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Abstract— Recent study by FCC Spectrum Policy Task
Force (SPTF) found that while the available spectrum
becomes increasingly scarce, the assigned spectrum is sig-
nificantly underutilized. Cognitive radio technology holds
the key promise to solve such problems. In this paper,
we investigate some physical layer issues of wide-band
cognitive radio systems. Specifically, we discuss the phys-
ical layer signal structure to support flexible operations
required by wide-band cognitive radios. We analyze the
performances of generalized power sensing and waveform
sensing. And we study the adjacent channel interference
mechanisms focusing on the interference caused by time-
domain signal truncation.

I. INTRODUCTION

Recent study [1] by FCC Spectrum Policy Task Force
(SPTF) found that while the available spectrum becomes
increasingly scarce, the assigned spectrum is signifi-
cantly underutilized. The situation is especially acute
in lower frequencies where the radio signal propagation
characteristics are more favorable. The imbalance be-
tween spectrum scarcity and spectrum underutilization is
especially inappropriate today, when significant amount
of radio spectrum is needed to provide ubiquitous wire-
less broadband connectivity.

A radio technology that holds the key promise to
solve such problems is the cognitive radio [2] – a
radio that is capable of dynamically sensing and locating
unused spectrum segments in a target spectrum pool and
communicating using the unused spectrum segments in
ways that cause no harmful interference to the primary
users of the spectrum [3], [4].

Cognitive radio is considered as a spectrum sharing
technology like ultra-wide-band [5]. The key difference
is that while the UWB signal spectrum overlaps with
the primary user signal spectrum, a cognitive radio’s
signal spectrum resides solely in the unused spectrum
segments or spectrum holes. As a result, a cognitive

radio device may transmit high signal power than a
UWB device, as long as it can correctly identify the
unused spectrum segments and the spectral leakage due
to its signal transmission doesn’t substantiate harmful
interference in the primary user spectrum bands.

While UWB technologies usually apply to short-range
communications due to transmission power limitations,
cognitive radio technologies may be used in longer-range
communications for applications like broadband wireless
access. Furthermore, the ability of cognitive radios to
identify and utilize the unused spectrum segments allows
them to coexist with legacy radio systems, improving
spectrum utilization without harming the primary users.

Three key aspects of a cognitive radio are:
• Sensing – A cognitive radio must be able to identify

the unused spectrum segments.
• Flexible – A cognitive radio must be able to change

signal frequency and spectrum shape to fit into the
unused spectrum segments.

• Non-interfering – A cognitive radio must not cause
harmful interference to the primary users.

This paper investigates these aspects of the cognitive
radio system from a physical layer perspective. Specifi-
cally, Section II discusses the physical layer signal struc-
ture to support flexible operations required by wide-band
cognitive radio systems. Section III analyzes general
forms of power-based sensing and waveform-based sens-
ing. Section IV studies interference to the primary users
due to adjacent channel leakage mechanisms, focusing
on the adjacent channel leakage due to time-domain
signal truncation.

II. SYSTEM CONSIDERATION

If a target primary user spectrum has fixed channel-
ization, e.g. the TV bands, a wide-band cognitive radio
system may use either time-based or frequency-based
signals. When the target primary user spectrum doesn’t
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support fixed channelization, frequency-based signals are
preferred, because it is difficult to dynamically generate a
time-based signal whose spectral waveform can fit into
arbitrarily-sized unused spectrum segments. From this
perspective, we believe Orthogonal Frequency Division
Multiplex (OFDM) is the ideal signal structure for wide-
band cognitive radio systems. OFDM divides the target
spectrum into narrowband subchannels and the signal
values are modulated on the subchannels in frequency
domain. Interference to the primary users is avoided
by simply nullifying the subchannels in the occupied
spectrum segments and modulating only the subchannels
in the unused spectrum segments. With a sufficient
number of subchannels, an OFDM-based cognitive radio
system can operate efficiently in any target primary user
spectrum regardless of its channelization scheme.

An OFDM-based cognitive radio system is also theo-
retically optimal since, in the limit of infinite number of
subchannels, it allows to achieve the Shannon capacity
in a fragmented primary user spectrum, i.e.

