europe) 

which are explicitly intended to facilitate frequency reuse in a minimally interfering 

manner. However, most people never modify their access points from the factory settings 

so many access points operate on the same pre-set channel.
2
 

 

A few years ago this reliance on the factory settings became a problem for a friend of 

mine when he set up a WiFi network in his house. A few months after setting up his 

network, his neighbors set up their own WiFi networks in their houses. As everyone had 

left the access points with their factory settings and had bought the same model of access 

                                                 
1
 This chapter is mostly taken from [Neel_06]. 

2
 An online acquaintance of mine has noted this same phenomenon with compasses in cars. Because 

magnetic north is not true north, the direction a compass points varies geographically. To combat this, 

compasses in cars intended for the US come equipped with fifteen different settings which calibrate the 

difference between magnetic north and true north. Invariably when he has bought a car, whether new or 

used, whether in California or in Virginia, the car’s compass has been set for region 8 – Detroit, the factory 

site. So right now in the US, there are thousands of people who think they’re driving north when they’re 

really driving northwest or northeast because they never changed their compass from its default setting. 
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point, all of the networks were operating on channel 6 and the performance of my 

friend’s network suffered noticeably from the interference. Being a Ph.D. wireless 

engineer at Virginia Tech, which confers a certain degree of mischievousness, my friend 

was not content to simply reconfigure his access point to operate on channel 1 or 11. At 

the time leaving an access point on its factory settings meant that the access point had no 

security and a common password, so he logged into his neighbors’ access points and 

changed their operating channels so that all three access points were operating on non-

interfering channels – a process he extended to his entire street as new access points were 

added. In this way, an optimal frequency reuse scheme was found for everyone’s 

networks even if most parties were unwitting participants in the process. 

 

Unfortunately when designing multi-channel networks, we cannot count on the networks 

being deployed on streets with wireless engineers willing to tune the networks, so another 

solution is required. Instead, we would prefer to construct self-tuning networks wherein 

the networks autonomously choose their parameters post-deployment indicating an 

opportunity for one of the killer applications of cognitive radio identified in Chapter 1 – 

automated radio resource management for automated deployment. Ideally, we would like 

for channel tuning portion to be as effective and as simple as possible – perhaps as simple 

as when Abram ensured that his flock would not interfere with Lot’s with the promise, “If 

you go to the left, I'll go to the right; if you go to the right, I'll go to the left.” 

 

Leveraging the insights gained over the preceding chapters, this chapter proposes low-

complexity algorithms for autonomous dynamic frequency selection (DFS) for 

interference minimization among secondary users
3
. These algorithms are suitable for 

implementation in 802.22 and 802.11h networks, require no direct collaboration between 

devices and are easily implemented. Section  7.1 introduces a general model of DFS 

adaptation algorithms and presents related work. Section 7.2 formally introduces the 

algorithms, proves important results related to steady-states, the desirability of those 

steady-states, convergence, and stability and verifies these results via simulation. Section 

                                                 
3
 Dynamic frequency selection is proposed in 802.11h and 802.22 primarily as a means to minimize 

interference with primary spectrum users – military radars and television broadcasts, respectively – with 

minimization of interference to other 802.11h and 802.22 devices a secondary consideration. 
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7.3 studies the proposed algorithms under various realistic conditions – policy variations, 

asynchronous timing, local frequency preference, noise, and the impact of differing 

power levels.  

7.1 Background 
This section introduces a model of distributed DFS algorithms, presents related work, and 

briefly reviews the IRN design framework. 

7.1.1 Modeling DFS Algorithms 

Modifying the notation of Chapter 2 to be DFS specific, we can model a network of 

cognitive radios (or any goal-driven adaptive radios) by the tuple <N, F, {ui}, {di}, T>  

where N represents the set of n cognitive radios, F is the frequency space formed as F= 

F1×⋅⋅⋅×Fn where Fi specifies the frequencies available to cognitive radio i∈N, {ui},     ui : 

F→R, is the set of goals that inform the cognitive radios’ decision processes, di : F→Fi, 

which are implemented at the decision timings contained in T.  

  

For our DFS algorithm we model the goal of the radios as minimizing perceived 

interference as shown in (7.1) 

( ) ( ) ( )
\

,i i ki k i k

k N i

u f I f g p f fσ
∈

= − = −∑  (7.1) 

where σ measures the fractional interference, i.e., ( ) { }, max ,0 /i k i kf f B f f Bσ = − −
4
, fi is 

the frequency of cognitive radio i's RTS/CTS signal,  B is the signal bandwidth, pk is the 

transmission power of radio k’s waveform, and gki is the link gain from the transmission 

source of radio k’s signal to the point where radio i measures its interference. So we can 

leverage the results of Chapter 6, it is assumed that the network design objective function 

is to minimize the sum network interference, ( )fΦ , as shown in (7.2). In a twist, we 

apply this framework only to the inter-access-point interference and not to the broader 

network interference. Yet, as we show in this chapter, minimizing inter-access-point 

                                                 
4
 Less formally, σ(fi, fk) represents the fraction of overlapping signal power from signals of bandwidth B 

with center frequencies fi and fk. 
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interference leads to a frequency reuse pattern that significantly improves the 

performance for all devices in the network. 

( ) ( )
\

,ki k k i

i N k N i

f g p f fσ
∈ ∈

Φ =∑ ∑  (7.2) 

7.1.2 Related Work 

Many authors have attacked the problem of DFS, or more generally dynamic spectrum 

access (DSA), by assuming a centralized decision maker. After noting that finding the 

optimal frequency allocation is a NP-complete problem, [Leung_03] proposes a heuristic 

centralized algorithm based on a local search algorithm with random restart to search 

through the possible frequency combinations considering only the interactions of the 

access points. As part of a solution to network formation problem [Steenstrup_05] 

utilizes a central controller to assign frequencies to each link in the network according to 

the abbreviated algorithm shown in Figure 7.1. This algorithm can be summarized as 

follows. First the controller determines the frequencies each device can use and not cause 

interference to higher priority devices. Then the controller determines for each device the 

frequencies that do not cause interference to the neighbors of higher priority devices. 

Then the algorithm picks a node and over all of its connections assigns a non-interfering 

frequency to that edge. This continues until all links are assigned a frequency or the 

algorithm fails. 



 298 

 

Figure 7.1: Frequency Assignment Algorithm. © 2005 IEEE Reprinted, with permission,  

from [Steenstrup_05] 

 

Other authors do not assume a central controller, but instead assume extensive message 

passing between the devices so each radio can effectively calculate the same solution. For 

instance, [Zhao_05] considers a network of orthogonal channels where adaptive 

secondary users coordinate their adaptations via a common channel. [Etkin_05] considers 

a system wherein optimal frequency/power allocations are achieved by employing 

punishment strategies similar to the ones considered in Chapter 4 but applied to DFS 

where the optimal strategy is known a priori. [Nie_05] considers a DSA scheme wherein 

radios must share information over a common channel to compute the interference levels 

each radio would induce to other radios in order to evaluate its goal, which is the sum of 
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every device’s observed interference. While this has the virtue of being both an exact 

potential game and an IRN (specifically, a globally altruistic IRN), it requires significant 

overhead to distribute the information needed to evaluate the goal and the authors require 

the decisions be made sequentially. For DSA systems where spreading codes are adapted 

(viewed in the context of signal space representations, spreading code adaptation 

algorithms could be directly applied to DFS problems),  [Sung_03a] presents an 

algorithm where each radio’s goal incorporates the interference measurements of all other 

radios in the system (another globally altruistic IRN). [Xing_06] considers a Homo 

Egualis (“fair man”) implementation where each access point chooses frequencies so as 

to maximize (7.3) where xj is the usable spectrum for user j and αi,βi∈�. Thus each 

access point attempts to ensure that every access point is receiving approximately the 

same amount of spectrum. 

( ) ( )
1 1

j i j i

i i
i i j i i j

x x x x

u x x x x x
n n

α β

> <

= − − − −
− −
∑ ∑  (7.3) 

[Villegas_05] considers a distributed graph coloring algorithm where edges are formed 

between interfering access points. Each access node recursively distributes frequency and 

interference measurements and selects the frequency it believes will result in the least 

interference. 

 

Other authors have considered single cell adaptations without the need for 

communication beyond reporting measurements from a common receiver. As discussed 

in Chapter 6, [Sung_03b], [Hicks_04], [Menon_04], and [Ulukus_04] consider spreading 

code adaptations where each access node is isolated in frequency and spreading codes are 

chosen to minimize the interference of clients/mobiles– a situation analogous in signal 

space to DFS applied to the clients in a single isolated cluster. 

 

[Nie_05] also proposes another goal (or utility function) for DSA (U1) that is identical to 

the goal used in this paper (equation (7.1)). However, because [Nie_05] places no 

restrictions on the observation mechanism, [Nie_05] is unable to show that their system 

forms an exact potential game which would permit the use of a simple distributed and 

autonomous algorithm. Instead [Nie_05] employs a no-regret learning algorithm wherein 
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the radios autonomously try every possible frequency and then adapt to frequencies that 

yield the best weighted cumulative utility and show that the algorithm converges to a 

mixed-strategy equilibrium – a less than optimal result as mixed strategies in frequency 

selection imply continuous probabilistic adaptation. 

 

[Luo_04] considers a closely related algorithm applied to a regular 10x10 grid of access 

points where each radio is guided by (7.4) 

( )
j k

j k

i
i k j

M Sj

M S

M
u f f M

M ∈

∈

 
=   

 
∑

∑
 (7.4) 

 

where Mi is the number of users attached to access node i, Sk is the set of nodes operating 

on fk and f evaluates the throughput for the number of users in the argument. Each access 

node then chooses the channel that maximizes its throughput and switches to it with a 

fixed probability, p.  

 

This chapter proposes a low-complexity autonomous distributed DFS algorithm suitable 

for use in ad-hoc 802.11h networks where each radio does not have to infer or know what 

other radios are experiencing and does not assume the existence of a centralized decision 

maker. After briefly defining the concepts of interference reducing networks and exact 

potential games and defining the proposed algorithm, this chapter shows via analysis and 

simulation that our algorithm results in a frequency allocation that is a minimizer of sum 

of the observed access node interference even when different policies are applied to 

different channels, asynchronous decision timings are used, access nodes exhibit private 

frequency preferences, and spectral signals are imperfectly estimated. Additionally, the 

impact of combining transmit power control (TPC) with our DFS algorithm is explored 

as well as how the algorithm influences the performance of client devices not 

participating the algorithm. 

7.1.3 Interference Reducing Networks 

A cognitive radio network is said to be an interference reducing network (IRN) if all 

adaptations decrease the value of the sum of observed interference levels ( ) ( )i

i N

f I f
∈

Φ =∑  
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where ( )iI f  is the interference observed by cognitive radio i when the frequency vector 

f∈F is implemented by N.  

 

Chapter 6 states that an IRN can be realized in a distributed and autonomous fashion by 

selfish interference minimizing radios if adaptations are made by only one radio at a time 

if the condition of bilateral symmetric interference (BSI) holds, which happens if 

( ),ki k i kg p f fσ = ( ) ,,ik i k i k k i ig p f f f F f Fσ ∀ ∈ ∀ ∈ . BSI implies that a network is an IRN 

for unilateral adaptations because BSI implies that the network of access nodes can be 

modeled as an exact potential game. An exact potential game is a normal form game for 

which there exists a function, called the exact potential function, V:F→�, such that 

( ) ( )ˆ , ,i i i i i iu f f u f f− −− =  ( ) ( )ˆ , ,i i i iV f f V f f i N− −− ∀ ∈  where if− refers to the n-1 

dimensional vector formed by excluding the contribution of i from f . By examining this 

definition, it is apparent that when profitable unilateral adaptations are made in an exact 

potential game, V constitutes a monotonically increasing sequence. As shown in Chapter 

6, when BSI holds, Φ(f)=-2V(f), a monotonically increasing V implies a monotonically 

decreasing Φ(f) and an IRN is realized. This monotonicity property can then be used to 

prove the convergence of all selfish decision rules with unilateral timings as shown in 

Chapter 6. 

7.2 An IRN DFS Algorithm 
As opposed to algorithms with a centralized decision maker, or a single cell network, or a 

network that requires significant message passing just for the radios to evaluate their own 

goal, this chapter presents a DFS algorithm proposed in [Neel_06] which is completely 

distributed and requires no message passing between clusters (presumably an access 

point has to signal its users when changing frequencies). Further it does this without 

requiring complex computations or observations – the radio merely has to measure the 

received power of the RTS/CTS messages sent by other access nodes in the network and 

then choose a channel that the radio believes will reduce its interference. 
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This simple algorithm converges to a low interference frequency reuse pattern because it 

satisfies the Interference Reducing Network (IRN) framework, and in particular, the 

Bilateral Symmetric Interference condition. This implies that the goals and frequency 

space of the access nodes form an exact potential game with a potential function which is 

a scalar multiple of the negation of the network interference function, Φ(f) for the access 

nodes. Further, by converging to a frequency vector where access points with common 

frequencies are separated geographically, client devices also experience a significant 

reduction in interference. The following provides detailed information about the proposed 

algorithm. 

