
Threat Analysis of GNU Software Radio

Raquel L. Hill, Suvda Myagmar, Roy Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801

ABSTRACT

Software defined radio (SDR) technology implements some of
the functional modules of a radio system in software enabling
highly flexible handsets. SDR devices may be reconfigured
dynamically via the download of new software modules. Ma-
licious or malfunctioning downloaded software present serious
security risks to SDR devices and networks in which they op-
erate.

In this paper, we analyze threats pertaining to the secure ex-
ecution of downloaded software. We base our analysis on the
open-source implementation of GNU Software Radio. We pro-
pose mechanisms to provide the secure execution of software
modules that implement radio functionality.

1 Introduction

Software Defined Radio (SDR) is a rapidly evolving tech-
nology that is receiving enormous recognition and generating
widespread interest. SDR technology implements radio func-
tionality such as modulation/demodulation, signal generation,
coding and link-layer protocols in software. Implementing
such functionality in software creates highly flexible handsets
that can be reconfigured to upgrade and adapt equipment to
user preferences and regional regulations. Reconfigurability
enables the use of the same equipment in different regions as
well as the fast introduction of new services into mobile net-
works without requiring the purchase of new terminals. While
the benefits of reconfigurable radios are enormous, the ability
to reconfigure radio functionality with software may lead to se-
rious radio security problems such as unauthorized use of ap-
plication and network services, unauthorized modification of
software and malfunctioning radio equipment. For example,
to illustrate the latter, software can be introduced into a de-
vice that changes its radio frequency (RF) operating character-
istics so that it no longer functions within the regulated con-
straints (e.g. frequency, power, modulation). Such changes in
RF parameters may be used to launch denial of service (DoS)
attacks on the hardware or entire wireless network. Addition-
ally, viruses that try to overwrite software modules and system
memory may also be introduced. It is essential to provide suit-
able protection mechanisms that ensure secure, safe, and reli-
able operation.

Current techniques for ensuring that a radio is functioning
within authorized parameters are not applicable for SDR equip-
ment because RF parameters that were once fixed in hard-
ware may now be reconfigured during regular operation [12].
The software and hardware architecture of systems in which
SDR technology is deployed must incorporate security mea-
sures to isolate and protect radio-critical system elements from
improper changes, whether accidental or intentional. With-
out such protection mechanisms, the increased flexibility and
openness of reconfigurable terminals may be misused.

The SDR Forum classifies the collection of software for
SDR as follows [9]:

• Radio Operating Environment - consists of the core
framework, the operating system, device drivers, middle-
ware, installer and any other software fundamental to the
operation of the radio platform.

• Radio Applications - software which controls the behavior
of the RF function of the radio. This includes any software
defining the air interface and the modulation and commu-
nication protocols. It also includes used to manage or con-
trol the radio in a network environment.

• Service Provider Applications - software used to support
network and other service provider support for the user of
the radio. It includes voice telephone calls, data delivery,
paging, instant messaging service, video pictures, emer-
gency assistance, and geolocation.

• User Applications - application software not falling into
any of the above categories.

Each class of software has its own security considerations,
but secure configuration of the SDR device and secure execu-
tion of SDR modules are key components of the overall SDR
security problem. We focus our analysis specifically on issues
that impact the security of the Radio Operating Environment
and the Radio Application modules of the GNU Software Ra-
dio. GNU Software Radio is an open-source SDR platform
that is used currently in both academic research and commer-
cial products [3, 6]. In its current state, GNU Software Radio
defines the digital signal processing modules of a radio receiver
and the functions to configure the receiver.

In this paper, we:



• Study security vulnerabilities of GNU Software Radio
open-source code,

• Investigate threats to secure execution of radio application
modules,

• Provide requirements for secure Radio Operating Envi-
ronment,

• Propose mechanisms to protect memory access and pro-
vide preliminary results that describe the overhead of one
such mechanism.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the GNU Software Radio code-
base. Section 3 presents our analysis in detail. Section 4 dis-
cusses related work, Section 5 presents performance results
of our memory protection implementation, and Section 6 con-
cludes the paper.

2 GNU Software Radio

The GNU Software Radio [1] is a code base of free software
that defines radio waveforms for a software receiver. Since the
GNU Radio receiver utilizes open-source software and a stan-
dard PC using Linux, the system is an ideal platform for learn-
ing and experimenting with SDR concepts.

GNU Software Radio Application modules are written in
C++, while the functions that configure the RA modules into
a functioning radio are written in Python [4]. We refer to the
latter as the ROE function of GNU Radio. The GNU Software
Radio ROE configures the radio by constructing a flow graph
of signal processing modules (SPMs). Each SPM is a vertex in
the graph. Shared buffers connect adjacent SPMs and are used
by the SPMs to pass data from one module to the next. Af-
ter configuring the flow graph, the ROE invokes the scheduler
which initiates the execution of the first SPM. The scheduler is
a GNU RA function that defines the sequence of execution for
the SPM in the flow graph.

The ROE and the flow graph execute within a single process
and share a single address space. Therefore, the SPMs in the
flow graph may overwrite the data produced by other SPMs.
The SPMs may also introduce code that reconfigures the func-
tion of the radio.

3 Threat Analysis

In this section, we analyze the security of the Radio Operating
Environment (ROE) and Radio Application (RA) modules for
GNU Software Radio. Regarding the ROE, we examine how
the ROE configures the GNU radio and initiates the execution
of the RA modules. Regarding the RA modules, we examine
how RA modules interact and share data. We also summarize
how these modules may program RF parameters and describe
the security threat of such programming.

The ROE for GNU Software Radio provides functions to
construct and execute the dataflow graph. Any RA module

may define a graph object, add vertices to the graph and ini-
tiate the graph’s execution. Therefore, it is possible for any
newly downloaded module to reconfigure the function of the
SDR device. To prevent the SDR device from being reconfig-
ured by malicious code, the SDR graph must be protected, and
trusted system modules must construct, update and execute the
graph. The current GNU Software Radio framework doesn’t
provide such functionality.

In addition to the risks associated with the instantiation of
the execution graph, there are serious risks associated with the
execution of modules in the graph. First, all signal process-
ing modules run in the same address space. Therefore, any
malicious module can read or write any data in the entire ad-
dress space. For any meaningful security to exist between mod-
ules, the memory accesses of each module must be isolated and
limited to it’s own data. Additionally, the shared buffer that
connects adjacent signal processing modules may be overwrit-
ten by a malicious module or a module that contains software
errors, resulting in buffer overflow. To protect against buffer
overflow, mechanisms must be employed that limit the amount
of data that is written to the size of the shared buffer.

Coupled with the risk of RA modules making unauthorized
memory accesses are the security threats that result from the
programmability of Radio Frequency (RF) parameters such as
modulation, frequency and power. We summarize programma-
bility of each RF parameter and describe the type of attack that
may be launched.

• Modulation The potential DoS attack against a device that
uses software modulation is the improper change of the
modulation format. This attack has limited impact and
renders only the individual unit inoperable.

• Frequency The design and manufacturing tolerances for
RF filters and resonators limit the extensibility of this
hardware past specified limits [7]. Therefore software en-
hancements within this area may allow wireless devices
to transmit and receive on various frequencies above or
below a certain frequency (high or low pass filters) or
within a certain range (band filter). Interference occurs
when a device is programmed to transmit on a frequency
for which it is not authorized, thus enabling the device to
jam the signals from other nodes that are using the same
frequency.

• Output Power Like frequency, output power is limited by
inherent mechanical limitations of the hardware design.
Of the three RF parameters, power is least likely to be af-
fected by SDR technologies [7]. Realistic security threats
are mostly limited to scenarios where the device operates
at maximum power when it should operate at a reduced
power state. Operating at maximum power may enhance
an individual users performance, but degrade the overall
performance of the communications system. Addition-
ally, other users within the network may be forced to oper-
ate at elevated power levels, thereby reducing their battery
life. Therefore a node that operates at maximum power for



extended periods may cause denial of service for nodes
that raise their power levels and prematurely expend their
batteries.

To overcome the aforementioned threats in secure execution
of downloaded software, in the following sections, we provide
security requirements for the ROE and propose the use of var-
ious memory protection mechanisms to protect against buffer
overflow and the corruption of shared data.

3.1 Security Requirements for GNU Software
Radio ROE Configuration Function

Software Defined Radio technology facilitates enriched com-
munication capabilities via the use of reconfigurable radio de-
vices. The ability to reconfigure a SDR device may lead to
unauthorized modification of radio function. Therefore, recon-
figuration of a SDR device must be limited to trusted and au-
thorized agents. To this end, we present requirements for the
secure configuration of SDR devices.

• Separate ProcessesThe GNU Software Radio ROE con-
figuration and RA functions share a process and address
space. Thus, there is no way to control how, when and by
whom the GNU SDR device is configured. The first step
to addressing this problem is to ensure that the ROE and
the RA are separate processes.

• Trusted Configuration Users and service providers who
once trusted the function of hardware are now required to
trust that software components have been properly config-
ured. To facilitate this trust, the SDR device must be able
to verify that the configuration function is correct. The
SDR device should also be able to prove to external enti-
ties that it is running the appropriate ROE and RA code.

• Policy Driven Configuration To address the risks that are
associated with the programmability of RF parameters,
network administrators and regulators must define poli-
cies that specify the operating constraints of SDR devices.
The GNU Software Radio ROE must provide mechanisms
for evaluating and enforcing these policies.

3.2 Protecting Memory Access

One of the main vulnerabilities of the secure execution RA
modules is the integrity of the runtime memory. Faulty or ma-
licious software components may perform unauthorized mem-
ory access through buffer overflow. Several types of protec-
tion techniques exist to prevent buffer overflow such as dy-
namic runtime check, address protection, and software fault-
isolation. These mechanisms are implemented as stand-alone
system software, kernel extensions, compiler extensions, and
loader extensions. Although no mechanism can prevent all
unauthorized attempts to access memory, these mechanisms
along with good programming techniques will help to provide
the best possible solution for such attacks [13].

Dynamic runtime check primarily relies on the safety code
being preloaded before a software component is executed. This
preloaded component can either provide safer versions of the
standard unsafe functions, or it can ensure that return addresses
are not overwritten. Source code of the software component is
not needed. LibSafe is an example of such solution; it protects
a process against the exploitation of buffer overflow vulnerabil-
ities in process stacks [2]. LibSafe intercepts all calls to library
functions that are known to be vulnerable. A substitute version
of the corresponding function implements the original func-
tionality, but in a manner that ensures that any buffer overflows
are contained within the current stack frame.

Compiler tools allow bounds checking to go into compiled
code automatically, without changing the source code. These
compilers generate the code with built-in safeguards that try
to prevent the return address from being overwritten, as most
attacks occur this way. StackGuard detects and defeats smash
stacking attacks by protecting the return address on the stack
from being altered [5]. It places a canary word next to the
return address whenever a function is called. If the canary word
has been altered when the function returns, then some attempt
has been made on the overflow buffers.

Software-based fault isolation techniques modify the ma-
chine code of a program during load time to instrument all
critical accesses such as memory read/write, jumps, calls and
returns to point to valid and allowed addresses. Sandboxing
is an isolation technique that inserts a code before every unsafe
instruction. This code sets the upper bits of the target address to
the correct segment identifier to ensure that the address falls in
the logically separate portion of the software component within
its address space [21].

4 Related Work

In this section, we discuss previous research related to se-
curity of software defined radio (SDR). We have categorized
this work into three main groups. The first group proposes
security frameworks with key management and various en-
cryption algorithms for secure download and electronic com-
merce [15, 16, 17, 19]. The second group proposes schemes for
securing a specific feature of software download, the download
connection [11, 20]. The third group proposes radio spectrum
management for global roaming [18, 14].

Lachlan Michael et al. [15, 16, 17]propose a framework for
establishing secure download for SDR that includes employ-
ment of tamper resistant hardware and four different crypto-
graphic techniques: secret key encryption, public key encryp-
tion, cryptographic hashing, and digital signature. They as-
sume the existence of tamper-resistant hardware that provides
secure storage for the terminal keys. This work also assumes
that software is created and distributed by hardware maker.
Sugita et al. [19] propose an electronic commerce scheme for
SDR that utilizes the ability of SDR to switch between different
security algorithms for electronic commerce. The following
issues are identified, but without precise specifications: (a) en-
cryption of download channel, hardware key, and terminal ID



to prevent illegal copying of the downloaded program; (b) cer-
tification against alteration of the downloaded program. While
the work within this group addresses the secure software down-
load problem, our work assesses the problems that prevent the
secure execution of downloaded code.