C =
∫
Ω

1
2

log2

[
1 +

G(f)S0

N0

]
df (1)

where Ω is the collection of unused spectrum segments;
G(f) is the channel power gain at frequency f ; S0 and
N0 are the signal and noise power per unit frequency
respectively [6]. An OFDM-based system has other ad-
vantages including robust against multipath delay spread
(using the guard interval or cyclic prefix), no need for
complex time-domain equalization, insensitive to sam-
pling time drift (and thus no need for complex sampling
time tracking), and easy integration with multi-antenna
algorithms [7].

III. SENSING

A cognitive radio uses sensing to determine spec-
trum availability. In general, we can separate physical
layer sensing methods into two categories: power-based
sensing methods and waveform-based sensing methods.
Since any information-bearing signal has finite signal
power, one usually resorts to power-based sensing if
nothing else is known about the target primary user
signal. Power-based sensing methods, however, are prone
to false detections and usually work poorly when the
target signal SNR is low. When the target signal con-
tains known signal patterns, e.g. DTV or NTSC sig-
nals, waveform-based sensing can be performed, which
usually gives far better performance than power-based
sensing in terms of sensing sensitivity and reliability.

A. Power-based sensing

Power-based sensing can be performed in both time
domain and frequency domain. To measure the signal
power in a particular frequency region in time domain, a
bandpass filter is applied to the target signal and the
power of the signal samples (after the filter) is then
measured. To measure the signal power in frequency do-
main, the time-domain signal is transformed to frequency
domain using FFT and the combined signal power over
all frequency bins in the target frequency region is then
measured.

For either case, we consider the received signal of the
form

y(n) = x(n) + z(n) (2)

where x(n) is the target signal; z(n) is the white
Gaussian noise; and n the sample index in the case
of time-domain sensing, or FFT symbol index in the
case of frequency-domain sensing. For simplicity of
derivation, we will assume the signal sample x(n)s are
independent. Correlation among signal sample x(n)s,
e.g. due to multipath channel memory effect, will only
improve the sensing performance. Since the noise sample
z(n)s are also independent, the received sample y(n)s
are independent.

Consider using the following signal power sum as the
power sensing metric:

S =
NB∑
n=1

|y(n)|2 (3)

where NB is the summing buffer size. Note that |y(n)|2
is a sequence of independent and identically distributed
(IID) random variables with mean and variance

E
[
|y(n)|2

]
= µ, E

[{
|y(n)|2 − µ

}2
]

= σ2 (4)

When NB is large, using central limit theorem [8],
the sensing metric S in (3) can be approximated as a
Gaussian random variable with mean and variance

µS = NBµ, σ2
S = NBσ2 (5)

When there is no signal present, i.e. x(n) = 0, the
sensing metric is:

S = S0 =
NB∑
n=1

|z(n)|2

When there is signal present, the sensing metric is:

S = S1 =
NB∑
n=1

|y(n)|2
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Fig. 1. Illustration of power sensing false detection probability
versus loss detection probability.

Figure 1 shows the distributions of S0 and S1, which
are Gaussians. The signal presence is determined by
comparing the measured sensing metric S against certain
sensing threshold ST . Referring to the figure, false de-
tection probability (PFD) is the probability that S > ST

when there is no signal present and the loss detection
probability (PLD) is the probability that S < ST when
there is signal present. The tradeoff between PFD and
PLD leads to the optimal sensing threshold ST , when
the PFD is equal to the PLD.

We define the sensing error floor (SEF) as the PFD
(or PLD) at the optimal threshold. Since both PFD and
PLD are Gaussian tail integrations that can be expressed
in terms of the Q function [8]:

PFD = Q
(

ST−µS0
σS0

)
, PLD = Q

(
−ST−µS1

σS1

)
(6)

the optimal sensing threshold ST is found by equating
the arguments of the above Q functions

ST−µS0
σS0

= −ST−µS1
σS1

⇒ ST = µS0σS1+µS1σS0
σS0+σS1

(7)

Using ST expression (7) in the PFD (or PLD) expression
in (6), we obtain the sensing error floor

SEF = Q

(
µS1 − µS0

σS0 + σS1

)
(8)

It can be shown, after some mathematical steps, the
sensing error floor (8) can be expressed in terms of the
signal-to-noise ratio and summing buffer size as:

SEF = Q


√NB

SNR

1 +
√

[α − 1]SNR2 + SNR + 1



(9)
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Fig. 2. Power sensing error floor contours under different SNRs and
summing buffer sizes.

