Tutorial 7: Exploring the FM receiver

Dawei Shen*

July 12, 2005

Abstract

In tutorial 5, we skip the discussion on how the FM signal is demodulated, leaving the big
‘guts’ as a black box. In this article, the real signal processing techniques for demodulating the
FM signal are introduced. We will dig into this black box and see how the signal is processed in
the software world.

1 Overview

In previous tutorials, we have introduced the hardware setup of GNU Radio and some programming
tips, which form the basis of a real application in the ‘soft world’. In this article, we will investigate how
the broadcast FM signal is demodulated. The FM receiver is a typical example in GNU Radio. You
are able to hear strong stations using just a piece of wire. In tutorial 5, we skipped the introduction
to the big box ‘guts’, where the real magics of the FM detection are. We will show how the signal is
processed from the air to the sound card in this tutorial.

2 From the air to the computer, from real to complex

In tutorial 3 and 4, we have discussed the operations on the USRP, especially the role of the digital
down converter (DDC). Basically what the USRP does is to select the part of the spectrum we are
interested in and decimate the digital sequence by some factor N. The resulting signal is complex
(gr_complex) with I/Q two channels. So after we finish writing these lines

src = usrp.source_c (0, decim) # decim = 250, so data rate (quad_rate) is 256kHz
src.set_rx_freq (0, IF_freq) # IF_freq = our input - 128MHz
src.set_pga(0,20)

we’ve got a ‘complex’ signal, with a data rate 256k samples per second. We name it ‘quadrature
rate’ - quad_rate because the complex signal has I/Q quadrature components.

The IF frequency we choose is an interesting and useful point here. IF_freq is equal to the user’s
input minus 128MHz, as the line in function parseargs() indicates:

*The author is affiliated with Networking Communications and Information Processing (NCIP) Laboratory,
Department of Electrical Engineering, University of Notre Dame. Welcome to send me your comments or
inquiries. Email: dshen@nd.edu

2 Tutorial 7 - Exploring the FM receiver

return freql - 128e6

wifm_rcv_gui was written assuming that there was no RF front end doing any down conversion. The
A /D sample rate is 64M. The Nyquist zones are therefore:

[0, 32M] normal
[32M, 64M] inverted
[64M, 96M] normal
[96M, 128M] inverted

etc.

The problem is that 96M, one of the folding points, occurs right in the middle of the broadcast
band. This means that 95.0 and 97.0 both alias down to the same frequency and can’t be distinguished
from each other. freql - 128M will give a valid frequency if freql is >= 96M. Bottom line: it’s a
kludge that sort of works.

3 Getting the instantaneous frequency, from complex to real

It’s time to dig into the heart of the ‘guts’ now, which we left as a big black box in tutorial 5.
guts = blks.wfm_rcv (self, quad_rate, audio_decimation)

blks is a package in gnuradio. It almost does nothing but refers to another package blksimpl.
wim_rcv is a class defined in /gnuradio/blksimpl/wfm_rcv.py, which is real ‘processor’ of the FM
receiver. The source code is appended at the end.

wim_rcv is derived from gr.hier_block. gr.hier_block describes a series of blocks in tandem
in a flow graph. It assumes that there is at most a single block at the head of the chain and a single
block at the end of the chain. Either head or tail may be None indicating a sink or source respectively.
hier_block could be recognized a sub-graph consisting of several blocks connected one after another.
To construct a hier_block, we need to specify the flow graph that contains this hierarchical block,
the first and the last block in the signal processing chain. A hierarchical block could be treated as a
common block, which could be placed and connected in a flow graph, like these lines demonstrate:

self.connect (src, guts)
self.connect (guts, (audio_sink, 0))