7.2.1 Algorithm Details 

The proposed algorithm can be described as follows. Suppose each access node maintains 

a table with |Fi| entries initialized to zero, corresponding to the |Fi| channels available to 

the network. Whenever access node i detects an RTS/CTS signal from another access 

node, j, i adds the power received from j to the table entry corresponding to the channel 

used by j. If j had been previously observed, then its previous received power is 

subtracted from its previous entry so that an access node only impacts a single table entry. 

This process is illustrated in Figure 7.2. Note that if while listening to a channel multiple 

access nodes transmit, then no measurement can be made. Also note that if the signal 

power is to low for packet decoding, then no measurement can be made.  
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Figure 7.2: Flowchart of Algorithm Implemented on Each Access Node. 
 

Now let us make the following assumptions about the network. 

(A1)  All RTS/CTS messages are transmitted at the same power level – a reasonable 

 assumption as these messages are typically transmitted at maximum power to 

 clear out hidden nodes. 

(A2)  The access nodes are not mobile so that the link budgets between access nodes 

 for each channel are symmetric, i.e., gij = gji or that interference measurements 

 are averaged over a long period so that gij = gji is approximately true.  

(A3)  All channels have the same bandwidth, B. 

(A4) A single access node adapts at a time and adaptations occur at a much slower 

 rate than the rate at which new observations are made. 
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(A1)-(A3) imply that ( ) ( ), ,ji j i j ij i j ig p f f g p f fσ σ=  which means that the bilateral 

symmetric interference of Chapter 6 holds among the access nodes. By the methods of 

Chapter 6, if each adaptation reduces the access node’s observed interference, then the 

network of access nodes is an IRN if one access node adapts at a time, which is assured 

by (A4). While (A4) is a difficult condition to assure, if the frequency space is finite, then 

it can be shown that asynchronous adaptations converge to the same set of steady-states. 

As the network of access nodes is an IRN, it is expected that this distributed algorithm 

will converge to a low interference steady-state which is stable when the equilibria are 

isolated. 

7.2.2 An 802.11h Application  

As Chapter 6 asserts, since the only requirement on the decision process of cognitive 

radio is that adaptations increase (7.1) in order to decrease (7.2), great variation in the 

implementation of the decision process is permissible. Here we assume that each access 

node implements the following protocol:  

1) Observe the spectral energy of the RTS/CTS messages of all observable access 

nodes.  

2) At the time of its choosing, choose the channel on which the node observed the 

least amount of energy.  

 

Consider a network of 802.11h access nodes (and presumably their client devices, but as 

the client devices are not involved in the decision process, they are irrelevant to the 

interactive decision problem). Suppose the access nodes are policy constrained to operate 

in the eleven channels available in the 5.47-5.725 GHz European band (channels 100-

140) so that the assumption that “all RTS/CTS are transmitted at the same power level” 

holds for all channels (in this case, 1 W).  Further, let us assume each radio has an equal 

probability of being the only radio allowed to adapt at each instance. As this is just a 

direct application of the general RTS/CTS DFS algorithm in Chapter 6 (where σ is now a 

binary function and discrete channels are used, i.e., σ(fi, fk)=1 if fi = fk, and σ(fi, fk)=0 

otherwise), we expect that the network will automatically sort itself into a low-
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interference frequency reuse pattern and that each adaptation will reduce the sum of 

access-node-perceived interferences in the network.  

 

These expectations are confirmed in simulation of thirty access nodes randomly 

distributed over 1 km
2
 operating in an environment with a path loss exponent of 3 with 

random placements and random initial channels and noise floors of -90 dBm. The 

geographic distribution of devices and their final operating frequencies are shown in 

Figure 7.3 where a circle notes the position of an access node with its final channel id 

labeled just below and to the right of the circle. Figure 7.4 depicts the operational 

channels for each access node (top), perceived interference levels by the access nodes 

(middle), and the sum of perceived interference levels (bottom) for the simulated network. 

Note that Φ(f) (bottom) decreases with each adaptation thereby satisfying the definition 

of an interference reducing network even though there are instances of interference 

increasing for individual access nodes (middle). Thus as is the case for all IRNs, self-

interested adaptations led to a socially desirable outcome (at least when socially desirable 

is defined as the sum of observed network interference levels). As this algorithm 

converges to a minimum of Φ(f) (though not necessarily the global minimum), the 

algorithm performs at least as well as the centralized local search algorithm for access 

node in [Leung_03] if no restarts are employed.
5
 So, somewhat remarkably, this scalable 

distributed low complexity algorithm yields results as good as the high complexity 

centralized algorithm – a rare case of a “free lunch” in an engineering application. 

                                                 
5
 As discussed in Chapter 5 when applying Zangwill’s convergence theorem, sequences of self-interested 

adaptations in a potential game are analogous to a dynamic program with the potential function as a goal. In 

particular, sequences of best response adaptations effect a local search algorithm and has the same set of 

solutions. 
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Figure 7.3: Steady-state Channels Selected for a Random Distribution of Access Nodes 

with Random Initial Channels in the 5.47-5.725 GHz Band. 
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Figure 7.4: Transient Statistics for the Network in Figure 7.3. 

Of course, if the client devices are not also partaking of this free lunch, then there is little 

value to the algorithm. Fortunately, the client devices also see a significant reduction in 

interference. Figure 7.5 illustrates how the adaptations shown in Figure 7.4 impact the 

transient interference levels measured by 50 client devices randomly scattered over the 

network with each client communicating with its nearest access node. The top plot shows 

the frequencies of the client devices; the middle plot shows the clients’ observed out-of-
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cluster interference levels
6
; and the bottom plot shows the sum of the interference 

observed by the client devices. As part of modeling the out-of-cluster interference 

observed by the clients, an infinite demand for data is assumed. With a cluster with n 

clients, this assumption leads to a situation where each client is always contending for 

access and thus is able to transmit only 1/n
th

 as often as the access node, which is  

involved in every communication.  

 
Figure 7.5: Transient Statistics for 50 Client Devices for the Network in Figure 7.3. 

 

Unlike for the interference observations made by the access nodes, the sum interference 

for the client observation statistics is not monotonically decreasing over time. This is 

                                                 
6
 The proposed algorithm does not address intra-cluster interference and thus intra-cluster interference 

would not change due to this algorithm. 
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because the BSI condition for this algorithm only applies to the access nodes.
7
 In fact, 

adaptations that might be good for access nodes can be bad for particular client devices. 

Consider the illustrated in Figure 7.6 where the access node in the top right is beyond the 

detection range of the closely spaced access nodes in the bottom left. It is conceivable 

that the access nodes of the two client devices (laptops) will choose the same frequency 

which would result in significant client-to-client interference. However, this situation is 

relatively rare and in general when the access nodes adapt to a frequency reuse pattern 

that reduces the interference seen by the access nodes, the client devices also see a 

reduction in interference. Similar situations can also be created via shadowing. The effect 

of this algorithm on client devices is revisited in Section  7.3.6 which considers the 

reduction in interference seen over numerous random trials. 

 
Figure 7.6: A Situation where Access Node Adaptations Can Increase Client Interference. 

                                                 
7
 Client-client interference would also satisfy the BSI condition. 
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7.3 Algorithm under Non-Ideal Conditions 
In the preceding, we made a number of assumptions to make the network be an ideal IRN. 

As the following progressively relaxes these assumptions, it is seen that the proposed 

algorithm retains its desirable properties. 

7.3.1 Policy Variations 

If we permit the radios to choose permissible channels outside of channels 100-140, the 

assumption that all RTS-CTS messages are transmitted at the same power level fails as 

the lower and middle UNII bands (channels 36-64) limit transmission power levels to 200 

mW [Etkin_05]. This violates (A1) (pk = pi ∀i,k∈N).  However, for non-overlapping 

signals,σ(fi,fk)= σ(fk,fi)=0, so BSI still holds and the network is still an IRN.  Repeating 

the previous simulation and changing only the permissible channels and reflecting the 

transmission power policy variation we get the transient statistics shown in Figure 7.7 

where it is evident that the network continues to be an IRN. 
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Figure 7.7: Transient Statistics with Policy Variations. 

7.3.2 Asynchronous Timing 

In the preceding, we assumed that one and only one access node adapted at any instance 

in time (A4). However, because adaptations and observation processes do not occur in 

infinitesimal periods of time it is likely that multiple access nodes will occasionally adapt 

simultaneously – a trend that becomes more likely as the number of access nodes in the 

network increase. So now continue to have the policy variations of the previous section 

and now assume that (A4) does not hold and instead assume that each access has an 

opportunity to adapt at each iteration of the algorithm with non-zero probability. 

 

Following the algorithm considered in this paper and the relaxed timing constraint two 

radios which are operating in the same channel and in close proximity to each other could 



 312 

simultaneously choose to adapt to another channel where a distant radio is operating. In 

this case, Φ(f) would increase even though each radio chose the channel which the radio 

had measured as having the least interference. Thus with (A4) relaxed, the proposed 

algorithm cannot be guaranteed to yield the strict monotonicity required by the definition 

of an IRN.  

 

Yet this network will still converge to a steady-state that is a minimizer of Φ(f). This 

again is a result of <N,F,{ui}> forming an finite exact potential game which implies FIP. 

As it is an exact potential game, minimizers of Φ(f) are Nash equilibria and the game has 

FIP which means that from any starting state, every sequence of self-interested unilateral 

adaptations must terminate in a minimizer of Φ(f). Due to these two properties, the 

network can be modeled as an absorbing Markov chain where minimizers of Φ(f) are the 

absorbing states of the chain. By virtue of being a minimizer, there can be no unilateral 

deviations that reduce interference; thus minimizers are absorbing states. By virtue of the 

finite improvement path property, there always exists a sequence of adaptations of non-

zero probability that terminate in a minimizer as long as the probability of a unilateral 

deviation is always nonzero. Thus even with (A4) relaxed to asynchronous timings for 

adaptations, the network will still converge to a minimizer of Φ(f).  

 

To verify this assertion, we modified the preceding simulation so that at each “iteration” 

each access node had an opportunity to adapt with probability 0.02. The transient 

statistics for this simulation are shown in Figure 7.8. While Φ(f) still trends down, it no 

longer does so monotonically. Nonetheless, because this system forms an absorbing 

Markov chain, it eventually converges to a frequency vector that is a minimizer of Φ(f). 
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Figure 7.8: Impact of Asynchronous Decision Timings. 

7.3.3 Private Frequency Preferences 

Throughout this discussion we have assumed via (A2) that each access node only intends 

to minimize the interference it perceives from other adaptive access nodes. However, 

because of the presence of interferers or because of local channel conditions, different 

access nodes may also exhibit different preferences for different frequencies. If we 

denote the frequency preferences of access node i as Si(fi), these preferences might be 

incorporated as shown in (7.5). 

( ) ( ) ( )
\

,i ki k i k i i

k N i

u f g p f f S fσ
∈

= −∑�  (7.5) 

 

Note that Si(fi) indicates that this component for access node i is only a function of access 

node i’s choice of frequency and makes the most sense expressed additively as in (7.3) 
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where Si(fi) models the influence of static interferers operating at frequency fi on the 

preferences of access node i. 

 

Under the assumption that Si(fi) models the result of introducing static interferers into the 

environment,
8
 (7.2) no longer reflects the sum access-node-network interference. Instead 

the sum of access-node interference over the network with frequency preferences is given 

by (7.6) . 

( ) ( ) ( )
\

,S

i i ki k k i

i N k N i

f S f g p f fσ
∈ ∈

 
Φ = + 

 
∑ ∑  (7.6) 

 

This inclusion of additional interferers or jammers or local channel conditions may also 

impact bilateral symmetric interference as the interferers may not be transmitting at the 

same power level as the cognitive radios or may be operating with differing bandwidths.  

 

Regardless of the loss of bilateral symmetric interference due to variances in the static 

interferers, { }, , iN uΩ  remains an exact potential game but with an exact potential 

function given by (7.7). 

 

( ) ( ) ( )
1 1

,
n n

S

i i ki k k i

i k i

V S f g p f fω σ
= = +

 
= − + 

 
∑ ∑  (7.7) 

 

Note that the differences between (7.6) and (7.7) imply that the network of access nodes 

is not strictly an IRN. Consider the scenario where a unilateral adaptation is made from a 

channel that is originally only occupied by the adapting access node i and a static 

interferer to a channel that is occupied only by access node k such that (7.8) holds.  

