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ABSTRACT

We consider the problem of opportunistic dynamic spectrum
access (DSA) in an ad hoc network in which unlicensed sec-
ondary users communicate through channels not used by the
primary users. Decentralized cognitive medium access con-
trol protocols are presented that allow secondary users to rec-
ognize spectrum opportunity and transmit based on a partial
observation of the instantaneous spectrum availability. Under
a framework of Partially Observable Markov Decision Pro-
cess (POMDP), we derive optimal and suboptimal decentral-
ized strategies for the secondary users to decide which chan-
nel(s) to sense and access for the maximization of the overall
network throughput.

1. INTRODUCTION

Static spectrum allocation strategies effectively bypass the
problems of spectrum coordination and, with adequate guard
bands, avoid interference. Such fixed allocations, however,
can be wasteful when the primary user has no data to transmit
or may result in unacceptable drops and delays if the user’s
demand is too high. Dynamic Spectrum Access (DSA) [1]
represents a new paradigm of spectrum management, a shift
from static allocation to dynamic access, allowing oppor-
tunistic communications based on user demands and chan-
nel availability. DSA will become increasingly important as
overlay schemes and the use of unlicensed spectra increase.
DSA is also critical in coping with traffic load variations over
time and space and for heterogeneous networks to coexist
without explicit coordination.

1.1. Dynamic Spectrum Access

Two approaches to DSA have been envisioned: dynamic spec-
trum allocation and opportunistic spectrum access. While
sharing certain common features, these two approaches dif-
fer in their rationale, technological challenges, and domains
of applications. Dynamic spectrum allocation brought forth
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by the European DRiVE project [2] mainly focuses on long-
term commercial applications such as UMTS and DVB-T. By
exploiting temporal and spatial traffic statistics, it aims to im-
prove spectrum efficiency through time- and space-dependent
spectrum sharing among coexisting radio services. For ex-
ample, the amount of spectrum allocated to UMTS and DVB-
T varies over region and the-time-of-day. Similar to the cur-
rent static spectrum allotment policy, such DSA strategies al-
locate, at a given time and region, a portion of the spectrum
to a radio access network for its exclusive use. As such, white
space in spectrum due to bursty traffic cannot be eliminated.

Different from dynamic spectrum allocation which uses
the statistics of spectrum occupancy, opportunistic spectrum
access envisioned by the DARPA XG program [3] aims to
exploit the instantaneous spectrum availability by opening
licensed spectrum to secondary users. The idea is to al-
low secondary users to identify available spectrum resources
and communicate opportunistically in a manner that limits
the level of interference perceived by primary users. It thus
has the potential of eliminating white space in the spectrum.
Such DSA strategies are more relevant to applications re-
quiring rapid but short-term deployment and applications de-
nied of cooperation from existing radio access networks. Ex-
amples include military units penetrating deep in unknown
and/or hostile territories, wireless networks established for
particular social events, or sensor networks deployed for spe-
cific tasks. Requiring little cooperation from the spectrum
licensees, opportunistic spectrum access can be overlayed
with the current static allotment policy as well as the envi-
sioned dynamic spectrum allocation. Besides software de-
fined radio, the technological underpinning of opportunistic
spectrum access includes efficient spectrum sensing for op-
portunity identification and adaptive medium access and net-
working protocols for opportunity utilization.

1.2. Decentralized Cognitive MAC

In this paper, we focus on DSA of the second kind in ad
hoc networks: opportunistic spectrum access based on in-
stantaneous network state. One of the most crucial and dif-
ficult challenges in such networks is the design of cognitive
medium access control (MAC) that recognizes and utilizes
spectrum opportunities for optimal network performance. For
ad hoc networks without a central authority, it is desirable
to have a Decentralized Cognitive MAC (DC-MAC) where
each node decides individually how to sense the spectrum
and how to gain access. Because users cannot exchange lo-
cal information on channel availability before agreeing on a
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communication channel, such a protocol should not rely on
cooperation among secondary users. Thus the design of DC-
MAC for DSA networks is more challenging than that for
standard ad hoc networks.