Here

SNR = E
[
|x(n)|2

]
/E

[
|z(n)|2

]
(10)

is the nominal symbol SNR and

α = E
[
|x(n)|4

]
/
{
E
[
|x(n)|2

]}2
(11)

is an intrinsic parameter of the signal x(n) that relates
its randomness. For example, for complex Gaussian
signal, α is 2. For constant-amplitude signals, e.g. BPSK,
QPSK, and 8-PSK, α is 1. For other types of signals, α
is between 1 and 2.

Figure 2 shows the sensing error floor (9) contours at
different SNRs and summing buffer sizes, with α = 2
(Gaussian signal). Note that the error floor is expressed
in dB units, e.g. -20 dB corresponding to 0.01. When
SNR � 1, the argument of the Q function in (9) is
approximated as √

NB
SNR

2

In other words, a linear decrease in SNR requires a
quadratic increase in the buffer size NB to maintain the
same SEF. When SNR � 1, the argument of the Q
function in (9) is approximated as

√
NB/

√
α − 1

which is independent of SNR. Both of these trends are
clearly shown in Figure 2.
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B. Waveform-based sensing

Power-based sensing is prone to false detections since
it only measures signal power and could be easily
triggered by unintended signals. The above discussion
also shows that power-based sensing works poorly at low
SNRs – when every 1 dB reduction in SNR requires 2 dB
increase in the summing buffer size NB to maintain the
same sensing error. Both of these problems are addressed
in waveform-based sensing, which is usually based on
correlation with known signal patterns.

Waveform-based sensing is performed in time domain.
We again use the received signal representation (2) and
assume the signal x(n)s are independent. We assume
the known time-domain signal pattern contains NB sig-
nal samples. Consider the following waveform sensing
metric:

S = Re

[
NB∑
n=1

y(n)x∗(n)

]
(12)

When there is no signal present, the sensing metric is

S = S0 = Re

[
NB∑
n=1

z(n)x∗(n)

]
(13)

When there is signal present, the sensing metric is

S = S1 =
NB∑
n=1

|x(n)|2 + Re

[
NB∑
n=1

z(n)x∗(n)

]
(14)

The sensing metric (12) can be approximated as a
Gaussian random variable when NB is large. Based on
the similar arguments as before, the sensing error floor
for waveform-based sensing is given by (8) with S0 and
S1 given by (13) and (14) respectively.

It is possible to calculate the mean and variance of S0

as well as S1, which can then be used in (8) to compute
the sensing error floor for waveform-based sensing:

SEF = Q

(√
NB

√
SNR√

(α − 1)SNR + 1/2 +
√

1/2

)
(15)

Here α is again given by (11). When SNR � 1, the
argument of the Q function in (15) is approximated as

√
NB

√
SNR

2

In other words, linear reduction in SNR only requires
linear increase in NB in order to maintain the same
sensing error floor. When SNR � 1, the argument of
the Q function is approximated as√

NB/
√

α − 1
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Fig. 3. Waveform sensing error floor contours under different SNRs
and summing buffer sizes.

In other words, waveform-based sensing performs sim-
ilarly as power-based sensing at high SNRs. Figure 3
shows the sensing error floor contours assuming α = 2,
i.e. Gaussian input x(n).

The above approximation of the argument of the Q
function at low SNR suggests NB can be considered as
the sensing gain (over the nominal symbol SNR). Note
that when SNR increases, however, the structure of the
signal as represented by α will play a more important
role in the SEF expression. Since the sensing gain NB

is equal to the length of the known signal pattern (in
number of signal samples), a longer known signal pattern
in the primary user signal will result in a better sensing
performance. The above discussion didn’t consider the
effect of multipath, which tends to reduce the sensing
gain by a factor equal to the normalized strength of
the dominant multipath component, unless averaging is
performed over adjacent multipath taps.