                                                 
8
 Consider a non-cognitive access node is deployed in the network which is operating at a particular 

frequency. Because this access node is not a decision maker, it is not modeled as a player in the game 

model of the network. However, its presence will influence the decision making process of the players, but 

because of propagation effects its influence will not be uniform across the network. Thus each enhanced 

access node will experience different levels of interference from this non-cognitive access node. We model 

this variance in interference as Si(fi) where the choice of operating frequency by cognitive access node i 

determines which effects it experiences from the non-cognitive access nodes which may be operating in the 

area. 
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( ) ( ) ( ), 2 ,ki k i k i i ki k i kg p f f S f g p f fσ σ< <  (7.8) 

             

This adaptation would increase (7.5) – thereby satisfying the proposed algorithm – but 

(7.6) would also increase – violating the definition of an IRN. However, the exact 

potential in (7.7) will always increase, ensuring the algorithm’s convergence. And when 

the only maximizers of (7.7) are those for which Si(fi)=0 ∀i∈N, the algorithm will 

converge to a minimizer of (7.6) as under this condition ΦS
(f)=   -2V(f). Even though it is 

trivial to construct two-access node, two channel, single interferer scenario with non-

random geographic and channel distributions where (7.8) is satisfied, repeated trials of 

our randomly placed, random initial channel simulation have not yielded an adaptation 

that satisfies (7.8), which indicates the condition might be rare in practical settings. For 

example, modifying the policy variation simulation so it includes five static interferers 

operating in both channels 132 and 136, but distributed randomly geographically yields 

the simulation shown in Figure 7.9. 
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Figure 7.9: Algorithm Performance with Private Frequency Preferences. 

7.3.4 Effect of Estimations 

Throughout the preceding, we have implicitly assumed that the access nodes are perfectly 

measuring the signal strength of the RTS/CTS signals. However, in a practical setting, 

measurements of interference levels in differing channels would be corrupted by receiver 

noise, non RTS/CTS signals, and RTS/CTS signals too weak to decode and recognize as 

from an access node. Thus measurements of received power will at best be corrupted 

estimations. In such a scenario, the access nodes’ goals would again take the form as 

shown in (7.5) but with Si(fi) a stochastic variable representing measurement error. 

 

As shown in the preceding section, a goal of the form of (7.5) implies that while 

<N,F,{ui}>  is still an exact potential game, the network will not necessarily remain an 



 317 

IRN for all possible realizations. Further, for channels with very low interference levels, 

Si(fi) may be a dominant term and its natural time variation may spawn unnecessary 

adaptations.  

 

For example consider a modification of the preceding simulation where the -90 dBm 

noise floor is implemented as a Gaussian stochastic variable. The results of this 

simulation are shown in Figure 7.10. While the algorithm still yields an almost 15 dB 

reduction in interference levels from the initial random distribution, Φ(f) is no longer 

monotonic, overall performance is decreased and significant bandwidth would be wasted 

signaling all of these adaptations. However, by modifying the algorithm so the access 

nodes only adapt if the reduction in interference is predicted to be more than a small 

threshold (-85 dBm or 3.16 pW), the system behaves as shown in Figure 7.11 – generally 

like a convergent IRN, but with the caveat that there exists the small probability that an 

adaptation may increase sum interference. Based on the discussion of Chapter 5, we 

recognize this as an ε-better response decision.  
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Figure 7.10: Algorithm with Stochastic Estimations. 
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Figure 7.11: Algorithm with Stochastic Estimations and a small adaptation threshold (-85 

dBm). 

While this modified decision rule is stable, it is somewhat at odds with how we have been 

treating the stability of decision rules. Specifically, we have been primarily operating 

under the assumption that each decision rule can be characterized as :i id A A→  and 

characterizing stability as for every ε>0 there exists some δ>0 such that if the system is 

perturbed off the steady state, a
*
 by a distance no greater than *a a δ− <  then the 

system will remain no further away from a
*
 than *a a ε− <  absence further 

perturbances. Because of the finiteness of the action space and the lack of isolated steady-

states, this formulation is impossible.  
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Yet the system is stable as shown in the simulation. Recall that in the model in Chapter 2 

we said that expressing the decision rule as a function of the action space was really only 

a useful analytic conceit for decision rules that are a function of the outcome space and 

that the radios were really observing and reacting to the outcome space. So rather than 

:i id A A→  the radios are actually implementing :i id O A→ . When we introduce noise to 

the observations of the radio, this has the effect of perturbing the observed outcomes in O. 

So we are actually referring to the stability of :i id O A→ . With this in mind, it is 

relatively easy to show that the threshold causes di to be stable. Because of the threshold 

in the decision rule and assuming the system is at an NE, it now takes a perturbation in 

the outcome space at least as great as the threshold to induce an adaptation. Or more 

formally, for any arbitrarily small ε>0 and assuming that the system is operating at an NE, 

for all τ>δ>0 the system remains within an ε of the steady-state, specifically, the system 

remains on the original steady-state. Note that the thresholded decision rule induces many 

more equilibria in the system (specifically a number of ε-NE) so different steady-states 

may have smaller permissible values for δ. 

7.3.5 TPC and DFS 

[Etkin_05] states that TPC (transmit power control) is intended to support variations in 

policy and adaptations based on “a range of information including path loss and link 

margin.” As we showed in the Policy Variations section, as long as it is applied 

consistently across a channel policy variations do not impact the IRN features of the 

algorithm. However, if the RTS/CTS power levels are set at varying levels by the 

differing access nodes operating in the same channel, then it is likely that (A1) will be 

violated in situations where ( ), 0i kf fσ ≠  which means the BSI condition will not be 

satisfied. For instance, consider a modification of the original policy variation simulation 

where the transmit power that each access node applies to its RTS/CTS signals has been 

scaled by a factor randomly drawn from a clipped Gaussian distribution (clipped so as to 

rule out negative power levels) whose results are shown in Figure 7.12. Note that Φ(f) 

does not decrease monotonically in this simulation, though it does trend downwards 

fairly consistently and converges for all simulations to date. When TPC is applied to the 

RTS/CTS messages, it is observed that the system still converges to an interference 
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minimizer. Currently, we do not have a firm analytic explanation for this phenomenon, 

though it is known that for relatively small variations in transmit power levels, Φ(f) will 

be an ordinal potential function for <N, F, {ui}> so for many realizations of TPC applied 

to RTS/CTS signals the network will still behave as an IRN.  However, without a firm 

analytical basis for stating why desirable behavior results we are unable to rule out 

unforeseen pitfalls from the interactions. So we recommend that application of the 

proposed algorithm be limited to scenarios where TPC is applied only to the DATA and 

ACK messages. While this assumption would still enable improved battery life and 

would be consistent with the RTS/CTS messages original intent for clearing out hidden 

nodes, it would limit the gains seen from frequency reuse. However, all localized TPC 

schemes face a functionality tradeoff of clearing out hidden nodes versus maximizing 

frequency reuse. By reducing transmit power on the RTS/CTS message, a higher cluster 

density can be achieved, but this comes at a cost of increasing the probability that a 

hidden node will miss the RTS/CTS signal and subsequently interfere with the data 

transfer, particularly where TPC is guided by local decisions instead of policy.  
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Figure 7.12: Algorithm with TPC Applied to RTS/CTS. 

7.3.6 Steady-State Statistics 
Although potential game theory and the interference reducing network design framework 

analytically guarantee convergence to an minimally interfering frequency vector for self-

interested access node adaptations, they do not specify the improvement gain this system would 

experience as such gains are highly dependent on the initial configuration of the access nodes and 

their relative locations. To provide the reader with a sense of the possible improvements that can 

be realized by this system, we conducted repeated simulations of varying number of 802.11a 

access nodes randomly distributed over 1 km
2
 with random initial frequencies. This simulation 

was conducted for 5,10,15,18,20,25,30,35,40,50,60,70,80,and 100 access nodes with 500 random 

trials for each number of access nodes. The results of this simulation are presented Figure 7.13 

where each circle depicts the aggregate system-wide reduction in interference, and the line traces 

out the average reduction in interference. As can be seen for access node densities > 40/km
2 
the 

typical reduction in interference was about 19 dB over the system’s initial random frequency 
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assignment with less improvement seen for lower access node densities. As should be expected, 

for low access node densities, there is typically little improvement gain seen by this algorithm. (In 

theory, improvement for a single access node system is impossible as it has no interfering access 

nodes.)  

 
Figure 7.13: Aggregate Steady-state Statistics for Observed Access Node Interference. 

 

Figure 7.14 shows a similar simulation with twice as many client devices as access nodes 

but with only 100 random trials per number of access nodes and with the infinite data 

demand model used earlier in this chapter. The top plot depicts the interference reduction 

seen as observed by the access nodes, and the bottom plot shows the interference 

reductions experienced by the client devices. In both plots, the circles represent the 

interference reduction for a specific trial, and the lines show the average reduction.  

 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Number of Access Nodes

R
e
d
u
c
ti
o
n
 i
n
 N

e
t 

In
te

rf
e
re

n
c
e
 (

d
B

)



 324 

 
Figure 7.14: Aggregate Steady-state Statistics for Client Interference. 

 

Comparing the aggregate statistics, it is seen that the algorithm yields a greater reduction 

in interference for the client devices than for the access nodes’ observed interference for 

low density deployments with the situation reversed for high density deployments. In all 

cases, however, the access nodes’ actual interference is reduced by more than the clients’ 

interference and more than the reduction in interference observed by the access nodes. 

This phenomenon is due to two factors. First, the access node statistics are the access 

nodes’ observed interference and thus only include the interference from other access 

nodes. In comparison, the client interference includes interference from both other client 
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devices and from access nodes. Thus a greater possible interference reduction is possible 

for the client interference statistics. Second, for 18 or fewer access nodes (36 or fewer 

client devices), frequency allocations where all clusters are operating on a unique channel 

are NE for the network. Thus no cell-edge client-to-client interference effects would be 

expected at the steady-state frequency allocation for these scenarios. However, for greater 

numbers of access nodes, this cell-edge effect becomes non-negligible, particularly for 

the client devices. So the gain experienced is reduced, but the average improvement seen 

by moving from adaptating away from a random frequency reuse pattern remains 

significant – greater than 11 dB.  

 
Figure 7.15: Comparison of Average Interference Reductions. 

7.4 Summary and Conclusions 
This chapter presented a novel algorithm for performing DFS which does not require the 

use of a centralized controller, specialized network topologies, or even any message 

passing between nodes but still achieves performance as good as could be expected from 

a centralized heuristic algorithm, e.g., [Leung_03]. The remainder of this section 

summarizes the results of the DFS algorithm, describes how game theory aided the 

design, and describes further extensions that can be made to this algorithm.  
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7.4.1 Algorithm Summary 

By leveraging the framework of interference reducing networks, this chapter proposed a 

low complexity autonomous distributed ad-hoc DFS algorithm whose adaptations 

converge to a minimizer of the sum of observed interference levels by minimizing their 

own perceived interference measured from the RTS/CTS signals of other access nodes. 

We showed that this non-cooperative non-collaborative algorithm is robust to policy 

variations, timing variations, the presence of interferers, and noisy estimations of signal 

strengths when a simple adaptation threshold is applied to the algorithm. Though 

empirically convergent, when TPC is applied to the RTS/CTS signals, the algorithm fails 

to satisfy the IRN framework. However, the assumption of TPC applied to RTS/CTS 

signals may not be realistic as it necessarily increases susceptibility to hidden nodes. 

While all simulations implemented a best-response dynamic, any self-interested decision 

rule – including an ontological reasoning engine – will converge by virtue of being an 

exact potential game and an IRN. 

7.4.2 How Game Theory Aided the Design 

This chapter demonstrated what can be gained by leveraging the techniques of the 

previous chapters. We knew that if a cognitive radio network could be designed as a 

potential game, then unilateral deviations would converge and the maximizers of the 

system’s potential function would be steady-states. The one hole in applying potential 

games is that convergence is not guaranteed to be to a desirable steady-state. As noted in 

Chapter 5, this problem can be solved by designing networks where the potential function 

is the design objective function. Chapter 6 gave the framework for doing this wherein the 

concept of bilateral symmetric interference guaranteed that self-interested interference 

minimizing adaptations yield an interference reducing network. The condition of bilateral 

symmetric interference was an application of bilateral symmetric interaction exact 

potential game to cognitive radio networks. Asynchronous convergence was then assured 

by the FIP convergence analysis of Chapter 4 which was in turn aided by the Markov 

models of Chapter 3. We also knew that the network could be made stable – a concept 

introduced in Chapter 3 – because of the consideration of the stability of ε-better 

responses in finite potential games.  
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Because of game theory and the results established in the preceding chapters, we knew 

that a low complexity, scalable DFS algorithm, convergent, stable, and desirable network 

(in terms of the frequency reuse pattern) would result if we could get the access nodes to 

satisfy the bilateral symmetric interference condition. And because of game theory and 

the earlier results we knew that this would occur without having to resort to a centralized 

controller, without message passing between the radios so they could all independently 

find the same solution, and without resorting to specialized network topologies.  