We focus on cognitive MAC where each node must sense
the channel intelligently by exploiting statistical traffic be-
havior. We do not assume that each secondary node has
perfect knowledge of the availability of all channels; such
knowledge implies a full spectrum sensing synchronous among
users. We assume instead that each node can choose to sense
a subset of the possible channels and must decide if trans-
mission is possible based on the sensing outcome. As such,
each node observes only a partial, not the full, state of the
network. Furthermore, we allow sensing errors: the over-
look of an available channel and the mistake of identifying
an unavailable channel as an opportunity.

The key step in the design of DSA is to capture the dy-
namic behavior of the spectral vacancy which fundamentally
determines the network performance. The modelling of DSA
dynamics needs to incorporate channel availability, channel
bandwidth, and traffic pattern. The last plays a crucial role in
protocol design. For example, if we know that a primary user
favors a particular channel and tends to occupy it for a long
period of time, that channel would be less likely available for
a secondary user, and sensing it would likely be a waste of
time and energy.

There is also a need to consider sensing and access jointly,
which leads to a cross-layer design for DSA. For example, if
a node has no packet to send, does it make sense to perform
channel sensing? Sensing costs energy but gains information
about the network state. Sensing proactively better prepares
the node for transmission but at the cost of energy consump-
tion. What would then be the tradeoff between energy con-
sumption and spectrum utilization?

1.3. Scope, Contribution, and Related Work

Scope The scope of this paper is limited to the technical
(and more analytical) aspects of the MAC design for DSA ad
hoc networks. Specifically, we focus on the theoretical for-
mulation and characterization of decentralized medium ac-
cess and the development of optimal DC-MAC protocols.

While we are not concerned about specific implementa-
tion details (e.g.,packet format and bit definitions), we are
concerned about implementation complexity, both in compu-
tation and storage. We take an analytical approach, imposing
certain idealized modelling assumptions. It is our hope, how-
ever, that the results presented here can provide insights into
the design of more complicated DSA networks under more
realistic assumptions.

Contribution The contribution of this paper is threefold.
We provide (i) an analytical framework of DC-MAC in DSA
ad hoc networks; (ii) a characterization of the optimal pro-
tocol; (iii) the development of a low complexity suboptimal

greedy algorithm.

Analytical Framework We present an analytical framework
for the design of DC-MAC for DSA ad hoc networks. This
framework includes three components. Jointly, they define
protocols that integrate channel sensing and access.

The first component is a channel occupancy model that
captures the dynamics of channel availability. By using a
Markov chain formulation, we incorporate traffic character-
istics of the primary and secondary users. For example, given
that a channel is currently occupied by a primary user, the
probability that the primary user will need it for the next slot
is modelled by the state transition probability.

The second is the performance metric, the objective func-
tion that defines the optimal strategy. In this paper, we focus
on maximizing spectrum utilization by designing a DC-MAC
that maximizes the average throughput. The formulation,
however, can be easily tailored to incorporate energy con-
sumptions by imposing constraints or penalty.

The third component is a decision theoretic approach to
selecting which channel to sense and access given the node’s
past sensing history, channel occupancy statistics, and the
reward-cost of sensing and transmission.

Optimal DC-MAC We present next an optimization frame-
work based on the theory of Partially Observable Markov
Decision Process (POMDP). The network state is partially
observable due to a more practical and more general sensing
model that allows a user to sense, not all, but a subset of chan-
nels. The structure of the optimal DC-MAC is obtained fol-
lowing the classical work of Smallwood and Sondik [4]. Our
formulation is also amenable to other POMDP techniques.

Suboptimal Greedy DC-MAC The optimal DC-MAC re-
quires the update and storage of an information vector with a
dimension exponentially growing with the number of chan-
nels. We show that the required sufficient statistic has a di-
mension linear in the number of channels. This leads to a
much simplified suboptimal algorithm based on a greedy ap-
proach.

Related Work A majority of existing work on DSA focuses
on the approach of dynamic spectrum allocation [2, 5–16].
The European DRiVE project [2] focuses on dynamic spec-
trum allocation in heterogeneous networks by assuming a
(logical) common coordination channel. The efficiency of
DSA will depend upon the ability to predict traffic load (thus
spectrum occupancy). A simulation study of the impact of
load prediction based on load history and simple regression
schemes is reported in [15]. Regulatory aspects and issues
in DSA across multiple networks are discussed in [5]. Two
centralized DSA protocols that rely on a super-base station
are described in [8] and their performance evaluated via sim-
ulations.

