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Abstract—In broadband wireless communication, high rate data 
transmission and multipath propagation results in frequency 
selectivity. On the other hand, high mobility contributes to time 
selectivity in fading channels. A finite parameter model which 
can be used for modeling doubly-selective channels is the basis 
expansion model (BEM). In this model, channel is estimated 
based on some basis functions which are weighted by time-
invariant coefficients during a time block. In this paper, 
Legendre basis expansion model (LBEM) is discussed for doubly-
selective fading channels and oversampled Legendre basis 
expansion model (OLBEM) is proposed. Simulation results show 
improvement in the mean square error (MSE) of our channel 
modeling scheme compared to that of other oversampled basis 
expansion models (i.e. OBEM, and oversampled polynomial basis 
expansion model (OPM)). In our approach the BEM coefficients 
are calculated using the least-squares approximation. 
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I. INTRODUCTION 
Frequency selective fading occurs when the bandwidth of 

the transmitted signal is greater than the coherence bandwidth 
of the fading channel. Time selectivity is induced by the 
Doppler shift and the relative motion between transmitter and 
receiver. This happens when the period of the transmitted 
symbol is greater than the coherence time of the channel.  

Recently basis expansion model (BEM) has been used for 
modeling fading channels due to its finite parameters, low 
complexity and acceptable tracking of the actual channel. The 
channel’s time variant impulse response is expanded on some 
basis functions and the coefficients are obtainable by several 
different methods (e.g. LS, RLS, LMS, Kalman filter, etc.). 
Some of the frequently used basis expansion models are: 
complex exponential basis expansion model (CE-BEM), 
oversampled basis expansion model (OBEM), Slepian basis 
expansion model, polynomial basis expansion model (PBM), 
oversampled polynomial basis expansion model (OPBM), and 
Karhunen-Loeve basis expansion model (KL-BEM). 

In CE-BEM, the basis functions used are complex 
exponentials [1] [2] [3], the advantage of this model over other 
BEMs is its simplicity but it fails to track the channel in the 
edges of the windowed channel. OBEM was proposed to 
alleviate this problem [2]. Slepian basis expansion model is 
based on the discrete spheroidal sequences (DPS) which are 
proposed by Slepian in [4]. The DPS sequences used as Kernel 

functions are orthogonal over a finite and infinite set, this 
property avoids the spectral leakage and hence the error 
performance is better than CE-BEM and OBEM [5]. 

Polynomial basis expansion model uses Taylor polynomials 
as basis functions [6]. Its error performance is better than that 
of CE-BEM, OBEM and Slepian BEM. Oversampled 
polynomial basis expansion model (OPM) was proposed to 
gain better channel estimation compared to CE-BEM and 
OBEM [7]. In Karhunen-Loeve basis expansion model (KL-
BEM) [8] [9] the basis functions are obtained from second-
order statistics of the channel. For a Rayleigh fading channel 
that follows the Jakes’ model [10] [11], the channel correlation 
is a zero order Bessel function of first kind. A considerable 
disadvantage of KL-BEM is that in real situations the channel 
correlation does not follow the Jakes’ model [12], and 
obtaining the channel correlation due to environmental factors 
is a difficult task. The basis expansion model can be used in 
channel estimation. Channel estimation and equalization 
methods have been proposed in the literature based on BEM 
[1] [3] [13] [14].  

In this paper, two basis expansion models based on 
Legendre polynomials are discussed. The BEM coefficients are 
obtained directly using the least-squares method by the 
assumption that the real channel is a doubly-selective Rayleigh 
fading channel which follows the Jakes’ model. In this paper 
the error performances of these models are compared to that of 
other basis expansion models.  

The first model discussed is the Legendre basis expansion 
model (LBEM) [15]. LBEM is based on Legendre polynomials 
and the coefficients are obtained using the least-squares 
approximation. Simulation results show that LBEM has better 
error performance than CE-BEM, OBEM and Slepian and is 
comparable to PBM. In this article we propose the oversampled 
Legendre basis expansion model (OLBEM). This model is 
defined and the basis functions are obtained by oversampling 
the basis of LBEM. The idea was obtained from OPM [7], as it 
was proposed as a new BEM model based on oversampling the 
Taylor polynomials and the results proved to have better error 
performance than CE-BEM, OBEM and Slepian BEM [7]. It 
will be shown that OLBEM has lower modeling error 
compared to the other oversampled basis expansion models 
(i.e. OBEM, OPM). 