 

With all this in hand, the only insight needed to design this network was identifying a 

situation where symmetric link gains and equal transmit powers could reasonably be 

assumed to be present. And this is satisfied simply by having each access point tabulate 

the channel and received power of the RTS/CTS messages of other access points which it 

can observe.  

 

Beyond the single best response decision rule presented in the original paper and covered 

in this chapter, the FIP results of Chapter 4 and Chapter 5 also assure us that the 

combination of decision rules and timings whose entries contain a ‘Y’ in Table 7.1 also 

converge. Thus with the correct observations, goals, and action space in place many 

different scenarios are known to converge. 

Table 7.1: Other Conditions Guaranteed to Converge to a Low Interference State. 

 Timings 

Decision Rules 
Round-

Robin Random Synchronous Asynchronous 

Best Response Y Y N Y 

Exhaustive Better Response Y Y N Y 

Random Better Response
(a)

 Y Y Y Y 

Random Better Response
(b)

 Y Y N Y 

ε-Better Response
(c) Y Y N Y 

Intelligently Random Better Response  Y Y N Y 
(a) Proposed random better response  (b) Random better response of [Friedman_01] (c) Convergence to an 

ε-NE 

7.4.3 Further Extensions 

This algorithm need not be specifically limited to finite channel sets (though the table 

entry routine would require modification) nor to nonoverlapping channels, as relaxing 
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these assumptions still preserves the bilateral symmetry assumption that 

( ) ( ) { }, , max ,0 /i k k i i kf f f f B f f Bσ σ= = − − . For instance, the same algorithm could 

be readily applied to a 2.4 GHz 802.11b network which has 11 channels where at most 3 

channels (1, 6, and 11) can be made to not overlap. However, because the bilateral 

symmetry assumption still holds, the observation of access nodes’ RTS/CTS signals will 

still satisfy bilateral symmetric interference. 

 

Obviously, this algorithm can be extended to the other decision rules and timings listed in 

Table 7.1. Because the random better response decision rules converge, such an 

algorithm could be easily inserted into genetic algorithm based cognitive radios and used 

as part of a rapidly deployed network of radios under the assumption that symmetric link 

gains and constant observed power levels still hold. Further, because all exhaustive better 

response algorithms converge, it seems reasonable that if the key observation (RTS/CTS 

signals of access nodes) is used to drive the decision process of ontologically defined 

cognitive radios, an interference reducing network will still emerge. 

 

So in the end, we can replace the need for a wireless PhD student on every street with the 

simple requirements that 1) each access point notes the received power and channels of 

the RTS/CTS messages from other access points that it can observe and 2) each access 

point acts to reduce its own perceived interference. 
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Chapter 8: Applications of Weak FIP 
 “Two roads diverged in a wood, and I,  

I took the one less traveled by, 

 And that has made all the difference.”  

- R. Frost, The Road Not Taken  

 

In a cognitive radio network, each cognitive radio repeatedly makes choices that impact 

the evolution of the network state. But unlike Robert Frost, cognitive radios may have the 

chance to make the same choice again and again if play does not converge. However, in 

networks that can be modeled as a game with weak FIP, there always exists at least one 

choice that “makes all the difference” and adaptations will lead to an NE. 

 

In Chapter 4, we identified weak FIP as a critical property for the convergence of 

cognitive radio networks. Specifically, we asserted that without weak FIP, a cognitive 

radio network could not be guaranteed to converge to an NE if the radios are making 

myopic individually rational adaptations under round-robin or random timing. However, 

for games with weak FIP there always exists some improvement path that leads to an NE, 

so this repetition must come to an end in a game with weak FIP.  

 

While we have made an extensive discussion of FIP (which implies weak FIP), we have 

not discussed any specific techniques for identifying when a network has weak FIP 

without FIP nor have we presented any cognitive radio applications of weak FIP. This 

chapter addresses these shortcomings and discusses a readily identified game model that 

can be used to establish that a game has weak FIP (Section 8.1 – Supermodular games), 

and two cognitive radio applications where weak FIP occurs – ad-hoc power control 

(Section 8.2) and sensor network formation (Section 8.3). For practical considerations, 

this chapter does not provide the same deliberate presentation given in the preceding 

chapters. However, the most widely applicable insights into how to identify when a 

cognitive radio network has weak FIP are covered – demonstration that the game is a 

finite supermodular game and identification of an everywhere convergent improvement 

path.. 
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8.1 Supermodular Games 

A normal form game, { }, , iN A uΓ =  is termed a supermodular game if the action space 

forms a lattice and the utility functions are supermodular. To define what a lattice is, we 

must first define two binary vector operators – the join and meet operators.  

 

Definition 8.1: Meet 

Given two vectors, x,y∈�m, the meet of x and y as 

{ } { } { }( )1 1 2 2min , , min , , ,min ,m mx y x y x y… .  

 

The meet operation is equivalent to evaluating the infimum (greatest lower bound) of x 

and y. To denote the meet operation we make use of the symbol ‘ ∧ ’ and write the meet 

of vectors x and y as x y∧ . 

 

Definition 8.2: Join 

Given two vectors, x,y∈�m, the join of x and y as 

{ } { } { }( )1 1 2 2max , ,max , , ,max ,n nx y x y x y… .  

 

The meet operation is equivalent to evaluating the supremum (least upper bound) of x and 

y. To denote the meet operation we make use of the symbol ‘ ∨ ’ and write the join of 

vectors x and y as x y∨ . For example if x=(1,0,0,3) and y = (1,2,2,3), then 

{ }1,0,0,3x y∧ = and { }1,2,2,3x y∨ = . If x=(1,0,4,3) and y = (1,2,2,3), 

then { }1,0, 2,3x y∧ = and { }1,2,4,3x y∨ = . 

 

At this point we can finally define a lattice. 

Definition 8.3: Lattice 

A set X is termed a lattice if the following two conditions are satisfied: 

1. X has an operator (e.g., ≥) which is reflexive, transitive, and antisymmetric.  

2. x y X∧ ∈ and x y X∨ ∈ ,x y X∀ ∈ . 
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A function f :X→� where X is a lattice, is termed supermodular if for all ,a b X∈ , 

( ) ( ) ( ) ( )f a f b f a b f a b+ ≤ ∧ + ∨ . 

8.1.1 Model Identification 

While the definition may seem complicated, a game can be identified as a supermodular 

game if all players’ utility functions satisfy the relationship given in (8.1) and the action 

space is compact subset of real space [Milgrom_90]. Such a game is called a smooth 

supermodular game. 

( )
Nij

aa

au

ji

i ∈≠∀≥
∂∂

∂
0

2

 (8.1) 

8.1.2 Steady-states 

Throughout this chapter we compare vectors from �
m
  using the following conventions. 

We write x y≥ if 1, ,k kx y k m≥ ∀ = … . Similarly we write x y> if x y≥ and for some k 

k kx y> . This is the same meaning for ≥ that we used when relating two different power 

vectors in Chapter 3.  

 

As shown in [Topkis_98], the best response function for a supermodular game is a 

monotonic function of a, i.e., ( ) ( )1 2 1 2ˆ ˆa a B a B a≥ ⇒ ≥ . By Tarski’s fixed point theorem 

given in [Topkis_98], monotonic functions on a compact space (not necessarily convex) 

have a fixed point. Thus the best response function for a supermodular game has a fixed 

point, which implies the game must have at least one NE.  

 

By [Topkis_98], all NE for a game form a lattice. While this does not particularly aid in 

the process of initially identifying NE, from every pair of identified NE, e.g., a
*
 and b

*
, 

additional NE can be found by evaluating * *
a b∧ and * *

a b∨ . In general, NE 

identification for a supermodular game has to proceed as it did in Chapter 4 – by 

simultaneously solving the system of best response equations for fixed points. 
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More usefully, it is possible to establish a condition where a supermodular game has a 

unique NE by leveraging the Standard Interference Function of [Yates_95] which is an 

example of a monotonic best response function. This novel result turns out to be very 

useful for convergence and stability properties of supermodular games. 

Theorem 8.1: NE Uniqueness in a Supermodular Game (*) 

Given a supermodular game with a real convex compact action space, suppose the best 

response function satisfies the following conditions: 

   1. Uniqueness - ( ) ( ){ }: , ,i i i i i i i i i ib A u b a u a a a A− −∈ ≥ ∀ ∈  is a singleton for all a. 

   2. Positivity - ( )ˆ 0B a >  

   3. Scalability – For all 1α > , ( ) ( )ˆ ˆB a B aα α> . 

then the game has a unique NE. 

Proof: (Paralleling the proof in [Yates_95] that the Standard Interference Function has a 

unique fixed point) By Tarski’s fixed point theorem, an NE exists for this game. Now 

suppose that a
*
 and b

*
 are both fixed points. By positivity, we know that * 0ia >  and 

* 0ib >  for all i N∈ . As these are distinct fixed points, there must be some * *

i ib a>   (or 

some, **

ii ba < simply interchange the following comparisons). By scalability, there exists 

1α >  such that **
ba ≥α  and * *

i ib aα= . Then by the monotonicity of B̂ and the scalability 

property, it must hold that ( ) ( ) ( )* * * * *ˆ ˆ ˆ
i i i i ib B b B a B a aα α α= ≤ < = , a contradiction as 

* *

i ib aα= . 

 

8.1.3 Desirability 

In general, little can be said about the desirability or optimality of a supermodular game’s 

NE. However, as we saw for potential games in Chapter 5, an NE in a supermodular 

game whose utility function satisfies (8.1) can be adjusted by introducing any additive 

self-motivated function.  

8.1.4 Convergence 

By [Friedman_01], finite supermodular games have weak FIP, i.e., from any initial action 

vector, there exists a sequence of selfish adaptations that lead to an NE. Thus the 

convergence results of Chapter 4 for games with weak FIP apply to supermodular games.  
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A variation on the simultaneous best response algorithm is presented in [Milgrom_90] 

wherein the players follow what is termed an adaptive dynamic process. In an adaptive 

dynamic process, all players play a best response to some arbitrary weighting of recent 

past actions by other players.  

 

Definition 8.4: Adaptive dynamic process ([Milgrom_90] (A6)) 

Formally, a decision rule is defined as an adaptive dynamic process if  *
t T∀ ∈  there 

exists a 't T∈  such that 't t∀ ≥ , ( ) ( )( )ttPUad
t

i ,*∈ where P(t
*
, t) denotes the action 

tuples observed between times t
*
 and t, U(a) is the n-dimensional lattice ( )aU i

Ni∈
× where  

( ) ( )( ) ( )( )[ ]aBaBaU i
ˆsup,ˆinf= , and  { }( )taU  is given by 

{ }
( )'

'

aU
t

aa ∈

∪ . 

 

The corollaries to Theorem 8 in [Milgrom_90] show that a smooth supermodular game 

following an adaptive dynamic process with any timing converges to a region bounded 

by the Nash equilibrium lattice and that iterative elimination of dominated strategies 

converges to a region defined by the Nash equilibrium lattice. Note that when the NE is 

unique, the adaptive dynamic process converges to the NE. 

8.1.5 Stability (*) 

In general little can be said about the stability of a supermodular game. However, if the 

best response function satisfies Theorem 8.1, then the unique NE will be asymptotically 

stable under best response decision rules with any timing with a Lyapunov function given 

by ( ) *L a a a= −  - the same Lyapunov function we defined for the standard interference 

function. This can be quickly verified by noting that the best response decision rule is 

monotonic under any timing [Topkis_98] and the uniqueness of the NE implies that every 

adaptation must bring the network closer to the NE. Interestingly, this implies that the 

best response function decision rule in a supermodular game constitutes a pseudo-

contraction – a topic covered in Chapter 3. 
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8.2 Ad-hoc Power Control1 

As we showed in Chapter 5, when cognitive radios implement distributed power control 

at a single cluster head where each radio is guided by the utility function given in (8.2), 

the system forms an ordinal potential game. 

( )

\

ˆ

1/

i i
i

k k

k N i

g p
u

K g p

γ

σ
∈

= − −
 

+ 
 
∑

p  (8.2) 

 

Unfortunately, this result is not so easily extended to ad-hoc networks. Yet, we can still 

establish broad convergence and stability results for target-SINR power control 

algorithms in ad-hoc networks. 

 

[Neel_05], considers the analysis of distributed power control in an ad hoc network 

where each link, j, varies its transmit power in an attempt to achieve a target SINR, γj, 

measured in dB. This scenario can be thought of as analogous to the fixed assignment 

scenario presented in [Yates_95]. Indeed this analysis can be considered an extension of 

[Yates_95] to ad-hoc networks with additional consideration given to stability.  

8.2.1 Stage Game Model 

Based on the preceding discussion, a normal form stage game can be formulated as 

follows. 

• Player Set N – Set of decision making links 

• Player Action Set Aj – The real convex, compact set of powers, max0, jp    where 

max

jp is the maximum transmit power of cognitive radio j. The action space, 

nA ⊂ � , is given by 1 2 nA A A A= × × ×� . 