There have been several attempts on developing cogni-
tive MAC for opportunistic spectrum access [17–21]. These
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techniques tackle the problem in two separate steps: (i) the
development of an opportunity identification module using
classical detection and estimation techniques assuming con-
tinuous full-spectrum sensing; (ii) the design of an opportu-
nity allocation module by, for example, graph coloring tech-
niques assuming full knowledge of spectrum opportunities.
Missing in this line of approaches are two ingredients: the
energy-efficient sensing and the ability to handle bursty traf-
fic. First, the assumption of continuous full-spectrum sens-
ing, while simplifying the design of cognitive MAC, is un-
desirable and impractical due to the energy consumption and
the hardware implication. Second, traffic characteristics, es-
pecially the bursty nature, should play a crucial role in any
efficient cognitive MAC scheme. Why pay for the knowl-
edge of every opportunity in the whole spectrum all the time
when a user only has sporadic needs for spectrum access?
Here lies a clear disadvantage of existing approaches that de-
couple opportunity identification and opportunity allocation.

2. PROBLEM STATEMENT

Network and Channel Model Consider a spectrum con-
taining N channels1, each with bandwidth Bi (i = 1, · · · , N ).
These N channels are shared among primary users and a
large number of secondary users seeking spectrum opportu-
nities. The traffic statistics of the primary users are such that
these N channels are synchronous and slotted. We also as-
sume that the spectrum usage statistics remain unchanged for
T slots. The energy and hardware constraints restrict the sec-
ondary users from monitoring more than one channel within
one slot. Extensions to a more general sensing model are
discussed in Section 5.

0 1
(busy) (idle)

αi

βi1 − αi

1 − βi

Fig. 1: The Markov channel model

We focus on a decentralized DSA ad hoc network where
a large number of secondary users join/exit the network and
sense/access the spectrum independently without exchang-
ing local information. We assume that when the network
reaches a steady-state, each channel independently presents
itself as an opportunity to a secondary user according to a
Markov process. As illustrated in Figure 1, channel states
are represented by 0 (busy) and 1 (idle thus available to the
secondary user). State transitions occur at the beginning of
each slot with transition probabilities given by {αi, βi} (i =

1Here we use the term channel broadly. A channel can be a frequency
band with certain bandwidth. It can also be a collection of spreading codes
in a CDMA network or a set of tones in an OFDM system.

1, · · · , N ). Since the unavailability of a channel may also be
caused by channel fading, the Markov chain model can also
include fading statistics.

Objectives We first seek answers to a fundamental ques-
tion: what is the optimal DSA strategy that maximizes the
average number of bits transmitted by the secondary user in
T slots. Specifically, we seek the optimal DSA protocol for
the secondary user to determine in each slot which channel to
monitor and subsequently access so that the average number
of bits transmitted in T slots is maximized. We then exploit
the specific structure of the problem in search of simpler but
near optimal solutions.

Protocol Specifics We present here a CSMA-based imple-
mentation. We first discuss the basic structure of the protocol
and then comment on several implementation issues.

Protocol Structure We assume that channels are slotted,
and the slot timing is broadcast2. The beginning of each slot
is dedicated for channel sensing. The primary users have the
highest priority, and they sense the channel first based on cer-
tain priority related back-off scheme. For example, we can
impose a minimum value on the backoff time of secondary
users. The primary user can claim the slot before secondary
users start sensing. The choice of the minimum backoff time
for secondary users depends on the propagation delay among
neighboring nodes and how much the network can tolerate
interference from secondary users.

A secondary user with data to transmit will have to decide
which channel to sense. Such decisions are based on its past
sensing history and channel statistics using the optimal or
suboptimal protocols presented in Section 3 and Section 4.
If it decides to sense a particular channel, it will generate a
random backoff, possibly a function of its energy level or its
channel state [22], and it will transmit when the backoff timer
expires and no one claims the channel.

Transmitter-Receiver Synchronization The transmitter and
the receiver need to tune to the same channel in order to com-
municate, and they need to hop synchronously. The synchro-
nization problem can be separated into two phases: the initial
handshake between the transmitter and the receiver and the
synchronous hopping in the spectrum after the initial estab-
lishment of communication.