Figure 3 shows waveform-based sensing can achieve
good performance even at low SNR as long as NB is
sufficiently large. In a practical shadowing environment,
cognitive users may receive drastically different signal
strengths (and thus SNRs) at different locations. An al-
ternative to use a very large NB to account for the worst-
case shadowing scenarios is to allow sensing information
sharing among local cognitive users so that sensing is
performed collectively rather than individually to reduce
the effect of shadowing [9].
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IV. ADJACENT CHANNEL INTERFERENCE

To ensure successful operation, it is further required
that cognitive radios must not cause harmful interference
to the primary users when communicating using the
unused spectrum segments identified through sensing. A
likely cause of interference to the primary users is the
adjacent channel leakage (ACL) as a result of cognitive
user signal transmissions in bands that are adjacent to
the primary user bands. Two mechanisms contributing
to the adjacent channel leakage are signal time-domain
truncation and transmission nonlinearity. Adjacent chan-
nel leakage can usually be controlled through careful
system design.

A. Signal time-domain truncation

1) Time-domain signals: For a single-channel trans-
mission system with fixed channel bandwidth, out-of-
band emission can usually be controlled through either
analog or digital filtering. For a wide-band system with
signal transmission over dis-contiguous and arbitrarily-
sized spectrum segments, limiting out-of-band emissions
from individual spectrum segments through analog filter-
ing may not be practical, since each spectrum segment
may require a different analog filter with a different
center frequency and bandwidth. Such filtering goal,
however, can be achieved in digital domain through
baseband pulse shaping.

While the available spectrum (identified through sens-
ing) may consist of multiple spectrum segments, we
will study the adjacent channel leakage by focusing
on the out-of-band emission from a particular spectrum
segment. The analysis should be easily extended to
the general case of wide-band signal transmission over
multiple frequency segments, where the adjacent channel
leakage in a frequency region of interest is the sum of the
out-band-emissions from all frequency segments used by
the wide-band signal transmission.

Consider a target spectrum segment with avail-
able bandwidth 2fA, i.e. valid signal frequency f ∈
[fc − fA, fc + fA] where fc is the center frequency of
the spectrum segment (relative to the center frequency of
the wide-band system). In theory, the spectrum segment
allows signal transmission at a maximum symbol rate
2fA. The actual symbol rate 2fB is usually less than
2fA with fA − fB being the size of the guard bands at
each side of the spectrum.

Baseband pulse shaping is used to limit the frequency
extent of the transmitted signal. The transmitted time-

domain baseband signal s(t) can be expressed as:

s(t) =
∑
n

x(n)h (t − nTB) (16)

Here x(n) is the n-th transmitted symbol value; h(t) is
the shaping pulse; and TB = 1/ (2fB) is the symbol
period. The frequency-domain signal representation is:

S(f) =
∑
n

x(n)H(f)e−j2πf(nTB) (17)

where H(f) is the Fourier transform of h(t). The nor-
malized signal power spectrum is

I(f) =
1

(
∑

n 1)
E
[
|S(f)|2

]
= |H(f)|2 (18)

where we have assumed the symbol value x(n)s are
independent with unit power, i.e.

E [x(n)x∗(m)] = δ(n − m)

In practice, h(t) often takes the form of a square root
raised cosine (SQRT RC) filter – such that inter-symbol-
interference-free (ISI-free) reception can be achieved by
applying a matched SQRT RC filter on the received
signal. In this case, the frequency-domain filter response
H(f) is a square root raised cosine window and |H(f)|2
is a raised cosine window:

|H(f)|2

=




1
2 + 1

2 cos
π

[
f

2fB
+

1−βH
2

]
βH

f
2fB

∈
[
−1+βH

2 ,−1−βH

2

]
1 f

2fB
∈
[
−1−βH

2 , 1−βH

2

]
1
2 + 1

2 cos
π

[
f

2fB
− 1−βH

2

]
βH

f
2fB

∈
[

1−βH

2 , 1+βH

2

]
0 Otherwise

(19)

Since H(f) has finite frequency extent, h(t) has
infinite time extent. In any practical implementation, a
truncated version of h(t) must be used. Suppose such
truncation is achieved through a time-limiting window
w(t), i.e.