• Utility – An appropriate action based utility function for a target SINR (dB) 

algorithm is given by (8.3) where ˆ
jγ  is the SINR target of cognitive radio j. 

 

                                                 
1
 This text is taken from [Neel_06].  
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( ) ( )

2

\

10 10
ˆ 10log 10log

kj k j

k N j

j j jj j

g p

u g p
K

σ

γ ∈

  +
  

= − − +  
  
  

∑
p  (8.3) 

 

Here, communications theory provides the necessary connection between action and 

outcome as SINR. Using the notation we presented in Chapters 3 and 5, in a network, N, 

of cognitive radios the SINR of the signal transmitted by j and received by its node 

(radio) of interest measured in dB is given by (8.4) where gkj is the effective fraction of 

power transmitted by node k that is received at j’s node of interest (receiving end of j’s 

link) and Nj is the noise at the receiving end of link j.  

( )10 10

\

10log 10logj jj j kj k j

k N j

g p g p Nγ
∈

 
= − + 

 
∑  (dB) (8.4) 

8.2.2 Analysis 

In [Altman_03] it is claimed that the cellular fixed assignment scenario of [Yates_95] on 

which this ad-hoc network model is based is supermodular. The following parallels the 

analysis in [Neel_05] where we showed that this stage game constitutes a supermodular 

game for an ad-hoc network. 

 

A stage game can be shown to be a smooth supermodular game by applying the second 

order conditions we presented in Section 8.1. First, notice that the action space forms a 

complete lattice (compact subset of Euclidean space). Then evaluating the second 

derivative with respect to pj and pk where k is any cognitive radio \k N j∈  yields (8.5).
2
 

( )

( )

2

\

200

ln 20

j kj

j k

j kj k j

k N j

u p g

p p
p g p N

∈

∂
=

∂ ∂  
+ 

 
∑

 
(8.5) 

 

As (8.5) is strictly positive, the last conditions for a smooth supermodular game is 

satisfied. Accordingly, we know that the network  

• Has at least one steady state and  

                                                 
2
 Note that as gkj will not generally equal gjk, this game will not be an exact potential game. 
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• Converges for synchronous and asynchronous best response algorithms (local 

optimization).  

As (8.5) is not a function of the target SINRs, each radio can have its own target SINR 

and the game will remain a supermodular game. Further, since the best response 

algorithm given by (8.6) is a known standard interference function (or equivalently since 

B̂  satisfies Theorem 8.1), we know the following: 

• The network has a unique fixed point.  

• The network achieves the target SINR vector with the smallest possible power 

vector (when the SINR vector is feasible). 

• A Lyapunov function is given by the distance between the current power vector 

and the fixed point.  

 

( )
ˆ

ˆ j

j j

j

B p
γ

γ
=p 1k k jt t

j j

j

p p
γ

γ
+ =  (8.6) 

 

Finally, for a feasible SINR target vector, the unique steady state for this game can be 

found by solving the linear system of equations γpZ
��

=         

                                                                                                                      

where  
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21=p . Here, /jk jkh g K= for j k≠  and jj jjh g= .  

 

To determine the desirability of this fixed point, we can consider a network design 

objective function that seeks the minimum power vector that provides at least the target 

SINR for all links. For this design objective function, the fixed point power vector is 

optimal as no smaller power vector achieves the target SINR (assuming the target SINRs 

are feasible) because otherwise the smaller power vector would also be a fixed point in 

violation of a property of being a Standard Interference Function.  
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8.2.3 Validation 

Consider the ad hoc network shown in Figure 8.1 where at a particular frequency each 

terminal is attempting to maintain a target SINR at a cluster head and each cluster head is 

maintaining a target SINR at the gateway node. The signals employed by the radios have 

a statistical spreading factor of K.  

 

Gateway

Cluster

Head

Cluster

Head

Gateway

Cluster

Head

Cluster

Head

 

Figure 8.1: Simulation scenario for ad-hoc power control example. 

Assuming these devices are adjusting their power levels in a locally optimal manner, then 

the network conforms to the model described in the preceding. Accordingly, we would 

expect that any initial power vector would converge to a unique power vector and that 

even when corrupted by noise, the system would remain in a region near this steady state 

as the network is Lyapunov stable. 

 

A simulation was constructed for deterministic and stochastic simulation scenarios. The 

simulation results for these scenarios are shown in Figure 8.2 and Figure 8.3, respectively. 

Note that the locally optimal algorithm rapidly converges to the steady state in both 

scenarios and that even in the presence of random noise-induced perturbations, the 

network remains in a region around the deterministic steady-state. However, as in 
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Chapter 7, adaptations could be further smoothed by introducing a threshold to the 

decision rule. Further, rather than the best response decision rule employed in this 

simulation, the radios could also be implementing an averaged best response (a particular 

example of an adaptive dynamics process).  

 

Figure 8.2: Noiseless simulation. 

 

Figure 8.3: Noisy simulation. 

8.3 Sensor Network Formation (*) 

Consider a network of sensors collecting information and charged with transporting the 

information back to some database (the information sink). It is frequently more efficient 

(in terms of cost, battery life, coverage, and covertness) for the radios to indirectly 

transport their information to the sink. In this example, we study a collection of wireless 

sensors which are guided by a desire to transport their data back to a common data sink 

(perhaps connected to the IP cloud) balanced against a desire to minimize power 

consumption – a term which is assumed to be dominated by transmit power. Because the 

sensors contain recording devices, if the cost to transmit is too high, the sensors have the 

option of simply storing the data for later retrieval.  

 

Under the assumptions that each sensor’s decision process assigns no cost to the 

forwarding of other sensors’ data and that only a single sink is present, the following 

presents a model of this situation and a proof that the network has weak FIP. 
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8.3.1 Model 

We can form a game model for this network as follows. We consider the player set to be 

the set of sensors (or nodes), N, and assume that each sensor i can form any number of 

directional links to the other sensors j∈N\i  (perhaps via beam forming) and denote a 

particular link between from i to j by the symbol lij. Each sensor has an action set, Li, 

given by the power set of { } \ikl k N i∀ ∈  (i.e., a sensor can choose to maintain any 

combination of links to other sensors or no link at all.) Each sensor network expresses its 

utility as a function of the network g which is defined by the set of links implemented by 

each player. In general Ng g⊂ where, { | , , }N

ijg l i j N i j= ∀ ∈ ≠ is the complete network. 

For notational convenience, we also define gi as the set of directed links in g formed by 

node i, i.e., { }i ijg l g= ∈ , and g-i as the set of all links in g other than gi, i.e., \i ig g g− = . 

 

Let l
k
 denote a particular link and for lij we refer to i as the originating node and j as the 

terminating node. We say that ( )1 2, , , ml l lγ = … is a path in the network g if the 

originating vertex for every 1k
l

+  is the terminating node for every k
l . We say that i is 

connected to j if there exists a path from i to j and refer to this path as ij. If i is connected 

to j via a path consisting of a single link, then we say that i is directly connected to j and 

refer to the single link as a direct connection. If i is connected to j yet there exists no 

direct connection between i and j, then we say that i is indirectly connected to j. We say 

that g is a connected network if every i N∈ is connected to every j N∈ . 

 

One particularly useful utility function model for sensor network formation is the link 

connections model. Originally, introduced in [Jackson_96], a slightly modified network 

valuation function for the link connections model is given by (8.6)  

 

( ) ( )∑∑
∈∈

−=
iij

ij

gl

ij

iNj

t

ijiji lcbgu
\

δ  (8.6) 

where bij is the benefit i receives for being connected to j, ijδ is a hop decay factor 

(perhaps reflecting increasing probability of transmission failure as the length of a 

connection increases from queue overflow or link failures) between i and j, tij is the 
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length of shortest path between i and j, with tij =∞ when no path exists, and c(lij) is the 

cost to sensor i of forming link lij.  

 

This cost parameter could be simplified as c(lij) = ci where each player has a cost that is 

applied across all local links. This situation is encountered when cost is a function of 

transmit power and the nodes can only select a fixed transmit power for all links. Another 

appropriate choice of cost parameter is ( ) ( )
n

ij i ijc l d lα= where ( )ijd l is the Euclidean 

distance between i and j, n is the path loss exponent, and iα  is the free space loss factor. 

This can be used to model situations where a particular received power must be achieved 

at the terminating end of a link and the environment has a uniform path loss model. In 

general, however, c(lij) will vary by link in a sensor network due to various obstructions 

that may make the signal propagation environment non-uniform. 

 

For a sensor network we assume there exists some k N∈  (the sink) such that for all 

\i N k∈ ikb b=  and 0 \ijb j N k= ∀ ∈ , i.e., there is one and only sensor to which every 

other sensor assigns a benefit of being connected. For this example we assume δ=1 so no 

information degradation occurs over multiple hops - a reasonable assumption with 

sufficiently large queues and sufficiently long periods of time for retransmissions. 

8.3.2 Steady-states 

The study of network formation in game theory (primarily social network) is somewhat 

unique in the sense that numerous network stability concepts have been introduced. 

These include Nash networks, pairwise stability, link deletion proofness, and link 

addition proofness. For this example where we are assuming that each sensor can 

arbitrarily change its links with each adaptation, the concept of the Nash network is the 

most natural equilibrium concept.  

Definition 8.5: Nash Network 

A network, g, is a Nash network if for every node i N∈ , ( ) ( )', ,i i i i i iu g g u g g− −≥  for all 

'

i ig L∈ .  
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In other words, a Nash network is a network where no node can improve its payoff by 

unilaterally altering any combination of its links.   

 

Determining if and when a Nash network exists for this model of sensor network 

formation can be best done by simultaneously establishing a convergence condition 

performed in the following section. However, we can make some characterizations about 

the topology of any Nash network because we know that each sensor’s best response is 

either a single link or no link (the utility function expresses no benefit for maintaining a 

redundant path). Thus in a Nash network, no paths branch (as that requires two outbound 

links) and no paths lead out from sink (as that would be costly to the sink without any 

benefit). Thus for this model of sensor network formation, all Nash networks lack cycles 

– paths such that some sensor i is indirectly connected to itself.  

8.3.3 Convergence 

To establish convergence of this sensor network to a Nash network we demonstrate that 

when the radios implement best response decision rules under round-robin timing, the 

network must progress through a sequence of readily characterized networks concluding 

in a Nash network. The first network we consider in this sequence is a trimmed network. 

Definition 8.6: Trimmed network (*) 

A network, g, is said to be a trimmed network if all sensors maintain no more than one 

link.  

 

Now consider any initial distribution of links and what happens after every sensor has 

had a chance to implement its best response. 

Theorem 8.2: Convergence to a Trimmed Network (*)  

After a complete round-robin best response, any starting network must be in a trimmed 

network. 

Proof: As there is no benefit to maintaining multiple links, the best response for every 

sensor is a single link or no link. So after each node has had a chance to play its best 

response, each node must have a single link or no link. 

 

To further the convergence analysis, we must establish that certain paths are not 

contained in the network. 
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Definition 8.7:Poison path (*) 

A path is said to be a poison path if it is a profitable path for some sensor j but is not 

profitable for some sensor after j in the path. 

 

With a poison path in the network, the network cannot be a Nash network as at least one 

sensor will have to adapt. Further, other sensors may make adaptations which will have to 

be later reversed because of the unstable path to the sink. Fortunately, poison paths 

quickly disappear from any sensor network under round-robin best responses. 

 

Theorem 8.3: Withering of Poison Paths (*) 

For δ=1, trimmed sensor networks playing a best response do not create new poison 

paths. 

Proof: With a trimmed sensor network and δ=1, creating a new poison path implies that a 

path exists to the sink such that some sensor has added a link where the cost outweighs 

the benefit. However, not playing any link is strictly preferable to creating such a link so 

creating a poison path cannot be a best response so a new poison path cannot be created. 

 

With no poison paths being created, it is valuable to consider the situation where all 

poison paths are eliminated the network, a condition we term a pruned network.  

 

Definition 8.8:Pruned network (*) 

A network g is a pruned network if it contains no poison paths. 

 

Starting from an arbitrary network, we can show that the sensor network rapidly 

converges to a pruned network. 

 

Theorem 8.4: Convergence to a Pruned Network (*) 

Starting from any initial network, the finite sensor network with δ=1 is pruned after the 

first best-response round-robin and remains pruned thereafter. 

Proof: After the first round, the network is trimmed and no node maintains a link whose 

cost outweighs the potential benefit of having a path to the sink (if it did, then it would 

not be preferable to not playing a link implying the network is not trimmed). As this is a 

requirement for a poison path in a sensor network, no poison paths can exist and the 

network is pruned.  

 

While there may not be any poison paths after the first complete round-robin, there may 

be sensors which do not have a path to the sink either because the sensor has no links or 

that one of its paths was broken when an unprofitable link was eliminated. Some portions 

of the network, however, may have positive utility.  
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Definition 8.9:Healthy network (*) 

A healthy network is a pruned network in which every sensor has positive utility 

 

In general, the sensors in a healthy network constitute a subset of N and the number of 

sensors in a healthy network is a nondecreasing sequence for round-robin best responses. 