There are a number of standard implementations to fa-
cilitate the initial handshake. Here we borrow the idea of
receiver-oriented code assignment in CDMA ad hoc networks
[23]. Specifically, each secondary user is assigned a set of
channels (not necessarily unique) which it monitors regu-
larly to check whether it is an intended receiver. A user with
a message for, say, user A will transmit a handshake sig-
nal over one of the channels assigned to user A. Once the
initial communication is established, the transmitter and the
receiver will implement the same DC-MAC protocol which

2The slot information can be broadcast by the primary users.
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governs channel selection in each slot. In this paper, we fo-
cus on the design of DC-MAC protocols assuming that the
initial handshake has been established.

Collision Resolution and Avoidance In a network with a
large number of secondary users seeking spectrum opportu-
nities independently, there needs to be a mechanism to deal
with collision. The proposed DC-MAC schemes described
in Section 3 and Section 4 make the access decision based
on the sufficient statistic captured by the information vector,
which in a way randomizes the choices of secondary users
and reduces the probability of collision.

Collisions can be further minimized by the use of clas-
sical random access techniques such as CSMA or ALOHA.
Specifically, a secondary user who has identified an oppor-
tunity senses the carrier using a random backoff time before
accessing the channel. While such techniques do not solve
the problem of hidden/exposed terminals, our protocol can
be tailored to incorporate busy-tone based techniques.

We first study the design of DC-MAC assuming perfect
collision avoidance. We then extend in Section 5 the pro-
posed protocols to incorporate collision which can be mod-
elled as misidentification of spectrum opportunity.

3. OPTIMAL STRATEGY

In this section, we formulate the DC-MAC problem as a
POMDP. Under this decision-theoretic framework, we de-
rive sufficient statistics and establish the optimal CD-MAC
protocol.

3.1. The POMDP Formulation

The system of N channels given in Section 2 can be mod-
elled by a discrete-time Markov chain with M = 2N states
where the state is defined as the availability of each channel.
The transition probability pi,j can be readily obtained from
{αi, βi}N

i=1. The state diagram for N = 2 is illustrated in
Figure 2 where ᾱi = 1−αi and state (0, 1) indicates the first
channel is busy whereas the second channel is available.

(0, 0)

(1, 0)

(0, 1)

(1, 1)

ᾱ1α2

ᾱ1ᾱ2

β̄1β2

Fig. 2: The underlying Markov process for N = 2.

Since in each slot, the user can only select one channel to
monitor, the state of the system is only partially observable.

The problem of designing a DSA protocol that maximizes
the transmission rate in T slots can then be formulated as
a POMDP over a finite horizon. Specifically, this POMDP
consists of

• Decision intervals {1, · · · , T}: slots;

• States S ∈ {1, · · · ,M}: availability of each channel;

• Transition probabilities pi,j : functions of {αi, βi}N
i=1;

• Actions a ∈ {1, · · · , N}: sense channel a and access
if available;

• Observation Θj,a ∈ {0, 1}: availability of the chosen
channel a at state j;

• Reward wa,θ = θBa: number of transmitted bits when
the observation is θ under action a.

Following the illustration given in [4], we show in Figure 3
the sequence of operations in a decision interval. Specifi-
cally, at the beginning of a decision interval, the system state
transits according to pi,j . According to a chosen action a
which specifies the channel to be sensed in this decision in-
terval (slot), the user senses the channel and transmits if the
chosen channel is available. The result of channel sensing is
given by Θj,a which indicates the availability of the chosen
channel. A reward wa,θ, determined by the observation and
the action, is obtained at the end of this slot.

decision intervals

State 
Transition Action

Select
Access

Sense and Reward

# of remaining

pi,j a Θj,a wa,θ

n n − 1

Fig. 3: The sequence of operations in a slot.

Under this formulation, the optimal DC-MAC protocol is
given by the optimal policy (in terms of maximizing the ex-
pected reward in T slots) of this POMDP over a finite hori-
zon3.

3.2. Sufficient Statistic

Let n (n = 1, · · · , T ) denote the number of remaining deci-
sion intervals. For a finite horizon POMDP over T slots, the
problem is to select in slot T − n + 1 an action a that will
optimize the system performance in the remaining n decision
intervals.