Brawerman et al. [11] propose a lightweight LSSL proto-
col that uses less bandwidth than SSL to securely connect a
manufacturer’s server and SDR devices for downloading ra-
dio configuration files. In addition to securing the download
connection, their secure protocol includes mutual authentica-
tion, public/private key mechanisms for data encryption and
decryption, and fingerprint calculations to check data integrity.
Uchikawa et al. propose a secure download system that uses
the characteristics of the field programmable gate arrays (FP-
GAs) composing the SDR. The wiring of configuration logic
blocks on FPGAs can be arranged in many different ways (as-
tronomical number), enabling high security encipherment to
prevent illegal acquisition of software using replay attack [20].
These works assume that SDR devices download software only
from their manufacturers, and they focus on confidentiality and
authentication aspects of SDR security. We are assume that
software can be provided by a third-party, and certified soft-
ware may be faulty.

According to FCC, the radio spectrum should be protected
by proving the compliancy of the combination of SDR hard-
ware and software to the local radio regulations before this
combination is brought to the market. A SDR security archi-
tecture that enables separate software and hardware certifica-
tion is proposed in [18, 14]. This architecture is contains: (a)
automatic calibration and certification unit (ACU) that ensures
that the output spectrum is compliant with regional radio reg-
ulations; (b) built-in GPS receiver for terminal location check;
(c) radio security module (RSM) that manages the life-cycle of
the downloaded software.

Some of the security issues and threats are discussed in the
SDR Forum documents [12, 8, 10, 9]. Among them [12] men-
tions use of sandboxing as a possible approach to prevent harm
from potentially malicious software. We elaborate on this idea
even further and evaluate the use of fault isolation in our GNU
Software Radio implementation.

5 Evaluation

In the previous sections we emphasized the importance of pro-
tecting memory spaces shared among software modules that
compose a software radio system. As a first step towards pro-
viding a fully secure execution environment for SDR, we de-
signed and implemented security mechanisms to protect ac-
cess to the shared buffers in the GNU Software Radio flow
graph. Our solution utilizes the encapsulation capability of
object-oriented programming and a LINUX system function
for privileged memory access. We defined a new buffer class
that allocates and manages buffers in more secure manner than
the current GNU software radio platform. A buffer allocated
for signal processing can be read or written only by authorized
signal processing modules that are registered as readers or writ-

ers of the buffer. When a read/write operation is attempted, the
buffer verifies the identity of the requester. For write operation,
the buffer also checks whether there is enough space to write
the requested number of elements into the buffer, thus prevent-
ing buffer overflow. We use the mprotect system function
to control accesses to a region of memory containing shared
buffers and to prevent malicious or faulty code from obtain-
ing a random pointer within the process’s address space and
overwriting it. mprotect assigns desired access permissions
for the memory pages containing the given memory region. If a
disallowed access is attempted, the program receives a segmen-
tation violation. In our implementation the access permission
of a shared buffer remains read-only until an authorized write
occurs. We’ve performed a preliminary evaluation of our mem-

Figure 1: Runtime overhead.

ory protection mechanism. The evaluation setup is as follows:

• Since the main overhead due to new security features lies
in memory accesses, we want to observe the effects of in-
creasing number of shared signal processing buffers and
size of input data on the running time of the system. We
tested the radio system without RF front-end hardware
because delays due to radio transmission and digital-to-
analog conversion are orthogonal to our study.

• We used input files containing voice data. These data were
recorded using GNU radio.

• We used signal processing blocks that applied simple



mathematical functions on input data such as multipli-
cation by a vector. As the number of signal processing
blocks increased, the number of shared buffers increased
proportionally.

Figure 1 illustrates running time of the radio system in two
different cases: a) unmodified base case; b) security mecha-
nism in place. For each of these cases we run the radio sys-
tem with three different flow graph constructions: 1 buffer, 3
buffers, 5 buffers. There are six test suites. We execute each
test suit with 10 different input files of varying sizes, ranging
from 100 Kb to 128 Mb. The dotted lines indicate the perfor-
mance of the base case; the solid lines indicate the performance
of the radio system with shared buffer protection.

The results of our evaluation show that our memory protec-
tion mechanism doesn’t add significant overhead to the running
time of the radio system; the overhead is negligible.