For this sensor network, membership in the healthy network implies a path to the sink as 

such a path is required for positive utility. 

 

Theorem 8.5: Healthy Network Stability (*) 

For δ=1, all sensors in a healthy network remain in a healthy network when playing a 

round-robin best response (or better response) to a pruned network. 

Proof: A sensor falls out of a healthy network if it chooses to disconnect or a sensor 

ahead of it in its path to the sink disconnects. As disconnecting drops the sensor’s utility 

to 0 (or worse), this is never preferable as membership in the healthy network implies 

positive utility. Further no downstream sensor will profitably disconnect as this implies 

the existence of a poison path which contradicts the assumption of a pruned network. 

 

We can make an interesting characterization of the sensor network after one round of best 

responses to the pruned network. 

Theorem 8.6: Sensor Network Link Characterization (*) 

After the first round of best responses to a pruned network, each sensor in the network is 

either in a healthy network or has no links. 

Proof: By Theorem 8.5, once a sensor is part of a healthy network, its best response is to 

remain part of the healthy network. If it is not part of the healthy network and joining the 

healthy network would yield a positive utility, then the best response is to join the 

network. If a sensor cannot profitably join the healthy network, then utility is maximized 

when no link is implemented. 

 

For those sensors in the healthy network, we can establish a convergence condition. 

 

Theorem 8.7: Health Network Monotonicity (*) 

For δ=1, all finite healthy networks converge to a Nash Network when following a 

round-robin best response. 

Proof: Consider the function ( ) ( )j

j H

f g u g
∈

=∑ . As all sensors in the healthy network, H, 

have a path to the sink, any better response adaptations (which are assured of preserving 

H by Theorem 8.5) are taken only if it decreases the sensor’s cost. For δ=1 this adaptation 

causes no change in the utilities of the other sensors in H so f(g) is a nondecreasing 
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function on a finite action space play must converge. Note that any profitable deviation 

increases the value of f. 

 

We can then extend this result by incorporating the movement of sources into the 

healthy-network. 

 

Theorem 8.8: Pruned Network Convergence (*) 

For δ=1, all finite pruned sensor networks converge to a Nash Network under a round-

robin best response. 

Proof: By Theorem 8.6 after its first round-robin best response, pruned sensor networks 

consist of nodes either in H or disconnected. By Theorem 8.7, nodes in H converge to a 

Nash network. When profitable, nodes from not in H transition to H (and thus converge). 

Nodes not in H that can never profitably join H remain disconnected and thus are at their 

steady-state once disconnected. 

 

Then combining this result with the earlier theorem, we can show that all finite sensor 

networks with a goal given by (8.6) and δ=1 converges to a Nash Network  

 

Theorem 8.9: Arbitrary Network Convergence (*) 

For δ=1 the sensor network scenario converges to a Nash network under a round-robin 

best response from every starting network. 

Proof: By Theorem 8.6, every initial network necessarily converges under a round-robin 

best response to a pruned network. By Theorem 8.8 a finite pruned network necessarily 

converges under these conditions. 

 

We can also characterize when a round-robin best response will result in a Nash network 

with no disconnected sensors.  

 

Theorem 8.10: Guaranteed Paths to Sink (*) 

Suppose it is possible to number the sensors such that ( ), 1k kc l − < b with the sink as sensor 

0 and δ=1, then the round-robin best response network will converge to a network where 

all sensors have paths to the network.  

Proof: Assume any initial distribution of links. After a single round of best responses, the 

network is a pruned network. As we assumed ( )1,0c l b< , the next best response of sensor 

1 must place sensor 1 in the healthy network if it was not already. Likewise if node k is in 

H then node k+1 will join in its next iteration (if not before). By induction, all sensors in 

finite N must eventually join H implying that every sensor has a path to the sink.  

 

Explicitly returning to the topic of this chapter, Theorem 8.9 supplies the sufficient 

condition to establish weak FIP. 
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Theorem 8.11: Sensor Networks and Weak FIP (*) 

For δ=1 the sensor network scenario has weak FIP. 

Proof: Theorem 8.9 provides the requisite improvement path.  

 

As Theorem 8.9 implies convergence from the empty network (which is a pruned 

network) and Theorem 8.11 implies that asynchronous timing can be employed with best 

response decision rules, a simple algorithm for autonomous sensor network formation can 

be written.  

Algorithm 8.1: Sensor Network Formation 

1) When first deployed, let all sensors (including the sink) in the network broadcast 

signals at the same power level.  

2) Because it is at a common level, the initial signal should be sufficient for each sensor 

to calculate link gains to each of its detected sensors and thus the required transmit power 

to communicate and to estimate link formation costs. Let each sensor maintain the set 

iL
N which is initialized to the set of sensors for which i's cost of link formation is less 

than the benefit of a path to the sink.  

3) At intervals determined by a random timer, each sensor i pings each sensors in its iL
N  

to request its path to the sink, if one exists.  

4) The pinging sensor either adds or switches a link to the lowest cost sensor that reports 

a path to the sink that does not pass through the pinging sensor and drops from iL
N  all 

sensors whose costs are greater than or equal to chosen link (thus there is no need to ping 

the sensor on the other end of the implemented link). 

5) If iL
N = ∅ , the sensor is done as it has found its lowest cost path to the sink. 

Otherwise each sensor continues again from step 3) until the random timer has triggered a 

predetermined number of times in which case the sensor terminates this algorithm. 

 

Because the system has weak FIP, rather than choosing the lowest cost link, each sensor 

could also be randomly choosing links and keeping those that improve its payoff. 

However, the best response algorithm should converge faster than the random better 

response algorithm. 
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8.4 Conclusions 

This chapter introduced two different techniques for identifying when a game has weak 

FIP – showing that the game is a finite supermodular game and showing that there exists 

convergent improvement paths from all network states.  

8.4.1 Analysis Summary 

This chapter primarily considered the application of supermodular games to the analysis 

of cognitive radio networks. It was seen that a supermodular game always has at least one 

NE and that the NE of a game would form a lattice. However, identifying a supermodular 

game’s NE requires that we solve the system of equations ( )* *ˆa B a= as we did in 

Chapter 4. By leveraging a relationship between standard interference functions and 

supermodular games, we established a novel condition on ( )B̂ a that ensures the 

uniqueness of an NE in a supermodular game and allows us to introduce a Lyapunov 

function for best response decision rules. Via adaptive dynamics, we also know that if the 

radios play best responses to observations over a finite history, a supermodular game will 

converge. 

 

We then confirmed the claim in [Altman_03] that target SINR power control games are 

supermodular games by applying the concept of smooth supermodular games and 

extended this result to ad-hoc networks. As the power control game satisfied the 

condition to have a unique NE, the game has a Lyapunov function and is also stable. 

While a single reactive decision rule was simulated, the adaptive dynamics result of 

[Milgrom_90] informs us that the best responses also could have been based on previous 

observations as long as a finite history is employed.  

 

We also studied sensor network formation and showed that for δ=1 the network has weak 

FIP. Unlike previous efforts, this relied on demonstrating that that from every action 

vector there exists an improvement path that converges to an NE. In general such an 

approach is not as straight forward as evaluating the second order conditions of 

supermodular games or potential games as evidenced by the seven theorems that had to 
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be introduced to show convergence. However, game theory allows us to quickly identify 

other convergent decision rules based on the existence of weak FIP. 

8.4.2 Design Implications 

To an extent, supermodular games are closely related to the procedural analysis we 

performed in Chapter 3, particularly pseudo-contractions and standard interference 

functions. Partly this is because unlike potential games, not all myopic self-interested 

decision rules are guaranteed to converge under weak FIP or with a supermodular game 

and more specific decision rules have to be employed. Because of this limitation, 

cognitive radio networks which are supermodular games will generally not be appropriate 

for most ontological radio implementations. Instead, a cognitive radio should implement 

a specific decision rule such as its best response or a random better response (for finite 

supermodular games). In either case, this is best performed with a procedural radio 

though we see again that weak FIP implies that cognitive radios with properly designed 

random decision rules, e.g. a genetic algorithm cognitive radio, will be suitable.  

 

As a properly best response algorithm will converge faster than a random better response, 

it is seen again that cognitive radios should incorporate the ability to perform scenario 

classification so that when a known scenario is encountered the best response algorithm 

can be employed and when an unknown scenario is encountered the cognitive radio uses 

a random better response as it converges under the broadest range of conditions.  

 

As we saw in previous chapters, once we establish that a network satisfies a particular 

game model, it is trivial to develop low complexity convergent cognitive radio algorithms, 

as analysis of the game model in this document and elsewhere have yields lists of 

convergent algorithms. As was the case for both the power control and the sensor 

network formation examples, many of these algorithms are low complexity and well 

suited for use in rapidly deployed networks.  
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Chapter 9: Conclusions 
 “<What good is it if it means nothing?>”  - O. Card, Xenocide 

 

In Xenocide four different sentient alien species, one of which is human, come to inhabit 

the same planet, and two aliens from different species discuss why humans dream. One 

completely fails to see the point while the other thinks that dreaming is the key to 

humanity’s creativity and thus to humanity’s success as a species.  

 

This dissertation is intended to formalize the modeling and analysis of cognitive radio 

networks and from this formalization draw insights into how cognitive radios should be 

designed. Because of its heavy reliance on game theory, responses to this research over 

the last several years have almost exclusively fallen into two very different categories. 

Like the aliens contemplating dreaming in humans, either the research is viewed as 

absolutely critical to the success of cognitive radio or it is viewed as little better than a 

creative, but useless, intellectual exercise.  

 

For many situations, the latter view has merit. What good is game theory if we can do the 

same analysis with traditional techniques? What algorithm has been designed with game 

theory that couldn’t be done using more traditional means? Why do we care about the 

goals of the radio at all? What does game theory bring to cognitive radio? 

 

Strictly, every algorithm we analyzed in the previous four chapters could have been 

analyzed using more traditional techniques. We could have shown convergence of our 

algorithm in Chapter 7 using techniques from Zangwill’s convergence theorem. We could 

have shown the stability of the power control algorithms in Chapter 5 with only a direct 

application of Lyapunov’s theorem. We could show the existence of steady-states via 

more direct fixed point theorems. We could just as well cast each algorithm as a 

distributed controls (or dynamical systems) problem and use the evolution function and 

techniques of Chapter 3 to evaluate steady-states, convergence, and stability of the 

algorithm we are studying. 
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In response, we can point to the analysis and design benefits of a game theoretic listed in 

the following. 

  

1) Suitability for ontological and random procedural radios 

For ontological cognitive radios and procedural cognitive radios whose decision rules 

incorporate a degree of randomness, it is not generally possible to express the network 

behavior in terms of an evolution function needed for traditional analysis as the same 

input may produce very different outputs. Further, in the case of ontological radios we 

may only know the radio’s available actions and its goal. 

 

Lacking an evolution function, the dynamical systems and the contraction mappings 

approaches considered in Chapter 3 will be insufficient for modeling or analyzing these 

systems. At least for genetic algorithms, the network could be modeled and then analyzed 

using Markov models. However, any useful transition matrix would have to be 

determined empirically – the very process we are seeking to avoid. So if we were limited 

to traditional engineering analysis techniques, modeling and analyzing of most cognitive 

radio network behavior would be impractical. 

 

Thus the techniques presented in this document permit us to analyze a problem which we 

could not handle with traditional approaches.  

 

2) More Efficient Analysis  

If we solve for a fixed point of an evolution function, we have identified a steady-state 

for a particular combination of decision rules. If a different combination of decision rules 

is deployed, then the analysis will need to be repeated.  

 

On its own, this does not seem like a significant burden. But consider the deployment of 

cognitive radios in unlicensed bands – the location where cognitive radio (in the form of 

802.11h) is already being deployed. One of the benefits of opening up unlicensed 

spectrum is that it permits the fielding of numerous different devices from different 

vendors which drive down prices for consumers. To differentiate their products different 
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vendors typically employ different algorithms – permissible as wireless standards 

frequently do not specify radio resource management algorithms. For instance, while 

802.22 specifies times within which a radio has to vacate a band when a primary user is 

detected, it does not currently specify the algorithm by which a new band is selected. 

Likewise 802.11h mandates DFS and TPC and specifies messages to support these 

operations, but the algorithms by which frequency and power are adjusted are not 

specified.  

 

Considering just 802.11h, in July 2006, the WiFi alliance already listed 13 different 

vendors and 72 different products for 802.11h. If the WiFi alliance, the FCC, or any radio 

designer wanted to ensure that all WiFi certified 802.11h products will not negatively 

interact, they would have some 2
13

 -1 combinations of decision rules to analyze if every 

vendor used their own algorithm.
1
  

 

Using game theoretic techniques, we only need to know the goals of the radios and the 

permissible actions, with the latter almost certainly defined as part of any standard, in 

order to determine the steady-states using the Nash equilibria concept. Thus instead of 

performing 2
13

 -1 analyses for 802.11h, only a single analysis would need to be 

performed!  