The paper is organized as follows: Section  II explains the 
system model. In sections  III LBEM, and in section IV 
OLBEM are explained. Section  V presents the simulation 
results. The paper is concluded in section  VI. 



Notations: Throughout this paper ‖. ‖  is the Euclidian 
Norm, (. ) 𝑇 is the Transpose, (. ) 𝐻 denotes the Hermitian, 
Upper Bold case letters denotes matrices and lower case letters 
is used for vectors.  

II. SYSTEM MODEL 
Consider a wireless doubly-selective fading channel. A 

general form of expressing the input-output equation for time 
index 𝑛 is expressed as follows [8]: 

                   𝑦(𝑛) = ∑ ℎ(𝑛; 𝑙)𝑢(𝑛 − 𝑙) + 𝑤(𝑛),𝐿−1
𝑙=0               (1)  

where  𝐿  is the number of taps, 𝑢(𝑛)  and  𝑦(𝑛)  are the nth 
transmitted and received symbols. ℎ(𝑛; 𝑙) is the  𝑙𝑡ℎ tap of 
channel’s impulse response at time index 𝑛, and 𝑤(𝑛) denotes 
the additive white Gaussian noise. 

A general form of expressing the channel by its basis 
function and coefficients is given by [1]: 

                             ℎ�(𝑛; 𝑙) = ∑ 𝑔(𝑞, 𝑙)𝑓𝑞(𝑛),𝑄−1
𝑞=0                     (3) 

where 𝑄 is the number of basis functions, 𝑓𝑞(𝑛)denotes the 
 𝑞𝑡ℎ basis function at time  𝑛 and 𝑔(𝑞, 𝑙) is the  𝑞𝑡ℎ coefficient 
of the  𝑙𝑡ℎ tap. Equation (3) can be expressed in the matrix 
form as: 

                                          𝑯� = 𝑭𝑮,                                         (4) 

where 𝑯� = �ℎ�(0; 𝑙),ℎ�(1; 𝑙), … ,ℎ�(𝑁 − 1; 𝑙)�
𝑇
is the N×L matrix 

form of the channel expressed by BEM for 𝑙 = [0, … , 𝐿 − 1], 
and 𝑭 = �𝑓𝑞(0), 𝑓𝑞(2), … , 𝑓𝑞(𝑁 − 1)�𝑇 ,𝑞 = [0, … ,𝑄 − 1]  is a 
𝑁 × 𝑄  matrix of the kernel functions and 
𝑮 = [𝑔(0, 𝑙),𝑔(1, 𝑙), … ,𝑔(𝑄 − 1, 𝑙)]𝑇 , 𝑙 = [1, … , 𝐿 − 1]  is the 
𝑄 × 𝐿 matrix of coefficients. For expressing the channel using 
BEM, the coefficient matrix needs to be found. By 
choosing 𝑄 × 𝐿 < 𝑁,  channel can be modeled with fewer 
parameters than the block size 𝑁 , this is an important 
advantage of using BEM for modeling fading channels. 

In the two following sections, Legendre basis expansion 
model (LBEM) and oversampled Legendre basis expansion 
model (OLBEM) are presented.  

III. LEGENDRE BASIS EXPANSION MODEL 
This section discusses Legendre basis expansion model 

(LBEM) [15] [16]. These polynomials have been used in 
modeling the fading channels [16]. In [17] Legendre 
polynomials are used in predicting the fading envelope. In this 
paper, Legendre polynomials are used as basis expansion 
model for doubly-selective fading channels, and QR-
decomposition is applied to obtain the Legendre kernel 
functions which are orthogonal on an infinite set.  

The Legendre polynomials are the solution to the following 
differential equation [15]: 

              𝑑
𝑑𝑥
�(1 − 𝑥2) 𝑑

𝑑𝑥
𝑃𝑛(𝑥)� + 𝑛(𝑛 + 1)𝑃𝑛(𝑥) = 0,         (5) 

 
The solution to (5) is given by 

         𝑃𝑛(𝑥) = 1
2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
[(𝑥2 − 1)𝑛]    𝑓𝑜𝑟  𝑛 = {0,1,2, … },     (6) 

 
where  𝑃𝑛(𝑥)  is the Legendre polynomial of order  𝑛 . By 
having 𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥 and using the Bonnet recursion 
formula, the Legendre polynomial of order 𝑛 + 1 is given by: 
 
           (𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥𝑃𝑛(𝑥) − 𝑛𝑃𝑛−1(𝑥),      (7) 

 
Figure (1) shows the first five Legendre polynomials 

for −1 ≤ 𝑥 ≤ 1. 