6 Conclusions

In this paper, we have analyzed threats to the secure execution
of downloaded software for GNU Software Radio. In the cur-
rent implementation of GNU Software Radio, all downloaded
software modules share a single address space. When these
modules are inserted in the execution graph, adjacent modules
are connected via a shared buffer. The use of a single ad-
dress space and shared buffer introduces such security threats
as buffer overflow and unauthorized read/write of memory.

We have designed and implemented a secure buffer class that
protects access to and manipulation of shared buffers that con-
nect signal processing modules in the GNU Software Radio
flow graph. Our preliminary results show that the overhead of
the protection mechanisms that we employ is negligible.

For future work, we plan to incorporate additional memory
protection mechanisms into our implementation. In addition,
we plan to define a policy framework that will enforce the au-
thorized construction, update and execution of the flow graph.
The framework will also support the specification, evaluation
and enforcement of polices that control the programmability of
RF parameters.

7 Acknowledgments

This work is funded by the Office of Naval Research through
the National Center for Advanced Secure Systems Research
(NCASSR). We would like to thank Eric Blossom for his feed-
back throughout the duration of this project.

REFERENCES

[1] GNU Software Radio project.
http://www.gnu.org/software/gnuradio/.

[2] Libsafe, project, AvayaLabs.
http://www.research.avayalabs.com/project/libsafe/.

[3] NCASSR Software-Defined Radio research.
http://www.ncassr.org/projects/sdr.html.

[4] Python. http://www.python.org.

[5] StackGuard, project, IMMUNIX.
http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/.

[6] Vanu Software Radio. http://www.vanu.com/index.html.

[7] Report on issues and activity in the area of security for
software defined radio. SDR Forum Approved Docu-
ment, SDRF-02-A-0003, 2002.

[8] SDR system security. SDR Forum Approved Document,
SDRF-02-A-0006, November 2002.

[9] A structure for software defined radio security. SDR Fo-
rum Input Document, SDRF-03-I-0010, May 2003.

[10] SDRF wireless security. SDR Forum Input Document,
SDRF-04-I-0023, April 2004.

[11] A. Brawerman, D. Blough, and B. Bing. Securing the
download of radio configuration files for software defined
radio devices. In Proceedings of the 2nd International
Workshop on Mobility Management & Wireless Access
Protocols, October 2004.

[12] R. Falk, J. F. Esfahani, and M. Dillinger. Reconfigurable
radio terminals - threats and security objectives. SDR Fo-
rum Input Document, SDRF-02-I-0056, November 2002.

[13] S. Grover. Buffer overflow attacks and their countermea-
sures. LINUX Journal, March 2003.

[14] C. F. Lam, K. Sakaguchi, J. Takada, and K. Araki. Se-
cure download system based on software defined radio
composed of FPGAs. In Proceedings of IEEE Vehicular
Technology Conference, October 2003.

[15] L. B. Michael, M. J. Mihaljevic, S. Haruyama, and
R. Kohno. Security issues for software defined radio:
Design of a secure download system. IEICE Trans. Com-
mun., January 1999.

[16] L. B. Michael, M. J. Mihaljevic, S. Haruyama, and
R. Kohno. A framework for secure download for
software-defined radio. IEEE Communications Maga-
zine, July 2002.

[17] L. B. Michael, M. J. Mihaljevic, S. Haruyama, and
R. Kohno. A proposal of architectural elements for im-
plementing secure software download service in software
defined radio. In Proceedings of the 13th IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio
Communications, 2002.

[18] K. Sakaguchi, C. F. Lam, T. D. Doan, M. Togooch,
J. Takada, and K. Araki. ACU and RSM based radio
spectrum management for realization of flexible software
defined radio world. IEICE Trans. Commun., December
2003.



[19] M. Sugita, K. Uehara, and S. Kubota. Flexible security
systems and a new structure for electronic commerce on
software radio. In Proceedings of the 13th IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio
Communications, 2002.

[20] H. Uchikawa, K. Umebayashi, and R. Kohno. Secure
download system based on software defined radio com-

posed of FPGAs. In Proceedings of the 13th IEEE In-
ternational Symposium on Personal, Indoor and Mobile
Radio Communications, 2002.

[21] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient software-based fault isolation. In Proceedings of the
Symposium on Operating System Principles, 1993.