Since the underlying Markov process is only partially ob-
servable, the internal state of the system is unknown. Our

3The optimal DC-MAC can also be formulated as a POMDP over an
infinite horizon. Since the statistics of channel occupancy vary with time due
to changes in traffic load, it is more appropriate to consider the finite horizon
formulation. It is, however, straightforward to extend our formulation to an
infinite horizon setup in which stationary policies can be obtained.
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knowledge of the internal state of the system based on all the
past decisions and observations can be encoded as an infor-
mation vector π = [π1, · · · , πM ] where πi is the conditional
probability (given all the past sensing history) that the state
of the system is i at the beginning of the current decision
interval prior to the state transition.

It has been shown in [4] that at any time the information
vector π is a sufficient statistic for the optimal policy. It is
easy to see that the dynamic behavior of the information vec-
tor π is itself a discrete-time continuous-state Markov pro-
cess. Given the prior information π on the state of the sys-
tem, our current knowledge π′ of the system after observing
θ under action a can be easily obtained via the Bayes’ rule.

π′ ∆= [π′
1, · · · , π′

M ] ∆= T (π|a, θ), (1)

π′
j =

∑M
i=1 πipi,j Pr[Θj,a = θ]∑M

i=1

∑M
j=1 πipi,j Pr[Θj,a = θ]

. (2)

where T (π|a, θ) is the updated information vector from π
based on observation θ and action a.

We have assumed that the state transition probabilities
{αi, βi} are known. In practice, this may not be available.
The problem then becomes one of POMDP with unknown
transition probabilities. Such formulations and algorithms
exist in the literature [24] and they are applicable to our prob-
lem.

3.3. Optimal Strategy

The optimal policy determines the action in each decision in-
terval so that the expected total reward is maximized. Let
Vn(π) denote the maximum expected reward that can be ac-
crued in the remaining n decision intervals when the current
information vector is π. We can obtain a recursive equation
for Vn(π) as

Vn(π) = max
a=1,··· ,N

{
M∑
i=1

πi

M∑
j=1

pi,j

1∑
θ=0

Pr[Θj,a = θ]

(wa,θ + Vn−1(T (π|a, θ)))}, (3)

where T (π|a, θ) is the a posterior information vector given
by (1).

It is shown in [4] that Vn(π) is piecewise linear and con-
vex and can thus be written as

Vn(π) = max
k

πγk(n) (4)

for some finite set of M -dimensional column vectors {γk(n)}.
In other words, the space of information vectors can be di-
vided into a finite number of convex regions separated by
hyperplanes. Within each region, Vn(π) = πγk(n) for some
k. Following the example given in [4], we illustrate the struc-
ture of Vn(π) in Figure 4. We consider a three-state sys-
tem. An information vector π is represented by a point in

an equilateral triangle. As shown in Figure 4, entries of π
are given by the distances to the sides of the triangle. After
we observe θ in a decision interval, the information vector is
transformed into a point in the space of information vectors
for the succeeding decision interval (see (1)). For the exam-
ple given in Figure 4, the space of information vectors when
there are n − 1 decision intervals remaining is partitioned
into four regions with the corresponding γ-vectors given by
{γ1(n − 1), · · · , γ4(n − 1)}.

11

2 23 3

Θa = 1

Θa = 0 T (π|a, 1)

T (π|a, 0)

π

π1

π3

γ1(n − 1)

γ2(n − 1)

γ3(n − 1) γ4(n − 1)

n remaining n − 1 remaining

Fig. 4: The structure of Vn(π).

The piecewise linearity and convexity of Vn(π) lead to
a linear programming procedure for calculating the optimal
policy and the corresponding expected reward. Specifically,
from (3) and (4) we obtain

Vn(π) = max
a=1,··· ,N

{
M∑
i=1

πi

M∑
j=1

pi,j

1∑
θ=0

Pr[Θj,a = θ]

(wa,θ + T (π|a, θ)γl(π,a,θ)(n − 1))}, (5)

where l(π, a, θ) denotes the corresponding γ-vector index
for the region containing the transformed information vec-
tor T (π|a, θ). Thus, if the set of γ-vectors for Vn−1(·) has
been calculated, we can obtain from (5) the optimal action
and the corresponding γ-vector for any specified informa-
tion vector for the n-horizon case. A linear programming
algorithm is provided in [4] for computing the γ-vectors and
the corresponding mapping of these vectors onto the set of
actions. Thus, the optimal policy is given by the partition of
the space of the information vectors into convex regions, the
γ-vectors associated with each convex region, and the map-
ping between the γ-vectors and the optimal actions. Note
that the computation of the partition, the γ-vectors, and the
mapping can be done off-line and the result stored in a table.