hW (t) = h(t)w(t) (20)

where hW (t) is the truncated version of h(t). The
normalized power spectrum (18) becomes:

I(f) = |HW (f)|2 = |H(f) ⊗ W (f)|2 (21)

We choose w(t) to be a raised cosine window with
window width TW and roll-off factor βW , which defaults
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to a rectangular window when βW = 0. The frequency
domain response of the truncation window is then:

W (f) =
sin (πfTW )

πf

cos (πβW fTW )
1 − 4β2

W f2T 2
W

(22)

We defined the normalized ACL as:

γACL =

∫
f>|fA| I(f)df∫
f≤|fA| I(f)df

=

∫∞
−∞ I(f)df − ∫ fA

−fA
I(f)df∫ fA

−fA
I(f)df

(23)
where the signal power spectrum I(f) is given by (21).
γACL depends on the following parameters:

• Normalized guard band size 1− fB/fA, or equiva-
lently normalized data rate fB/fA.

• Pulse shaping filter roll-off βH , if SQRT RC filter
is used for pulse shaping.

• Normalized truncation window width TW /TB .
• Truncation window roll-off βW , if RC window is

used for truncation.

Simulations were performed to explore the parameter
dependencies of γACL. Figure 4 shows the simulated
γACL dB contours over different βHs and βW s when the
normalized data rate is fixed at 0.8 (normalized guard
band size 0.2) and truncation window width TW /TB

at 10. Note that when βH is bigger than the guard
size, e.g. when βH = 0.3, the ACL is significant and
depends almost solely on βH , since in this case the
pulse shaping filter bandwidth is larger than the available
bandwidth 2fA. With βH decreasing, the ACL becomes
smaller until it hits a minimum when the pulse shaping
filter bandwidth is close to the available bandwidth 2fA.
For a fixed truncation window, further decrease in βH

increases ACL, because smaller pulse shaping filter roll-
off βH produces a larger time-domain signal tail that is
cut off by the truncation window, resulting in increased
ACL in frequency domain.

If the truncation window roll-off is fixed, by varying
the truncation window width TW /TB and the pulse
shaping filter roll-off βH , we obtain the ACL contours
shown in Figure 5, where βW = 0.25. As long as
the pulse shaping filter bandwidth is smaller than the
available bandwidth, a bigger truncation window means
a larger portion of the time-domain pulse shaping filter
signal tail will be retained after windowing resulting
in reduced ACL in frequency domain. Using a larger
window rollf-off βW will improve the ACL performance
further. Figure 6 shows the ACL contours when window
roll-off βW = 0.75.

The simulation results show that excellent adjacent
channel leakage performance can be achieved using a
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Fig. 5. Simulated adjacent channel leakage dB contours for
normalized data rate fB/fA = 0.8 and truncation window roll-off
βW = 0.25.

proper set of system parameters. Note that the truncation
window width directly relates to the filter implementa-
tion complexity. For example, if TW /TB = 10 and if
the wide-band system fundamental sampling period is
Ts = TB/20, the truncated pulse shaping filter would
have at least 200 taps. Note further that we have only
considered ACL here. Truncation may also increase ISI
which may be considered together with the ACL when
analyzing system performance tradeoffs.

2) Frequency-domain signal, OFDM: For frequency-
domain signal like OFDM, the corresponding time-
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domain signal waveform is truncated to create an OFDM
symbol. Such truncation is necessary in order to limit the
extent of the time-domain OFDM signal waveform so
that multiple OFDM symbols can be time-multiplexed
to create an OFDM packet. OFDM symbol truncation
is achieved through time-domain windowing. A typical
symbol window is an RC window. Just as discussed be-
fore for the time-domain signals, time-domain truncation
through windowing creates adjacent channel leakage in
frequency domain. Window parameters must be carefully
chosen to minimize the ACL.

We assume an RC window w(t) with width TW and
roll-off βW is used as the OFDM symbol window. We
write the time-domain OFDM signal as:

s(t) =
∑
n


w (t − nTW )

∑
k∈Ω

X(n, k)ej2π k

T
(t−nTW )




(24)
Here n is the OFDM symbol index; k is the subchannel
index; Ω is the collection of data subchannels (in the
unused spectrum segments); X(n, k) is the transmitted
signal value on symbol n subchannel k; and T is the
FFT symbol period.