 

3) Simplified Spectrum Management of Cognitive Radios 

The preceding implies another advantage of a game theoretic approach to analysis – 

simplified spectrum management. If the FCC or some primary spectrum holder specifies 

a particular combination of goals and allowable actions as part of a licensing agreement, 

then device testing can be simplified to merely verifying that the radio’s algorithms act to 

improve its performance according to one of the allowable goals.  

 

                                                 
1
 All possible combinations of elements in a set are given by the set’s power set. The power set for a set 

with n elements contains 2
n
 elements. However, this includes the null set, which would presumably not 

need to be tested.  Hence for 13 vendors with 13 different decision rules, there are 2
13

-1 possible 

combinations of decision rules that can be considered. Note that this is actually a lower bound as different 

numbers of devices from different vendors, e.g., two devices from vendor A and three devices from vendor 

B, could lead to different operating conditions. 
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Currently spectrum policy focuses solely on a specification of permissible actions (e.g., a 

spectral mask), but it seems likely that an additional specification of permissible goals 

would be sufficient to ensure acceptable performance while still permitting vendors and 

secondary users to use varying decision rules to differentiate their products. 

 

Additionally, a predominately game theoretic approach permitted us to make the analysis 

and design insights listed in Sections 9.1 and 9.2. Section 9.3 reviews the research 

contributions presented in this dissertation, and the chapter concludes in Section 9.4 by 

identifying avenues for future research and describing additional planned publications. 

9.1 Modeling and Analysis Summary 

Using the model-based approach to analysis proposed by this research, an analyst is able 

to immediately determine detailed information about steady-states, convergence, and 

stability simply by applying simple model identification criteria to the cognitive radio 

network. This will enable future cognitive radio network analysts to know within minutes 

the results this document showed over hundreds of pages. This approach should be able 

to cut months to years of man-hours off the design cycle for novice cognitive radio 

algorithm designers (which virtually everyone is at this moment). 

 

The set of models spans all known cognitive radio implementation platforms (procedural, 

ontological, and nondeterministic procedural) and includes dynamical systems, 

contraction mappings, standard interference functions, Markov models, potential games, 

and supermodular games. These models and the techniques for establishing whether a 

cognitive radio network satisfies the conditions of the model are summarized in Table 9.1.  
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Table 9.1: Presented Models 

Model  Basic model Identification 

Dynamical 

System 

( ),a g a t=� , evolution equation 

( ) ( )( )1k t k
a t d a t

+ =  

( ),a g a t=�  always exists 

Solve g for d
 t
. 

d
 t
 exists if g satisfies Picard-

Lindelöf theorem 

Contraction 

Mapping 

( ) ( )d a d b a bα− ≤ −  

,b a A∀ ∈  
Apply definition 

Standard 

Interference 

Function Power 

Control 

( )( ) ( ) ( )( )k k k

j j jd t p t I t=p p  
I(p) satisfies positivity, 

montonicity, and scalability 

Finite Ergodic 

Markov Chain 

( ) ( ) ( )( )
( ) ( )( )

1

1

| 0 , ,

|

k k

k k k

P a t a a a t

P a t a a t

+

+

=

= =

…

 ∃ k  such that kP has all positive 

entries 

Absorbing 

Markov Chain 
' ab

 
=  
 

Q R
P

0 I
 Apply model definition 

Normal Form 

Game 
{ }, , jN A uΓ =  Map from cognition cycle 

Mixed Strategy 

Strategic Form 

Game 

( ) { }, , jN A UΓ = ∆  Map from cognition cycle 

Repeated Game { } { }, , ,j jN A u dΓ =  Map from cognition cycle 

Myopic Repeated 

Game 
{ } { }, , , ,j jN A u d TΓ =  Map from cognition cycle 

Potential Game 
( ),i iu a b∆  everywhere related 

to ( ), iV a b∆  

( ) ( )22

ji

i j j i

u au a

a a a a

∂∂
=

∂ ∂ ∂ ∂
  

(others in Chapter) 

Supermodular 

Game  

(1) Ai is a complete lattice; 

(2) ui is supermodular in ia ; 

and 

(3) ui has increasing 

differences in ( ),i ia a−  

(1) Ai is a closed interval in ik
� , 

(2) iu is twice continuously 

differentiable on Ai 

(3) 2 / 0i ik imu a a∂ ∂ ∂ ≥  for all 

i N∈ and all 1 ik m k≤ < ≤  

(4) 2 / 0i ik jmu a a∂ ∂ ∂ ≥ for all 

,1 ii j N k k≠ ∈ ≤ ≤ and1 jm k≤ ≤  

 

For these game models, this chapter presented analysis insights that can be gleaned by 

demonstrating that a cognitive radio network satisfies the modeling conditions for one of 
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the models listed in Table 9.1. The steady-state properties, the convergence properties, 

and the stability properties for each of these models are summarized in Table 9.2 Table 

9.3, and Table 9.4, respectively. As we saw in Section 15.5.2, sometimes cognitive radio 

networks satisfy the conditions of multiple models. In these cases, the analytic insights 

from each of the applicable multiple models are available. 

 

Table 9.2 Steady-State Properties by Model 

Model  Existence Identification 

Dynamical System 

Maybe, evaluate Leray-

Schauder-Tychonoff theorem 

on evolution equation 

Exhaustive Search 

Solve ( )* *a d a=  

Contraction Mappings Yes (Banach’s Theorem) 
Recursion  

(Unique steady-state) 

Standard Interference 

Function Power Control  
Yes ([Yates_95]) 

Recursion 

(Unique steady-state),  

γ=Zp
�

 

Finite Ergodic Markov 

Chain 
Yes (Ergodocity theorem) 

Recursion  

(Unique distribution),  

Solve ππππ*T
 P =ππππ*T

 

Absorbing Markov 

Chain  
Yes (Definition) pmm = 1 

Normal Form Game  

Maybe, evaluate Glicksberg-

Fan theorem on cognitive 

radio goals 

Exhaustive Search 

Solve ( )* *ˆa B a=  

Mixed Strategy 

Strategic Form Games  

Yes for A finite (Nash’s Fixed 

Point Theorem) 
Solve ( )* *B̂α α=  

Repeated Game 

Maybe, evaluate Glicksberg-

Fan theorem on cognitive 

radio goals, or evaluate for 

feasible enforced equilibria 

(numerous typically exist) 

Exhaustive Search 

Solve ( )* *ˆa B a=  

Feasible enforced 

equilibrium 

Myopic Repeated 

Game 

Maybe, evaluate Glicksberg-

Fan theorem on cognitive 

radio goals 

Exhaustive Search 

Solve ( )* *ˆa B a=  

Potential Game 
Yes, if A is compact and V 

bounded 
( )arg max

a A

V a
∈

 

Supermodular Game Yes 

Exhaustive Search (must lie 

in a lattice) 

Solve ( )* *ˆa B a=  
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Table 9.3: Convergence Properties by Model 

Model  Sensitivity Rate 

Dynamical Systems 
Apply Lyapunov’s direct 

method (when possible) 
No general technique 

Contraction Mappings Everywhere convergent ( ) ( ) ( )* 1 0

1

k
k

a t a a t a t
α

α
− ≤ −

−
 

Standard Interference 

Function Power 

Control 

Everywhere convergent ( ) ( )* *0k k
t α− ≤ −p p p p  

Finite Ergodic Markov 

Chain 

Converges to distribution 

from all starting 

distributions 

Transition matrix dependent 

Absorbing Markov 

Chain 
=B NR  =t N1  

Normal Form Game  Convergence not defined Convergence not defined 

Mixed Strategy 

Strategic Form Games  
Convergence not defined Convergence not defined 

Repeated Game Assumes no adaptations Assumes no adaptations 

Myopic Repeated 

Game 

Apply IESDS, FIP,  weak 

FIP 

Length of longest improvement 

path 

Potential Game 
All autonomously rational 

decision rules converge 

Length of longest improvement 

path 

Supermodular Game 
All locally optimal decision 

rules converge 

Length of longest improvement 

path 
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Table 9.4: Stability Properties by Model 

Model  Lyapunov Stability Attractivity 

Dynamical Systems 
Apply Lyapunov’s direct 

method (when possible) 

Apply Lyapunov’s direct 

method (when possible) 

Contraction Mappings Global Global 

Standard Interference 

Function Power Control  
Global Global 

Finite Ergodic Markov 

Chain 
No No 

Absorbing Markov Chain No Only if unique steady-state 

Normal Form Game  Stability not defined Stability not defined 

Mixed Strategy Strategic 

Form Games  
Stability not defined Stability not defined 

Repeated Game 

(assuming correct 

differentiation of 

punishment and 

deviation) 

Yes Yes 

Myopic Repeated Game Not implicit to model Not implicit to model 

Potential Game 

Isolated potential 

maximizers are Lyapunov 

stable for all rational 

decision rules. 

Attractive to potential 

maximizers if finite action 

space or finite step size. 

Supermodular Game 
Best response decision rules 

if unique NE 

Best response decision rules 

if unique NE 

 

We also presented two different model independent approaches to determining the 

desirability of network behavior – Pareto optimality and evaluation of a network 

objective function. We argued that a network state is Pareto optimal was of less value 

than demonstrating that the state maximized the intended network objective function.  

 

We must also acknowledge certain analytical difficulties that arise when information is 

limited. We may not be able to precisely describe a network’s evolution function pre-

deployment if decision processes and goals evolve to better reflect a user’s preferences. A 

radio’s available actions may also evolve in time to incorporate new waveforms that we 

could not anticipate ahead of time. From an analysis perspective, this situation can be 

analogized to attempting to solve a system of equations of unknown order with unknown 

coefficients and an unknown number of variables. This indicates that much caution 

should be taken before deploying radios for which we do not know a priori the radios’ 

actions or the goals. Perhaps, it will be possible to broadly classify the decision update 
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processes action sets, and goals based on what is known about the implementation of the 

radios. In which case a game theoretic preference approach should be able to address this 

situation, but barring this condition, analysis of such a system currently appears 

intractable. 

9.2 Design Summary 

Leveraging the modeling and analysis techniques, we were able to develop new 

algorithms, design guidelines, and insights into cognitive radio design issues. Specific 

algorithms for general waveform adaptation, power control, and sensor network 

formation were proposed, analyzed, and shown to have desirable steady-state, 

convergence and stability properties.  

 

The proposed interference reducing network (IRN) design framework ensures that loner 

radios (procedural or ontological) converge to an interference minimizing steady state 

under the scenarios of global altruism, local altruism, isolated clusters, close proximity, 

and with controlled observations. This framework achieves these results by ensuring that 

the network constitutes an exact potential game whose potential function is a negated 

scalar multiple of the sum network interference, thereby allowing us to leverage the 

steady-state, convergence, and stability results of Chapter 5 and adding an assurance of a 

desirable equilibrium.  

 

The global and local altruism IRNs wherein each radio’s interference minimization goal 

incorporates other radios’ interference observations were seen to be applicable to any 

waveform adaptation algorithm, but to scale badly. By ensuring the network satisfied 

bilateral symmetric interference, it was seen that loner radios would implement an IRN 

for the isolated cluster, close proximity, and controlled observation scenarios. These last 

three scenarios require no coordination between cognitive radios to ensure interference 

minimization implying that in these scenarios low network overhead, low device 

complexity algorithms realize an IRN. 
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It was seen that waveform adaptation algorithms will frequently have non-isolated NE, so 

stabilization requires the radios employ ε-better response algorithms. It was also seen that 

if certain assumptions were made about legacy systems then the network consisting of 

legacy radios and cognitive radios would still comprise an interference reducing network 

and that even when these assumptions fail, the self-interested adaptations of the cognitive 

radios would generally reduce the interference experienced by the legacy systems. 

 

The IRN design framework was leveraged to develop a new dynamic frequency selection 

(DFS) algorithm for 802.11h. By requiring the access points to observe the RTS/CTS 

messages of other access points to guide their decision process, bilateral symmetric 

interference is achieved among the access points and an IRN among the access points 

results without any additional coordination between access points and as long as the 

access points act to reduce their own observed interference. It was analytically shown that 

this algorithm performs well under a variety of relaxed assumptions including policy 

variations, the presence of legacy radios, noise corrupted observations, private frequency 

preferences, and asynchronous timings, and empirically shown to perform well different 

access points transmit their RTS/CTS signals at different power levels within the same 

channel. Experimentally it was shown that this algorithm results in an average reduction 

in access-to-access node interference reduction of greater than 19 dB for dense networks. 

Further, it was shown experimentally that client devices whose interference levels are not 

involved in the decision process also experience a significant gain from the process – on 

average greater than an 11 dB reduction in interference for dense networks. 