4. SUFFICIENT STATISTIC WITH REDUCED
DIMENSION

We exploit the structure of the underlying Markov process
to reduce the dimension of the sufficient statistic from expo-
nential to linear (in N ). Based on this sufficient statistic with
reduced dimension, we derive a suboptimal greedy algorithm
that maximizes per-slot throughput.
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4.1. Reduced-State POMDP

As stated in Section 3, the 2N -dimensional information vec-
tor π is a sufficient statistic. We show in this section that
by exploiting the specific structure of the underlying Markov
process, we can obtain a sufficient statistic with dimension
reduced from exponential to linear with respect to N , i.e.,
from M = 2N to N .

Proposition 1 Let Λ = [λ1, · · · , λN ] where λi is the proba-
bility that channel i is available to the secondary user. Then
at any time, Λ is a sufficient statistic for the above specified
DSA system.

Proof: To prove Λ is a sufficient statistic, we need to show
that (i) Λ summarizes all the information on the availability
of each channel obtained from the history of observations;
(ii) the maximum expected reward Vn(·) is completely deter-
mined by Λ.

To show (i), we define I(t) as the total available infor-
mation about the process at the end of decision interval t.
Please note that the time variable t increases with time while
the time variable n used in the rest of the paper denotes the
number of remaining decision intervals, thus decreasing with
time. Since the only information obtained during decision in-
terval t is our observation Θa(t) under action a(t), we have

I(t) = {a(t),Θa(t), I(t − 1)}. (6)

Let Si(t) denote the state of channel i in slot t. We then have

Pr[channel i is available in slot t|I(t)]

= Pr[Si(t) = 1|I(t)]

= Pr[Si(t) = 1|a(t),Θa(t), I(t − 1)]

=




1 if a(t) = i,Θa(t) = 1
0 if a(t) = i,Θa(t) = 0
λi(t − 1)βi + λ̄i(t − 1)αi if a(t) �= i

(7)

where λ̄i(t − 1) = 1 − λi(t − 1), and (7) follows from the
independent Markov model on the dynamics of the channels.
From (7) we see that the calculation of Λ(t) based on the
whole history of observations requires only Λ(t − 1) and
the newly obtained information in decision interval t. Thus,
Λ(t−1) summarizes all the information on channel availabil-
ity gained prior to decision interval t and represents a suffi-
cient statistic for the past sequence of observations I(t− 1).

We now prove (ii) by induction. For n = 1, we have

V1(Λ) = max
a=1,··· ,N

(λaβa + (1 − λa)αa)Ba. (8)

Clearly, V1(·) is completely determined by Λ. Assume Vn−1(·)
is determined by Λ. It then follows that

Vn(Λ) = max
a=1,··· ,N

{(λaβa + λ̄aαa)Ba

+
1∑

θ=0

Pr[Θa = θ|Λ, a]Vn−1(T (Λ|a, θ))}

= max
a=1,··· ,N

{(λaβa + λ̄aαa)Ba

+(λaβ̄a + λ̄aᾱa)Vn−1(T (Λ|a, 0))
+(λaβa + λ̄aαa)Vn−1(T (Λ|a, 1))} (9)

where T (Λ|a, θ) denotes the updated information on channel
availability given the observation θ under action a. From (7)
we know that T (Λ|a, θ) is completely determined by Λ for
given θ and a. We then conclude from (9) that Λ presents a
sufficient statistic for calculating Vn(·).

���

Proposition 1 shows that by exploiting the statistical in-
dependence among channels, we can reduce the dimension
of the sufficient statistic from 2N to N . The optimal policy
can thus be obtained from the space of information vectors Λ
whose dimension increases linearly instead of exponentially
with the number of channels (see (9)) for the recursive equa-
tion on Vn(Λ)). This result has the potential of significantly
reducing the computational complexity and memory require-
ment as demonstrated in the greedy approach presented next.