Note that the OFDM symbol window width TW is
larger than the FFT symbol period T . The extra TG =
TW −T portion of the windowed OFDM symbol, which
is cyclically extended from the FFT symbol, is used as a
guard period against multipath delay spread. Note further
that to ensure there is no inter-carrier-interference (ICI),
the window must be flat over the FFT symbol region,

indicating (1 − βW ) TW > T .
The frequency-domain representation of the signal is:

S(f) =
∑
n

∑
k∈Ω

X(n, k)W
(

f − k

T

)
e−j2πf(nTW )

(25)
where W (f) is the Fourier transform of w(t), given by
(22). The normalized signal power spectrum is:

I(f) =
1

(
∑

n 1)
E
[
|S(f)|2

]

=
∑
k∈Ω

∣∣∣∣W
(

f − k

T

)∣∣∣∣
2

(26)

where in deriving the second equality, we have assumed
X(n, k)s are independent with unit power, i.e.

E [X(n, k)X∗(m, l)] = δ(n − m)δ(k − l)

As discussed before, we will again focus on the out-of-
band emission from a particular spectrum segment with
available bandwidth 2fA. The data bandwidth is 2fB and
the total guard band size is 2fA − 2fB . The normalized
adjacent channel leakage γACL is again defined by
Equation (23) with I(f) given by (26) and W (f) given
by (22). For OFDM, γACL depends on the following
parameters:

• Normalized guard band size 1 − fB/fA.
• Subchannel spacing 1/T , or equivalently the num-

ber of data subchannels N = 2fBT , given fixed
data bandwidth 2fB .

• OFDM symbol window width TW /T (normalized
to the FFT symbol period).

• OFDM symbol window roll-off βW .

Simulations were performed to explore the parameter
dependencies of the ACL. Figure 7 shows the simulated
γACL dB contours over different TW /T s and βW s, at
normalized guard band size 1 − fB/fA = 0.1 and
number of subchannels N = 2fBT = 32. Only some
combinations of TW /T and βW are valid if we recall
the requirement that (1 − βW ) TW > T to ensure ICI-
free operation. The improved ACL performance is shown
in Figure 8 when the guard band size is increased
to 0.2. Figure 9 shows the dependencies of the ACL
on the number of data subchannels N = 2fBT (or
subchannel spacing 1/T ) and the symbol window roll-
off βW , at normalized guard band size of 0.2 and symbol
window width TW /T = 1.5. The simulation results
show that excellent ACL performance can be achieved
by OFDM-based wide-band cognitive radio systems if
proper system parameters are chosen.
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Fig. 7. Simulated OFDM system adjacent channel leakage dB
contours for normalized data bandwidth fB/fA = 0.9 and number
of data subchannels N = 32.
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Fig. 8. Simulated OFDM system adjacent channel leakage dB
contours for normalized data bandwidth fB/fA = 0.8 and number
of data subchannels N = 32.

B. Transmission nonlinearity

In addition to signal time-domain truncation, another
ACL mechanism is transmission nonlinearity due to
cascaded nonlinear components in the RF transmitter
chain. We will briefly discuss such mechanism in the
context of this paper and interested reader may find in-
depth treatment of the topic elsewhere [10].

While all nonlinear elements in the RF transmitter
chain contribute to the transmission nonlinearity, in
practice, the nonlinearity is often dominated by the
nonlinearity of the power amplifier (PA) which performs
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Fig. 9. Simulated OFDM system adjacent channel leakage dB
contours for normalized data bandwidth fB/fA = 0.8 and symbol
window width TW /T = 1.5.

the last-stage amplification in the transmitter chain. The
transmission nonlinearity can usually be modeled using
the nonlinear transfer function:

y(t) = α1x(t) + α2x
2(t) + α3x

3(t) + . . . (27)

where x(t) is the input signal to the transmitter chain;
y(t) is the output signal from the transmitter chain;
and α1, α2, . . . are the nonlinear coefficients of the
transmitter chain.

Small-signal nonlinearity is usually dominated by the
low-order nonlinear terms. Furthermore, for passband
signals with proper filtering, the even-order nonlinear
terms are usually negligible. The odd-order nonlinear
terms, however, are responsible for generating intermod-
ulation products that can cause in-band and adjacent-
band interferences. In view of the above, the nonlinear
transfer function (27) is often approximated as:

y(t) = α1x(t) + α3x
3(t) (28)

The nonlinearity of the above transfer function is mea-
sured by a single parameter – the third-order interception
point (IP3) – defined as:

IP3 (dB) = 10 log10 α3
1 − 10 log10

3α3

4
(29)

Given certain output signal power from the transmitter,
the (dB) difference between the output signal level and
the ACL due to transmission nonlinearity is approxi-
mately twice the (dB) difference between the overall
transmitter chain IP3 and the output signal level [11].
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High linearity (or equivalently high IP3) is usually
required for cognitive radio transmitters to ensure min-
imal interference to the primary users. However, high
linearity transmitter chain is not only more expensive
but also less power efficient. One way to reduce the IP3
requirement is to use pre-distortion techniques. A pre-
distortion module pre-compensates the signal entering
a nonlinear device for anticipated distortion so that the
output from the combined pre-distortion module and the
nonlinear device is undistorted. Effective pre-distortion
can be achieved through both analog and digital means
as discussed in [10].

V. CONCLUSION

In this paper, we investigated some fundamental phys-
ical layer issues of wide-band cognitive radio systems.
We argue that OFDM is the best physical layer candi-
date for wide-band cognitive radio systems because it
allows easy generation of spectral signal waveforms that
can fit into dis-contiguous and arbitrary-sized spectrum
segments. OFDM is also optimal from a capacity point
of view since it allows achieving the Shannon channel
capacity in a fragmented spectrum.

A cognitive radio identifies unused spectrum segments
in a target primary user spectrum through spectrum sens-
ing. We have separated physical layer sensing methods
into two categories: power-based sensing methods and
waveform-based sensing methods. While power-based
sensing is more general, waveform-based sensing out-
performs power-based sensing in reliability and sensing
convergence time. Waveform-based sensing, however,
is only possible when the target primary user signal
contains known signal patterns.

Using central limit theorem, we have analyzed the
performances of the generalized power-based sensing
and waveform-based sensing. In each case, the perfor-
mance is characterized by the sensing error floor (SEF),
defined as either the sensing false detection probability
or the sensing loss detection probability when the two are
equal. Closed-form SEFs have been derived and simu-
lated. Power-based sensing and waveform-based sensing
exhibit similar performances at high SNR. Power-based
sensing, however, works poorly at low SNR, when its
sensing convergence time increases quadratically with
the SNR reduction, comparing to waveform-base sens-
ing, whose sensing convergence time increases linearly
with the SNR reduction. We argue that a combination
of power-based sensing, waveform-based sensing, and
network-layer sensing collaboration [9] may be needed
in a practical shadowing environment.

To ensure successful operation, a cognitive radio must
minimize the interference to the primary user bands by
reducing the adjacent channel leakage (ACL). We have
identified two ACL mechanisms: signal time-domain
truncation and transmission nonlinearity.

ACL due to signal time-domain truncation is in-
evitable but it can be controlled through proper system
parameter choices. For time-domain signals, the para-
meters affecting ACL include: guard band size, pulse
shaping filter roll-off, truncation window width, and trun-
cation window roll-off. For OFDM, the parameters af-
fecting ACL include: guard band size, subchannel spac-
ing, OFDM symbol window width, and OFDM symbol
window roll-off. Adjacent channel leakage analyses were
conducted for both cases. Simulations were performed to
determine ACL parameter dependencies. The simulation
results demonstrate that excellent ACL performances can
be achieved for both cases when proper sets of system
parameters are used.

Finally, we briefly discussed the ACL due to trans-
mission nonlinearity, which depends on the transmitter
output power level and the overall transmitter chain
IP3. To ensure minimal interference, high linearity is
required for cognitive radio transmitters, which may
be achieved through analog and digital pre-distortion
techniques [10].
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