 

Numerous design inferences were also drawn from analysis. It was seen that a network of 

myopic loner radios cannot be guaranteed to converge under the assumption of 

autonomous rationality unless the underlying game has weak FIP. It was seen that 

guaranteeing the convergence of arbitrary ontological radios under autonomous 

rationality requires the underlying game to have FIP. Potential games also ensure the 

convergence of the lowest complexity autonomously rational loner radio algorithms. For 

radios with a finite set of available adaptations, it was seen that incorporating randomness 

into the decision rules yields convergence over the broadest set of conditions but that well 
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designed procedures will generally converge faster. This implies that the genetic 

algorithm implementation approaches being considered by various researchers will be an 

excellent choice when the radio must operate in a broad set of scenarios.  

 

As we showed in Chapter 4, the ubiquitous presence of unbounded noise informs us that 

autonomously myopic cognitive radio networks will always constitute ergodic Markov 

chains
2
, but we do know identified NE will still have a relatively higher probability of 

being occupied and that frequently many states will have an extremely small probability 

of being occupied making the occupancy of certain states a theoretical, though generally 

not a practical, concern. Noise, however, is a more serious problem for social radios 

which try to influence the adaptations of other radios via punishment as noise ensures 

eventual catastrophic failure if the network does not include some additional mechanism 

to differentiate between punishment and deviation. It was also seen that the ability to 

negotiate will be critical to the deployment of social radios due to the variances of goals 

and adaptations likely to be encountered. 

9.3 Research Contributions 

The primary goal of this research was to develop a methodology for analyzing the 

interactions of cognitive radios with a particular interest in addressing the identification 

of steady-states, the optimality of those steady-states, the conditions for convergence, and 

the stability of the cognitive radio algorithms. Achieving this goal required the 

refinement of game theoretic concepts and techniques, the identification of typical 

cognitive radio applications that satisfy the conditions of these models, and the 

development of simulations to verify the analytic results implied by this methodology.  

 

Original research contributions are made in every chapter in this dissertation and are 

highlighted in Table 9.5. 

                                                 
2
 Formally, we showed that for cognitive radio networks finite action spaces, the presence of unbounded 

noise implies there is a nonzero chance of any adaptation appearing to be preferable to any other adaptation 

thus implying that from every action tuple there always exists a sequence of adaptations with nonzero 

probability that leads to every other action tuple. For random, asynchronous, and synchronous timings, 

these paths are aperiodic thus completing the conditions for being an ergodic Markov chain. However, for 

round-robin timing, the associated transition probability matrix need not be aperiodic. 
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Table 9.5: Major Novel Contributions Made as Part of this Work 

Chapter Research Contributions 

Chapter 1 
Definition of procedural and ontological cognitive radios. 

Definition of waveform 

Chapter 2 General model of cognitive radio interactions 

Chapter 3 

Application of dynamical systems to the analysis of procedural radios 

Stability of standard interference function (SIF) 

Application of SIF to ad-hoc networks 

Chapter 4 

Application of game theory to cognitive radios 

General game model of cognitive radio networks 

Novel random better response algorithm with broader convergence 

conditions 

Convergence analysis for basic game theoretic properties under different 

decision timings 

Ergodic Markov chain model of  noisy cognitive radio networks 

Necessary condition for convergence of myopic rational cognitive radios 

Chapter 5 

Application of potential games to wireless network design 

Multilateral Symmetric Interference Games 

Identification of ordinal potential games via better response  

transformations 

Convergence of round-robin/random better response algorithms for 

potential games with infinite action spaces 

Convergence of asynchronous better response algorithms for finite action 

spaces 

Stability of potential games for discrete time adaptations 

Chapter 6 

Interference Reducing Network (IRN) design framework 

Global altruism algorithm 

Local altruism algorithm 

Bilateral Symmetric Interference identification condition 

General algorithm for implementing an IRN in an isolated cluster 

Close proximity algorithm 

Impact of legacy devices 

Chapter 7 

Novel Dynamic Frequency Selection algorithm for 802.11 networks 

operating in infrastructure mode and its performance under non-ideal 

circumstances 

Chapter 8 

Condition for uniqueness and stability of supermodular games 

A convergence proof of typical ad-hoc TPC algorithms 

Novel sensor network formation algorithm 

 

Another objective of this research was developing, standardizing, and popularizing 

techniques for analyzing and designing cognitive radio networks. Beyond influencing the 

direction of many other researchers at Virginia Tech, this work has also had a significant 

impact on the work of cognitive radio researchers throughout the world. The following 
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sections list the publications generated as part of this work and external citations of these 

publications. 

9.3.1 Publications 

The following is a listing of publications that have been created as part of the research 

presented in this document. The list includes two award winning papers, one chapter in 

the first textbook on cognitive radio, a journal paper, and one magazine article. 

1)  J. Neel, J. Reed, Performance of Distributed Dynamic Frequency Selection 

Schemes for Interference Reducing Networks,” Accepted to Milcom 2006 Oct. 

23-25, 2006.  

2) J. Neel, J. Reed, A. MacKenzie, “Analyzing Cognitive Radio Networks” in 

Cognitive Radio Technology, ed. B. Fette, Elsevier Publications, August 11, 

2006. 

3) V. Srivastava, J. Neel, A. MacKenzie, J. Hicks, L.A. DaSilva, J.H. Reed and R. 

Gilles, “Using Game Theory to Analyze Wireless Ad Hoc Networks,” IEEE 

Communications Surveys and Tutorials 4
th

 quarter 2005, vol. 7,  no 4, pp. 46-54.  

4) J. Neel, “Game theory can be used to analyze cognitive radio,” EE Times, August 

29, 2005. 

5) J. Neel, R. Menon, A. MacKenzie, J. Reed, "Using Game Theory to Aid the 

Design of Physical Layer Cognitive Radio Algorithms," accepted on basis of 

abstract to Conference on Economics, Technology and Policy of Unlicensed 

Spectrum, May 16-17 2005, Lansing, Michigan. 

6) J. Hicks, A. MacKenzie, J. Neel, J. Reed, "A Game Theory Perspective on 

Interference Avoidance," Globecom 2004, November 29 - December 3, 2004. 

7) [Named outstanding paper] J. Neel, J. Reed, R. Gilles, “Game Models for 

Cognitive Radio Analysis,” SDR Forum 2004 Technical Conference, November 

2004. 

8) J. Neel, J. Reed, and R. Gilles, “Convergence of Cognitive Radio Networks,” 

WCNC2004, March 25, 2004. 

9) S. Ginde, R. Buehrer, and J. Neel, “A Game Theoretic Analysis of the GPRS 

Adaptive Modulation Schemes,” Fall VTC 2003. 

10) [Named outstanding paper] J. Neel, J. Reed, R. Gilles, “The Role of Game Theory 

in the Analysis of Software Radio Networks,” SDR Forum Technical Conference 

November, 2002. 

11) J. Neel, R. Buehrer, J. Reed, and R. Gilles, “Game Theoretic Analysis of a 

Network of Cognitive Radios,” Midwest Symposium on Circuits and Systems 

2002. 
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9.3.2 External Citations 

Despite having a very narrow window for citations to appear, the publications generated 

as part of this research have already been cited in several publications, classes, and 

proposals. The following lists works generated as part of this project and publications that 

cited those works from authors external to Virginia Tech – a reasonable metric for 

determining the extent which this research is influencing others’ research around the 

world. 

 

Publication: J. Neel, R. Menon, A. MacKenzie, J. Reed, "Using Game Theory to Aid the 

Design of Physical Layer Cognitive Radio Algorithms," accepted on basis of abstract to 
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Vector Power Control Problems with Coupled Constraints,” ICASSP 2006 vol. 4, 

pp. 241-244, May 2006. 
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Applications), special issue on "Reconfigurable Radio Technologies in Support of 

Ubiquitous Seamless Computing", 2006 
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DAC 2005, pp. 409-412, June 13–17, 2005, Anaheim, California, USA. 
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15) F. Granelli, H. Zhang, X. Zhou, S. Maran, “Research advances in cognitive ultra 

wide band radio and their application to sensor networks,” Mobile Network 

Applications, vol 11, pp. 487-499, May 2006. 

 

9.4 Future Work 

While this document made an extensive presentation of techniques for the modeling, 

analysis, and design of cognitive radio networks, this is far from an exhaustive treatment 

of all cognitive radio algorithms. This section presents topics of research that still should 

be addressed beyond the interference avoidance, node participation, and topology control 

applications being developed for the ONR project and the ongoing cognitive radio 

research a Virginia Tech and additional publications planned based on the material 

presented in this document. 
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9.4.1 Research Topics 

The following lists some of the research topics identified in the body of this document 

that merit further research. 

 

Joint power/frequency adaptation 

The target SINR utility function appears to be an attractive algorithm for power control 

and frequency adaptations. To date all simulations of these algorithms have converged 

under numerous decision rules, but no theoretical basis for this is known. It may be that 

as we saw with DFS and legacy radios that there exist conditions that confound 

application of the game models but that these conditions are empirically rare. 

 

Modeling and analyzing network routing 

To an extent the queues used in the routers in the Internet can be analogized to facilities 

which under IPv4 all devices experience approximately equally. Loosely, the choice of 

routes dictates the choice of “facilities” indicating that this problem should be susceptible 

to potential game analysis. While networks have previously been studied with game 

theory, the application of potential game theory would be novel and to new convergent 

and stable algorithms should be realized by applying the results of Chapter 5.  

 

Asymmetric potential games 

Designing the IRN framework and the IRN DFS algorithms required that we identify and 

exploit symmetry conditions implicit to BSI games. To make such an approach more 

generalizable, it would be valuable to characterize how much asymmetry can be 

introduced to BSI and congestion games while still preserving the important convergence 

and stability properties of potential games. For example under what conditions would 

positive correlation of interaction terms or facility benefits be sufficient to imply an 

ordinal potential game? Would scaling these terms by a common factor yield a weighted 

potential game? 

 

Cross-layer algorithms 

In general the work presented in this document (and the work being performed as part of 

the ONR project) focused on single layer and single parameter algorithms. In general, we 
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can treat adaptations over numerous parameters simply as more complex actions and then 

apply the techniques presented in this document. However, this research will likely be 

delayed by the immaturity of theoretical expressions of cross-layer problems as without a 

well-defined mapping from actions to outcomes, analysis is not possible. 

 

Standards Applications 

Development of algorithms that explicitly account for the implementation details of 

specific standards should hasten the deployment of cognitive radios. For instance, this 

could consider joint DFS TPC in an 802.22 setting and network formation algorithms for 

802.11s. 

 

Scenario Classification 

As we saw different operational scenarios can be modeled as different game models 

which imply different algorithms are preferable. The capacity to recognize which 

scenario a radio is operating under should significantly enhance the performance of 

cognitive radio networks. 

 

Bargaining Algorithms for Cognitive Radio 

As we saw in Chapter 4, the implementation of punishment algorithms in cognitive radio 

networks should be accompanied by a negotiation capability because of the diverse 

combination of goals, operating conditions, and capabilities. Properly designed 

bargaining algorithms could simplify this problem and enhance the attractiveness of 

social radio networks. 

 

Differentiating punishment from deviation 

Punishment algorithms are doomed to catastrophic failure when they are unable to 

differentiate between punishments and deviations from an agreed operating point. 

Development of generalized and specific techniques for performing this will also enhance 

the attractiveness of social radio networks. 
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9.4.2 Planned Publications 

The following is a listing and brief description of publications intended for submission to 

either a journal or a magazine after submission of this document based on material 

presented in this document. 

1) “A Low Complexity Interference Reducing Dynamic Frequency Selection 

Algorithm” 

 This will be an extended treatment of the Milcom DFS paper including the 

 additional material presented in Chapter 7. 

2) “Game Theoretic Insights into the Design of Cognitive Radio Networks” 

 Throughout this document, game theory has been leveraged to provide valuable 

 insights into the design of cognitive radio networks. These will be collected into a 

 single document with justification of these insights. 

3) “Potential Games in Wireless Networks” 

 This paper will summarize the various insights that can be gained by applying 

 potential games to cognitive radio networks and present some of the applications 

 included in this report such as DFS, power control and waveform adaptation as 

 well as others not included in this document such as network selection. 

4) “An Algorithm for Distributed Sensor Network Formation” 

 This paper will present the analytic sensor network formation presented in 

 Chapter 8. 

5) “Convergence and Stability of Games with FIP and Weak FIP” 

 Intended for an economics journal, this research necessitated the development of 

 numerous new results related to the convergence and stability implications of FIP, 

 weak FIP, potential games, and supermodular games. 

6) “Identification of Ordinal Potential Games” 

 Intended as an economics letter, this will present the novel technique for 

 identifying ordinal potential games developed as part of this research presented in 

 Chapter 5. 

 

Additionally, this document is intended to serve as the core for a text book on modeling, 

analyzing, and designing cognitive radio networks. 
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