4.2. A Greedy Approach

Searching for the optimal policy can be computationally in-
tense, especially when T and N are large. In this section,
we propose a suboptimal protocol based on a greedy ap-
proach that maximizes per-slot throughput. Since Λ is a suf-
ficient statistic, the optimal action a∗ that maximizes per-slot
throughput is completely determined by Λ. Specifically,

a∗ = arg max
a=1,··· ,N

(λaβa + λ̄aαa)Ba. (10)

Let Wn(Λ) denote the expected throughput in the remaining
n slots achieved by the greedy approach. We obtain a recur-
sive equation for Wn(Λ) as

Wn(Λ) = max
a=1,··· ,N

{(λaβa + λ̄aαa)Ba}

+
1∑

θ=0

Pr[Θa∗ = θ|Λ, a∗]Vn−1(T (Λ|a∗, θ))

= max
a=1,··· ,N

{(λaβa + λ̄aαa)Ba}

+(λa∗ β̄a∗ + λ̄a∗ ᾱa∗)Vn−1(T (Λ|a∗, 0))
+(λa∗βa∗ + λ̄a∗αa∗)Vn−1(T (Λ|a∗, 1)),(11)

where a∗ is given by (10), and T (Λ|a, θ) denotes the updated
information on channel availability given the observation θ
under action a. The calculation of T (Λ|a, θ) is given in (7).
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5. VARIATIONS AND EXTENSIONS

In this section, we discuss several variations and extensions
of the proposed analytical framework and optimal/suboptimal
DC-MAC protocols. We focus on the variations of the greedy
approach; extensions to the optimal strategy follows directly.

5.1. Overlook and Misidentification of Opportunities

The Markov model for the channel occupancy allows easy
incorporation of overlook and misidentification of spectrum
opportunity. Consider first the overlook of opportunity. Let
εi (i = 1, · · · , N ) denote the probability that an idle chan-
nel i is mis-sensed as busy. The channel a∗ selected by the
greedy approach is thus given by

a∗ = arg max
a=1,··· ,N

(λaβa + λ̄aαa)(1 − εa)Ba. (12)

A modification of (7) leads to the update of the information
vector.

Ti(Λ|a, θ) =




1 if a = i, θ = 1
(λiβi+λ̄iαi)εi

(λiβi+λ̄iαi)εi+λiβ̄i+λ̄iᾱi
if a = i, θ = 0

λiβi + λ̄iαi if a �= i

,

(13)
where Ti(Λ|a, θ) denotes the ith entry of the transformed in-
formation vector. A recursive equation for Wn(Λ) can be
readily obtained by modifying Pr[Θa∗ = θ] in (11).

Consider next the scenario where with probability δi, the
secondary user mistakes a busy channel i as an idle one.
When a misidentification occurs, the user will transmit, lead-
ing to a collision. We assume instantaneous and error-free
acknowledgement from the receiver to the secondary user af-
ter a successful transmission. The secondary user can thus
identify the event of collision and use this information to en-
sure correct update of the information vector. Specifically,
let K ∈ {0, 1} denote whether the secondary user receives
the acknowledgement (K = 1 indicates the reception of ac-
knowledgement), we have

Ti(Λ|a, θ,K) =




1 if a = i, θ = 1,K = 1
0 if a = i, θ = 1,K = 0
0 if a = i, θ = 0
λiβi + λ̄iαi if a �= i

.

The channel a∗ selected by the greedy approach in this case
is given by (10), and a recursive equation for Wn(Λ) can be
obtained by modifying (11). The above two scenarios can be
easily combined to model both overlook and misidentifica-
tion of spectrum opportunity.

Besides sensing error, hidden and exposed terminals can
also lead to overlook and misidentification of spectrum op-
portunities. Specifically, a hidden terminal (a transmitting
node within the range of the receiver but not the transmit-
ter) results in a misidentification while an exposed terminal

(a transmitting node within the range of the transmitter but
not the receiver) causes an opportunity overlook. The prob-
lem of hidden and exposed terminals can be handled in the
same manner as sensing errors discussed above. Note that
while opportunity overlook and misidentification degrade the
throughput performance, they do not affect the synchroniza-
tion between the transmitter and the receiver. By check-
ing whether a packet has been successfully received, the re-
ceiver is aware of the sensing results at the transmitter and
can thus maintain the same update of the information vector
as the transmitter. Similarly, the acknowledgement scheme
discussed above ensures that both the transmitter and the re-
ceiver can incorporate misidentification into the update of the
information vector.