The ‘head’ block in the chain is fm_demod, the instance of gr.quadrature_demod_cf. To under-
stand the real work within it, we should know a bit about how FM signals are generated. With FM,
the instantaneous frequency of the transmitted waveform is varied as a function of the input signal.
The instantaneous frequency at any time is given by the following formula:

f(t) =k * m(t) + fc

m(t) is the input signal, k is a constant that controls the frequency sensitivity and fc is the
frequency of the carrier (for example, 100.1MHz). So to recover m(t), two steps are needed. First
we need to remove the carrier fc, then we’re left with a baseband signal that has an instantaneous
frequency proportional to the original message m(t). The second step is obviously to compute the
instantaneous frequency of the baseband signal. Thus, our challenge is to find a way to remove the
carrier and compute the instantaneous frequency. Removing the carrier has been done on the FPGA,
via the digital down converter (DDC), as introduced in tutorial 3 and 4. We have explained why we

D. Shen 3

tune to (fc - 128MHz) in the preceding section. The resulting signal coming into the ‘guts’ has already
become a baseband signal and the remaining task is to calculate its instantaneous frequency. If we
integrate frequency, we get phase, or angle. Conversely, differentiating phase with respect to time
gives frequency. These are the key insights we use to build the receiver.

We use the gr.quadrature_demod_cf block for computing the instantaneous frequency of the
baseband signal. We approximate differentiating the phase by determining the angle between adjacent
samples. Recall that the digital down converter produces complex numbers on its output. Using a
bit more trigonometry, we can determine the angle between two subsequent samples by multiplying
one by the complex conjugate of the other and then taking the arc tangent of the product. Once you
know what you want, it doesn’t take much code. gr_quadrature_demod_cf.cc contains the C++
implementation of this block. We will talk about how to write a signal processing block using C++
in detail in tutorial 10 and 11. But it’s useful to give a shot at the code now. The bulk of the signal
processing is the three-line loop in sync_work() function.

Part of gr_quadrature_demod_cf.cc

int

gr_quadrature_demod_cf: :sync_work (
int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

gr_complex *in = (gr_complex *) input_items[0];

float *out = (float *) output_items[0];

in++; // ensure that in[-1] is valid

for (int i 0; i < noutput_items; i++){
gr_complex product = in[i] * conj (in[i-11);
out[i] = d_gain * arg (product);

}

return noutput_items;

A helpful diagram for the FM receiver can be found |here.
fm_demod_gain = quad_rate/(2*math.pi*max_dev)

Note that fm_demod_gain can be treated as a constant controlling the volume. Its real value
doesn’t matter. Here arg (product) is the phase difference between adjacent samples, if we divide
it by the sample interval, i.e. multiply the data rate quad_rate, we get the radian frequency w,
which gives us the instantaneous frequency f if we further divide w by 27. Finally we normalize the
frequency by max_dev.

4 Deemphasizer

The second block in the chain is a deemphasizer deemph, an instance of the class fm_deemph. fm_deemph
is defined in fm_emph.py, also located in the package blksimpl.

What is deemphasis? Let’s introduce it briefly. It has been theoretically proved that, in FM
detector, the power of the output noise increases with the frequency quadratically. However, for
most practical signals, such as human voice and music, the power of the signal decreases significantly
as frequency increases. As a result, the signal noise ratio (SNR) at the high frequency end usually
becomes unbearable. To circumvent this effect, people introduce ‘preemphasis’ and ‘deemphasis’ into

http://www.linuxjournal.com/articles/lj/0125/7505/7505f5.png�

4 Tutorial 7 - Exploring the FM receiver

the FM system. At the transmitter, we use proper preemphasis circuits to manually amplify the high
frequency components, and do the converse operations at the receiver to recover the original power
distribution of the signal. As a result, we improve the SNR effectively.

In the analog world, a simple first order RLC circuit usually suffices for preemphasis and deem-
phasis. [Here! is a nice plot of their transfer functions. In our digital signal processing, a first order IIR
filter could be the right choice.