One of the properties of Legendre Polynomials is that they are 
orthogonal on −1 ≤ 𝑥 ≤ 1 interval as bellow: 
 
                         ∫ 𝑃𝑛(𝑥)𝑃𝑚(𝑥)𝑑𝑥 = 2

2𝑛+1
1
−1 𝛿𝑛𝑚,                    (8) 

 
where 𝛿𝑛𝑚 is the Kronecker delta. 
 

For expanding the channel by its basis functions and 
coefficients using the Legendre polynomials, the following can 
be stated: 

�
ℎ𝐿(0; 1) …

⋮
ℎ𝐿(0; 𝐿)

⋮
ℎ𝐿(𝑁 − 1; 1) … ℎ𝐿(𝑁 − 1; 𝐿)

� =

                                      𝑭�𝐿 �
𝑔�0𝐿(1)     … 𝑔�0𝐿(𝐿)

⋮
𝑔�𝑄−1𝐿(1) …

⋮
𝑔�𝑄−1𝐿(𝐿)

�,           (9) 

 
The subscript L denotes LBEM. 𝑭�𝐿 is the non-orthogonal 
matrix of Legendre polynomials basis functions, which is 
 

         𝑭�𝐿 =

⎣
⎢
⎢
⎡
�1|𝑥=0

𝑁

�𝑥|𝑥=1
𝑁

⋮ ⋮
�1|𝑥=0

𝑁

�𝑥|𝑥=1
𝑁

… �𝑃𝑄(𝑥)�
𝑥=𝑁−1𝑁
⋮

… �𝑃𝑄(𝑥)�
𝑥=𝑁−1𝑁 ⎦

⎥
⎥
⎤
,       (10) 

 

 
Figure 1 Legendre polynomials 
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where 𝑃𝑄(𝑥) is the 𝑄𝑡ℎ order of Legendre polynomials in the 
normalized time  𝑥 . Since these basis do not hold the 
orthogonally characteristic in an infinite interval, we use the 
QR decomposition to reach this goal and also to make the 
calculations simple. 𝑭𝐿 is the orthogonal Kernel matrix after 
the QR decomposition is applied. 
For expressing our channel using BEM, the following should 
be minimized: 
                                       ∥ 𝑯𝐿 − 𝑭𝐿𝑮𝐿 ∥2,                            (11) 

 
where 𝑯𝐿 is the real channel, which in this case is obtained 
from the Jakes’ model and 𝑮𝐿 is the coefficient matrix that 
should be approximated using the least-squares method. 
Using the least-squares approximation the coefficient matrix 
can be approximated as follows: 
 
                                 𝑮�𝐿 = (𝑭𝑇𝐿𝑭𝐿)−1𝑭𝑇𝐿𝑯𝐿,                     (12) 
 
And the least-squares channel approximate would be: 
 
                                           𝑯�𝑳 = 𝑭𝑳𝑮�𝑳.                               (13) 

IV. OVERSAMPLED LEGENDER BASIS EXPANSION 
MODEL 

Oversampled Legendre basis expansion model (OLBEM) is 
based on oversampling the basis functions of LBEM. In [7] 
oversampling Taylor polynomials (OPM) were proposed for 
obtaining a better error performance than CE-BEM and 
OBEM. By oversampling the Legendre polynomials the 
modeling error would be less than that of OPM. 

For the oversampled Legendre basis expansion model 
(OLBEM) the matrix of Kernel functions can be expressed as 
follows: 

 𝑭�𝑂𝐿 =

          

⎣
⎢
⎢
⎡
�1|
𝑥=−(𝑃∗𝑁)/2

𝑃∗𝑁

�𝑥|
𝑥=−(𝑃∗𝑁)/2+1

𝑃∗𝑁
⋮ ⋮

�1|
𝑥=−(𝑃∗𝑁)/2

𝑃∗𝑁

�𝑥|
𝑥=−(𝑃∗𝑁)/2+1

𝑃∗𝑁

… �𝑃𝑄(𝑥)�
𝑥=(𝑃∗𝑁)/2−1

𝑃∗𝑁

⋮
… �𝑃𝑄(𝑥)�

𝑥=(𝑃∗𝑁)/2−1
𝑃∗𝑁 ⎦

⎥
⎥
⎤
,(14) 

 

where 𝑃 is the oversampling rate and 𝑥 denotes the normalized 
time. The basis functions are not orthogonal and QR-
decomposition is applied to  𝑭�𝑂𝐿 and the N middle columns 
are extracted to form the orthogonal Kernel matrix denoted 
as 𝑭𝑂𝐿. Hence, the following equation can be written: 
 

�
ℎ𝑂𝐿(0; 1) …

⋮
ℎ𝑂𝐿(0; 𝐿)

⋮
ℎ𝑂𝐿(𝑁 − 1; 1) … ℎ𝑂𝐿(𝑁 − 1; 𝐿)

� =

                            𝑭𝑂𝐿 �
𝑔�0𝑂𝐿(1)     … 𝑔�0𝑂𝐿(𝐿)

⋮
𝑔�𝑄−1𝑂𝐿(1) …

⋮
𝑔�𝑄−1𝑂𝐿(𝐿)

�,            (15) 

 
For obtaining the coefficient matrix, we should minimize the 
following: 
 

∥ 𝑯𝑂𝐿 − 𝑭𝑂𝐿𝑮𝑂𝐿 ∥2.                            (16) 
 

The least-squares channel approximation can be written as: 
 
                            𝑮�𝑂𝐿 = (𝑭𝑇𝑂𝐿𝑭𝑂𝐿)−1𝑭𝑇𝑂𝐿𝑯𝑂𝐿.                 (17) 
 
      The proposed model has similar complexity compared to 
PBEM, OPM and LBEM, but it is more complex than CE-
BEM and OBEM. Since the proposed method is based on 
polynomials, it is easier to achieve its basis functions 
compared to KL-BEM and Slepian BEM, having in mind that 
the former’s basis functions are obtained through extracting 
the columns from the correlation matrix and the latter’s basis 
functions are the DPS functions.  

V. SIMULATION RESULTS 
In this section, simulation results are represented for LBEM 

and OLBEM. The window size used is 512. The maximum 
Doppler frequency shift is 250 Hz, the number of taps is 7 and 
the sampling period is 10 μsec. As an assumption, the channel 
follows Jakes’ spectrum and consequently its correlation is the 
zero order Bessel function of first kind as 𝑅ℎ(𝑡) =
𝜎ℎ2𝐽0(2𝜋𝑓𝑚𝑎𝑥𝑡𝑇𝑠) , where 𝑓𝑚𝑎𝑥  is the maximum Doppler 
frequency shift,  𝑇𝑠  is the sampling period and 𝜎ℎ2  is the 
channel variance. In OBEM, OPM and OLBEM the 
oversampling rate was chosen equal to 2 for a fair comparison. 

Figure 2 shows the MSE versus maximum Doppler 
frequency shift for LBEM. The results from LBEM are 
compared to that of CE-BEM, OBEM, Slepian and KL-BEM. 
As it can be seen, for Doppler frequency lower than 250 Hz, 
LBEM has the least MSE compared to the other BEM 
mentioned earlier. As the maximum Doppler frequency shift 
increases, LBEM shows higher MSE error, although for higher 

Figure 2 MSE versus Doppler frequency for LBEM 
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Figure 3 MSE versus window size for LBEM 

Figure 4 MSE versus Doppler frequency for OLBEM 

Figure 5 MSE versus window size for OLBEM 
 

       

maximum Doppler frequency shift, KL-BEM has better error 
performance, but the optimum KL-BEM is used and obtaining 
the channel correlation in practical cases is not an easy task. 

       Figure 3 shows the MSE versus different window size for 
CE-BEM, OBEM, Slepian and KL-BEM. By analyzing Fig. 3, 
it can be concluded that for lower window sizes, LBEM 
presents a better LS channel modeling. As the window size 
increases the MSE for LBEM gets higher and more similar to 
OPM. 

      Figure 4 shows MSE versus maximum Doppler frequency 
for OLBEM. The results are compared to that of OBEM and 
OPM. By analyzing Fig. 4 it is concluded that OLBEM has an 
acceptable MSE for different Doppler frequencies. For smaller 
Doppler frequencies, OLBEM has better modeling 
performance. It also has less least-squares channel modeling 
MSE compared with OPM. 

Figure 5 plots MSE versus different window sizes for 
OLBEM, the results are compared to that of OBEM and OPM. 
It is concluded that for smaller window sizes, OLBEM models 
the channel more accurately. 

VI. COCLUSION 
In this paper, Legendre basis expansion model was 

discussed and a new basis expansion model based on Legendre 
polynomials is proposed. The proposed BEM uses Legendre 
Kernel functions and oversamples them to form the 
oversampled Legendre basis expansion model (OLBEM). The 
proposed model has an acceptable channel modeling MSE 
which is better than the other oversampled BEMs. 
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