5.2. More General Sensing/Access Models

It is straightforward to extend the proposed DC-MAC frame-
work and protocols to accommodate more general hardware
models. Specifically, the user can sense up to L1 channels
and access up to L2 channels simultaneously. The extension
of the greedy approach to this general case is straightforward.
The optimal strategy also follows directly after modifying the

action space to include all

(
N
L1

)
possibilities of channel se-

lection. It is obvious that without considering cost in sens-
ing and transmission, actions that select less than L1 chan-
nels should not be considered, and the channels to access are
those L2 idle channels with the largest bandwidth.

6. NUMERICAL AND SIMULATION RESULTS

We present in this section numerical and simulation exam-
ples on the performance of the proposed DC-MAC proto-
cols. We focus on the performance comparison between the
optimal and suboptimal greedy approaches and the effect of
opportunity overlook on the performance of DC-MAC.

6.1. Optimal vs. Suboptimal Approaches

In Figure 5 and Figure 6 we compare the transmission rate
(in bits/slot) achieved by the optimal and the suboptimal pro-
tocols proposed in this paper. As shown in Figure 5, the
transmission rate achieved by the greedy approach matches
that of the optimal scheme in this particular setup. For the
three-channel scenario considered in Figure 6, the perfor-
mance loss of the greedy approach is within 4%. These ex-
amples demonstrate the near-optimal performance achieved
by the greedy approach at a much lower complexity. We
point out that the transmission rate increases over time. This
is due to the improved information about the state of the sys-
tem drawn from accumulating observations, demonstrating
the cognitive nature of the proposed protocols.
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Fig. 5: Transmission rate of the optimal and greedy
strategies (N = 2, B1 = 1, B2 = 2, α1 = 0.44,
β1 = 0.23, α2 = 0.28, β2 = 0.12, the initial information
vector is set to the stationary distribution).
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Fig. 6: Transmission rate of the optimal and greedy
strategies (N = 3, B = [0.9, 1, 0.8], α = [0.1, 0.5, 0.8],
β = [0.5, 0.4, 0.3], the initial information vector is set to
the stationary distribution).

6.2. Robustness to Opportunity Overlook

In this simulation example, we study the performance of the
suboptimal greedy approach in the presence of opportunity
overlook. As given in (13), incorporating opportunity over-
look into the update of the information vector requires the
knowledge of the overlook probabilities {εi}N

i=1. We are
particularly interested in the performance of the greedy al-
gorithm in the presence of overlook without the knowledge
of the overlook probabilities. Shown in Figure 7 is the simu-
lation result where we study the throughput of the greedy ap-
proach as a function of the overlook probability ε1 = · · · =
εN = ε. We consider here three cases: the greedy approach
in the absence of overlook, the greedy approach in the pres-
ence of overlook with and without the knowledge of the over-
look probability ε. Without the knowledge of ε, the informa-

tion vector is updated according to (7) as if ε = 0. From
Figure 7 we can see that overlook results in linear degrada-
tion in throughput since only a fraction of 1 − ε of spectrum
opportunities are utilized. The performance of the greedy
approach is, however, robust to the lack of knowledge on the
overlook probability. Without the knowledge of ε to perform
the correct update of the information vector, the performance
loss is marginal.
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Fig. 7: Transmission rate of the optimal and greedy
strategies (N = 3, B = [0.9, 1, 0.8], α = [0.4, 0.6, 0.8],
β = [0.9, 0.7, 0.5], T = 30, the initial information vector
is set to the stationary distribution).

7. CONCLUSION

We have presented an optimization framework for decentral-
ized cognitive MAC for opportunistic spectrum access. The
protocol is based on carrier sensing that allows proper as-
signment of priorities among primary and secondary users.
The POMDP formulation allows us to derive optimal and
low complexity suboptimal protocols that maximize overall
network throughput. Numerical evaluation and simulations
indicate that the suboptimal algorithm provides near optimal
performance.

The proposed approach can be extended in a number of
areas. Existing carrier sensing protocols for ad hoc networks
can be easily incorporated into our framework. Opportunistic
communication techniques based on channel realizations are
also compatible with our framework. Of particular interest
are POMDP techniques that do not assume a priori knowl-
edge of transition probabilities.
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