Part of fm_emph.py

tau is the RC time constant.
critical frequency: w_p = 1/tau

We prewarp and use the bilinear z-transform to get our IIR coefficients.
See "Digital Signal Processing: A Practical Approach" by Ifeachor and Jervis

H o HF O H O H R H

class fm_deemph(gr.hier_block):

FM Deemphasis IIR filter.

def init__(self, fg, fs, tau=75e-6):

Otype fs: float

@param tau: Time constant in seconds (75us in US, 50us in EUR)
Otype tau: float

w_p = 1/tau

w_pp = math.tan (w_p / (fs * 2)) # prewarped analog freq

al = (w_pp - 1)/(u_pp + 1)

b0 = w_pp/(1 + w_pp)
bl = b0

btaps = [b0, bi]
ataps = [1, all

deemph = gr.iir_filter_ffd(btaps, ataps)
gr.hier_block.__init__(self, fg, deemph, deemph)

We start from the transfer function of the analog filter as prototype, and use bilinear transformation
to get the digital IIR filter. Note that gr.iir_filter_ffd is the IIR filter block with float input,
float output and double taps.

5 Awudio FIR decimation filter

After passing the deemphasizer, how does the signal look like now? First, it’s a real signal with a
data rate of 256kHz. Second, it’s a baseband signal, with effective frequency range from 0 to about
100kHz, containing all the frequency components of a FM station.

As a side note, the bandwidth of a FM station is usually around 2 * 100kHz. This also explains

http://cnyack.homestead.com/files/modulation/pre_emp.htm�

D. Shen 5

why we choose 256kHz as the quadrature rate (the decimation rate on the USRP is chosen to be 250).
A sample rate of 256kHz is just suitable for the 200kHz bandwidth, without losing any spectrum
information. Maybe you have noticed, in the FM receiver, we never use any low-pass filtering operation
to ‘pick out’ the FM station we are interested in. Actually this is done implicitly in the digital down
converter (DDC) on the USRP. Recall that digital down converter can be regarded as a low-pass FIR
filter followed by a downsampler. As a result, the target station is picked out then spread out to
the entire digital spectrum after decimation. Because we choose the right decimation rate, we have
eventually done a lot! The bottom line is, we are operating on a single FM station after the signal
goes through the USRP.

Now we need to resolve two issues. First, the signal rate is 256kHz now, much higher than what the
sound card can adopt. The PC sound cards usually sample up to 96,000 Hz maximum. Second, the
100kHz spectrum contains several channels, L + R, L - R, pilot tones, etc. To keep our life simpler, we
just want to design a mono receiver low-passing only the L. + R signal. So clearly, an FIR decimation
filter is exactly what we want.

To make things clearer, here is a brief introduction to the FM signal band. From 0 to about 16kHz
is the left plus right (L + R) audio. The peak at 19kHz is the stereo pilot tone. The left minus right
(L - R) stereo information is centered at 2x the pilot (38kHz) and is AM-modulated on top of the FM.
Additional subcarriers are sometimes found in the region of 57kHz - 96kHz. We can use the GNU
Radio built-in fft block with GUI supports to view the spectrum of the demodulated signal (details
will be introduced in tutorial 8). [Herel is a nice real plot given by Eric. [Herelis a good illustration of
the FM band.

OK, now let’s design the FIR decimation filter. The GNU Radio block gr.fir_filter_fff gives
us an FIR filter with float input, float output, and float taps. Its constructor takes two arguments:
the first one is the decimation factor, the second one is the filter coefficients (taps) vector.

self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)

If we need an FIR filter without changing the data rate, then we just simply set the decimation
rate to be 1. If we need an interpolation filter rather than a decimation filter, then the GNU Radio
block gr.interp_fir_filter_xxx is what we should choose.

The filter coefficients audio_coeffs are obtained using the FIR filter design block gr.firdes.
low_pass() is a static public function defined in the class gr_firdes. Similarly, it also hashigh_pass(),
band_pass (), band_reject () functions. We use these functions to design the FIR filter taps, pro-
vided the filter parameters and specifications. For example, the syntax for design a low-pass filter is:

vector< float > gr_firdes::low_pass (double gain,
double sampling_freq,
double cutoff_freq,
double transition_width,
win_type window = WIN_HAMMING,
double beta = 6.76

) [static]

The meaning of each argument is quite obvious. Note that beta is a parameter for Kaiser window.
In our example, we select the audio decimation factor (audio_decimation) to be 8, so that the
resulting data rate for the sound card is 32kHz. We are only interested in the L + R audio from 0 to
16kHz, so we low pass the output of the quadrature demodulator with a cutoff frequency of 16kHz.
This gives us a monaural output that we connect to the sound card outputs. In our example, we
choose the cutoff frequency as 15kHz and transition band as 1kHz, which is reasonable.

width_of_transition_band = audio_rate / 32
audio_coeffs = gr.firdes.low_pass (volume, # gain (20)

http://www.linuxjournal.com/articles/lj/0125/7505/7505f7.png�
http://cnyack.homestead.com/files/modulation/fmsteo.htm�

6 Tutorial 7 - Exploring the FM receiver

quad_rate, # sampling rate (32kHz)
audio_rate/2 - width_of_transition_band, (15kHz)
width_of_transition_band, (16kHz)

gr.firdes.WIN_HAMMING)

OK! Our FM receiver is complete! The signal is at the door of the sound card and is ready to be
played. Note that the usage of FIR filters, as well as multirate processing is very important in the
digital signal processing.

Finally, we connect these blocks and call the __init__() method of gr.hier_block to complete
the __init__() method of the wfm_rcv class. Here we need to specify the head and the tail of the
pipeline.

fg.connect (self.fm_demod, self.deemph, self.audio_filter)
gr.hier_block.__init__(self,
fg,
self.fm_demod, # head of the pipeline
self.audio_filter) # tail of the pipeline

6 Conclusion

In this article, we have introduced the FM detection techniques and how they are implemented using
GNU Radio. Now we can see GNU Radio is really a nice system, providing us so many powerful tools
and flexible ways to construct a real application. In next tutorial, we will wrap up the explanation of
wfm_rcv_gui.py, with an emphasis on the GNU Radio GUI tools.

APPENDIX A: The source code

from gnuradio import gr
from gnuradio.blksimpl.fm_emph import fm_deemph
import math

class wfm_rcv(gr.hier_block):
def init (self, fg, quad_rate, audio_decimation):

Hierarchical block for demodulating a broadcast FM signal.

The input is the downconverted complex baseband signal (gr_complex).
The output is the demodulated audio (float).

@param fg: flow graph.

@type fg: flow graph

Oparam quad_rate: input sample rate of complex baseband input.

Otype quad_rate: float

O@param audio_decimation: how much to decimate quad_rate to get to audio.
@type audio_decimation: integer

volume = 20.

max_dev = 75e3
fm_demod_gain = quad_rate/(2*math.pi*max_dev)
audio_rate = quad_rate / audio_decimation

D. Shen

We assign to self so that outsiders can grab the demodulator
if they need to. E.g., to plot its output.

#

input: complex; output: float

self.fm_demod = gr.quadrature_demod_cf (fm_demod_gain)

input: float; output: float
self.deemph = fm_deemph (fg, quad_rate)

compute FIR filter taps for audio filter

width_of_transition_band = audio_rate / 32

audio_coeffs = gr.firdes.low_pass (volume, # gain
quad_rate, # sampling rate
audio_rate/2 - width_of_transition_band,
width_of_transition_band,
gr.firdes.WIN_HAMMING)

input: float; output: float

self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)

fg.connect (self.fm_demod, self.deemph, self.audio_filter)
gr.hier_block.__init__(self,
fg,

self.fm_demod, # head of the pipeline
self.audio_filter) # tail of the pipeline

References

[1] Eric Blossom, Listening to FM Radio in Software, Step by Step,
http://www.linuxjournal.com/article/7505

http://www.linuxjournal.com/article/7505�

